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Evaluating Interactive Graphical Encodings for
Data Visualization

Bahador Saket, Arjun Srinivasan, Eric D. Ragan, Alex Endert

Abstract—User interfaces for data visualization often consist of two main components: control panels for user interaction and visual
representation. A recent trend in visualization is directly embedding user interaction into the visual representations. For example, instead
of using control panels to adjust visualization parameters, users can directly adjust basic graphical encodings (e.g., changing distances
between points in a scatterplot) to perform similar parameterizations. However, enabling embedded interactions for data visualization
requires a strong understanding of how user interactions influence the ability to accurately control and perceive graphical encodings. In
this paper, we study the effectiveness of these graphical encodings when serving as the method for interaction. Our user study includes
12 interactive graphical encodings. We discuss the results in terms of task performance and interaction effectiveness metrics.

Index Terms—Information visualization, user interaction, graphical encodings, graphical perception
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1 INTRODUCTION

INTERACTIVITY is a central component of visual data analysis.
Traditionally, many data visualization systems have included

interactive widgets (e.g., drop-down menus) and visual represen-
tations of data (e.g., bar charts) in two visually-separate panels.
In order to interact with the system, users normally interact with
these widgets in one panel and observe the resulting changes to the
visualization in another view (e.g., [41]); see Figure 1-a.

More recently, rather than requiring interaction through external
widgets, there has been an increasing trend of allowing users
to directly interact with graphical encodings used in visual
representations themselves (e.g., [7], [13], [19], [48]); see Figure 1-
b. In this paper, we refer to this form of interaction as “embedded
interaction”. We define embedded interaction for visualization
as a form of interaction that incorporates one or more interactive
graphical encodings into a visual metaphor. We describe interactive
graphical encodings as elementary encodings where the visual
structure used to show the data value can be directly changed.
For example, imagine a bar chart that enables users to directly
change the height of bars. In this case, the visual metaphor (bar
chart) adapts embedded interaction through interactive graphical
encodings (height of the bars in a bar chart). Embedded interaction
is used in various visualization techniques. The interaction design
of these techniques requires users to directly scale the graphical
encoding to perform higher level tasks, such as model steering and
data querying.

Model steering is a method of interactively exploring data in
visual analytic tools [13], [47]. Visual analytic tools often pass data
through statistical models (e.g., principal component analysis) and
visualize the computed structure of the dataset for the user. Thus, to
explore different aspects of the data, users are required to interact
with parameters of the model used for computing the structure.
Several projects from the visual analytics community have adopted
embedded interactions as a means of steering the parameters of
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Fig. 1. Two different forms of interaction in many visualization systems.
In order to interact with the visualization, users are required to either
manipulate the external components in a separate panel (a) or directly
manipulate the visual elements (b).
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Fig. 2. In the Visualization by Demonstration paradigm [38], a user directly
interacts with a point by making its size larger to demonstrate the interest
in generating a visualization in which this point, and points like this, are
larger. In response, the system extract data attributes that can be mapped
to size and suggest them.
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underlying models used in visualization tools (e.g., [7], [13], [14],
[19]). For instance, InterAxis allows users to directly interact with
the length of a bar in a bar chart to adjust the relative weight of
data attributes in the system [19]. In InterAxis, attribute weights
are shown using bar lengths next to the data attribute names. To
adjust the weight assigned to an attribute, users adjust the length of
the bar. For example, if the user wanted to indicate that the attribute
“Price” was twice as important as its current value, the user would
need to increase the length of the bar accordingly. This triggers
a change in the underlying model used to compute the new axis
for the scatterplot. AxiSketcher is another tool that allows users
to revise nonlinear axes of scatterplot by direct interaction with
graphical encodings [25]. Similarly, some systems allow users to
adjust the distance between data items (e.g., documents and glyphs)
to steer distance and similarity functions [7], [13], [14]. In each of
these techniques, adjustment of the interactive graphical encodings
implies an intent to change the result of a computation, rather than
changing the data value directly.

Embedded interactions have also been used for data querying,
as well as changing the parameters of visualizations for exploration.
For example, DimpVis is a recent system that allows users to
directly interact with the length, angle and position of the visual
representations, as a means for temporal navigation [21]. In
DimpVis, users can adjust the height of a bar to see its value
at different moments in time. For instance, to check if at any point
in time the value associated with a bar is half its current value,
the user can drag the bar vertically downwards to compare its
values at different points in time. Saket et al. [38] also introduced
Visualization by Demonstration, in which users can directly interact
with graphical encodings to provide visual demonstrations of
incremental changes to the visual representation. For example, the
user makes the size of a data point two times larger to demonstrate
interest in generating a visualization in which this point and similar
points are classified together and shown larger than other data
points. In response, the system solves for data attributes that can be
mapped to size and suggests the attributes. See Figure 2 for more
details. Kondo et al. [22] also proposed Glidgets, a method that
adapts embedded interaction for exploring and querying changes
of elements in dynamic graphs. In general, this form of embedded
interaction adjusts specific parameters of the data transformations
and visual mappings to help users to explore their data.

