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1. Introduction

In an efficient market, the price mechanism is supposed to function
perfectly to clear the market at all times. However, there are many realistic
situations in which this does not happen; the price either fails to adjust to
demand or simply a market for the product is missing. Instead, nonprice
mechanisms such as queuing, lotteries and coupons are used as effective
mechanisms to allocate resources. This paper studies queuing in a dynamic
setting.

Consider a supplier who provides a product with a capacity constraint.
When there is excess demand and when the price mechanism fails to re-
act, consumers may have to compete in a queue for the allocation of the
product. In existing queuing models,1 queuing is a one-shot game in which
consumers compete for a product by deciding to stand in a queue or not.
In equilibrium, those who are in the queue will get the product while the
rest will not. In a dynamic setting with multiple shifts, a consumer not
only decides whether or not to compete in a queue, but also which shift
he will compete in. For example, if a consumer is patient enough, he can
avoid queuing by late consumption. Multiple shifts allow a given capac-
ity to be used repeatedly (saving costs) and alleviate the demand for early
consumption (improving welfare). We find that allowing more shifts can
dramatically improve efficiency; in fact, if many consumers are patient, the
efficiency of a multi-shift queuing mechanism can be fairly close to that of
the price mechanism.

In our dynamic queuing model, consumers form expectations about the
length of the queuing time in each shift and decide whether or not to con-
sume at all, and if so, in which shift to consume. Under fairly general condi-
tions, a stable and efficient rational expectations queuing equilibrium exists
in which the consumers satisfy both the incentive compatibility and indi-
vidual rationality constraints. With the queuing times for multiple shifts
determined by valuation and costs, the consumers’ effective demand, after
incorporating costs of queuing and delay, is then derived. In equilibrium,
the queuing time in each shift equals the queuing time determined by the
effective demand and the capacity.

1See, for example, early works by Leeman (1964), Naor (1969) and Barzel (1974), a
game theoretical approach by Holt—Sherman (1982), and a model allowing differential
time costs and personal valuations among consumers by Suen (1989).
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This theory is readily applicable to many realistic situations in which
consumers have a choice between early and late consumption. Early con-
sumption (or, more precisely, timing consumption) gives a consumer higher
satisfaction, but late consumption means less queuing. In particular, we
look at three applications: shopping, highways and restaurants. There are
situations in which shoppers have to queue to get certain products. Some
shoppers with certain preferences may avoid queues by buying a similar or
the same product for a higher price at another store. On highways, there
are rush hours during which drivers have to queue for the use of highways.
Some drivers with certain preferences may avoid the rush hours by using
the highways at different times. Restaurants can be very crowded at certain
points during a day. Some people with certain preferences may avoid those
time points by adjusting their dining times slightly.

The paper proceeds as follows. Section 2 develops a theory for a dy-
namic queuing model. Three examples are included. Section 3 applies the
theory to some realistic situations. Section 4 concludes the paper with a
few concluding remarks. The proofs of all our stated results are available
upon request.

2. A Dynamic Queuing Model

Suppose that a supplier provides a product for distribution among con-
sumers. For some reason, the market price fails to adjust according to the
demand or simply there is no market for the product. We can thus simply
assume a fixed price for the product (zero price if there is no market). Un-
der this situation, when there is excess demand, there will be a queue for
the product, unless the supplier takes measures to prevent the queue.

As is the case in any queuing model, suppose that there is a capacity
constraint on the supplier so that the supplier can only provide the product
to a limited number of consumers. However, different from a traditional
model, the supplier in our model is willing to provide multiple shifts, mean-
ing that when a group of consumers finish consumption, another group of
consumers will be invited to consume, and so on.
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2.1. The Setup

As explained above, the firm offers n shifts with a constant price p for
all the shifts and with a fixed capacity k that limits the quantity of the
product supplied in each shift. There is a continuum of consumers who are
evenly distributed on a set X, where X ⊂ R+. 2
A typical consumer is indexed by a location x ∈ X. Each consumer has

a unit demand for the product, consuming either one unit or none. The
consumers differ from each other in three aspects: the valuation v(x) ≥
0 of the product, the wage rate w(x) > 0, and the discount factor
δ(x) > 0 of time preferences. All of the three variables are denominated
in dollars. Call v(·), w(·), and δ(·) the distributions of valuations, wage
rates, and the discount factors, respectively. Thus, if a consumer consumes
the product in the ith shift, queues for ti units of time and pays p for the
product, the consumer’s surplus is v(x)− p− tiw(x)− (i− 1)δ(x), where
tiw(x) is the monetary cost of queuing and (i − 1)δ(x) is the monetary
cost of delay.

