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A Dynamic Equilibrium Model of Real Exchange Rates

with General Transaction Costs

ABSTRACT

We study the behavior of real exchange rates in a two-country dynamic equilibrium model. In

this model, consumers can only consume domestic goods but can invest costlessly in capital stocks

of both countries. Nevertheless, transporting goods between the two countries is costly and, hence,

the rebalancing of the capital stock can only happen finitely often. We propose a realistic cost

structure for goods transportation, wherein the total cost increases with the amount of shipment but

the unit cost decreases with it due to economies of scale. Given such a cost structure, the optimal

decisions on when and how much to transfer need to be determined jointly. The dual decision

depends upon the magnitude of economies of scale, the production technology specifications, and

the consumer preferences. The model can reconcile the observed large short-term volatility of the

real exchange rate with its slow convergence to parity. Further, the drift and diffusion of the real

exchange rate are not uniquely determined by the real exchange rate level. The dynamics of the

real exchange rate can only be determined by a joint analysis of the real exchange rate and the

underlying economic fundamentals such as the capital stock imbalance between the two countries.

JEL Classification Codes:C51, F31, G12, G15.

Keywords: costs of goods transportation; economies of scale; real exchange rate; purchasing power

parity; nonlinearity.



A large body of literature has been devoted to the empirical studies of the real exchange rate and de-

viations from purchasing power parity (PPP). Among many inconclusive and often conflicting findings,

researchers have come to a broad consensus on two main observations. First, the real exchange rate

converges to purchasing power parity in the very long run, but the speed of convergence is extremely

slow and nonlinear in the exchange rate level. Second, the short-run deviations from purchasing power

parity are large and volatile. Reconciling the enormous short term volatility of the real exchange rate

with its extremely slow convergence to parity represents a challenge to theoretical research. Rogoff

(1996) provides an excellent review of this PPP puzzle and suggests that international goods markets

remain quite segmented, with large trading frictions due to transportation costs, tariff and nontariff

barriers, information costs, and labor immobility. Our paper reconciles the high short-term volatility

of the real exchange rate with its extremely slow rate of decay to parity in a segmented international

goods market with trading frictions due to transportation costs.

Dumas (1992) builds a pioneering general equilibrium model for real exchange rates with two

countries and one good in a spatially separated world. The model endogenizes the nonlinear and slow

mean-reverting behavior of the real exchange rate by introducing costs for goods transportation between

the two production economies. The transportation cost results in a no-trade policy within a region of

imbalance between the capital stocks in the two countries. In equilibrium, the real exchange rate

deviates from parity and exhibits persistence at the boundaries of the region of imbalance. However,

the analysis assumes that the transportation cost is purely proportional to the amount of shipment,

ignoring any potential reduction in unit cost due to economies of scale. Such a cost structure leads to

two major counterfactual implications. First, the optimal shipping amount is infinitesimal, regardless

of production technology and consumer preference. Second, in equilibrium, the real exchange rate

exhibits the largest volatility at parity, but the volatility declines monotonically and approaches zero as

the deviation from parity increases. In reality, however, the optimal shipping quantity is always afinite

amount, and the real exchange rate exhibits enormous short term volatilityawayfrom parity.

This article proposes a dynamic general equilibrium model of real exchange rates in an economy

similar to Dumas (1992) but with a more general cost structure for goods transportation. In our model,

the cost structure consists of two components. The first component is a proportional cost. Because of

this component, the total cost increases with the shipping quantity. The second component generates

1



decreasing unit cost of shipment with increasing shipping volume. It is a measure of the magnitude of

economies of scale evident in most aspects of domestic and international trade. For example, economies

of scale can arise from fixed nontradable input costs. In our model, the cost of the vessel for transporting

goods is an example of such a nontradable input cost.

In the presence of economies of scale in goods transportation, the shipping strategy constitutes

the dual decision: when to transfer goods and how much to transfer. We solve an intricate optimiza-

tion problem which determines the optimal consumption stream and the optimal shipping strategy to

maximize expected aggregate utility of consumption for consumers in the two countries. Inspired by

Korn (1998), we first define aconditionaloptimization problem which determines the optimal shipping

quantity conditional on immediate shipping. However, immediate shipping is not always optimal due

to the presence of transportation cost. Immediate shipping is optimal when the value function defined

by the conditional optimization problem coincides with the value function defined in the original opti-

mization problem. We solve for optimal consumption and the optimal shipping strategy via an iterative

procedure.

We find that introducing even a small degree of economies of scale in the cost structure significantly

increases the optimal shipping quantity. Further, including economies of scale renders the optimal ship-

ping strategy more sensitive to production technology and consumer preference. For example, a more

volatile and less divergent production process lead consumers to tolerate a higher capital stock imbal-

ance before they decide to transfer goods. On the other hand, an increase in consumers’ relative risk

aversion and time discounting results in lower tolerance for capital stock imbalance and hence more

frequent capital stock rebalancing. Specifications on the production technology and consumer prefer-

ence also affect the optimal shipping quantity decision in important ways. Overall, the optimal shipping

quantity is determined by the increasing total cost and declining unit cost of goods transportation on

the one hand and the benefits of risk sharing for the consumer on the other.

The dynamic behavior of real exchange rates is sensitive not only to the overall cost of goods

transportation, but also to the specification of the cost structure. Increasing the overall cost of goods

transportation slows down the speed of reversion of the real exchange rate to parity and increases its

volatility. However, the persistence and volatility of the real exchange rate are much more sensitive

to the economies of scale component than to the proportional cost component. In contrast to Dumas
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(1992) where the maximum volatility for the real exchange rate is at parity, we find that the largest

exchange rate volatility can be realized at deviations from purchasing power parity, thus complying

with the empirical evidence.

The presence of economies of scale results in finite goods transfer and hence generates jumps in

the dynamic process for capital stock imbalance. Yet, in equilibrium, the real exchange rates before

and after each jump in the capital stock must remain the same to exclude arbitrage. The interesting

consequence is that two different levels of capital stock imbalance correspond to the same level of real

exchange rate. While each capital imbalance level uniquely determines a real exchange rate level, the

opposite is not always true. One cannot always infer the capital imbalance from the real exchange rate

level. This loss of one-to-one mapping also generates indeterminacy in the drift and diffusion functions

of the real exchange rate dynamics. At a given real exchange rate level, both the drift (mean-reverting

force) and the diffusion (instantaneous volatility) of the exchange rate can take either of two values,

determined by the capital imbalance at that instant in time.