The appeal of embedded interactions can be attributed to several
factors. First, users do not need to shift their attention from the
visual features of interest when interacting [21]. Secondly, users
can make intuitive and direct visual adjustments without needing
to understand the potentially complex system parameters being
controlled [14]. Additionally, embedded interaction simplifies the
visualization interface by obviating the need for additional control
panels or widgets [26]

As more systems leverage graphical encodings in the visual
representations not only to represent data visually but also to
serve as the method for user interaction, this motivates the need to
understand the effectiveness of interaction with these graphical
encodings. While previous studies (e.g., [8], [17], [27]) have
contributed towards an understanding of perception of different
static graphical encodings, the field lacks the knowledge of how
different graphical encodings can serve as the basis for user
interaction. Enabling embedded interactions for data visualizations
requires a strong understanding of how direct interaction influences
the ability to accurately control and perceive graphical encodings.

In this paper, we present a study of the effectiveness of 12
different interactive graphical encodings for magnitude production
tasks [5], [51]. We conducted a within-subjects study in which
participants performed magnitude production tasks (e.g., change
the value of the interactive graphical encoding to x% of its
current value). Our results indicate that some interactive graphical
encodings (e.g., position) are more effective than others (e.g.,
shading/texture) in terms of task completion time and accuracy.
Finally, we analyzed users’ interaction logs generated during each
trial to gain a deeper understanding about the interaction cycles
performed by each user. Since interactive graphical encodings
foster a tight coupling between perception and manipulation,
the interaction logs reveal insights about effectiveness beyond
frequently-used completion time and error metrics.

The primary contributions of this paper are:
• A better understanding of interactive graphical encodings

based on user interaction metrics (target re-entry and move-
ment direction changes) proposed in previous work [30].

• Using interactive magnitude production to measure the effec-
tiveness of 12 different interactive encodings and rank them
based on task completion time and accuracy.

2 BACKGROUND

Due to the rich body of research currently investigating embedded
visual-centric interaction (also known as post-WIMP or post direct
manipulation [26]), a wide variety of interaction techniques have
been developed for—or have been applied to show—embedded
interaction with graphical encodings. Our work builds on a strong
research foundation of the perception of visual data encodings in the
field of information visualization. Below, we discuss some of the
most relevant studies on graphical perception and user interaction.

2.1 Psychophysics and Graphical Perception

Psychophysics is a research area that focuses on measuring
the relationship between perceived and actual properties of an
object [5], [51]. Most relevant to our study are the common
psychophysics evaluation methods of magnitude estimation and
magnitude production.

2.1.1 Magnitude Estimation
Magnitude estimation has been used in several studies to measure
perception of different graphical encodings and how perceptual
judgments impact the utility of visualizations [8], [17], [42], [44].
Estimating the proportion of part to whole of an object is the task
usually used in this method to measure a user’s visual perception
of an object.

Previous work has used magnitude estimation to study the
ability of viewers to accurately perceive the data values encoded
using graphical encodings. Following previous researchers (e.g., [8],
[17]), we use the term graphical perception to refer to this ability of
accurately interpreting data values from visualizations. Simkin and
Hastie [42] found that people perform different mental comparisons
given specific visualizations. For example, individual bars in bar
charts were often read by comparing a single bar to the height of all
the bars. In contrast, individual slices in a pie chart were compared
to other individual slices. Spence and Lewandowsky [44] also
studied the graphical perception of bar charts, tables and pie charts
for proportional comparison tasks. Their findings indicate that
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when participants were asked to make comparison of combinations
of proportions, the pie charts outperformed bar charts. Their results
also show that for tasks were participants were asked to retrieve
the exact value of proportions, tables outperform pie charts and
bar charts. More recently, Skau and Kosara [43] assessed graphical
perception of pie and donut charts in which data is encoded in
three ways: arc length, center angle, and segment area. Their study
indicated that angle was the least important visual cue for both pie
and donut charts. In another study, Kosara and Skau [23] assessed
several pie chart variations that are frequently used in Infographics
including exploded pie charts, pies with larger slices, elliptical pies,
and square pies. Their results indicated that people are less accurate
at perceiving charts that distort the shape.