Denote v̂(x) as the consumer’s valuation of the product in time units

and δ̂(x) as the discount factor in time units, i.e.,

v̂(x) ≡ v(x)− p

w(x)
, δ̂(x) ≡ δ(x)

w(x)
.

Call v̂(x) the consumer’s time valuation of the product and δ̂(x) the

time discount factor, and call v̂(·) and δ̂(·) the distributions of time
valuations and time discount factors, respectively.

Each consumer is assumed to know the price, the number of shifts, and
his own valuation, costs and discount rate. But he does not need to know
the capacity k and other consumers’ valuation, wage rates and discount
factors.

2For the users of the service, the number of shifts n, the price p and the capacity
k are taken as given. These variables are determined by the provider of the service. As
typical, the provider’s problem is not discussed in a queuing model. See, for example,
an application of this model in Wang—Zhu (2003), where the consumers face different
dynamic queuing problems in different seasons while the firm chooses different numbers
of shifts in different seasons, different prices in different seasons, and a capacity for all
seasons.
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Since the consumers discount delayed consumption, they all would like
to consume in as early a shift as possible. Consumption in early shifts is
rationed by the waiting-line competition in which the first-come-first-served
rule determines the sequence of consumption. In addition, the consumers
observe the following two rules of behavior.

Rule 1: If a consumer is indifferent between any two shifts, he will consume
in the earlier shift.

Rule 2: All consumers follow the “get-it-while-you-can” strategy when
they compete for the product in queues.

Rule 1 is made to avoid the tie situation. Rule 2 avoids the situation
in which a consumer does not see the need to join a queue if no one has
joined the queue; but once one person joins the queue, everyone rushes in
[see Bagnoli et al. (1989) for a detailed discussion of Rule 2].

Before the waiting-line competition begins, and taking as given the price,
the capacity and the number of shifts, the consumers form expectations
about the length of queuing time for each shift. With these expectations,
each of the consumers first decides whether he will consume or not; if he
decides to consume, then he must decide in which shift he should compete
in a queue in order to maximize his surplus. In equilibrium, the expected
queuing length equals the actual queuing length in every shift.

2.2. The Optimization Problem

For a consumer x, his problem is: given the capacity k, the number of
shifts n, and the price p, he forms expectations of the lengths of queuing
time t1, t2, . . . , tn with ti ≥ 0 and considers a dynamic queuing problem:

max
1≤i≤n

v(x)− p− tiw(x)− (i− 1)δ(x)
s.t. v(x)− p ≥ tiw(x) + (i− 1)δ(x),

or, equivalently,

min
1≤i≤n

ti + (i− 1)δ̂(x)
s.t. v̂(x) ≥ ti + (i− 1)δ̂(x).

(1)
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We will now try to simplify this problem. Problem (1) implies that con-
sumer x will choose to consume in shift i if

IC : tj + (j − 1)δ̂(x) > ti + (i− 1)δ̂(x), for all j 6= i,

and
IR : v̂(x) ≥ ti + (i− 1)δ̂(x).

The first inequality is the incentive compatibility (IC) condition and
the second is the individual rationality (IR) condition. The IC condition
is the same as an IC condition in agency models; since the supplier cannot
force an individual to consume in a certain shift, the condition induces the
individual to choose a certain shift. The IR condition determines whether
or not a consumer is interested in the product at all, given the costs.

Define Ai and Bi, respectively, as

Ai ≡
n
x ≥ 0

¯̄̄
tj + jδ̂(x) > ti + iδ̂(x), ∀ j 6= i

o
,

Bi ≡
n
x ≥ 0

¯̄̄
v̂(x) ≥ ti + (i− 1)δ̂(x)

o
.

Indeed, Ai is the set of consumers who satisfy the IC constraint for shift
i, and Bi is the set of consumers who satisfy the IR constraint for shift i.
Also, denote B as the set of consumers who will consume (in some shift):

B ≡
n
x ≥ 0

¯̄̄
∃ j, j ≤ n, s.t. v̂(x) ≥ tj + (j − 1)δ̂(x)

o
.

We have B = Sn
i=1 Bi, and the following lemma is intuitive.

Lemma 1. Problem (1) is equivalent to the following problem

min
1≤i≤n

ti + (i− 1)δ̂(x)
s.t. x ∈ B.