The indeterminacy in real exchange rate dynamics has important implications for empirical re-

search. Time series analysis of the real exchange rate data alone is not enough to fully reveal the

exchange rate dynamics. Such data need to be complemented with time series data on economic fun-

damentals such as trade imbalance or capital flows. Dumas (1992) argues that a linear specification in

estimating the real exchange rate dynamics is severely misspecified and hence may lead to erroneous

conclusions. His modeling effort has motivated several empirical studies to explore nonlinear specifi-

cations in testing the mean-reverting behavior of the real exchange rates, e.g. Baum, Barkoulas, and

Caglayan (2001), Lothian and Taylor (1996), Michael, Nobay, and Peel (1997), Sarantis (1999), and

Taylor and Peel (2000). Our model results further indicate that, in the presence of economies of scale

in the transportation cost, an exogenous time series analysis of the real exchange rate data alone may

still lead to erroneous conclusions even if one considers nonlinearity and/or heteroskedasticity. The key

issue is that the drift and diffusion functions of the real exchange rates are not completely determined

by the real exchange rate levels. Our model argues for joint analysis of exchange rates and economic

fundamentals.

Our model builds directly on the dynamic real exchange rate equilibrium model in Dumas (1992).

The model framework in Uppal (1993), Hollifield and Uppal (1997), and Dumas and Uppal (2001))

3



are also similar, except that they, like in Dumas (1992), all assume a purely proportional type of cost

structure. There is also a parallel strand of literature based on purely fixed or purely proportional

transaction costs in optimal portfolio selection. Examples include Atkinson and Wilmott (1995), Con-

stantinides (1986), Cuoco and Liu (2000), Cvitanić (1996), Eastham and Hastings (1988), Davis and

Norman (1990), Duffie and Sun (1990), Dumas and Luciano (1991), Grossman and Laroque (1990),

Korn (1998), Liu (2001), Liu and Loewenstein (2001), Lo, Mamaysky, and Wang (2000), Morton and

Pliska (1995), Oksendal and Sulem (1999), Shreve and Soner (1994), Vayanos (1998), and Schroder

(1995, 1997).

While our model focuses on the real economy, monetary models have also been proposed in the

literature to explain real exchange rate behavior. For example, the overshooting model of Dornbusch

(1976) attributes the short term deviations from purchasing power parity to stickiness in nominal prices.

Other explanations of the short term exchange rate volatility in monetary models include financial

factors such as changes in portfolio preferences, short-term asset price bubbles, and monetary shocks

(Obstfeld and Rogoff 1995), but such models cannot generate the observed slow convergence to PPP.

On the other hand, as Rogoff (1996) points out, real models can readily explain the slow adjustment

of real exchange rate to parity. Nevertheless, earlier real models such as Dumas (1992) cannot account

for the high short-term real exchange rate volatility. Our general cost structure not only renders the real

exchange rate more volatile, but also generates the observed persistence in real exchange rates.

Furthermore, a valid explanation of short-term exchange rate volatility cannot rely too heavily on

non-traded goods or institutional factors such as exchange rate regimes because the evidence on high

volatility for PPP deviations even among highly traded goods is remarkably stable over the past 700

years (Froot, Kim, and Rogoff 1995). Our model focuses on the real economy and hence does not rely

on any institutional or monetary factors. Nevertheless, the model successfully explains both the short

term real exchange rate volatility and its slow decay to parity via a general specification of the cost

structure for goods transportation.

The structure of the paper is as follows. The next section sets up the model and delineates the

procedure for solving the general equilibrium in the presence of a general cost structure. Section II

analyzes the optimal shipping decisions, both when and how much to ship, as a function of the cost

structure, the production technology, and the consumer preference. Section III analyzes the optimal
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consumption decision and the physical imbalance dynamics. Section IV investigates the real exchange

rate dynamics under such a model. Section V concludes.

I. A Dynamic Equilibrium Model with Transaction Costs

The model structure follows Dumas (1992). It consists of two countries (home and foreign) with

identical consumers who can own and trade a single type of consumption good. Consumers can only

consume goods within their own country, but can invest in a constant-return-to-scale production process

for goods in either country. The capital stocks of goods at timet areKt andK∗t at home and abroad,

respectively. Goods transportation is costly and hence goods can only be transported for a finite number

of times within any finite time intervals. During quiescent periods absent of goods shipment, the

dynamics of the capital stocks are governed by the following stochastic differential equations:

dKt = (κKt −ct)dt + σKtdzt ;

dK∗t = (κK∗t −c∗t )dt + σK∗t dz∗t . (1)

where(c,c∗) are domestic and foreign rates of consumption and(dz,dz∗) denote independent Wiener

processes which proxy for production shocks in each country.

A. The Cost Structure

The key innovation of our model is in the specification of the cost structure for goods transportation.

Dumas (1992) assumes that the transportation cost is purely proportional. In case ofK > K∗, let X > 0

denote the amount of the shipment from the home country to the foreign country, the foreign country

only receives a constant proportion of the shipment,sX, with s∈ [0,1].1 Such an assumption completely

ignores any potential economies of scale. The unit cost does not decline with increasing shipment. It

leads to a counterfactual implication that the optimal amount of shipment is infinitesimal. In reality,

however, while the total cost increases with the amount of shipment, the unit cost often decreases due

1The shipment from the foreign country to the home country,X∗, is determined analogously by symmetry. Throughout

the paper, we focus on the case whenK > K∗ and derive the case ofK < K∗ by symmetry.
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to economies of scale. To capture both effects, we let the unit cost be a positive, but decreasing function

of the fraction of capital stock transferred. Specifically, we assume that the unit cost,θ, is inversely

proportional to the fraction of the capital stock transferred:

θ(ξ) = α + β/ξ, α,β ∈ [0,1], (2)

where the parameterα denotes the constant, or proportional part of the cost, the parameterβ measures

the magnitude of economies of scale, and the percentage transferξ is defined as

ξ≡ X/Xmax,

whereXmax denotes the maximum possible amount of goods transfer. We labelα as thecoefficient of

proportional costandβ as thecoefficient of economies of scale. Under such a structure, while the total

cost increases with the amount of shipment, the unit cost decreases. The structure captures the most

frequently observed feature of transportation cost. The inverse proportionality presents a tractable way

to capture the economies of scale.2 The parameter restrictions follow from the requirement that the

total loss in transit cannot exceed the maximal amount of shipment.

