Engineering Practice

Calculate Lituid Volumes in Tanks with Dished Heads

A downloadable spreadsheet simplifies the use of these equations

Daniel R. Crookston, Champion Technologies

Reid B. Crookston, Retired

This article presents equations that allow the user to calculate liquid volume as a function of liquid depth, in both vertically and horizontally oriented tanks with dished heads. The equations accommodate all tank heads that can be described by two radii of curvature (torispherical heads). Examples include: ASME flanged \& dished (F\&D) heads, ASME 80/10 F\&D heads, ASME 80/6 F\&D heads, standard F\&D heads, shallow F\&D heads, 2:1 elliptical heads and spherical heads. Horizontal tanks with true elliptical heads of any aspect ratio can also be accommodated using this methodology.

This approach can be used to prepare a lookup table for a specific tank, which yields liquid volumes (and weights) for a range of liquid depths. The equations can also be applied directly to calculate the liquid volume for a measured liquid depth in a specific tank. Such calculations can be executed using a spreadsheet program, a programmable calculator or a computer program. Spreadsheets that perform these calculations are available from this magazine (search for this article online at www.che.com, and see the Web Extras tab).

Problem background

Tanks with dished heads are found throughout the chemical process industries (CPI), in both storage and reactor applications. In some cases,

FIGURE 1. This figure shows the relevant radii of curvature and the coordinate system used for a vertical tank

FIGURE 2. This two-dimensional view of the tank head is shown using dimensionless parameters
liquid volume calibrations of these vessels exist, but for many, the liquid volumes must be calculated. Traditional methods of calculation can be cumbersome, and some lack precision or offer little or no equation derivation.

The equations presented below are mathematically precise and have a detailed derivation. The spreadsheets that are offered to perform the calculations produce a table of liquid volumes for a range of liquid depths that are suitable for plant use. This table is generated by entering four parameters that define key tank dimensions. An operator could use such a spreadsheet table in lookup mode, using interpolation if necessary. One could also turn the tabular values into a plot.

Each spreadsheet also has a calculator function, which requires the user to enter only the tank geometry parameters and liquid depth and the spreadsheet quickly returns the liquid volume. The spreadsheets can be used with handheld devices (such as a Blackberry or iPhone) that can run an Excel spreadsheet. For certain applications, one may want to show only the calculator function for a given vessel, so that an operator would only need to enter a liquid level to quickly calculate the corresponding liquid volume.

A number of tank heads have a
dished shape, and the equation development discussed below handles all of those where the heads can be described by two radii of curvature.

Doolittle [1] presents a graphical representation of liquid volumes in both horizontal and vertical tanks with spherical heads. The calculation of the liquid in the heads is approximate. The graph shows lines for tank diameters from 4 to 10 ft , and tank lengths from 1 to 50 ft . The accuracy of the liquid volume depends on certain approximations and the precision of interpolations that may be required.

Perry [2] states that the calculation of volume of a partially filled tank "may be complicated." Tables are given for horizontal tanks based on the approximate formulas developed by Doolittle.

Jones [3] presents equations to calculate fluid volumes in vertical and horizontal tanks for a variety of head styles. Unfortunately, no derivation of those equations is offered. As of the time of this writing, there were no Internet advertisements offering spreadsheets to solve the equations. Meanwhile, without adequate equation derivations, one would be unsure what one is solving, and thus, the results would be suspect.

By contrast, this article provides

Engineering Practice

exact equations for the total volume of the heads and exact equations for liquid volumes, for any liquid depth for any vertical or horizontal tank with dished heads. The popular 2:1 elliptical heads are actually fabricated as approximate shapes by using variations of the two-radii designs.

In addition, this article also presents the exact equations for true elliptical heads of any ratio (not limited to $2: 1$). Provided below are descriptions of the equation development, guidance on how to use the spreadsheets, and a discussion of a sample application for both a vertical and a horizontal tank.

Types of dished tank heads

Figure 1 shows the relevant radii of curvature and the coordinate system used. All symbols are defined in the Nomenclature Section on p. 59. It is convenient to present the equation development in terms of dimensionless variables. By normalizing all lengths by the tank diameter, the diameter is absent from all equations expressed in the dimensionless coordinates. The two radii (dish radius and knuckle radius) that describe the dished heads can be expressed as follows:
$R_{d}=f_{d} D$
$R_{k}=f_{k} D$
Table 1 presents standard dished tank heads that are described by this work.

Radius as a function of depth

For convenience, the derivation in this section describes a tank with vertical orientation. However, the derivation applies to horizontal tanks as well. The equations are used in the integrations described in the subsequent two sections, which yield the liquid volumes for vertical and horizontal tanks.

For the dished heads considered here, two radii define the shape. The bottom region of the head is spherical and has a radius that is proportional to the diameter of the cylindrical region of the tank (see Equation 1). This is referred to as Region 1.

Above that is Region 2, which is called the knuckle region. Its radius of curvature is shown in Figure 1. It can also be normalized by the tank diameter (see Equation 2).

The last concept needed to define the dish shape is that the curvatures of the two radii are equal at the plane where Regions 1 and 2 join. That will be explained further in the equation development that follows.

The coordinate system for the equations is shown in Figure 1. The origin of the coordinate system is chosen to be at the bottom-most point in the tank. For Region 1, the equation for the tank radius, x, in terms of the height, y, is as follows:

$$
\begin{equation*}
x^{2}+\left(f_{d} D-y\right)^{2}=f_{d}^{2} D^{2} \tag{3}
\end{equation*}
$$

This equation can be expressed via the following dimensionless variables:
$\alpha=y / D$
$\beta=x / D$
Substituting Equations 4 and 5 into Equation 3 gives the final dimensionless equation for Region 1, as shown in Equation 6:
$\beta^{2}+\left(f_{d}-\alpha\right)^{2}=f_{d}^{2}$
For Region 2, the equation for the tank radius, x, in terms of the height, y, is:
$\left(x-x_{k}\right)^{2}+\left(y-y_{k}\right)^{2}=f_{k}^{2} D^{2}$
Where $\left(x_{k}, y_{k}\right)$ is the coordinate location of the center of the knuckle radius. By substituting Equations 4 and 5, Equation 7 is made dimensionless, as shown in Equation 8:
$\left(\beta-\beta_{k}\right)^{2}+\left(\alpha-\alpha_{k}\right)^{2}=f_{k}^{2}$
The x-coordinate of the knuckle radius, x_{k}, must be:
$x_{k}=\frac{D}{2}-f_{k} D$
Equation 9 can be made dimensionless, as shown in Equation 10:
$\beta_{k}=0.5-f_{k}$
Making that substitution into Equation 8 gives the final dimensionless equation for Region 2:
$\left(\beta-0.5+f_{k}\right)^{2}+\left(\alpha-\alpha_{k}\right)^{2}=f_{k}^{2}$

Region 3 is the cylindrical portion of the tank with a constant diameter, with β equaling 0.5 .