(2)

2.3. The Queuing Equilibrium

Given a sequence of expected queuing lengths t1, . . . , tn (formed ex
ante), each individual solves his own problem in (2). The solutions from
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all the consumers constitute the demand in each shift. With the capacity
constraint in each shift, an ex-post queuing length t∗i is determined for
each shift i. When the ex-ante queuing length is the same as the ex-post
queuing length for each shift, we have an equilibrium.

Definition 1. A rational expectations equilibrium (REE) of queu-
ing (t∗1, . . . , t

∗
n) is realized if the ex post queuing time in each of the

shifts is the same as the ex ante queuing time. That is, t∗i = ti for all
i. ¥

Our definition of REE differs from equilibrium queuing concepts in tra-
ditional models. In our model, individuals form expectations on queuing
lengths. When their expectations are consistent with the actual queuing
lengths, an equilibrium is reached. Individuals in our model do not need
to know other players’ valuations, wage rates and discounts. Traditional
queuing models are often based the Bayesian equilibrium concept in which
each individual knows the distribution functions of all his opponents and
forms expectations on the opponents’ willingness to queue. By this, each
player can estimate the equilibrium queuing time and decide whether or
not to queue. In this case, a symmetric equilibrium is usually adopted.3

For any two shifts i and j, i < j, if

ti + (i− 1)δ̂(x) = tj + (j − 1)δ̂(x), or δ̂(x) = −ti − tj
i− j

,

then consumer x is indifferent regarding the two shifts. A shift is said to be
strictly most preferred for consumer x if the shift is strictly preferred
by him over all the other shifts.

Lemma 2. Denote t0 ≡ +∞ and tn+1 ≡ tn. For any REE equilibrium
(t∗1, . . . , t

∗
n),

3There are three disadvantages of the Bayesian approach:

1. It can only deal with finite players.

2. Each player needs to know a lot of information.

3. A set of distribution functions on players’ valuations needs to be introduced. And,
the equilibrium is dependent on these distribution functions.

One disadvantage of our REE is that it may not be efficient (as defined later). However,
we will show the existence of a unique efficient REE.
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(a) t∗i is decreasing across shifts: t∗1 > · · · > t∗n ≥ 0.
(b) t∗i is decreasing at a decreasing rate: t∗i−1 − t∗i ≥ t∗i − t∗i+1, for all i.

(c) The set of consumers who strictly most prefer shift i is½
x ≥ 0

¯̄̄̄
max
i<j≤n

¯̄̄̄
t∗j − t∗i
j − i

¯̄̄̄
< δ̂(x) < min

1≤j<i

¯̄̄̄
t∗j − t∗i
j − i

¯̄̄̄¾
. ¥

Loosely speaking, Lemma 2(c) says that if a consumer strictly most
prefers shift i, then those consumers whose types are similar to him will
also choose shift i.

Theorem 1. (Characterization of Queuing Equilibria). For any ra-
tional expectations equilibrium {t∗i }ni=1, there exists a convex and decreas-
ing function φ : R+ → R+ such that φ(i) = t∗i for all i. ¥

Figure 1 depicts the queuing function φ(·) in Theorem 1.

i1 2 n

.
. .

)(⋅φ

3

.
*
it

Figure 1. Convex and Decreasing Queuing Length Across Shifts

Lemma 3. Denote t0 ≡ +∞ and tn+1 ≡ tn. Under Rules 1 and 2, for any
shift i, we have

Ai = δ̂
−1
[t∗i − t∗i+1, t

∗
i−1 − t∗i ). ¥
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Lemma 3 says that consumer x satisfies the IC condition for shift i if

and only if his/her time valuation δ̂(x) is in the interval [t∗i−t∗i+1, t∗i−1−t∗i ).
That is, a consumer x who picks shift i satisfies the conditions t∗i + δ̂(x) <

t∗i−1 and t∗i < t∗i+1+ δ̂(x), meaning that the queuing time plus delay cost for
shift i is less than the queuing time for the earlier shift, and the queuing
time for shift i is less than the queuing time plus delay cost for the later
shift. This result is very convenient, since the decision on shift i is related
only to its neighboring two shifts.

By Lemmas 1—3, we have reduced problem (1) to a simple form so that
we can now easily define the effective demand. Denote Di ≡ Ai ∩ Bi and
call it the demand set of shift i. Di contains all the consumers who
consume in shift i. By Lemma 3, we have

Di = {x ≥ 0 | ti − ti+1 ≤ δ̂(x) < ti−1 − ti, ti + (i− 1)δ̂(x) ≤ v̂(x)}, (3)

for i = 1, . . . , n, where we have arbitrarily set t0 ≡ +∞ and tn+1 ≡ tn
for simplicity of notation. Further, denote D ≡ B and call it the total
demand set. D contains all the consumers who will consume. By Lemma
1, we have

D =
n[
i=1

Di.