One of the most relevant studies for our research is that by
Cleveland and McGill [8]. The study tested the graphical perception
of 10 elementary graphical encodings (see Figure 3). They asked
participants to visually compare values of two marks (e.g., two
bars of different lengths) and estimate what percentage the smaller
value was of the larger. They used the results to rank the graphical
encodings; one elementary graphical encoding is taken to be more
accurate than another if it leads to human judgments that are closer
to the actual encoded values. Heer and Bostock [17] conducted a
similar study to evaluate graphical perception. Their crowdsourced
results validated the previously established graphical encoding
rankings, and the authors discussed similar design guidelines for
future work. Our study tests perception of graphical encodings
similar to the studies by Cleveland and McGill [8] and Heer and
Bostock [17]; however, rather than magnitude estimation with static
images, our study requires interactive magnitude adjustment, which
is of particular importance for embedded interaction.

Our work differs from previous work that used magnitude
estimation mainly because we use magnitude production tasks in
our study. In particular, we are interested in understanding the
effectiveness of user interaction with the encodings rather than the
how well we perceive their encoded values. Interactive adjustment
of graphical encoding is different from perception alone. User
interaction involves continuous manipulation and perception. One
of the theories which describes this cycle is Norman’s Action
Model [33]. Execution is defined as taking an action to change
something and evaluation is defined as perceiving the changes
made. As Norman mentions, most interactions will not be satisfied
by single manipulation and perception. There must be numerous
sequences. For instance, a user might manipulate a length of a bar
and perceive the value a few times before deciding on the final
value.

Another main difference between our work and previous
studies [9], [17] is that our use of the magnitude production tasks
allows us to collect user interaction logs. Analyzing these logs
helped measure the effectiveness of different interactive graphical
encodings based on metrics that describe user interaction behaviors.

2.1.2 Magnitude Production
Magnitude production method requires a user to change the
intensity of a graphical encoding in proportion to a reference
point. The reference point can be the graphical encoding’s initial
value or the value of another element on the display. For example,
adjusting the length of a bar to 10% of its current value would be
an example of a magnitude production task.

Bezerianos and Isenberg [5] studied perception of three
different graphical encodings (angle, area, and length) on wall-
sized displays using a magnitude production task. Their study
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Fig. 3. Elementary graphical encodings studied by Cleveland and
McGill [8] (these images were recreated and adapted based on [8]).

used wall-sized displays, and they asked participants to decrease
the magnitude of a graphical encoding to match the magnitude
of another graphical encoding at a distant region in the display.
Participants changed the magnitude of the encodings using the
UP and DOWN arrow keys of a keyboard. Their results showed
participants’ perception was mostly affected when they were close
to the display. We similarly use a magnitude production task in
our study to assess user interaction with 12 different interactive
graphical encodings. However, we are interested in understanding
user interaction with the graphical encodings where interactions
are directly on the encodings.

2.2 Target Acquisition
Fitts’ law [15] is one of the models of human movement that
predicts the time required to quickly move to a target area when a
target has a given size and distance. Variations of the law have been
proposed to extend Fitts’ law to two-dimensional tasks [28], [29].
These studies tested the performance of Fitts’ law by requiring
participants to perform target acquisition tasks in which participants
had to move the pointer to the specified target on the screen.

For our study of embedded interaction, we considered using
Fitts’ law to model user interaction time with the graphical
encodings. However, with embedded interaction, the target size
may be determined by a function of the initial value of the graphical
encoding rather than being not explicitly shown. Thus, interaction
with graphical encodings could not be modeled using Fitts’ law
since there are no constant visual target dimensions (i.e., width).

2.3 User Interaction
In discussion of interactive graphics, Becker et al. [3] described
direct manipulation and immediate change as the two core
properties. In addition to direct input, Spence even included the
notion of passive interaction, through which the user’s mental
model on the data set is changed or enhanced rather than the
system or visual content being changed [36]. While finding a single
agreed-upon definition of interaction is difficult, more specific
interaction techniques can be less challenging to express and
are more tangible concepts than the more nebulous concept of
interaction itself [55]. Yi et al. [55] explain interaction techniques
in information visualization as a set of tools that allow users to
manipulate and interpret the data representations.