Next, one must determine the coordinates of the point where the curves for Regions 1 and 2 come together. Working with the dimensionless variables, β and α, and using the subscript 1 to denote the top of Region 1, we seek to find α_{1} (the dimensionless coordinate of the top of Region 1), such that Equations 6 and 11 both give the same value for α_{1} (given the same value of β_{1}), and such that the curvature is continuous at the intersection.

Figure 2 is a two-dimensional view of the tank head using dimensionless parameters. The radius of the spherical region is drawn through the origin of the knuckle radius. The point where that line intersects the head identifies where Regions 1 and 2 join. At that point, the curvatures of the spherical region and the knuckle region are identical. The angle between the radius of that spherical region and the tank center line is denoted as θ. We can write the follow three trigonometric expressions involving that angle:
$\sin \theta=\frac{1 / 2-f_{k}}{f_{d}-f_{k}}$
$\sin \theta=\frac{\beta_{1}}{f_{d}}$
$\cos \theta=\frac{f_{d}-\alpha_{1}}{f_{d}}$
Recognizing the following trigonometric identity
$\sin ^{2} \theta+\cos ^{2} \theta=1$

We substitute Equations 12 and 14 into Equation 15 and solve for α_{1} :
$\alpha_{1}=f_{d}\left[1-\sqrt{1-\left(\frac{1 / 2-f_{k}}{f_{d}-f_{k}}\right)^{2}}\right]$
The value of β_{1} can be calculated by combining Equations 12 and 13:

Tank head style	f_{d}	f_{k}	α_{1}	β_{1}	α_{2}	β_{2}
ASME F\&D	1.000	0.06	0.1163166103	0.4680851064	0.1693376137	0.5
ASME 80/10 F\&D	0.800	0.10	0.1434785547	0.4571428571	0.2255437353	0.5
ASME 80/6 F\&D	0.800	0.06	0.1567794689	0.4756756757	0.2050210088	0.5
2:1 Elliptical	0.875	0.17	0.1017770340	0.4095744681	0.2520032103	0.5
Spherical	0.500	0.50	0.5000000000	0.5000000000	0.5000000000	0.5

TABLE 3. RATIO OF TOTAL HEAD CAPACITY TO D_{3} FORVARIOUS DISHED HEADS

Tank head style	$\boldsymbol{f}_{\boldsymbol{d}}$	$\boldsymbol{f}_{\boldsymbol{k}}$	$\alpha_{\boldsymbol{1}}$	$\alpha_{\mathbf{2}}=\alpha_{\boldsymbol{k}}$	\boldsymbol{C}
ASME F\&D	1.000	0.06	0.116317	0.169338	0.0809990
ASME 80/10 F\&D	0.800	0.10	0.143479	0.225544	0.1098840
ASME 80/6 F\&D	0.800	0.06	0.156779	0.205021	0.0945365
2:1 Elliptical	0.875	0.17	0.101777	0.252003	0.1337164
Spherical	0.500	0.50	0.500000	0.500000	0.2617994

$\beta_{1}=f_{d}\left(\frac{1 / 2-f_{k}}{f_{d}-f_{k}}\right)$
$\alpha_{5}=H / D$

To calculate α_{2} we apply the Pythagorean Theorem to the right triangle whose hypotenuse is a line between the origin of the spherical radius and the origin of knuckle radius, as shown in Equation 18:
$\left(1 / 2-f_{k}\right)^{2}+\left(f_{d}-\alpha_{2}\right)^{2}=\left(f_{d}-f_{k}\right)^{2}$

Solving that for α_{2} gives:
$\alpha_{2}=f_{d}-\sqrt{f_{d}^{2}-2 f_{d} f_{k}+f_{k}-1 / 4}$
α_{k} is located at the top of Region 2, so $\alpha_{2}=\alpha_{k}$

At the top of Region 2, the head radius equals the radius of the cylindrical portion, so β_{2} equals $1 / 2$.

For Region 3, the radius is constant and is simply half the tank diameter. So, the expression for the tank radius is shown in Equation 21:
$\beta=0.5$ for $\alpha_{2} \leq \alpha \leq \alpha_{3}$
It is not necessary to construct equations for β as a function of α in Regions 4 and 5. For vertical tanks, the volumes for liquid levels in those regions can be calculated from the equations for Region 1 and 2 (presented below). For horizontal tanks, the liquid volume in the right-hand head equals that of the left-hand head for the symmetrical tanks discussed here.

The value for α_{1} (top of Region 1) for each head style was determined by solving Equation 16. β_{1} is given by Equation 17. α_{2} is equivalent to α_{k}, and its value is given by Equation 19. At the top of the tank, α_{5} is the tank height, H, divided by the diameter, or
would, in turn, use the appropriate equations to calculate β_{1}, α_{2}, and β_{2}. All the equations in the following sections for the tank volume and liquid volume also apply.

Liquid volume as a function of depth for vertical tanks

Liquid volume in Region 1. The liquid volume, v_{i}, in any tank region i is simply
$v_{i}=\int_{y_{i-1}}^{y} \pi x^{2} d y$
Replacing x and y by their dimensionless expressions in Equations 4 and 5 gives
$v_{i}=\pi D^{3} \int_{\alpha_{i-1}}^{\alpha} \beta^{2} d \alpha$
For Region 1, substituting for β^{2} from Equation 6 and integrating gives
$v_{1}=\pi D^{3}\left[f_{d} \alpha^{2}-\alpha^{3} / 3\right]$
for $0 \leq \alpha \leq \alpha_{1}$
The total capacity of Region 1, denoted as V_{1}, can be calculated by putting α_{1} and a value for D into Equation 27. This will also be the total tank capacity of Region 5 , denoted as V_{5}.
Liquid volume in Region 2. For Region 2 , the liquid volume is calculated using Equation 28:
$v_{2}=\pi D^{3} \int_{\alpha_{1}}^{\alpha} \beta^{2} d \alpha$
Substituting for β from Equation 11 and integrating gives Equation 29:
Equation 29: (see box on p. 56)
As discussed above, α_{k} is identical to α_{2} (see Equation 20), so that substitution could be made in Equation 29.