We further argue that, irrespective of the cost structure, the home country consumers do not have

the incentive to transfer more than the capital stock imbalance,Xmax = K−K∗. Refer to Appendix A

for a proof. Thus, given a shipment ofX from home to abroad, the capital stock of the home country

reduces toK−X while the capital stock of the foreign country increases to

K∗+(1−θ(ξ))X = (1+ β)K∗+(1−α)X−βK.

B. The Central Planning Problem

The economy, by assumption, is such that consumers can achieve a Pareto-optimal allocation of con-

sumption. Under such an assumption, the capital market and goods market equilibrium can be repli-

2Dumas (1992)’s pure proportional cost case can be regarded as a special case of our cost structure withβ = 0 and

s= 1−α.

6



cated by a central planning problem. The welfare function is constructed as an equally weighted aver-

age of the individual lifetime utility functions. The equal weight is a result of our assumption of strict

symmetry between the two countries, including their respective initial endowments. Implicit prices,

which would prevail explicitly in decentralized markets, can then be obtained from the derivatives of

the indirect utility function.

Consumers of both countries have the incentive to bring the two countries’ stock of goods to balance

for reasons of risk-sharing. Nevertheless, in the presence of a transportation cost, goods shipment

between the two countries can only happen finite number of times within any finite time interval. Stock

imbalance can persist for a long period of time. Thus, the central planner’s decision is twofold: the

optimal consumption plan for both home and foreign consumers and the optimal shipping decision. Let

c(K,K∗) andc∗(K,K∗) denote the consumption flow at home and abroad as a function of the capital

stock. LetΩ(K,K∗) denote an admissible shipping strategy, which potentially includes both decisions,

when the shipping should occur and how much should be shipped. The central planning problem is

to reach optimal consumption and shipment decisions to maximize the expected utility of aggregate

consumption:

V(K,K∗)≡ max
c,c∗,Ω

Et

Z ∞

t
e−ρ(u−t)

[
1
γ

cγ
u +

1
γ

(c∗u)γ
]

du, (3)

subject to the stock dynamics in (1) in the absence of shipment and subject to the cost structure in (2)

when shipping takes place. In (3),ρ ∈ R+ represents the time discount factor and(1− γ) captures the

relative risk aversion withγ < 1. The instantaneous utility of consumption is identical for consumers

of both countries and takes the form of constant relative risk averse utility (CRRA):

u(c, t) =
1
γ

cγ
t , u(c∗, t) =

1
γ

(c∗t )γ .

The CRRA utility, together with our assumption on the cost structure guarantees that the solution

for the indirect utility functionV(K,K∗) is homogeneous of degreeγ. Furthermore, ifX is the optimal

amount of shipment from home to abroad for initial conditions(K,K∗), then2X is the optimal shipment

for initial conditions(2K,2K∗). The same homogeneity applies to the shipment from abroad to home,

X∗.
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C. The Solution

When the transportation cost is purely proportional, Dumas (1992) suggests that the optimal amount

of shipment is infinitesimal whenever it is optimal to make a shipment. The optimal shipping strat-

egy involves only the decision on when to make the infinitesimal shipment. Furthermore, due to the

homogeneity and symmetric nature of the problem, Dumas (1992) contends that the optimal shipping

decision is governed by a cone defined by two symmetric boundaries on the ratio of the home and

foreign stock of capital,K/K∗ ∈ [λ1,1/λ1], λ1 > 1. No shipment occurs as long as the ratioK/K∗ is

within this boundary. The amount of the shipment at the boundary is infinitesimal.

In the presence of economies of scale, an infinitesimal shipment is no longer optimal. We use

X, the shipping amount from home to abroad, orξ, the percentage transferred, to denote the optimal

decision on shipping quantity. A finite shipment moves the capital stock imbalance strictly inside

the original boundary. Analogous to the optimal shipping boundary, there also exists an ex-shipping

boundary[λ2,1/λ2], which defines the position immediately after the shipment. The new imbalance

λ2 is determined by the shipping boundaryλ1, the optimal shipping percentageξ, and the cost of the

shipment. In particular, they are linked by

λ2 =
λ1−ξ(λ1−1)

(1+ β)+ (1−α)ξ(λ1−1)−βλ1
.

Thus, the optimal shipping decision can now be written as a bivariate decision:{λ1,ξ}, whereλ1

determines when to ship andξ determines how much.

To determine the optimal shipping amount,X, we introduce the following maximum operator:

MV(K,K∗)≡max
X

V(K−X,(1+ β)K∗+(1−α)X−βK)+
1
γ
(
cγ

t +(c∗t )γ) , (4)

whenK > K∗. The case ofK < K∗ is determined by symmetry. Note thatMV(K,K∗) represents the

value of the strategy that consists of taking the best immediate action. Since it is not always optimal to

act immediately, we have

V(K,K∗)≥MV(K,K∗).
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Conceptually, we can now separate the optimization problem in (3) into two parts:

1. Within the no-shipping range ofK/K∗ ∈ [λ1,1/λ1], the optimal consumption decision(c,c∗) is

solved based on the standard Bellman-Hamilton-Jacob equation, e.g. Merton (1971),

0 =
[

1
γ

cγ
t +

1
γ

(c∗t )γ
]

+ LV, (5)

whereLV denotes the infinitesimal generator ofV:

LV = −ρV +V1(κKt −ct)+V2(κK∗t −c∗t )

+
1
2

V11σ2K2 +
1
2

V22σ2K∗2,

whereVi is the partial derivative of the value functionV(K,K∗) with respect to itsith argument,

i = K,K∗, andVi j denotes the second partial derivative.

2. When it is optimal to ship at the boundaryK/K∗ = λ1, the problem in (4) converges to optimal

problem in (3):

MV(K,K∗) = V(K,K∗), at K/K∗ = λ1. (6)

The optimal shipping percentage,ξ, can then be determined by the optimization problem in (4).

C.1. The Evolution of the Value Function

Within the no-shipping zone, from the Bellman-Hamilton-Jacob equation in (5), the first order condi-

tions with respect to optimal consumption are

0 = cγ−1
t −V1; 0 = (c∗t )γ−1−V2,

from which we obtain the optimal consumptions as a function of the indirect utility function:

ct = V
1

γ−1

1 , c∗t = V
1

γ−1

2 . (7)
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Plug in the optimal consumption decisions back to equation (5), we obtain the following partial differ-

ential equation:

0 =
(

1
γ
−1

)(
V

γ
γ−1

1 +V
γ

γ−1

2

)
(8)

−ρV +V1κK +V2κK∗+
1
2

V11σ2K2 +
1
2

V22σ2K∗2.