Information visualization is one domain that can directly
benefit from interactive graphical encodings. For instance, Elmqvist
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et al. discuss how good interaction design can foster effective
“flow” through an interface [11]. Willett et al. [53] discuss how
visual cues can be leveraged as part of interface controls to
enhance user interaction. Additionally, as complexity and size
of data sets expand, interactivity of information visualizations
becomes increasingly important. For instance, Heer et al. [16]
show how advanced interaction techniques for selection can help in
constructing generalized queries. Many visualization tasks cannot
be completed using static images alone. Interaction techniques
in information visualization consist of a set of tools that allow
users to manipulate and interpret the data representations [55]. The
manipulation and interpretation occurs in a frequently iterating
cycle previously described by Norman [33]. He describes the cycle
with steps that include evaluating the state of a system, planning for
an intended change, and executing actions intended to make that
change happen. In the case of interactive data visualization systems,
interaction techniques currently fall into two interaction designs:
graphical widgets [41], [54] and embedded interaction [12], [21].

Data visualization systems usually contain graphical widgets
and visual representations in two visually-separate panels. The
control panel affords direct manipulation on graphical widgets,
from which updated visualizations are shown. For example, a
common interaction technique for filtering in many visualization
systems is either selecting ranges via sliders or choosing particular
values via check boxes in one panel and observing the resulting
changes on the visualization in another panel [1], [45]. Historically,
interaction with common widgets (e.g., sliders, check-boxes, radio-
buttons, and drop-down lists) has been the norm for tasks like
passing input parameters and filtering.

The concept of embedded interaction was first introduced by
Andries van Dam [50]. The goal of his study was to make interfaces
as invisible as possible and tighten the gap between a user’s intent
and the execution of that intent. More recently, there has been a
trend towards using embedded interaction as a replacement for (or
an addition to) old user interfaces in information visualization [26].
Lee et al. [26] reflected on advantages of embedded interaction
techniques (as one of the interaction methods adapted to post-
WIMP interfaces [2]) over the WIMP (Windows, Icons, Menus,
and Pointers) techniques in information visualization. Rzeszotarski
et al. [37] proposed Kinetica as an approach for multivariate data
visualization on tablets. Kinetica applies embedded interaction
techniques to accommodate the process of data exploration on
multivariate data visualization. Results of their study indicate that
embedded interaction helps users to explore multiple dimensions
at once and to make more descriptive findings about their data set.
As another example, Kondo and Collins [21] presented DimpVis,
an interaction technique for effective visual exploration of time in
information visualizations through embedded interaction. Another
example of embedded interactions in information visualization is
interactive map legends [35].

For visual analytics, many systems use complex statistical
models that make user interaction more difficult [18]. In order
to simplify user interaction in visual analytics systems, different
studies applied embedded interaction. Endert et al. [12], [13], [14]
have shown how similar approaches can be used to steer and train
user and data models based on user interactions directly in the
visualization. For example, changing the relative spatial distance
between data items (e.g., documents, images, or glyphs) can be
used to steer distance and similarity functions to re-arrange the
spatial layout, retrieve additional data, and other analytic models
[7], [13], [14], [48].

2.4 Formulating Embedded Interaction

We define Embedded Interaction as a form of interaction that
allows users to directly manipulate the graphical encodings used
in a visual representation. Interfaces using embedded interaction
do not rely solely on additional graphical widgets (e.g., menus and
check boxes) to specify commands. In the literature, the concept
of embedded interaction is sometimes defined using different
terminology. For example, Endert et al. defined it as observation-
level interaction [14] and semantic interaction [13], and Kondo
and Collins called it object-centric interaction [21].

Embedded Interaction is inspired by direct manipulation [40],
which supports performing direct and iterative interactions on
representation rather than through complex and abstract syntax. To
describe embedded interaction we use the instrumental interaction
model [2] that defines three properties (degree of indirection, inte-
gration and compatibility) to operationalize design and evaluation
of interaction paradigms.

Overall, embedded interaction uses interactive encodings that
have a low degree of indirection and high degree of compatibility.
These encodings have low spatial indirection because the interaction
instruments (handles) are superimposed on top of the graphical
encodings themselves, so the distance between the instruments
and the objects of interest is low. They also have low temporal
indirection because manipulation of the instruments and changes
to the encodings happen in real-time. Degree of compatibility of
the interactive graphical encodings is high since the interaction
instruments follow the movements of the cursor (e.g., dragging
handles). The degree of integration could vary depending on
the design of the graphical encodings (how many degrees of
freedom are used in construction and manipulation of the graphical
encoding), and the input device used (e.g., mouse, multitouch, etc.).

3 EXPERIMENT

We conducted a user study to achieve a better understanding of the
issues raised in the previous section (e.g., how users interact with
graphical encodings and which are more effective for embedded
user interaction). We studied interaction effectiveness (performance
accuracy and time) for 12 interactive graphical encodings.