The total capacity of Region 2, denoted as V_{2}, can be calculated by putting α_{2} in place of α in Equation 29. This will also be the total tank capacity of Region 4, denoted as V_{4}.
Liquid volume in Region 3. Carrying out the integration in Equation 26 for Region 3 with the substitution from Equation 21 yields the liquid volume in Region 3, as shown next:
$v_{3}=\frac{\pi D^{3}}{4}\left[\alpha-\alpha_{2}\right]$
for $\alpha_{2} \leq \alpha \leq \alpha_{3}$
The total capacity of Region 3, denoted

$$
\begin{align*}
& v_{2}=\pi D^{3}\left\{\left[\left(0.5-f_{k}\right)^{2}+f_{k}^{2}\right]\left(\alpha-\alpha_{1}\right)-\frac{1}{3}\left[\left(\alpha-\alpha_{k}\right)^{3}-\right.\right. \\
& \left.\left(\alpha_{1}-\alpha_{k}\right)^{3}\right]+\left(0.5-f_{k}\right)\left[\left(\alpha-\alpha_{k}\right) \sqrt{f_{k}^{2}-\left(\alpha-\alpha_{k}\right)^{2}}-\right. \\
& \left(\alpha_{1}-\alpha_{k}\right) \sqrt{f_{k}^{2}-\left(\alpha_{1}-\alpha_{k}\right)^{2}}+f_{k}^{2} \sin ^{-1} \frac{\left(\alpha-\alpha_{k}\right)}{f_{k}}- \tag{29}\\
& \left.\left.f_{k}^{2} \sin ^{-1} \frac{\left(\alpha_{1}-\alpha_{k}\right)}{f_{k}}\right]\right\} \text { for } \alpha_{1} \leq \alpha \leq \alpha_{2} \tag{31}
\end{align*}
$$

$$
\left\lvert\, \begin{aligned}
& v_{4}=V_{4}-\pi D^{3}\left\{\left[\left(0.5-f_{k}\right)^{2}+f_{k}^{2}\right]\left(\alpha_{5}-\alpha-\alpha_{1}\right)-\frac{1}{3}\left[\left(\alpha_{5}-\alpha-\alpha_{k}\right)^{3}-\right.\right. \\
& \left.\left(\alpha_{1}-\alpha_{k}\right)^{3}\right]+\left(0.5-f_{k}\right)\left[\left(\alpha_{5}-\alpha-\alpha_{k}\right) \sqrt{f_{k}^{2}-\left(\alpha_{5}-\alpha-\alpha_{k}\right)^{2}}-\right. \\
& \left(\alpha_{1}-\alpha_{k}\right) \sqrt{f_{k}^{2}-\left(\alpha_{1}-\alpha_{k}\right)^{2}}+f_{k}^{2} \sin ^{-1} \frac{\left(\alpha_{5}-\alpha-\alpha_{k}\right)}{f_{d}}- \\
& \left.\left.f_{k}^{2} \sin ^{-1} \frac{\left(\alpha_{1}-\alpha_{k}\right)}{f_{d}}\right]\right\} \text { for } \alpha_{3} \leq \alpha \leq \alpha_{4}
\end{aligned}\right.
$$

as V_{3}, can be calculated by putting α_{3} into Equation 30 in place of α.
Liquid volume in Region 4. If the liquid level is in Region 4, the volume can be determined from the volume equation for Region 2, Equation 29. For a liquid level α in Region 4, the height of the tank's vapor space would be $\left(\alpha_{5}-\alpha\right)$. The volume of the vapor space in Region 4 would be equivalent to the liquid volume in Region 2 if the level were at a depth of $\left(\alpha_{5}-\alpha\right)$. So, to calculate the liquid volume in Region 4, we take the capacity of Region 4 (equivalent to the capacity of Region 2) and subtract the vapor space in Region 4.
Equation 31: (see box above)
(31)

Liquid volume in Region 5. In an analogous manner, the liquid volume in Region 5 is:
$v_{5}=V_{5}-\pi D^{3}\left[f_{d}\left(\alpha_{5}-\alpha\right)^{2}-\left(\alpha_{5}-\alpha\right)^{3} / 3\right]$
for $\alpha_{4} \leq \alpha \leq \alpha_{5}$

Tank capacity and total liquid volume. The total tank capacity is
$V_{T}=2 V_{1}+2 V_{2}+V_{3}$
The final expression for the liquid volume is shown in Equation 34:
$v=\sum_{i=1}^{i-1} V_{i}+v_{i}$
Where the v_{i} and V_{i} terms are given by Equations 27, 29, 30, 31, and 32 for the five regions.
Capacities of dished heads. The total head volume (capacity) for each dished head considered in this article can be calculated by adding the volumes of Region 1 (Equation 27 with α $=\alpha_{1}$) and Region 2 (Equation 29 with $\alpha=\alpha_{2}$). One can see the result will be an equation of this form:
$V_{h}=C D^{3}$
Where C is calculated as:

$$
\begin{align*}
& C=\pi\left[f_{d} \alpha_{1}^{2}-\alpha_{1}^{3} / 3\right]+\pi\left\{\left[\left(0.5-f_{k}\right)^{2}+f_{k}^{2}\right]\left(\alpha_{2}-\alpha_{1}\right)+\frac{1}{3}\left(\alpha_{1}-\alpha_{k}\right)^{3}+\right. \\
& \left.\left(0.5-f_{k}\right)\left[\left(\alpha_{k}-\alpha_{1}\right) \sqrt{f_{k}^{2}-\left(\alpha_{1}-\alpha_{k}\right)^{2}}-f_{k}^{2} \sin ^{-1} \frac{\left(\alpha_{1}-\alpha_{k}\right)}{f_{k}}\right]\right\} \tag{36}
\end{align*}
$$

Equation 36: (see box above)
Table 3 shows the value of C for each type of head considered here.
Perry [2] gives an approximate value for C for an ASME F\&D head as 0.0809 , which is quite close to the precise value given in Table 3.

Liquid volume as a function of depth for horizontal tanks

The liquid depth, d, in a horizontal tank is measured in the cylindrical region. Calculation of the liquid volume in the cylindrical region of the tank is straightforward; calculating the liquid volume in the two dished heads is more challenging. First, one needs to recognize that every possible tank cross-section formed by planes perpendicular to the tank's center axis will be a circle. In the dished regions, if there is liquid at any given plane, the area of that liquid A_{L} will be what is termed a segment of the circular cross-section. One can calculate the liquid volume between any two cross-sectional planes by integrating the following:
$v_{L}=\int_{y_{a}}^{y_{b}} A_{L} d y$
The coordinate system for horizontal tanks is shown in Figure 3. We begin the development of the liquid volume equation by looking at the cylindrical region, and follow that by dealing with the dished regions.
Liquid volume in the cylindrical region. If one envisions a cross-section perpendicular to the tank axis in the cylindrical region of a horizontal tank with a liquid depth d, the area of a segment representing the liquid would have an area of
$A_{L C}=2 \int_{-R}^{-(R-d)} x d y$
where the center of the coordinate system is the tank's centerline in a plane perpendicular to that centerline, and R is the tank radius. The equation for the circle formed by the intersection of the tank with that plane is shown in Equation 39:
$x^{2}+y^{2}=R^{2}$
Substituting Equation 39 into 38 and integrating gives:
$A_{L C}=(d-R) \sqrt{2 d R-d^{2}}+$
$R^{2} \sin ^{-1} \frac{d-R}{R}+\frac{\pi R^{2}}{2}$
Defining a dimensionless liquid depth
$\delta=d / D$
and substituting Equation 41 into Equation 40, and replacing R with $D / 2$ gives
$A_{L C}=$
$D^{2}\left[\left(\delta-\frac{1}{2}\right) \sqrt{\delta-\delta^{2}}+\frac{1}{4} \sin ^{-1}(2 \delta-1)+\frac{\pi}{8}\right]$

Given that the length of the cylindrical region is $\left(\alpha_{3}-\alpha_{2}\right) D$, the volume of liquid in the cylindrical region is just area times length, or
$v_{L C}=\left(\alpha_{3}-\alpha_{2}\right) D^{3}$
$\left[\left(\delta-\frac{1}{2}\right) \sqrt{\delta-\delta^{2}}+\frac{1}{4} \sin ^{-1}(2 \delta-1)+\frac{\pi}{8}\right]$

Liquid volume in the tank heads.
The liquid volume in the dished regions is arrived at by analogous reasoning to that used for the cylindrical region. Again, planes constructed perpendicular to the tank axis will intersect the dished head giving circular shapes.