Let µ(·) be the Lebesgue measure on R. 4 Since δ̂ and v̂ are continuous,
Di and D are Borel-measurable. Now, define xd ≡ µ(D) and call it
the effective demand. In contrast, we will call the consumer’s valuation
function, v(·), the (inverse) ordinary demand. The effective demand xd

differs from the ordinary demand because it includes the costs of queuing
and consumption delay. Consequently, the effective demand depends not
only on price, p, but also on capacity, k. In equilibrium, it must be the
case that there exists n∗, 1 ≤ n∗ ≤ n, such that µ(Di) = k for i ≤ n∗−1,
and µ(Dn∗) ≤ k.

4The assumption of an even distribution of the consumers on X ⊂ R+ is made
without loss of generality. In general, if the distribution of consumers is described by
an accumulative distribution function F (x), we should replace the Lebesgue measure
µ(·) by the Riemann-Stieltjes measure µF (·), where for any subset A ⊂ X we have
µF (A) =

R
A
dF (x).
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Theorem 2. (Existence of REE). Suppose v̂(·) is essentially bounded
from above. Given any price p ≥ 0, capacity k > 0 and n shifts, if the
distribution of the time valuations v̂(·) and the distribution of the time dis-
count factors δ̂(·) are continuous, then there exists a rational expectations
equilibrium (t∗1, t

∗
2, . . . , t

∗
n), t∗1 ≥ t∗2 ≥ · · · ≥ t∗n ≥ 0. 5 ¥

One key advantage of an rational expectations equilibrium is that each
consumer does not need to know the preferences and income levels of other
consumers. Every consumer forms his own expected queuing lengths, from
which he makes a decision based on his own preferences and income level.
When all these decisions balance out in aggregate, we have a rational expec-
tations equilibrium. This approach departs from the traditional approach
in queuing theory, where every consumer has the knowledge of the joint
distribution function of other consumers’ preferences and income levels;
see, for example, Taylor—Tsui—Zhu (2003). In the traditional theory, this
distribution function matters to the solution, while in a rational expecta-
tions equilibrium, there is no such a distribution function. Our approach is
crucial in reducing the complexity of a multi-period queuing problem.

Generally speaking, the rational expectations equilibrium is not unique.
To see this, consider the following example.

Example 1. (Multi-Shift Queuing Model). Consider the case when
the demand is linear. Specifically, let

v(x) = 1− x, w(x) = β v(x), δ(x) = δ0, for x ∈ X = [0, 1],

where β and δ0 are constants with β > 0 and δ0 ≥ 0. Let n = 2.

Further, for convenience, assume k ≥ 1
2
so that µ(D2) ≤ k, by which

t∗2 = 0. Denote t = t1. By (3), we have

D1 = {x |tw(x) ≤ δ(x), tw(x) + p ≤ v(x)} , (4a)
D2 = {x |tw(x) > δ(x), δ(x) + p ≤ v(x)} , (4b)

5The definition of essential boundedness can be found in Lang (1993). The bound-
edness of v̂ rules out the possibility of an infinite queuing length. Notice that v, w and
δ need to be continuous but are not required to be monotonic. We can actually allow
the functions to be piecewise continuous. If so, they can be step functions, which means
that our model includes the case of finite consumers as a special case.
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implying

D1 = {x |βt (1− x) ≤ δ0, βt (1− x) + p ≤ 1− x} ,
D2 = {x |βt (1− x) > δ0, δ0 + p ≤ 1− x} .

We must have t < 1
β
, otherwise βt (1− x) ≥ 1− x ≥ 1− x− p, implying

µ(D1) = 0, which cannot be an equilibrium situation.6 Thus, 1 − βt > 0
and

D1 =
½
x

¯̄̄̄
x ≥ 1− δ0

βt
, x ≤ 1− p

1− βt

¾
,

D2 =
½
x

¯̄̄̄
x < 1− δ0

βt
, x ≤ 1− δ0 − p

¾
.

We also must have

1− δ0
βt

< 1− p

1− βt
, or t <

δ0
β(p+ δ0)

, (5)

otherwise µ(D1) = 0. By condition (5), we have

D1 =
∙
1− δ0

βt
, 1− p

1− βt

¸
.