In an attempt to support more familiar and natural methods of
user interaction, we chose to run the study as an online experiment
so participants could use the setups and environments familiar
to them (e.g., their own machines with their own familiar input
configuration). Previous work [17], [34] has validated the use
of web experiments for user studies despite their limitations of
experimental control.

3.1 Interactive Graphical Encodings

To study interactive graphical encodings, we first selected seven
common elementary graphical encodings (following previous
work [8], [17]) used to construct many visualizations today:
distance, position, length, angle, curvature, shading, and area. We
then developed 12 interactive versions of these graphical encodings
by taking horizontal and vertical orientations into account for
distance, position, length and curvature; see Figure 4. This section
describes the types of interactive graphical encodings used in the
experiment.

Distance (Horizontal and Vertical). This interactive graphical
encoding contains a rectangle (a reference position) and a small
circle as the controller (see Figures 4-a and 4-b). Participants could
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Evaluation of Interactive Visual Primitives
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Figure 1: Representation of 12 interactive visual primitives assessed in this study. The interactive visual primitives are based on
seven elementary graphical encodings including: distance, position, area, length, curvature, shading and angle.
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INTRODUCTION
Information visualization systems consist of two main com-
ponents: data representation and interaction [32]. The data
representation component is more about mapping from data
to graphical representation. Visualization designers use ele-
mentary graphical units called “graphical encoding” to map
data to graphical representation [6]. Consider a case in which
we visualize two numerical values using two bars with differ-
ent lengths. Here, length is the primary graphical encoding
used to map our data [6]. Alternatively, angle is the primary
graphical encoding for a pie chart.

Effectiveness of different graphical encodings on perception
is well-studied [6, 11, 15]. Different studies investigated how
well users perceive different graphical encodings. Their re-
sults indicate that different graphical encodings offer signifi-
cantly different reading precision. Previous work provided a
series of guidelines for a better data representation.

As complexity and size of data sets are growing, interactivity
of visualizations becomes a key for a deeper exploration of
data. User interaction is arguably one of the most important

Fig. 4. The 12 interactive graphical encodings assessed in this study, designed based on seven common elementary graphical encodings used in
data visualization: distance, position, length, angle, curvature, shading, and area. Interactive graphical encodings are elementary graphical encodings
that can be directly manipulated or adjusted.

adjust the distance between the circle and the reference rectangle
by dragging the circle with a mouse along a single dimension. This
encoding is common in visualization systems that allow users to
adjust the distance between visual elements where similar elements
are spatially close to one another (e.g., [13]). For our analysis, we
calculated the error of participants’ responses by comparing the
distance (in pixels) in the user’s response to the expected response.

Position (Horizontal and Vertical). This interactive graphical
encoding presents a horizontal or vertical slider to the participants
(see Figures 4-c and 4-d). Variations of sliders are commonly
used for filtering in different visualization systems. To interact,
participants moved the position of the box at the center of the
slider by dragging it with a mouse. While the Position and distance
encodings are similar, we note a key difference between the two: the
position encoding presents users with explicit low and high points,
and it includes a visible one-dimensional scale in the background
(the slider’s scale). The primary reason for including both encodings
was to see whether adding an explicit movement boundary (low
and high points along with the background scale) affects user
performance. For our analysis, to compute the error of participants’
responses, we compared the user’s position of the slider box on the
scale versus the expected position.

Area (Rectangular and Circular). This interactive graphical
encoding came in two variations: square and circle. Participants
adjusted the area of the shape by dragging a small handle (tiny
black circle) on the perimeter of the object; see Figures 4-e and 4-
f. One of the applications of area manipulation is rectangular
brushing, in which users select a subset of the data items by
drawing a rectangle with an input device (examples can be found in
the D3.js visualization library [6]). For our analysis, we compared
the area of the user’s object versus the expected area to compute
the error of participants’ responses.

Length (Horizontal and Vertical). This interactive graphical
encoding involves re-sizing the length of a rectangle (see Figures 4-
g and 4-h). Participants adjusted the length by dragging the
right or top edge of the rectangle with a mouse cursor. Directly
manipulating the length of a bar has been used as a method for
filtering data (e.g., [19]). For our analysis, we compared the
horizontal length (or height) of the rectangle (in pixels) versus

the expected length to compute the error of participants’ responses.

Curvature (Horizontal and Vertical). The implementation
of this interactive graphical encoding is comprised of a curved
line with a small circular handle at its center. Participants adjusted
the curvature of the line by dragging the handle along a single
dimension (horizontally or vertically); see Figures 4-i and 4-j. For
our analysis, we compared the horizontal or vertical distance (in
pixels) between the circle and the line segment between the end
points of the curve versus the expected distance to compute error.
Similar to Cleveland and McGill’s experiments [9], we used the
horizontal or vertical distance between the circle (mid-point of the
curve) and the line segment connecting the end points of the curve
as our measurement metric. For our analysis, we compared this
value to the expected distance to compute error.