FIGURE 3. The coordinate system for a horizontal tank is shown here

The radii of those circles will depend on the curvature of the dish and, as such, will vary with α, the dimensionless distance from the left-hand end of the tank. Also, for a given liquid depth in the cylindrical region, the liquid depth at a cross-section in the dished head will be less than in the cylindrical region because of the dish curvatures.

Referring to Figure 4, a schematic view looking toward the left-hand tank dished head, the outer circle represents the cylindrical diameter and the inner circle represents a cross-section in the dished region. The horizontal dashed line represents a liquid level, shown here in the lower half of the tank. The radius of the dished head at the crosssection is x, or β in the dimensionless coordinates, and the liquid height at the cross section is h. We can normalize that liquid depth by defining a dimensionless variable, γ, as shown:
$\gamma=h / D$
We relate h, d and x as follows:
$=d-\left(\frac{D}{2}-x\right)$
here $\left(\frac{D}{2}-x\right) \leq d \leq\left(\frac{D}{2}+x\right)$
In other words, if the liquid depth is below ($D / 2-x$), there is no liquid area at the cross-section, and if the depth is above $(D / 2+x)$, then the entire circular area is covered. Equation 45 can be written in terms of the dimensionless variables
$\gamma=\delta-\frac{1}{2}+\beta$
where $\left(\frac{1}{2}-\beta\right) \leq \delta \leq\left(\frac{1}{2}+\beta\right)$
We can write an equation for the liquid area of a cross-section in the dished region (perpendicular to the main axis) by analogy to Equation 40, where the

EQUATION 48

$$
A_{L D}=D^{2}\left[\left(\delta-\frac{1}{2}\right) \sqrt{-\delta^{2}+\delta+\beta^{2}-\frac{1}{4}}+\beta^{2} \sin ^{-1} \frac{\delta-\frac{1}{2}}{\beta}+\frac{\pi \beta^{2}}{2}\right]
$$

where $\left(\frac{1}{2}-\beta\right) \leq \delta \leq\left(\frac{1}{2}+\beta\right)$
radius, x, replaces R, and where the liquid depth, h, replaces d.
$A_{L D}=(h-x) \sqrt{2 h x-h^{2}}$
$+x^{2} \sin ^{-1} \frac{h-x}{x}+\frac{\pi x^{2}}{2}$
Next, we convert to dimensionless variables and substitute from Equation 46 to create Equation 48:

Equation 48: (see box, above)
To get the liquid volume in the two dished tank heads, apply Equation 37:
$v_{L D}=2 D\left[\int_{0}^{\alpha_{1}} A_{L 1} d \alpha+\int_{\alpha_{1}}^{\alpha_{2}} A_{L 2} d \alpha\right]$
(49)

If we were able to perform this integration and get a closed-form solution, we would substitute Equation 48 for $A_{L 1}$, substitute for β in Region 1 from Equation 6 and perform similar substitutions for Region 2. That would give two integrals, each only involving the variable α. While it is not possible to perform those integrations analytically, it is possible to perform the integrations numerically.
We use Simpson's Rule for the numerical integration. It is based on having an odd number of equally spaced intervals in the independent variable, in this case α, and calculating the corresponding values for the areas. We chose to use 100 intervals between α $=0$ and $\alpha=\alpha_{2}$. The numerical integration was performed as part of a spreadsheet, described below in the Results section. Simpson's Rule for any three consecutive integration points is
$v_{L D}=\frac{2 D(\Delta \alpha)}{3}\left(A_{L a}+4 A_{L b}+A_{L c}\right)$
(50)

Where $\Delta \alpha$ is $\alpha_{2} / 100$ and $A_{L a}, A_{L b}$, and $A_{L c}$ are the areas at the three corresponding α points. The liquid volume in the two heads is calculated by applying Simpson's Rule to each of the three cross-sections, summing the parts to cover the 101 cross-sections, and doubling that to account for the two heads. The total liquid in the tank is the sum of the liquid in the cylindrical region and the two heads.

Liquid volume in true elliptical tank heads. Elliptical heads are commonly used on horizontal tanks. While a true ellipse doesn't conform to the definition of heads characterized by two radii of curvature, their shape is much simpler, and the contained liquid volume can be calculated by simple algebraic formula, derived below.

For this exercise we imagine an orthogonal $x-y-z$ coordinate system with its origin at the center of an ellipsoid formed by revolving an ellipse about the z-axis. The z-axis is taken to coincide with the centerline of the cylindrical portion of the tank, and the x and y-axes are in the plane perpendicular to the z-axis at the center of the ellipsoid, with the y-axis being vertical. The equation that describes the surface of the ellipsoid is:
$\frac{x^{2}}{R^{2}}+\frac{y^{2}}{R^{2}}+\frac{z^{2}}{Z^{2}}=1$
So, the x-axis intersects the ellipsoid at R, the y-axis intercepts at R, and the z-axis intercepts at Z. As an example, if one had a true $2: 1$ elliptical head, Z would equal $R / 2$. We define e, the ratio of the intercepts of the ellipsoid, such that
$Z=\frac{R}{e}=\frac{D}{2 e}$
Straightforward integration shows that the area of an ellipse represented by Equation 53 :
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
is Equation 54 [4]:
$A=\pi a b$
With the coordinate system described above for an ellipsoid, the y-axis will be the vertical axis, and the liquid surface will be perpendicular to that y-axis. All cross-sections perpendicular to that y-axis will intersect the ellipsoid as an ellipse in an $x-z$ plane. Rearranging Equation 51 gives
$\frac{x^{2}}{R^{2}\left(1-\frac{y^{2}}{R^{2}}\right)}+\frac{z^{2}}{Z^{2}\left(1-\frac{y^{2}}{R^{2}}\right)}=1$

Engineering Practice

Comparing this with the general form of an ellipse in Equation 53, we see that the x-axis intercept of the ellipse in a plane perpendicular to the y-axis at any y value will be $R\left(1-2 / R^{2}\right)^{1 / 2}$. The corresponding z-axis intercept will be $Z\left(1-y^{2} / R^{2}\right)^{1 / 2}$. From Equation 54, the area of the ellipse will be
$A=\pi R Z\left(1-\frac{y^{2}}{R^{2}}\right)$
To calculate the liquid depth in the two heads, we first recognize that the two heads combined comprise a complete ellipsoid. We calculate the liquid volume of both heads as
$v_{L H}=\int_{-R}^{-R+d} A d y$
$=\pi R Z \int_{-R}^{-R+d}\left(1-\frac{y^{2}}{R^{2}}\right) d y$

Carrying out this integration and simplifying gives our final equation:
$v_{L H}=\frac{\pi d^{2}}{3 e}\left(\frac{3}{2} D-d\right)$
For the case where $e=1$, and heads are hemispherical, Equation 58 reduces to
$v_{L H}=\frac{\pi d^{2}}{3}\left(\frac{3}{2} D-d\right)$
If a tank with a hemispherical head is full ($d=D$), Equation 59 gives:
$v_{L H}=\frac{\pi D^{3}}{6}$

Which is the well-known formula for the volume of a sphere.