This partial differential equation governs the evolution of the value function. The value function can be

solved given boundary conditions derived in the following subsection.

C.2. The Optimal Shipping Decision

In the presence of a general cost structure as in (2), the optimal shipping decision includes both the

optimal shipping time and the optimal shipping quantity. Due to the homogeneity of our setup, the two

decisions can be represented by the two boundaries:{λ1,λ2}, the physical imbalance of the capital

stock between home and abroad before and after the shipment. The two boundaries are determined by

the following four conditions: (1) symmetry, (2) value matching, (3) smooth pasting, and (4) optimal

shipping.

Symmetry: Since the two countries are strictly symmetric, we expect that consumers in the two

countries have the same marginal utility when the capital stock is at balance (K = K∗):

V1(K,K∗) = V2(K,K∗) at K = K∗. (9)

Value matching: The value functionV (K,K∗) before and after shipment should be identical:

V (K,K∗) = V (K−X,(1+ β)K∗+(1−α)X−βK) at K/K∗ = λ1. (10)

Smooth pasting: The marginal utility before and after shipping should also match each other:

Vi (K,K∗) = Vi (K−X,(1+ β)K∗+(1−α)X−βK) at K/K∗ = λ1, (11)
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for i = 1,2.

Optimal shipment: At the boundaryK/K∗ = λ1, the optimal shipment is determined by the opti-

mization problem in (4):

MV(K,K∗)≡max
X

V(K−X,(1+ β)K∗+(1−α)X−βK)+
1
γ
(
cγ

t +(c∗t )γ) .

Optimal consumption in (7) right before shipping implies

ct = V1(K,K∗) = V1(K−X,(1+ β)K∗+(1−α)X−βK) ,

c∗t = V2(K,K∗) = V2(K−X,(1+ β)K∗+(1−α)X−βK) ,

The two equalities above for bothct andc∗t are the result of imposing the smooth pasting conditions.

We hence have

MV (K,K∗) = max
X

[
V +

1
γ

(
V

γ
γ−1

1 +V
γ

γ−1

2

)]
,

where the indirect value functionV and its derivatives are all evaluated at the after-shipping position:

(K−X,(1+ β)K∗+(1−α)X−βK). The first order condition with respect toX is given by

0 = −
[
V1 +

1
γ−1

(
V

1
γ−1

1 V11+V
1

γ−1

2 V21

)]
(12)

+(1−α)
[
V2 +

1
γ−1

(
V

1
γ−1

1 V12+V
1

γ−1

2 V22

)]
.

In principle, the value functions and the boundaries can be solved from the partial differential

equation in (8) and the four boundary conditions: (9), (10), (11), and (12). However, trying to directly

solve the problem from the above conditions is a daunting numerical task.

In what follows, we take advantage of the homogeneity and symmetry of the problem and solve the

problem via some change of variables.
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C.3. Solving the Boundaries and Value Function via Transformation

Recognizing the homogeneity of the value function and the optimal shipment decision, we perform the

following change of variables,3

ω≡ lnK/K∗, I (ω)≡−γ lnK∗+ ln‖V‖ , I (−ω)≡−γ lnK + ln‖V‖ , (13)

whereω defines the logarithm of the stock imbalance ratio andI(ω) defines a transformed value func-

tion at such an imbalance. Under such transformation, the partial differential equation in (8) can be

transformed into a second order ordinary differential equation in terms ofI(ω):

I ′′ (ω) =−(I ′ (ω)
)2 + γI ′ (ω)+

1
σ2η

e(η−1)I(ω) (I ′ (ω)ζ1(ω)+
(
γ− I ′ (ω)

)
ζ2(ω)

)
+ δ, (14)

where

η =
γ

γ−1
, δ =

ρ−αγ
σ2 − 1

2

(
γ2− γ

)
.

ζ1(ω) =
∥∥I ′ (ω)

∥∥η−1
e−ωη, ζ2(ω) =

∥∥γ− I ′ (ω)
∥∥η−1

.

The symmetry condition in (9) implies,

I ′(0) = γ/2. (15)

From the value matching condition in (10), we can obtain the following link betweenI(ω1) andI(ω2):

I (ω1) = I (ω2)+ γ ln
1+ β + λ1(1−α−β)

1+(1−α)λ2
, (16)

3A similar change of variables is applied in Dumas (1992). We modify his specification by applying the logarithm on the

mode (absolute value) ofV rather than onV directly. This allows us to consider the cases where the risk aversion is higher

than the log utility, that is,γ< 0.
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where(ω1,ω2) are the logarithms of(λ1,λ2). The smooth pasting conditions in (11), on the other hand,

yield the solutions forI ′(ω) at the two boundariesω1 andω2:

I ′ (ω1) = γλ1

(
1−α−β(λ1−1)/(λ1−λ2)

1+ β +(1−α−β)λ1

)
, (17)

I ′ (ω2) = γλ2

(
1−α−β(λ1−1)/(λ1−λ2)

1+(1−α)λ2

)
. (18)

Finally, the first order condition on the optimal shipping in (12) can be used, together with the

second order differential equation in (14), to derive the second order derivative of the value function

I ′′(ω) at ω2:

I ′′(ω2) =
−B+

√
B2−4AC

2A
, (19)

whereA,B,C are functions ofω2, I ′(ω2), and model parameters. The derivation of (19) as well as the

specifications forA,B,C are given in Appendix B.

The boundaries and the transformed value functionsI(ω) at allω∈ [−ω1,ω1] can be solved through

a shooting approach. We start with a guess of the pair(ω1,ω2). We then solve forI ′(ω2) from (18)

and thenI ′′(ω2) through (19). The transformed value functionI(ω2) can then be derived from the

ordinary differential equation in (14). Given the transformed value functionI(ω) and its derivatives

at ω2, we numerically run through the ordinary differential equation to generate the value functions

and its derivatives at all otherω’s. The optimal boundaries(ω1,ω2) are obtained by matching the

marginal value functionsI ′(0) and I ′(ω2) implied from the ordinary differential equation with those

computed from the symmetry condition in (15) and the smooth pasting condition in (18). The ordinary

differential equation can be solved using standard numerical procedure such as the fourth order Runge-

Kutta method.