Also, by condition (5), we have 1− δ0
βt
< 1− δ0 − p, implying

D2 =
∙
0, 1− δ0

βt

¶
.

6Condition t < 1
β simply says that the queuing cannot be too long otherwise no one

wants to be in the first shift. However, if no one is in the first shift, there would be no
queue and then everyone wants to be in the first shift. Such a situation cannot possibly
be in equilibrium.
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Figure 2. Two-Shift Queuing Equilibria

The equilibrium queuing time t∗ is determined by the capacity constraint
in the first shift:

k =

µ
1− p

1− βt

¶
−
µ
1− δ0

βt

¶
,

which gives two solutions

t∗ =
1

2βk

h
p+ δ0 + k ±

p
(p+ δ0 + k)2 − 4δ0k

i
. (6)

Both queuing times are positive and thus valid, but one is longer than the
other. Clearly, the longer queuing time is less efficient. This leads to our
definition of an efficient REE in Definition 2. ¥

Definition 2. An efficient rational expectations equilibrium (EREE)
of queuing is a rational expectations equilibrium for which there is no
other equilibrium that offers a shorter queuing time in any shift. ¥

Theorem 3. (Existence and Uniqueness of EREE). Suppose v̂(·) is
essentially bounded from above. For any given price p ≥ 0, capacity k > 0
and number of shifts n, if the distribution of time valuations v̂(·) and
the distribution of time discount factors δ̂(·) are continuous, then there
exists a unique efficient rational expectations equilibrium (t1, t2, . . . , tn),
t1 ≥ t2 ≥ · · · ≥ tn ≥ 0. ¥
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The EREE is a rational expectations equilibrium that is the most ef-
ficient within our queuing model and is unique by definition. The two
notions of equilibria can be distinguished by their stability characteristics:
the EREE is stable, while other queuing equilibria are not.

A comparison between our multi-shift queuing model with the tradi-
tional single-shift queuing model is interesting. The following example is
for this purpose.

Example 2. (Single-Shift Queuing Model). In the traditional model,
multiple shifts are not allowed, i.e., n = 1. For consumer x, his problem
is: given capacity k and price p, he forms expectations of the length of
queuing time t, with t ≥ 0, and decides to participate if and only if
v(x) ≥ p+ tw(x). Thus,

D1 = B = B1 = {x ≥ 0 | v(x) ≥ p+ tw(x)} .
In the case of linear demand in Example 1,

D1 =
∙
0, 1− p

1− βt

¸
.

The equilibrium condition µ(D1) = k implies

t̄ =
1

β

µ
1− p

1− k

¶
. (7)

As expected, by comparing the efficient solution in (6) with the solution in
(7), we find t̄ > t∗ for any parameter values. ¥
How costly the queuing mechanism is in terms of social welfare is also

interesting. In the following example, we show that the multi-shift queuing
equilibrium implies only a small loss of social welfare in some cases and that
allowing more shifts can dramatically reduce the loss.

Example 3. (Welfare Loss). Suppose the firm produces the product at
a constant marginal cost c ≥ 0. Using the functions chosen in Example 1,
for the efficient queuing equilibrium t∗ in Example 1, the social welfare is

W ∗ =
Z k

0

[v(x)− t∗w(x)]dx+
Z 1− p

1−βt∗

k

[v(x)− δ0]dx− c

µ
1− p

1− βt∗

¶
=
1

2

"
(1− c− δ0)

2 + 2(δ0 − βt∗)k + βt∗k2 −
µ

p

1− βt∗
− c− δ0

¶2#
.
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For the queuing equilibrium t̄ in Example 2, the social welfare is

W̄ =

Z k

0

[v(x)− t̄w(x)]dx− ck =
pk

2

2− k

1− k
− ck.

For the price mechanism, the prices in both shifts are allowed to adjust to
maximize social welfare. The social welfare maximization problem is

W ∗∗ ≡ max
p1, p2≥0, v−1(p1)≤k

Z v−1(p1)

0

[v(x)− t∗∗w(x)]dx

+

Z v−1(p2)

v−1(p1)
[v(x)− δ0]dx− cv−1(p2),

where p1 and p2 are the prices in the first and second shifts, respectively,
and t∗∗ is the equilibrium queuing time if the market in the first shift is not
cleared. Obviously, the optimal price p∗1 in the first shift must be the one
that clears the market (eliminating the loss from queuing), i.e., v−1(p∗1) = k.
Thus, the problem becomes

W ∗∗ ≡ max
p2≥0

Z v−1(p2)

0

v(x)dx− (c+ δ0)v
−1(p2) + δ0k,

implying p∗∗2 = c+ δ0 and

W ∗∗ =
1

2
(1− c− δ0)

2 + δ0k.