Equation 58 shows that the liquid volume (and capacity) of a true elliptical head is inversely proportional to e. Thus,

FIGURE 4. In this schematic view looking toward the left-hand dished head of a horizontal tank, the outer circle represents the cylindrical diameter and the inner circle represents a cross-section in the dished region

FIGURE 5. This plot shows the liquid volume versus liquid depth for an example horizontal tank
for example, a true 2:1 elliptical head on a tank of a given diameter would hold exactly half the liquid volume of a hemispherical head on the same tank.

Results

The equations in this paper have been incorporated into two Microsoft Excel spreadsheets - one for vertical tanks and the other for horizontal tanks. Tables 4 and 5 show excerpts from the spreadsheet programs. (Note: Abbreviated versions of Tables 4 and 5 are shown on page here, while the full versions of both tables are available in the online version of this article at www.che.com, at the Web Extras tab.) The description of Tables 4 and 5 that follows pertains to the full website versions, but notations are made where the parts being discussed are not seen in the table excerpts that are shown in the print version here.)
The equations programmed in these spreadsheets are rather substantial. Considerable effort was expended to ensure accurate representation of the equations in the spreadsheet formulas. Readers may download the spreadsheet templates at www.che.com (Web Extras tab). .
A suggested organization would be to maintain one copy of each spreadsheet template, and then create a separate spreadsheet for each tank to which one wishes to apply the equations. So, an Excel Workbook might consist of the two spreadsheet templates, plus an individual spreadsheet for each physical tank of interest.

Below, the input parameters are identified, and the general layout of the spreadsheets is described. Then we show spreadsheet examples for a vertical tank (Table 4) and for a horizontal tank (Table 5). .For simplicity, the same tank (with different tank
orientation) is used for both examples. The shaded cells are used to input the parameters for a specific vessel. The other cells are calculated by formulas.

The particular tank used in these examples has a dia. of $100-\mathrm{in}$. dia. (all dimensions are for the inside of the tank), a height or length of 120 in., and ASME F\&D heads, designated as Head Style 1. The liquid has a specific gravity of 1.18.

The tank length specified in Tables 4 and 5 is the total length from end to end. It can be directly measured, allowing for the wall thickness, or determined from engineering drawings.

Some drawings may not give the overall length specifically. In these cases, the length of each head from the end to the plane where the head becomes cylindrical can be calculated by multiplying α_{2} in Tables 4 or 5 by the inside tank diameter. If the drawing gives the distance between the weld beads, allowance must be made if the heads also include any cylindrical portion. If so, those lengths must be added to the length between the welds.

Four input parameters control the population of the strapping tables: (1) head style number; (2) tank diameter (in.); (3) tank length or height (in.); and (4) specific gravity of the liquid. They are entered in the top-left box in the shaded cells.

Below the input area is a box (not shown in the print version of the tables) containing head-style parameters calculated by the spreadsheet in accordance with the Head Style Number input. The values for α_{1} to α_{5} and f_{d} and f_{k} are supplied by formulas and are defined in the Nomenclature box.

The third box down on the left (titled Region Capacities in the print edition version of the tables) gives the calculated tank capacities for the five tank

Symbol	Description	Symbol	Description
a	x-axis intercept of an ellipse, Equation 53	α	Dimensionless height (vertical tank) or length (horizontal tank)
A_{L}	Area of liquid in any cross-section perpendicular to the tank axis		
		β	Dimensionless radius
b	y-axis intercept of an ellipse, Equation 53	δ	Dimensionless liquid depth in the cylindrical region of a horizontal tank
C	Dimensionless proportionality constant in Equation 35		
		$\Delta \alpha$	Dimensionless interval in Simpson's Rule
d	Liquid depth in the cylindrical region of a horizontal tank	γ	Dimensionless liquid depth at any cross-section in a dished head
D	Inside diameter of the cylindrical portion of tank	θ	Angle between the tank center line and a radius drawn from the origin of the spherical radius of a torispherical head through the origin of the knuckle radius
e	The ratio of the long to short axes of an ellipse of revolution		
f_{d}	Dimensionless spherical radius	Subscripts	
f_{k}	Dimensionless knuckle radius	a	First cross-section in the Simpson's Rule formula
h	Liquid depth at any cross-section in a dished head	b	Second cross-section in the Simpson's Rule formula
H	Total inside tank height (vertical tank) or total inside tank length (horizontal tank)	c	Third cross-section in the Simpson's Rule formula
R	Tank radius of cylindrical region	C	Cylindrical region of the tank
$\boldsymbol{R}_{\boldsymbol{d}}$	Radius of the spherical portion of a dished head	d	Spherically shaped dished head region
$\boldsymbol{R}_{\boldsymbol{k}}$	Radius of the knuckle curvature of a dished head	H	Both elliptical heads combined
V_{h}	Volume of dished head	k	Center point of the knuckle radius
v_{i}	Volume of liquid in Region i	L	Liquid
v_{L}	Liquid volume	1	Plane where the bottom or left spherical region meets the adjacent knuckle region; bottom or left spherical region
V_{i}	Volume capacity of Region i		
V_{T}	Volume capacity of the tank	2	Plane where the bottom or left knuckle region meets the cylindrical region; bottom or left knuckle region
\boldsymbol{x}	Radial coordinate from the center line to the tank edge		
y	Length coordinate from the bottom of the tank (vertical tank) or the left-hand end of the tank (horizontal tank)	3	Plane where the cylindrical region meets the top or right knuckle region; cylindrical region
z	Z-axis of an orthogonal coordinate system	4	Plane where the top or right knuckle region meets the adjacent spherical region; top or right knuckle region
Z	Z-axis intercept of an ellipsoid; height of a true elliptical head	5	Top or right-hand end of the tank; top or right spherical region

regions and for the total tank. Below that (not shown in the print version) is a lookup table that gives parameters for the various head styles. Specifying a Head Style Number in the Input Information Box pulls the appropriate values for f_{d}, f_{k}, α_{1}, and α_{2} from this lookup table and places them in the Head Style Parameter box (not shown in the print version of these tables).