D. Limiting Case

Recall that the unit cost of goods transportation is assumed to be positive but inversely proportional to

the percentage amount transferred:

θ(ξ) = α + β/ξ.
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It captures both the effect of increasing cost with increasing shipment and the idea of decreasing unit

cost due to economies of scale. By setting the coefficient of economies of scale,β, to zero, the cost

structure degenerates into the purely proportional cost case of Dumas (1992). In that case, it is opti-

mal to ship only an infinitesimal amount each time. The capital stock imbalance before and after the

shipment remains the same (only differs infinitesimally):λ1 = λ2 = λ. Therefore, one only needs to

determine one boundary and does not need to solve the optimal shipment condition in (12). Refer to

Dumas (1992) for details.

II. Optimal Shipping Policy

Given model parameters, we can solve the model numerically to obtain the optimal shipping decisions

{λ1,ξ} and the transformed value functions. In this section, we investigate the impact of different

model parameters on the optimal shipping decision. Since a nontrivial optimal shipping decision is

a direct result of the presence of shipping cost, we start with the most important parameters for the

optimal shipping,(α,β), that govern the cost structure for goods transportation. We analyze how the

cost structure changes the decisions on when and how much to ship. We then proceed to analyze

the impact of the production parameters and consumer preference parameters on the optimal shipping

decision, both under the purely proportional cost structure of Dumas (1992) as well as under our general

cost structure.

A. Impact of the Cost Structure

Recall that the unit cost of shipment is specified asθ(ξ) = α + β/ξ, whereξ denotes the percentage

shipment,α is the coefficient of proportional cost andβ is the coefficient of economies of scale. The

biggerα is, the faster the total cost increases proportional to the amount of shipment. On the other

hand, the biggerβ is, the larger the economies of scale, and hence the faster the unit cost reduces

with shipping quantity. Figure 1 depicts the impact of the cost structure(α,β) on the optimal shipping

decisions. The left panel depicts the impact on the optimal timing of the shipment, which is captured

by the outer boundaryλ1 of the capital stock imbalance. The right panel depicts the impact on the

optimal fraction of shipment.
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Figure 1:Impact of Cost Structure on Optimal Shipping Decision
The surface in the left panel depicts the optimal shipping boundary, denoted byλ1, while the surface in
the right panel depicts the optimal fraction of shipping quantityξ. Both are plotted against the constant
cost coefficientα and the coefficient of economies of scaleβ. The units ofβ is scaled up by103. Other
parameters are:κ = 0.11,σ = 0.5,γ =−1,ρ = 0.15.

The left panel indicates thatλ1 increases with both coefficientsα andβ. As both coefficientsα and

β increase, the boundaryλ1, at which shipping occurs, increases. As expected, as the cost increases,

regardless of its nature, it is optimal for the consumers to tolerate a larger capital imbalance before a

shipment.

The optimal percentage shipment,ξ, however, is very sensitive to the specific nature of the cost,

as shown in the right panel of Figure 1. The optimal shipping quantity increases dramatically with

increasing economies of scale (β). Intuitively, the largerβ is, the more cost reduction is achieved

through shipping a larger amount. Hence, the unit cost reduction requires an increase in the optimal

shipping quantity. In absence of economies of scale (β = 0), the unit cost remains the same no matter

how much is shipped. Thus, it is optimal to ship an infinitesimal amount at each time of shipment, as

is the case in Dumas (1992). But, an infinitesimal amount of shipment is never going to be optimal in

the presence of even a very small economies of scale factor. Note that, in the plots, the magnitude ofβ

is very small (scaled up by103), yet its impact on the optimal shipping amount is very significant.

While increasing economies of scale (β) increases the optimal quantity of shipment rapidly, increas-

ing the coefficient of proportional cost (α) actually reduces the optimal amount of shipment. Holding

β constant, increasingα amounts to an increase in the proportional cost and a relative reduction in the

economies of scale component.
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Comparing the two panels in Figure 1 indicates that the two components of the cost structure play

almost separate roles in the optimal shipping decision. While decision on the shipping boundary (λ1)

is mainly controlled by the magnitude of the proportional cost, the decision on the optimal shipping

quantity is dominated by the economies of scale component.

B. Impact of Production Technology

In addition to optimal consumption and shipping decisions, the capital stocks of the two countries

fluctuate over time due to production shocks. The fluctuation is controlled by two parameters:σ and

κ. The diffusion parameterσ determines the instantaneous impact of a production shock. The largerσ

is, the larger the impact of the production shock. The drift parameterκ, on the other hand, controls the

serial dependence of the capital stock. A negativeκ is an indication of mean reversion while a positive

κ is an indication of diversion. The more positiveκ is, the faster the capital stock drifts away from its

current position.

In making the optimal shipping decision, consumers are not only concerned with the cost of ship-

ping, but also concerned with the dynamics of production shocks. For example, if one expects the

capital stock will soon come back to balance by itself, one may want to wait for the natural balancing

event instead of incurring a cost in making a shipment. On the other hand, if one expects the capital

stock imbalance to increase further in the future, one may want to intervene early to stop that trend.

Such considerations affect not only when to ship, but also how much to ship. Figure 2 depicts the

impact of the two production parametersσ andκ on the optimal shipping decision. Again, the left

panels depict the impact onλ1, which captures when to ship, and the right panels depict the impact

on ξ, the optimal fraction of shipment. The solid lines depict a general cost structure with both a con-

stant proportion (α = 0.18) and modest economies of scale (β = 0.001). The dashed lines depict the

purely proportional case with zero economies of scale (β = 0). For ease of comparison, the parameters

are chosen to match those in Dumas (1992). The dashed lines, thus, represent a replication of Dumas

(1992)’s results.

The left panel in Figure 2 indicates that the direction of the impact of the production technology on

the optimal boundaryλ1 remains the same with different cost structures. Nevertheless, the boundaryλ1
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Figure 2:Impact of Production Shocks on Optimal Shipping Decisions
The left panels depict the optimal boundary at which the shipment takes place (λ1) while the right
panels depict the optimal fraction of shipment (ξ), both as a function of the diffusion parameterσ (first
row) and the drift parameterκ(second row) of the capital stock process. The circle-solid line denotes the
general cost case while the diamond-dashed line denotes the purely proportional case (β = 0). Model
parameters areκ = 0.11,γ =−1,ρ = 0.15,α = 0.18,β = 0.001.
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seems to become more sensitive to the technology parameters(σ,κ) with economies of scale in the cost

structure (the solid lines) than without (the dashed lines). Overall, the optimal boundaryλ1 increases

with the diffusion parameterσ but decreases with the drift parameterκ. As the diffusion parameterσ

increases, one expects more variation in the capital stock and hence expects a higher chance that the

capital stock comes back to balance by its own force. Given such expectations, consumers are willing

to tolerate a higher imbalance (a largerλ1) before starting shipment. On the other hand, a large positive

κ implies that the higher the capital stock, the faster it increases. Such a force will certainly drive a

given imbalance to a further extent. Expecting future divergence in capital stock imbalance from a

larger positiveκ, consumers take actions early and begin shipping at a smallerλ1.