Shading. This interactive graphical encoding contains a rectan-
gular area with cross-hatched shading (see Figure 4-k). Participants
adjusted the density of the hatch pattern by dragging the mouse
cursor up or down. This interaction was selected for consistency
with the other interactive graphical encodings. Shading is often
similar to color saturation for graphical perception [31], and
these encodings are commonly used in many different types of
visualizations, including infographics, choropleths, and heatmaps.
For our analysis, we compared the number of cross-hatched
rectangles in the object versus the expected number of cross-
hatched rectangles in the object to compute the error in participants’
responses.

Angle. This interactive graphical encoding contains two line
segments that meet at an angle with a handle (a small black circle)
at the end of one of the line segments (see Figure 4-l). Participants
could adjust the inner angle between two lines by dragging the
handle with a mouse. Angular representations are common in pie
charts, and interactive angles could also be used in other forms
of visualizations, as graphical perception of static angles has been
shown to be fairly accurate [8], [17]. For our analysis of interaction
accuracy with the angular encodings, we compared the inner angle
(in degrees) between the line segments versus the expected inner
angles to compute the error of responses.
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3.2 Hypotheses
Based on earlier work [4], [8], [17] and our own experiences, we
considered the following hypotheses for our study:
• H1: We expected accuracy and interaction time to be different

among different interactive graphical encodings. More specifi-
cally, we expected accuracy to be better and interaction time to
be faster for distance, position, and length compared to area and
shading. Prior research shows people can perceive length and
position more accurately than area, curvature, and shading in
static visualizations [8], [17]. We also expected that curve and
angle would fall somewhere in the middle of the ranking for
both accuracy and interaction time.

• H2: We hypothesized that accuracy of horizontal interactive
graphical encodings would be higher than for vertical orientations.
Research by Benner [4] found that humans are better at estimat-
ing position, distance, and length of objects that are oriented
horizontally, as compared to those with vertical orientation. Thus,
we decided to include both horizontal and vertical orientation
for each interactive graphical encoding when applicable for the
graphical encoding type (that is, some types did not have natural
horizontal and vertical variations).

• H3: We hypothesized that when interacting with a graphical
encoding, patterns of interaction behavior would correspond
to different degrees of accuracy. This hypothesis is based on
the idea that users would adjust values more frequently when
having more uncertainty or difficulty in graphical perception. A
high number of directional changes might indicate an inability
to estimate the represented value of the interactive graphical
encoding. To capture such interaction behavior, we adapted a
metric called movement direction change (MDC), which was
introduced in previous work as a means of studying pointing
interactions [30]. We explain the MDC metric in the “Interaction
Effectiveness Results” section.

3.3 Participants
The study was conducted online by invitation to students at a single
university. Of the 46 participants who began the study, 35 completed
the study (22 male, 13 female). Ages ranged from 18−34 years.
Participants were mostly undergraduate and graduate students in
science and engineering programs, and they were familiar with
plots and computers. The participants were provided with the URL
and could participate in the study using any device. Participants
who completed the study were compensated with a $5 Starbucks
gift card. In addition, the three participants with the most accurate
and fastest responses were given a $25 gift card.

We also collected logs containing users’ operating systems and
input devices. Participants used different operating systems (20
Mac OS, 11 Windows, and 4 Linux users) to participate in our
experiment. Moreover, 18 of the participants used a mouse and the
rest used a trackpad to adjust the interactive graphical encodings.

3.4 Task
Each interactive graphical encoding was accompanied by instruc-
tions that required the participant to adjust the interactive graphical
encoding to a target value. A target value is a certain percentage
that we asked each participant to adjust the interactive encoding
to. For example, for the length encoding, we asked participants to
adjust the length to 150% of its current value. Participants could
adjust the graphical encodings’ values by directly manipulating
them, as described previously.

In a pilot study, participants reported sometimes losing track
of the starting value for the question while performing a task. To
address this feedback, we made sure the interface for the experiment
always showed the initial value as a reference point while users
interacted with encodings. Since the order of encodings and target
values was randomized, this reference point helped users to keep
track of the initial position for the given encoding. The initial
value was shown as a semi-transparent reference point for all the
graphical encodings except shading (see Figure 5). For shading,
we showed two shadings side by side, where the right side always
showed the initial value, and the the left side was the one that the
participants could interact with.