To have some idea on the magnitude of the losses, we try out some
parameter values. We first arbitrarily assign c = 0.1, p = 0.2, β = 1 and
k = 0.6. We find that these four parameters are not important in evaluating
the losses (besides the requirement of 0.5 ≤ k ≤ 1 and a small differential
p− c). However, δ0 is important. We find

W ∗∗ −W ∗

W ∗∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
13.5% if δ0 = 0.1,

7.1% if δ0 = 0.05,

2.4% if δ0 = 0.01.
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In other words, the loss from queuing can be large if people hate waiting,
but it can be very small if people do not mind waiting. We also find

W ∗∗ − W̄

W ∗∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
60.5% if δ0 = 0.1,

61.7% if δ0 = 0.05,

62.7% if δ0 = 0.01.

In other words, by allowing multiple shifts, even with only one more shift,
the welfare improvement is huge. If more shifts are allowed, the loss from
queuing should be much smaller.

Queues exist everywhere in our lives even though the capitalist system
is believed to have become quite complete and perfect. This example shows
that a multi-shift queuing system can be fairly efficient if the delay cost is
small for many consumers. This may explain the continuing existence of
queuing. There have been extensive studies on pricing a queuing system
in order to improve social welfare.7 However, proposed pricing systems
generally involve some social costs (e.g., administrative costs), which may
thus not necessarily be welfare improving in comparison with a multi-shift
queuing system without an administrative cost. ¥

3. Applications

There are many possible applications of our dynamic queuing model.
To see different characteristics of some applications, we consider three dis-
tinct cases: shopping, highways, and restaurants. Again, for simplicity, we
restrict the number of shifts to two and we will assume that the consumers
are located in [0, 1] and k ≥ 1

2
.

3.1. Shopping

Some shoppers are more queue averse than are others. It is generally
observed that low-income people are likely to stand in a long queue. In
other words, given a product that has little difference in valuation and in

7See, for example, Leeman (1964), Naor (1969), Nichcols—Smolensky—Tideman (1971),
Stahl—Alexeev (1985), Alexeev (1989), and Polterovich (1993). Externality is the basic
argument in this line of research.
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aversion towards delay in consumption among people, the perceived cost of
queuing can differ greatly among people. To highlight this point, we as-
sume a changing wage function (perceived penalty for queuing) but assume
constants for the other two functions. In particular, we assume

v(x) = v0,

w(x) = 1− x,

δ(x) = δ0,

where v0 > 0 and δ0 > 0 are two constants. In this case, (4a)-(4b) become

D1 =
½
x

¯̄̄̄
x ≥ 1− δ0

t
, x ≥ 1− v0 − p

t

¾
,

D2 =
½
x

¯̄̄̄
x < 1− δ0

t
, δ0 + p ≤ v0

¾
.

If δ0 + p > v0, no one will consume in the second shift. Also, in this case,
we have

1− δ0
t
< 1− v0 − p

t
,

implying

D1 =
∙
1− v0 − p

t
, 1

¸
, D2 = ∅.

The equilibrium condition µ(D1) = k implies

t∗ =
v0 − p

k
.

If δ0 + p ≤ v0, then

D1 =
∙
1− δ0

t
, 1

¸
, D2 =

∙
0, 1− δ0

t

¶
.

The equilibrium condition µ(D1) = k then implies

t∗ =
δ0
k
.

In both cases, low-income people will queue while high-income people
will not. In the first case, since the price and/or the cost of delay are
too high relative to valuation, there is no demand in the second shift. In
the second case, the costs are justified by the valuation and everyone will
consume; some prefer to queue for early consumption, while others avoid
queuing by late consumption.
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3.2. Highways

For the use of highways, being stranded on a road can have major con-
sequences for some but not so for others. For example, for those who drive
to work, it can be very costly to be stranded in traffic; but for those who
go shopping, being stranded is just a minor irritation. So, the valuation of
highways in the morning rush hour is very different among different peo-
ple. To highlight this point, we assume a changing valuation function, but
assume constants for the other two functions. In particular, we assume

v(x) = 1− x,

w(x) = w0,

δ(x) = δ0,

where w0 > 0 and δ0 > 0 are two constants. In this case, (4a)-(4b) become

D1 = {x |tw0 ≤ δ0, tw0 + p ≤ 1− x} ,
D2 = {x |tw0 > δ0, δ0 + p ≤ 1− x} .