In the purely proportional cost case of Dumas (1992), the optimal shipping quantity is infinitesimal,

regardless of the production technology. In presence of economies of scale in the transportation cost,

the optimal shipping quantity becomes a nontrivial decision and is sensitive to the variations in the

production technology. Interestingly, as shown in the top right panel of Figure 2, the dependence of the

optimal fraction of shipment,ξ, on the diffusion parameterσ is not monotonic. The optimal fraction

of shipment first decreases and then increases withσ. Therefore, more than one force is at work. On

the one hand, when the imbalance becomes larger, one in general needs to ship more to get back to

balance. Such a force predicts an increase inξ asσ increases. On the other hand, one may expect more

frequent hitting of the boundaryλ1 and hence more frequent intervention. One might hence reduce the

shipping quantity to reduce the total cost of transportation.

In case of the drift parameterκ, the optimal shipping quantityξ declines asκ increases. Such a

decline accompanies the decline in the outer boundaryλ1.

C. Consumer Preference

Consumers discount both risk and time. Such discounting is captured, respectively, by consumers’

relative risk aversion parameter(1− γ) and their time discount parameterρ. Figure 3 depicts the

dependence of the optimal shipping decisions on consumers’ preference along both dimensions.

Both risk aversion and time aversion increase consumers’ preference for consumption smoothing

and hence their desire to achieve and maintain a balanced account of capital stock. Therefore, the
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Figure 3:Impact of Consumer Preference on Optimal Shipping Decisions
The left panels depict the optimal time of trade (λ1) while the right panels depict the optimal amount of
trade (ξ), both as a function of the relative risk aversion(1− γ) (first row) and the time discount factor
ρ (last row). The circle-solid line denotes the general case while the diamond-dashed line denotes the
purely proportional case (β = 0). Model parameters are:κ = 0.11,γ = −1,ρ = 0.15,α = 0.18,β =
0.001.
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boundaryλ1 for optimal shipping decreases with increasing relative risk aversion(1−γ) and increasing

time discountingρ. The optimal shipping amount normally follows the trend ofλ1. That is, more is

shipped when the boundary is further out. This trend is reversed at high risk aversion levels. When the

consumer’s risk aversion is very high, the consumer not only wants to ship more frequently to maintain

a narrower band[λ1,1/λ1], but also wants to ship as much as possible to achieve immediate reduction

in the capital stock imbalance.

To a consumer, the optimal shipping decision is determined by the trade-off between the benefit of

risk diversification and the cost of intervention. The benefit of diversification drives the consumer to act

more frequently and ship a larger amount to achieve a balance in capital stocks. The cost of shipment

not only delays the consumer’s action but also reduces the magnitude of the action. As the desire for

diversification increases with increasing risk aversion, cost reduction becomes less important for the

consumer. Therefore, a consumer with high relative risk aversion not only wants to intervene early at

low λ1, but also wants to ship a larger amount (ξ) to achieve better consumption smoothing.

III. Optimal Consumption and the Capital Imbalance Dynamics

By Ito’s lemma, the dynamic process for the physical imbalance of the capital stock,ω, can be derived

from the bivariate process in (1),

dω =
[
− c

K
+

c∗

K∗

]
dt +
√

2σdz′, (20)

wheredz′ = (dz−dz∗)/
√

2 is a standardized white noise. The physical imbalance has a constant

instantaneous variance of2σ2. The drift of the physical imbalance is determined by the difference in the

consumption rates (the ratio of consumption to capital stock) between the two countries. Recall from

(7) that the optimal consumption is determined by the marginal utility of the indirect utility function,

c = V
1

γ−1

1 , c∗ = V
1

γ−1

2 .
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Figure 4:The drift of ω process
The solid line represents a general cost structure with economies of scale (β = 0.001). The bolded
line represents the purely proportional case absent of economies of scale (β = 0). Model parameters:
κ = 0.11,σ = 0.5,ρ = 0.15,γ =−1;α = 0.18.

Apply the change of variables in (13), we have

c
K

=
∥∥∥eI(−ω)I ′(ω)

∥∥∥
1

γ−1
,

c∗

K∗
=
∥∥∥eI(ω)I ′(−ω)

∥∥∥
1

γ−1
.

Obviously, the drift of the physical imbalance is a highly nonlinear function of the imbalance level

ω. In Figure 4, we solve the transformed utility function and plot the drift ofω as a function ofω. For

ease of comparison, we choose the same parameters as in Dumas (1992) for the purely proportional

cost case:κ = 0.11,σ = 0.5,ρ = 0.15,γ =−1,α = 0.18. The optimal shipping boundary isλ1 = 2.6621

(ω1≡ lnλ1 = 0.9791). The optimal shipping amount is infinitesimal. Under our general cost structure,

we setβ = 0.001with otherwise the same set of parameters. The optimal shipping boundary increases

to λ1 = 4.3342(ω1 = 1.4665) and the optimal shipping amount isξ = 28.16%of the imbalanceK−K∗.

The ex-shipping imbalance becomesλ2 = 1.9222(ω2 = 0.6535). The bolded line depicts the same

divergent feature of the drift function as in Dumas (1992)’s purely proportional case. In the presence

of economies of scale, the feature is similar except that the shipping boundary is pushed further out.

This divergent feature says that the drift is positive whenω is positive and vice versa. As a result,

the imbalance is constantly driven to one of the boundaries. Such a divergent feature is a result of
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Figure 5:The Physical Imbalance Dynamics of Capital Stock,ω
The processes are simulated based on the model parameters:κ = 0.11,σ = 0.5,ρ = 0.15,γ =−1;α =
0.18. The coefficient of economiesβ is set to0.001for the left panel and zero for the right panel. The
solid lines atω1 and−ω1 depict the boundaries at which it is optimal to ship. The two dashed lines
at ω2 and−ω2 depict the ex-shipment imbalance. The solid and dashed lines overlap in absence of
economies of scale (right panel). The dash-dotted line in the middle (ω = 0) denotes the benchmark
of exact capital balance. The points markedA,B,C,D,E,F,G,H in the left panel denote points where
finite shipment occurs.

consumption smoothing. The imbalance in optimal consumption is less than the imbalance in capital

stock between the two countries:

c
c∗
≤ K

K∗
, whenK > K∗

c∗

c
≤ K∗

K
, whenK∗ > K.