Our task resembles a magnitude production task [51] (as
described in Section 2.1). This task is motivated by the fact that
while users manipulate a visual element on the interface (e.g.,
position of a knob on a slider) they constantly compare its current
value to a reference point [10]. In our study, the reference point is
the reference value (i.e., the starting value encoded).

3.5 Training Procedure
At the beginning of the study, participants were briefed about the
purpose of the study and their rights. They then were instructed
how to complete the experiment.

In order to familiarize the participants with the graphical
encodings, interactions, and questions, participants first completed
12 practice trials (one trial per interactive graphical encoding).
Each trial included the task description (e.g., make the inner
angle between the two lines 200% of its current value.) and the
interaction instructions (e.g., drag the black circle to move the
line); see Figure 5-Left. To provide feedback after completing each
trial, participants were shown a visual comparison between their
response and the correct answer for each trial; see Figure 5-Right.
Thus, the task description and training showed the participants how
to perceive and manipulate each encoding.

3.6 Experimental Procedure
Participants performed seven trials for each of the 12 versions
of interactive graphical encodings, and each trial had a different
target value (25%, 50%, 75%, 125%, 150%, 175%, and 200%).
Participants performed 84 tasks (12 interactive graphical encodings
× 7 trials) with randomized task order. Current value (starting
point) of all interactive graphical encodings was 100%.

After completing the practice trials, participants began the main
experiment with the 84 randomized trials. For each question, we
logged interaction time and the changes in accuracy made every
millisecond. Interaction time started as soon as participants started
interacting with an interactive graphical encoding. A screenshot of
the experiment’s interface is shown in Figure 5-Left.

4 TASK PERFORMANCE RESULTS

In this section, we first describe the methods used to analyze the
data collected from the experiment. We then provide an overview of
our results, with more detailed quantitative results listed in Figure 6.
The collected data has 2940 answers (84 trials × 35 participants).
We measured both interaction time and accuracy for each trial.
Interaction time was measured by computing the total time each
participant spent interacting with a primitive. Accuracy percentage
was measured by subtracting the percentage of response error from
100, where the response error is:
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Error =
|ResponseValue − ExpectedValue|

ExpectedValue
× 100

To account for data quality from online data collection, outlier
handling was performed to account for trials where participants
were likely to have disruptions or mistakes that were greater than
would be expected with a usual attempt. For instance, trials having
very long completion times were excluded because users likely
did not spend the entire duration performing the single task in
such cases. We excluded 268 (9%) of the collected responses as
outliers based on interquartile range (IQR), where an outcome
was considered an outlier if it was more than 1.5 times the size
of the IQR away from either the lower or upper quartiles. The
outlier distribution of the 9% of trials was spread across encoding
type (2.1% shading, 1.9% area, 1.6% curvature, 1.1% length, 0.9%
position, 0.7% distance, and 0.7% angle). To some extent, more
outliers were associated with encodings with lower performance,
but the variation was not extreme. We applied the outlier removal
procedure for each encoding separately.

4.1 Task Performance: Data Analysis

To address our first two hypotheses, we needed to test how the
different interactive graphical encodings (H1) and differences
in adjustment orientation (horizontal or vertical, as described in
H2) affected the performance outcomes of interaction time and
interaction accuracy. We provide all relevant materials for this study
online 1: software for running the experiment, anonymized results,
and statistical test results.

To analyze the differences among the various interactive
graphical encodings, we first calculated separate mean performance
values for all trials. That is, for each participant, we averaged
outcome values of trials for each interactive graphical encodings.
To test effects due to orientation, performance outcomes for each
level (horizontal and vertical) were averaged for the trials of each
interactive graphical encoding with the appropriate orientation.
Adjustment orientation was only varied for four graphical encoding
types (distance, position, length, and curve).

To test the combined effects of interactive graphical encodings
and adjustment orientation, we would ideally turn to a two-
way factorial analysis of variance (ANOVA). However, because
adjustment orientation was only variable for a subset of the
graphical encodings, a factorial analysis was not appropriate for
the unbalanced design. As an alternative, we conducted a one-
way repeated-measures ANOVA to test for differences among
the various interactive graphical encodings, and a separate two-
way repeated-measures ANOVA to test for interactions between
interactive graphical encodings and adjustment orientation for the
subset of encodings that had horizontal and vertical versions.

Before testing, we checked that the collected data met the
assumptions of appropriate statistical tests. The assumption of
normality was satisfied for parametric testing, but Mauchly’s
Test of Sphericity indicated that the assumption of sphericity had
been violated for both accuracy and speed. To address this issue,
we report test results with corrected degrees of freedom using
Greenhouse-Geisser estimates for ε < 0.75 and otherwise with
Huynh-Feldt correction.