The Head Style Number, one of the required input parameters, is defined in the box just below the strapping table (again, not shown in the print version). Five choices are offered for vertical tanks and a sixth one is added for horizontal tanks. That sixth style is for a true elliptical head. If that style is chosen, then the value for the True Ellipse Ratio must be entered in the box below the strapping table. It is the ratio of the long axis to the short axis of the true-elliptical head. Most elliptical heads are fabricated using two radii of curvature to approximate the ellipse.

Different manufacturers use somewhat different radii in their approximations. The spreadsheet offers a choice between using a two-radii approximation (Style 4) or a true ellipse (Style 6). These two options might be useful if one wanted to compare how close the two radii approximation is to a true ellipse. If one had elliptical heads with f_{d} and f_{k} values other than used here for

TABLE 4. STRAPPING TABLE FOR A VERTICALTANK							
Input Information		Depth	Liq. depth		Liq. depth	Liq. vol.	Weight
Tank name:	T-1000	gage: \%	ft	in.	in.	gal	lb
Tank orientation	Vertical	0	0	0	0	-	-
Liquid	Aq. solvent	*					
Head style	1	10	1	0	12	188	1,850
Tank dia., in.	100.0	*					
Tank height, in.	120.0	33	3	4	40	1,135	11,166
Specific gravity	1.18	*					
		100	10	0	120	3,630	35,713
Region		* Rows no	own	is	viated versi	of this t	can be
Capacities	Gal.	found in the		onl			
V_{1}	176.9						
V_{2}	173.8	Liquid Vol	me	cula			
V_{3}	2,928.5	(This calcu level.)			liquid volume	for an inp	liquid
V_{4}	173.8	Liq. depth	n. =		12.0		
V_{5}	176.9	$\alpha=$			0.120		
V_{T}	3,629.8	Liq. vol., g			187.99		

Head Style 4, one could simply enter those values in the box below the strapping table for Head Style 4.
The large tables displayed as two panels in the upper center and upper right of Tables 4 and 5 are the strapping tables (abbreviated in the print version). There, a liquid volume and a liquid weight (calculated from the liquid density input) is shown for each 1% of the total possible liquid depth range. The 1% liquid depth increments are expressed as (1) percentages, (2) as ft and in., and (3) as in. Then each row gives the calculated liquid volume
in gal and weight in lb. If one has a liquid depth that falls between two rows in the strapping table, one can interpolate. Or, a plot of the table could be constructed and used to read the volume. Or, the Liquid Volume Calculator can be used, described as follows.

At the bottom of each spreadsheet is what is called the Liquid Volume Calculator. It uses the input parameters described above along with a liquid level entered in the Liquid Volume Calculator. That value can be as exact as one cares to specify it. The Liquid Volume Calculator then calculates the

	TABLE 5. STRAPPING TABLE FOR A HORIZONTALTANK										
	Input Information		$\begin{array}{\|c\|} \hline \text { Depth } \\ \hline \text { gage, \% } \\ \hline \end{array}$	Liq. depth		$\begin{array}{\|c\|} \hline \text { Liq. depth } \\ \hline \text { in. } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { Liq. vol. } \\ \hline \text { gal } \\ \hline \end{array}$	$\begin{gathered} \hline \text { Weight } \\ \hline \text { lb } \\ \hline \end{gathered}$			
	Tank name	T-1001		ft	in.						
Engineering Pracuce	Tank orientation	Horizontal	0	0	0	0	-	-			
liquid volume for that liquid level. Vertical tank orientation. Table 4 (abbreviated here) shows the spreadsheet output for the above-described tank oriented vertically. The total tank capacity is $3,629.8$ gal, with 80.7% of that being in the cylindrical region ($2,928.5 \mathrm{gal}$) and the rest being in the two heads. If one wanted to know the liquid volume for liquid depth of 40 in., for example, a table lookup would give $1,135 \mathrm{gal}$ or $11,166 \mathrm{lb}$. To illustrate the Liquid Volume Calculator a liquid	Liquid	Aq. solvent	*								
	Head style	1	40	3	4	40	1,338	13,160			
		100.0	*								
	Tank length, in.	120.0	50	4	2	50	1,815	17,856			
	Tank length, in. Specific gravity	1.18	*								
			100	8	4	100	3,630	35,713			
	Region		* Rows not shown in this abbreviated versiono of this table can be found in the full version online.								
	Capacities V_{1} 10 1										
		176.9	Liquid Vol	ume	alcula						
	V_{2}	173.8	(This calcu level.)		return	he liquid volum	e for an ir	ut liquid			
	V_{3}	2,928.5	Liq. depth	in. =			50.0				
	 V_{4}	173.8	Liq. vol. cy	I., ga		1,464.25					
	V_{5}	176.9	Liq. vol. he	ads,		350.65					
	\underline{V}	3,629.8	Liq. vol., ga			1,814.89					

$$
0
$$ level of 12.0 in . was entered, which returned a liquid volume of 187.99 gal . That volume corresponds to the value in the strapping table.

Horizontal tank orientation. Table 5 (abbreviated here) displays the same tank oriented horizontally. The tank capacities of the five regions and the total tank capacity are the same as in Table 4. The difference in this spreadsheet is that the strapping table must be populated using numerical integra-
tion (Simpson's Rule) for the liquid volumes in the heads because of the complexity of the equation being integrated. That integration is performed in spreadsheet cells below those shown in Table 5 (only shown in the Excel spreadsheets available for download), with the results of the integration being carried up to the appropriate line in the Liquid Volume Calculator.

An Excel macro populates each row
in the table by repeatedly carrying out the following steps: (1) copies a liquid level from the strapping table to the clipboard; (2) pastes that value into the Liquid Volume Calculator which allows the Simpson's Rule integration to be performed and the result placed in the appropriate row of the Liquid Volume Calculator; (3) copies the total liquid volume from the Liquid Volume Calculator to the clipboard;

and (4) pastes the total liquid volume from the Liquid Volume Calculator to the appropriate row of the strapping table. The macro repeats that operation for each line of the table.

After one enters these parameters for a particular tank, clicking the "Click to Run Macro to Populate" button activates the macro and populates the liquid volumes in the table. It will be necessary to enable macros in Excel if that functionality has been disabled for security reasons.

In the Simpson's Rule integration

References

1. Doolittle, A.K., Universal Tank Calibration Chart, Ind. and Eng. Chem., Vol. 20, No. 3, pp. 322-323, 1928.
2. Perry, R.H. and Green, D.W.: "Perry's Chemical Engineers' Handbook," McGraw-Hill Book Co., New York, pp. 10-138-10-141, 1997.
3. Jones, Dan: Computing Fluid Tank Volumes, Chem. Proc., Vol. 65 (11), November 2002, pp.. 46-50.
4. Weast, R.C., Selby, S.M., and Hodgman, C.D., "Handbook of Mathematical Tables," Chemical Rubber Co., 1964.
(only shown in the spreadsheets for download), the dished head is partitioned by 101 equally spaced planes perpendicular to the tank's main axis. A liquid area is calculated for each plane, and the integration is performed by Simpson's Rule to give a liquid volume for the specified depth.