We must have
tw0 ≤ δ0, (8)

otherwise D1 = ∅, which cannot be an equilibrium situation, as explained
in Footnote 6. Then,

D1 = {x |tw0 + p ≤ 1− x} = [0, 1− p− tw0],
D2 = ∅.

The equilibrium condition µ(D1) = k then implies

t∗ =
1− p− k

w0
.

With this solution, condition (8) becomes a restriction on the parameters:
p+ k + δ0 ≥ 1.
The solution indicates that only the high-valuation people will be on the

road in the morning rush hour. Other people, such as shoppers, will wait
until after the rush hour (when there is no queue on the road).
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3.3. Restaurants

In going to restaurants, the timing is an important consideration. For
working people, lunch hours are fixed by companies and workers must have
lunch on time, while others, such as shoppers, may not mind to have some
delay. To highlight this point, assume a changing discount factor, but
assume constants for the other two functions. In particular, we assume

v(x) = v0,

w(x) = w0,

δ(x) = 1− x,

where v0 > 0 and w0 > 0 are two constants. In this case, (4a)-(4b) become

D1 = {x |tw0 ≤ 1− x, tw0 + p ≤ v0} ,
D2 = {x |tw0 > 1− x, 1− x+ p ≤ v0} .

First of all, we must have
tw0 + p ≤ v0, (9)

otherwise D1 = ∅, which cannot be an equilibrium situation. With (9),
we have

D1 = [0, 1− tw0].

Given (9), we have 1− tw0 ≥ 1 + p− v0, implying

D2 = {x |x > 1− tw0, x ≥ 1 + p− v0} = (1− tw0, 1].

The equilibrium condition µ(D1) = k then implies

t∗ =
1− k

w0
.

With this solution, condition (9) becomes a restriction on the parameters:
1 + p ≤ k + v0.

The solution indicates that everyone will have lunch, and those who
must eat at lunch time will queue for early consumption, while others will
wait until after the lunch hour.
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4. Concluding Remarks

For many goods, demand fluctuates greatly over different seasons and
across different time frames. In a long-term plan, a firm/government will
set up an appropriate capacity that balances the demands across reasons.
Since the capacity is costly to set up and to maintain, the firm usually
has a binding capacity during a period of high demand. In many realistic
situations, the price is sticky, resulting in queues for the product. Instead
of a single-shot game of queuing, we consider a multi-shift game of queuing.
We believe that our dynamic queuing model fits many realistic situations
better than do many existing models.

Multiple shifts reduce the cost of queuing and allow consumers with
different preferences to choose different consumption strategies. Also, the
firm can save the cost of capacity by repeatedly using its capacity. In fact,
if there is a cost for price changes, our multi-shift queuing mechanism can
be more efficient than the price mechanism.

There is extensive research in the literature on multi-server queuing
models. Knudsen (1972) is the pioneer. In these models, the service
provider provides several service lines/points at the same time, instead of a
single server. Multi-server models are initially proposed as a way to reduce
the social cost of queuing, just as what Example 3 has shown for our model.
These models are complementary to our model. In multi-server models, the
attitude about delay does not play a role, while this feature is crucial in our
analysis, as shown in Example 3. These two types of models fit different
types of applications, and, in many applications, both features appear. An
additional server means additional costs, especially the cost of additional
capacity, while an additional shift means more extensive use of the existing
capacity. In some cases, such as highways and subways, since more servers
cannot justify the extra cost, more shifts are used, while in other cases, such
as buses and elevators, more servers are used. However, in many cases, such
as buses, restaurants and airlines, both multiple shifts and multiple servers
are used by companies/governments as a way to increase profit/welfare.

Queuing is everywhere in life. It is much more popular than any other
nonprice mechanism. From the moment you get out of bed, you may have to
queue for using a bathroom, queue for breakfast, queue for using a road or
to get on a bus, queue for using an elevator, queue for seeing a doctor, queue
to get cash from a bank, and so on, until you are finally back home. Queu-
ing is also everywhere in research. It is an important research subject in
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departments of economics, management science, statistics, and operations
research. There are several reasons for the popularity of queuing. First, it
can exist without an administrative cost. A queue appears and disappears
automatically by itself depending on the needs. For a small scale activ-
ity such as the use of an elevator, the administrative cost of using a price
mechanism or a lottery can be very large in comparison with its scale of
operation. Second, there is no risk on whether and when you will have your
turn for consumption. You choose a queue in a certain shift and you are
guaranteed to consume at certain point of time. In a lottery, however, you
face the risk of not being chosen before your deadline. This uncertainty can
be very costly for some. Third, with multiple shifts, queuing can be nearly
as efficient as the price mechanism. We therefore believe that a multi-shift
queuing model can contribute a lot to research on queuing.