While the drift functions for cases with and without economies of scale look qualitatively the same,

the dynamics of physical imbalance for the capital stock differs sharply because of the different deci-

sions on optimal shipping quantity. In Figure 5, we present a simulated series of the physical imbalance

ω with (left panel) and without economies of scale (right panel), based on otherwise identical model

parameters. Compared to the purely proportional case (right panel), the addition of modest economies

of scale (left panel) pushes the optimal shipping boundary[ω1,−ω1] further out due to the higher total

cost. More importantly, the presence of economies of scale induces finite jumps in the physical im-

balance process. Whenever either of the two optimal shipping boundaries (the two solid lines atω1

and−ω1) is reached, it is optimal to ship a finite percentageξ = 28.16%so that the imbalance jumps
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inside the band. The ex-shipment boundaries are captured by the two dashed lines atω2 and−ω2. The

points markedA,B,C,D,E,F,G,H in the left panel highlight the jumps in the imbalance process. In

contrast, in absence of economies of scale in the cost structure (right panel), there are no jumps in the

imbalance process. Whenever the boundary ofω1 or−ω1 is reached, the physical imbalance is pushed

back by an infinitesimal amount. This infinitesimal shipping, together with the divergent feature of the

drift function, dictates that the physical imbalance stays at the boundary most of the time.

IV. The Dynamic Behavior of Real Exchange Rates

Let p denote the price of goods located at home relative to goods located abroad (the price of a unit of

K in units ofK∗). It is given by the ratio of the marginal utilities:

p =
V1(K,K∗)
V2(K,K∗)

. (21)

Because of the homogeneity ofV, the relative pricep is a function ofω only:

p(ω) = e−ω I ′(ω)
I ′(−ω)

. (22)

The Law of One Price (LOP) prevails whenp = 1. Let x(ω) ≡ ln p(ω) denote the log real exchange

rate. It is given by

x(ω)≡ ln p(ω) =−ω + ln I ′(ω)/I ′(−ω). (23)

Figure 6 depicts the log real exchange rate,x(ω), as a function of the physical imbalanceω. We

compare the purely proportional case (bolded line) with the general case with economies of scale (solid

line). The model parameters are the same as in Dumas (1992) exceptβ = 0.001 for the general cost

structure case.

In the presence of economies of scale in the shipping cost, the mapping from the real exchange

rate to the physical imbalance is no longer unique. In particular, the marginal utilities are the same at

the two boundariesω1 andω2 (and at also their negative counterparts) by virtue of smooth pasting.

Thus, the real exchange rates are also the same at these two boundaries. The maximum deviation from
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Figure 6:The Logarithm of the Real Exchange Rate
Lines depict the logarithm of the real exchange ratex(ω) ≡ ln p(ω) as a function of the physical im-
balance of capital stock. The model parameters areκ = 0.11,σ = 0.5,ρ = 0.15,γ =−1;α = 0.18. The
coefficient of economies of scale is set toβ = 0.001for the solid line and to zero for the bolded line.
The dash-dotted line represents the autarky case withx(ω) = (γ−1)ω.

purchasing power parity does not occur at the outer boundary of physical imbalance at which shipping

occurs, nor does it occur at the ex-shipping boundary. Instead, the maximum is achieved between the

two boundaries.

The impact of such smooth pasting is analogous to the “honeymoon effect” described in Krugman

(1991). As the physical imbalance increases, the deviation from the parity increases. However, as the

imbalance is near the outer boundary ofω1, consumers realize that the shipping of the capital stock is

imminent. In anticipation of the shipment, the real exchange rate reverses direction and the deviation

from the parity starts to decrease before reaching the boundary. Once the boundary is reached, a finite

amount of capital stock is shipped from one country to the other; yet, no arbitrage dictates that the

marginal utilities and hence the real exchange rate before and after the shipment are exactly the same.

Thus, there are no jumps in the real exchange rates although there are jumps in the physical imbalance

of the capital stock.

As the real exchange rate is a direct function of the physical imbalance of the capital stock, we can

regard the physical imbalanceω as the state variable representing the underlying economy. Given the

dynamics of the state variable, we can determine the dynamics of the real exchange rate. Nevertheless,

due to the absence of one-to-one correspondence between the two, we cannot uniquely determine the
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Figure 7:The Drift and Diffusion of the Log Real Exchange Ratex(ω)
Lines depict the drift (left panel) and diffusion (right panel) of the log real exchange ratex(ω). The
model parameters are:κ = 0.11,σ = 0.5,ρ = 0.15,γ =−1;α = 0.18. The coefficient of economies of
scaleβ is set to0.001for the solid line and zero for the bolded line.

state variableω from the real exchange rate process. For example, atx = −0.2028, the state variable

can either be atω1 = 1.4665or atω2 = 0.6536.

This absence of one-to-one correspondence between the real exchange rate and the state variable

has important implications for the exchange rate dynamics. In Figure 7, we depict the drift and diffusion

functions of the log real exchange rate,x(ω). Again, we compare the case with economies of scale

(solid line) and the case without economies of scale (bolded line). We find that, holding everything else

constant, incorporating a modest amount of economies of scale not only reduces the reverting speed to

parity (the drift function is much flatter), but also increases the overall volatility level of the deviation

(the diffusion function takes larger values).

What is most distinctive, however, is that, in the presence of the economies of scale, neither the

drift nor the diffusion is completely determined by the current value of the exchange rate. For example,

at x = −0.2028, the drift of x can either by0.4806or 0.0739. Similarly, the diffusion can either be

0.2974or −0.1724. As the sign of the diffusion indicates the different directions of the impact of a

production shock, the two values say that the same shock can either move the exchange rate positively

or negatively.

Such indeterminacies have important implications for empirical studies. Time series analysis of the

real exchange rate by itself is no longer capable of revealing the full information about the exchange
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Figure 8:The Simulated Process of Real Exchange Rate,x
Model parameters are:κ = 0.11,σ = 0.5,ρ = 0.15,γ =−1;α = 0.18. β is set to0.001for the left panel
and zero for the right panel.

rate dynamics. A more informative analysis may also need to include economic fundamentals that

proxy for capital imbalance, such as trade deficit or capital flows. Dumas (1992) argues that a linear

specification in estimating the real exchange rate dynamics is severely misspecified and hence may lead

to erroneous conclusions. His modeling effort has motivated several empirical studies to explore non-

linear specifications in testing the mean-reverting behavior of the real exchange rate. Our more realistic

specification in the cost structure of goods transportation further indicates that a simple exogenous time

series analysis of the real exchange rate may still lead to erroneous conclusions even if one considers

nonlinearity and/or heteroskedasticity. The key issue is that the drift and diffusion functions of the real

exchange rate are not completely determined by the real exchange rate levels. Our model argues for

joint analysis of real exchange rates and economic fundamentals.