So, for example, if one had a liquid height of 40 in . in the described horizontal tank, a lookup in Table 5 would
give a liquid volume of $1,338 \mathrm{gal}$ and a liquid weight of $13,160 \mathrm{lb}$. The Liquid Volume Calculator at the bottom of the spreadsheet works the same way as described for the vertical tank. In this example, a liquid height of 50.0 in . was entered and a corresponding liquid volume of $1,814.89 \mathrm{gal}$ was returned. Figure 5 shows a plot of the liquid volume versus depth for this example.

Edited by Suzanne Shelley

Authors

Daniel R. Crookston is a senior project engineer for Champion Technologies (3130 FM 521 Rd., Fresno, TX 77545; Phone: 281-431-2561; Email: daniel.crookston@champ-tech. com). He holds a B.S.Ch.E. from the University of Texas, and an M.S.Ch.E. from the University of Arkansas. Prior to joining Champion, he was employed for five years as a process/project engineer for Nalco Co. He is currently overseeing the design and construction of reaction and blending facilities in Brazil and Colombia. This is Crookston's fifth technical publication and his first in collaboration with his father.

Reid B. Crookston is a retired engineer in League City, Tex. (Email: tank.volume1@gmail.com). He holds a B.S.Ch.E. from the University of Pittsburgh, and M.S.Ch.E. and a Ph.D. in chemical engineering from Carnegie Mellon University. He worked for Gulf/ Chevron for 27 years, serving as a technical consultant with Gulf R\&D Co. in Pittsburgh and Houston, and overseeing Gulf's R\&D work on enhanced-oil-recovery (EOR) methods. With Chevron, he was chief reservoir engineer for Tex., Mo., Okla., New Mex., and Calif. This is his seventh technical publication, and his first in collaboration with his younger son.

KEEP A LID ON NOISE!

SoundPLAN noise modeling software's detailed graphics and comprehensive report capabilities help you:

One model for all sizes eliminates hidden costs and expensive upgrades. Now featuring Google Earth interface and full 3-D solid model view.

Learn more SoundPLAN advantages.

SOund Call or click today.
+13604329840
www.SoundPLAN.com
Celebrating 25 Years as the world leader in noise mapping software.

Input Information	
Tank name:	T-1000
Tank orientation:	Vertical
Liquid:	Aq. Solvent
Head style:	1
Tank dia., in.:	100.0
Tank height, in.:	120.0
Specific gravity:	1.18

Depth	Liq. Depth,		Liq. Depth,	Liq. vol.,	Weight,	Depth	$\begin{array}{r} \text { Lic } \\ \text { depth } \end{array}$		Liq. depth,	Liq. vol.,	Weight,
Gage: \%	ft	in.	in.	gal	lb	Gage: \%	ft	in.	in.	gal	lb
0\%	0	0	0	-	0	51\%	5	1	61	1,849	18,191
1\%	0	1	1	1	13	52\%	5	2	62	1,883	18,525
2\%	0	2	2	5	53	53\%	5	4	64	1,951	19,195
3\%	0	4	4	21	211	54\%	5	5	65	1,985	19,529
4\%	0	5	5	33	329	55\%	5	6	66	2,019	19,864
5\%	0	6	6	48	472	56\%	5	7	67	2,053	20,198
6\%	0	7	7	65	640	57\%	5	8	68	2,087	20,533
7\%	0	8	8	85	834	58\%	5	10	70	2,155	21,202
8\%	0	10	10	131	1,293	59\%	5	11	71	2,189	21,536
9\%	0	11	11	159	1,560	60\%	6	0	72	2,223	21,871
10\%	1	0	12	188	1,850	61\%	6	1	73	2,257	22,205
11\%	1	1	13	219	2,158	62\%	6	2	74	2,291	22,540
12\%	1	2	14	252	2,478	63\%	6	4	76	2,359	23,209
13\%	1	4	16	319	3,138	64\%	6	5	77	2,393	23,543
14\%	1	5	17	353	3,472	65\%	6	6	78	2,427	23,878
15\%	1	6	18	387	3,807	66\%	6	7	79	2,461	24,212
16\%	1	7	19	421	4,141	67\%	6	8	80	2,495	24,547
17\%	1	8	20	455	4,476	68\%	6	10	82	2,563	25,216
18\%	1	10	22	523	5,145	69\%	6	11	83	2,597	25,550
19\%	1	11	23	557	5,479	70\%	7	0	84	2,631	25,885
20\%	2	0	24	591	5,814	71\%	7	1	85	2,665	26,219
21\%	2	1	25	625	6,148	72\%	7	2	86	2,699	26,554
22\%	2	2	26	659	6,483	73\%	7	4	88	2,767	27,223
23\%	2	4	28	727	7,152	74%	7	5	89	2,801	27,558
24\%	2	5	29	761	7,486	75\%	7	6	90	2,835	27,892
25\%	2	6	30	795	7,821	76\%	7	7	91	2,869	28,227
26\%	2	7	31	829	8,155	77\%	7	8	92	2,903	28,561
27\%	2	8	32	863	8,490	78\%	7	10	94	2,971	29,230
28\%	2	10	34	931	9,159	79\%	7	11	95	3,005	29,565
29\%	2	11	35	965	9,493	80\%	8	0	96	3,039	29,899
30\%	3	0	36	999	9,828	81\%	8	1	97	3,073	30,234
31\%	3	1	37	1,033	10,162	82\%	8	2	98	3,107	30,568
32\%	3	2	38	1,067	10,497	83\%	8	4	100	3,175	31,237
33\%	3	4	40	1,135	11,166	84\%	8	5	101	3,209	31,572
34\%	3	5	41	1,169	11,501	85\%	8	6	102	3,243	31,906
35\%	3	6	42	1,203	11,835	86\%	8	7	103	3,277	32,241
36\%	3	7	43	1,237	12,170	87\%	8	8	104	3,311	32,575
37\%	3	8	44	1,271	12,504	88\%	8	10	106	3,378	33,235
38\%	3	10	46	1,339	13,173	89\%	8	11	107	3,410	33,555
39\%	3	11	47	1,373	13,508	90\%	9	0	108	3,442	33,863
40\%	4	0	48	1,407	13,842	91\%	9	1	109	3,471	34,153
41\%	4	1	49	1,441	14,177	92\%	9	2	110	3,498	34,419
42\%	4	2	50	1,475	14,511	93\%	9	4	112	3,545	34,879
43\%	4	4	52	1,543	15,180	94\%	9	5	113	3,565	35,073
44\%	4	5	53	1,577	15,515	95\%	9	6	114	3,582	35,241
45\%	4	6	54	1,611	15,849	96\%	9	7	115	3,596	35,384
46\%	4	7	55	1,645	16,184	97\%	9	8	116	3,608	35,502
47\%	4	8	56	1,679	16,518	98\%	9	10	118	3,624	35,660
48\%	4	10	58	1,747	17,187	99\%	9	11	119	3,628	35,700
49\%	4	11	59	1,781	17,522	100\%	10	0	120	3,630	35,713