References

[1] Alexeev, M. (1989): “A Note on Privileges in a Queue-Rationed CPE
with Black Markets”, Journal of Economic Theory, 47, 422—430.

[2] Bagnoli, M., S.W. Salant, and J.E. Swierzbinski (1989): “Durable-
Goods Monopoly with Discrete Demand”, Journal of Political Econ-
omy, 97, 1459-1478.

[3] Bennett, J. (1991): “Repressed Inflation, Queuing and the Resale of
Goods in a Centrally Planned Economy”, European Economic Review,
35 (1), 49—60.

[4] Barzel, Y. (1974): “A Theory of Rationing by Waiting”, Journal of
Law and Economics, 17, 73—95.

[5] Daniel, J. (1995): “Congestion Pricing and Capacity of Large Hub
Airports: A Bottleneck Model with Stochastic Queues”, Econometrica,
63, 327—367.

[6] Davidson, C. (1988): “Equilibrium in Servicing Industries: An Eco-
nomic Application of Queuing Theory”, Journal of Business, 61 (3),
347—367.

[7] Deacon, R.T. and J. Sonstelie (1985): “Rationing by Waiting and the
Value of Time: Results from a Natural Experiment”, Journal of Polit-
ical Economy, 93, 637—647.



A Dynamic Queuing Mo del 

[8] DeVany, A. (1976): “Uncertainty, Waiting Time, and Capacity Uti-
lization: A Stochastic Theory of Product Quality”, Journal of Political
Economy, 84, 523—540.

[9] Dolan, R.J. (1978): “Incentive Mechanisms for Priority Queuing Prob-
lems”, Bell Journal of Economics, 9, 421—436.

[10] Hassin, R. and M. Haviv (2003): To Queue or Not to Queue: Equilib-
rium Behavior in Queuing Systems, London: Kluwer Academic Pub-
lisher.

[11] Holt, C. and R. Sherman (1982): “Waiting Line Auction”, Journal of
Political Economy, 90, 280—294.

[12] Knudsen, N.C. (1972): “Individual and Social Optimization in a Multi-
Server Queue with a General Cost-Benefit Structure”, Econometrica,
40, 515—528.

[13] Lang, S. (1993): Real and Functional Analysis, 3rd ed., Springer-
Verlag.

[14] Leeman, W.A. (1964): “The Reduction of Queues Through the Use of
Price”, Operation Research, 12, 783—785.

[15] Lui, F.T. (1985): “An Equilibrium Queuing Model of Bribery”, Jour-
nal of Political Economy, 93, 760—781.

[16] Naor, P. (1969): “The Regulation of Queue Size by Levying Tolls”,
Econometrica, 37, 15—24.

[17] Nichols, D., E. Smolensky and T. Tideman (1971): “Discrimination
by Waiting Time in Merit Goods”, American Economic Review, 61,
312—323.

[18] Polterovich, V. (1993): “Rationing, Queues, and Black Markets”,
Econometrica, 61, 1—28.

[19] Sattinger, M. (2002): “A Queuing Model of the Market for Access to
Trading Partners”, International Economic Review, 43 (2), 533—547.

[20] Shi, Shuzhong. (1990): Convex Analysis, Shanghai Science and Tech-
nology Publishing Company.



A Dynamic Queuing Model 35

[21] Stahl, D.O. andM. Alexeev (1985): “The Influence of BlackMarkets on
a Queue-Rationed Centrally Planned Economy”, Journal of Economic
Theory, 35, 234—250.

[22] Suen, W. (1989): “Rationing and Rent Dissipation in the Presence of
Heterogeneous Individuals”, Journal of Political Economy, 97, 1384—
1394.

[23] Taylor, G.A., K. Tsui, and L. Zhu (2003): “Lottery or Waiting-Line
Auction?” Journal of Public Economics, 87, 1313—1334.

[24] Vickrey, W.S. (1969): “Congestion Theory and Transport Investment”,
American Economic Review, 59, 251—260.

[25] Wang, S. and L. Zhu (2003): “Variable Capacity Utilization and Coun-
tercyclical Pricing”, Working Paper, HKUST.