Another important observation from Figure 7 is that under the purely proportional cost case of

Dumas (1992), the instantaneous volatility of the real exchange rate is maximal at parityx = 0. The

instantaneous variance approaches zero monotonically as the deviation from parity increases and ap-

proaches its boundary. In contrast, in the presence of economies of scale, the maximum instantaneous

variance does not occur at parity, nor does it happen at the maximum boundary, but at an intermedi-

ate level of deviation from parity. These differences transform directly to different behaviors in the

exchange rate dynamics.
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In Figure 8, we plot the simulated dynamics of the real exchange rate with (left panel) and without

(right panel) economies of scale. The dynamics are derived from the simulated dynamics of the state

variableω in Figure 5. As expected, in the presence of economies of scale (left panel), the allow-

able band of deviation from parity is larger. But more importantly, in absence of economies of scale,

the real exchange rate dwells at the boundary with small local variation. In contrast, in the presence

of economies of scale, the real exchange rate rarely dwells at the boundary, but nevertheless persis-

tently stays away from parity. Furthermore, the deviations have much larger volatilities than the purely

proportional cost case.

V. Concluding Remarks

This article constructs a dynamic general equilibrium model of real exchange rates allowing economies

of scale in the cost structure for goods transportation. Compared to the earlier literature focusing on

purely proportional cost, our paper represents a significant theoretical breakthrough. We propose an

efficient procedure to simultaneously solve both the optimal shipping time and the optimal shipping

quantity. Given the solution, we analyze the impact of the cost structure on the optimal shipping

decision and on the equilibrium behavior of the real exchange rate dynamics. We find that our general

cost structure generates more realistic real exchange rate behavior. We also find that, in the presence

of economies of scale in the cost structure, one can no longer fully identify the real exchange rate

dynamics from the exchange rate data alone. A more informative analysis should also include economic

fundamentals.

An important direction for future research is to apply the model to guide future empirical studies. In

particular, our model illustrates the danger of drawing premature conclusions from exogenous time se-

ries analysis based on exchange rate data alone. On the other hand, directly calibrating our model to the

exchange rate and economic fundamentals, should reveal important information on the real exchange

rate dynamics, increase our understanding of the production technology, the consumer preference, and

the cost structure in international trade, as well as their impact on, and links to, the real exchange rate

behavior.
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Appendix A. Maximum Shipment

Lemma 1 Irrespective of the cost structure, consumers never have the incentive to transfer more than the stock

imbalance:Xmax = |K−K∗|.

When the cost of goods transportation does not depend upon the amount of shipment, consumers have the incen-

tive to transfer the maximal amount to achieve immediate stock balance. LetXmax denote this maximal amount

of the shipment when the total cost of transportation does not depend on the shipment. LetC denote this total

cost. Assume that the home country has a larger capital stock than the foreign country,K > K∗, and decides to

shipXmax to the foreign country. We have

K−Xmax = K∗+Xmax−C. (A1)

That is, stock balance is achieved after the shipment. The equality in (A1) yields

Xmax =
K−K∗+C

2
, (A2)

which says that the amount of transfer increases with the total costC.

However, for the shipment to be optimal, the total costC cannot be too high. In particular, consumers in the

foreign country have the incentive to receive a shipment only when they can gain from it. Thus, for any transfer

to be in effect, we needXmax−C> 0. Consumers in the foreign country can simply refuse to pick up the package

if the cost of picking up the package is more expensive than the value of the package.

Therefore, the maximum possible shipment is achieved at the maximum possible total costCmax = Xmax.

Plug this maximum cost into (A2), we obtain

Xmax = K−K∗,

which represents the maximum possible amount of shipment in any cost structure.

When the foreign country has a larger capital stock,K∗ > K, and decides to ship some of the stock to the

home country, similar argument yieldsXmax = K∗−K. Thus, in all cases, the maximum shipment is given by

Xmax = |K−K∗|.

All through the paper, we only consider the case ofK > K∗ and determine the case ofK∗ > K via symmetry.
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Appendix B. Optimal Shipping

Apply the change of variables to the first order condition in (12), we have

e(η−1)I(ω2) =
−I ′(ω2)(1+(1−α)λ2)+(1−α)λ2γ
(η−1)(T1(ω2)− (1−α)λ2T2(ω2))

, (B3)

where

T1 = ζ1

((
I ′
)2 + I ′′− I ′

)
+ ζ2

(
−(I ′)2 + γI ′− I ′′

)
,

T2 = ζ1

(
−(I ′)2 + γI ′− I ′′

)
+ ζ2

((
I ′− γ

)2 + I ′′+
(
I ′− γ

))
.

We drop the dependence ofI ′, I ′′,ζ on ω2 for clarity. We can also derive an expression fore(η−1)I(ω2) from the

ordinary differential equation (14):

I ′′ =−(I ′)2 + I ′γ +
1

σ2η
e(η−1)I [I ′ζ1 +

(
γ− I ′

)
ζ2
]

+ δ. (B4)

Combine the two equations (B3) and (B4), we cancel out theI(ω2) term and obtain a quadratic function ofI ′′(ω2)

in terms ofI ′(ω2):

A
(
I ′′
)2 +BI′′+C = 0, (B5)

where the coefficients[A,B,C] are functions ofI ′(ω2) and model parameters. They are given by

A = (ζ1−ζ2)(1+(1−α)λ2)

B = G+EA;

C = EG−F.

with

G = I ′
[
ζ1
(
I ′−1

)
+ ζ2

(−I ′+ γ
)]− (1−α)λ2

(
I ′− γ

)[−ζ1I ′+ ζ2
((

I ′− γ
)

+1
)]
,

E =
(
I ′
)2− I ′γ−δ,

F =
(I ′+(1−α)λ2 (I ′− γ)) [−ζ1I ′+ ζ2 (I ′− γ)]

η(η−1)σ2 .
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Given that the discrimantB2−4AC> 0, the quadratic equation has two real roots. We choose the root that

ensures convergence for the ordinary differential equation. In particular, a geometric analysis indicates that the

convergent root is

I ′′(ω2) =
−B+

√
B2−4AC

2A
. (B6)
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