Head Style	Style No.	$\boldsymbol{f}_{\boldsymbol{d}}$	$\boldsymbol{f}_{\boldsymbol{k}}$	$\boldsymbol{\alpha}_{\boldsymbol{1}}$	$\boldsymbol{\alpha}_{\boldsymbol{2}}=\boldsymbol{\alpha}_{\boldsymbol{k}}$
ASME F\&D	1	1.000	0.0600	0.1163	0.1693
ASME 80/10 F\&D	2	0.800	0.1000	0.1435	0.2255
ASME 80/6					
F\&D	3	0.800	0.0600	0.1568	0.2050
2:1 Elliptical	4	0.875	0.1700	0.1018	0.2520
Spherical	5	0.500	0.5000	0.5000	0.5000

Liquid Volume Calculator				
(This calculator will return the liquid volume for an input liquid level.)				
Liquid level, in.	12.0			
$\alpha=$	0.120			
Liq. vol, gal $=$	$\mathbf{1 8 7 . 9 9}$			

Table 5 -- Strapping Table for a Horizontal Tank

Input Information	
Tank name:	$\mathrm{T}-1001$
Tank orientation:	Horizontal
Liquid:	Aq. Solvent
Head style:	1
Tank dia., in.:	100.0
Tank length. in.:	120.0
Specific sravity:	1.18

Head Style Parameters	
α_{5}	1.2000000
α_{4}	1.0836834
α_{3}	1.0306624
α_{2}	0.1693376
α_{1}	0.1163166
f_{d}	1.000
f_{k}	0.060

Region Capacities	gal
$\boldsymbol{V}_{\boldsymbol{1}}$	176.9
$\boldsymbol{V}_{\mathbf{2}}$	173.8
$\boldsymbol{V}_{\mathbf{3}}$	$2,928.5$
$\boldsymbol{V}_{\mathbf{4}}$	173.8
$\boldsymbol{V}_{\boldsymbol{5}}$	176.9
$\boldsymbol{V}_{\boldsymbol{T}}$	$3,629.8$

Depth	Liq. Depth,		Liq. Depth,	Liq. vol.,	Weight,	Depth		$\begin{aligned} & \text { Liq. } \\ & \text { th, } \\ & \hline \end{aligned}$	Liq. Depth,	Liq. vol.,	Weight,
gage, \%	ft	in.	in.	gal	Ib	gage, \%	ft	in.	in.	gal	Ib
0	0	0	0	-	0	51	4	3	51	1,863	18,330
1	0	1	1	5	51	52	4	4	52	1,911	18,804
2	0	2	2	15	146	53	4	5	53	1,959	19,277
3	0	3	3	28	271	54	4	6	54	2,007	19,749
4	0	4	4	43	420	55	4	7	55	2,055	20,220
5	0	5	5	60	589	56	4	8	56	2,103	20,690
6	0	6	6	79	777	57	4	9	57	2,151	21,159
7	0	7	7	100	982	58	4	10	58	2,198	21,626
8	0	8	8	122	1,202	59	4	11	59	2,245	22,090
9	0	9	9	146	1,436	60	5	0	60	2,292	22,553
10	0	10	10	171	1,685	61	5	1	61	2,339	23,013
11	0	11	11	198	1,946	62	5	2	62	2,385	23,470
12	1	0	12	226	2,219	63	5	3	63	2,432	23,925
13	1	1	13	255	2,504	64	5	4	64	2,477	24,376
14	1	2	14	285	2,801	65	5	5	65	2,523	24,823
15	1	3	15	316	3,107	66	5	6	66	2,568	25,267
16	1	4	16	348	3,424	67	5	7	67	2,613	25,706
17	1	5	17	381	3,751	68	5	8	68	2,657	26,142
18	1	6	18	415	4,087	69	5	9	69	2,701	26,573
19	1	7	19	450	4,432	70	5	10	70	2,744	26,998
20	1	8	20	486	4,785	71	5	11	71	2,787	27,419
21	1	9	21	523	5,146	72	6	0	72	2,829	27,835
22	1	10	22	561	5,516	73	6	1	73	2,871	28,244
23	1	11	23	599	5,893	74	6	2	74	2,912	28,648
24	2	0	24	638	6,277	75	6	3	75	2,952	29,045
25	2	1	25	678	6,667	76	6	4	76	2,992	29,436
26	2	2	26	718	7,065	77	6	5	77	3,031	29,820
27	2	3	27	759	7,469	78	6	6	78	3,069	30,197
28	2	4	28	801	7,878	79	6	7	79	3,107	30,567
29	2	5	29	843	8,294	80	6	8	80	3,143	30,928
30	2	6	30	886	8,714	81	6	9	81	3,179	31,281
31	2	7	31	929	9,140	82	6	10	82	3,214	31,626
32	2	8	32	973	9,571	83	6	11	83	3,249	31,962
33	2	9	33	1,017	10,006	84	7	0	84	3,282	32,289
34	2	10	34	1,062	10,446	85	7	1	85	3,314	32,606
35	2	11	35	1,107	10,890	86	7	2	86	3,345	32,912
36	3	0	36	1,152	11,337	87	7	3	87	3,375	33,208
37	3	1	37	1,198	11,788	88	7	4	88	3,404	33,494
38	3	2	38	1,244	12,243	89	7	5	89	3,432	33,767
39	3	3	39	1,291	12,700	90	7	6	90	3,459	34,028
40	3	4	40	1,338	13,160	91	7	7	91	3,484	34,276
41	3	5	41	1,385	13,623	92	7	8	92	3,508	34,511
42	3	6	42	1,432	14,087	93	7	9	93	3,530	34,731
43	3	7	43	1,479	14,554	94	7	10	94	3,551	34,936
44	3	8	44	1,527	15,023	95	7	11	95	3,570	35,124
45	3	9	45	1,575	15,493	96	8	0	96	3,587	35,293
46	3	10	46	1,623	15,964	97	8	1	97	3,602	35,442
47	3	11	47	1,671	16,436	98	8	2	98	3,615	35,567
48	4	0	48	1,719	16,909	99	8	3	99	3,625	35,662
49	4	1	49	1,767	17,383	100	8	4	100	3,630	35,713

					50				4	2
Head Style	Style No.	$\boldsymbol{f} \boldsymbol{d}$	$\boldsymbol{f}_{\boldsymbol{k}}$	$\boldsymbol{\alpha}_{\boldsymbol{I}}$	$\boldsymbol{\alpha}_{2}=\boldsymbol{\alpha}_{\boldsymbol{k}}$					
ASME F\&D	1	1.0000	0.0600	0.116317	0.169338					
ASME 80/10 F\&D	2	0.8000	0.1000	0.143479	0.225544					
ASME 80/6 F\&D	3	0.8000	0.0600	0.156779	0.205021					
2:1 Elliptical	4	0.8750	0.1700	0.101777	0.252003					
Spherical	5	0.5000	0.5000	0.500000	0.500000					
True Elliptical	6									
(True-Ellipse Ratio)	2									