1. http://va.gatech.edu/encodings/

Make the inner angle between the two lines 200% of 
its current value.

Interaction: Drag the black circle to move the line.

Make the inner angle between the two lines 200% of 
its current value.

Interaction: Drag the black circle to move the line.

Expected Response Your Response

Interaction: Drag the black circle either left or right to change its 
position.

 

Expected Response Your Response

Interaction: Drag the black circle either left or right to change its 
position.

Move the circle such that the distance from the target (gray 
rectangle on the right) is 200% of its current value.

Move the circle such that the distance from the target (gray 
rectangle on the right) is 200% of its current value.

Interaction: Drag the circle upwards or downwards to bend the line in 
the respective direction.

Expected Response Your Response

Interaction: Drag the black circle either left or right to change its 
position.

Make the curve 200% of its current value. Make the curve 200% of its current value.

Make the height of the rectangle 200% of its current 
value.

Interaction: Click and drag the dark gray bar on the upper end of the 
rectangle to adjust its height.

Make the height of the rectangle 200% of its current 
value.

Interaction: Click and drag the dark gray bar on the upper end of the 
rectangle to adjust its height.

Expected Response Your Response

Make the area of the circle 200% of its current value.

Interaction: Drag the black circle left or right to adjust the size of the 
circle.

Make the area of the circle 200% of its current value.

Interaction: Drag the black circle left or right to adjust the size of the 
circle.

Expected Response Your Response

Make the area of the square 200% of its current value.

Interaction: Drag the black circle to change the area of the square.

Make the area of the square 200% of its current value.

Interaction: Drag the black circle to change the area of the square.

Expected Response Your Response

Low High Low High

Make density of the texture 200% of its current value. (The 
rectangle on the right is only for reference and will always 

indicate your starting texture value.)
Interaction: Click and drag upwards on the left rectangle to make the 

texture denser, click and drag downwards on the left rectangle to 
make the texture less dense.

Make density of the texture 200% of its current value. (The 
rectangle on the right is only for reference and will always 

indicate your starting texture value.)
Interaction: Click and drag upwards on the left rectangle to make the 

texture denser, click and drag downwards on the left rectangle to 
make the texture less dense.

Expected Response Your Response

Fig. 5. Each row shows two screenshots from trials in the training phase.
The left side shows the initial representation with instructions (all a
200% increase adjustment in this image), and the right image shows the
interface after each trial during the training session, where participants
were shown a visual comparison between their response and the correct
answer.

http://va.gatech.edu/encodings/
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Test of Within-Subjects Effects
Interactive Graphical Encodings (F(1.7,58.5) = 401.5, p < 0.001, η2

p = 0.92)

Pairwise Comparisons (ranked from most accurate to least)
p values are corrected using Bonferroni correction.
Graphical Encodings
Position vs. Angle, Area, length, Curve, Distance & Shading (p < .01)
Length vs. Angle, Area, Curve and Shading (p < .01)
Distance vs. Angle, Area, Curve & Shading (p < .01)
Angle vs. Area, Curve & Shading (p < .01)
Curve vs. Shading (p < .01)
Area vs. Shading (p < .01)

(a)

Test of Within-Subjects Effects
Interactive Graphical Encodings (F(2.9,100.0) = 95.2, p < 0.001, η2

p = 0.73)

Pairwise Comparisons (ranked from fastest to slowest)
p values are corrected using Bonferroni correction.
Graphical Encodings
Length vs. Area, Curve, Distance & Shading (p < .01)
Position vs. Area, Curve, Distance & Shading (p < .01)
Angle vs. Area, Curve, Distance & Shading (p < .01)
Distancevs. Shading (p < .01)
Curve vs. Shading (p < .01)
Area vs. Shading (p < .01)

(b)

Fig. 6. Performance results for different interactive graphical encodings along with statistical test results. Mean accuracy is shown in (a), and mean
interaction time is shown in (b). Error bars represent standard error.

4.2 Task Performance: Results Overview

In this section, we organize the results of the statistical tests by
independent variables and interactions.

Interactive Graphical Encodings. We found significant main
effects for both accuracy and time for encodings, and we followed
up with Bonferroni-corrected posthoc comparisons; see Figure 6.

Figure 6-a shows accuracy by interactive graphical encoding
type. Position has the best and shading has the worst accuracy.
Accuracy of position was significantly better than all other
interactive graphical encodings. However, Figure 6-a shows that
practical advantages are notably small for position over length
and distance, even though standardized effect sizes are high
(Cohen’s d = 0.84 between position and length, and d = 0.91
between position and distance). Pairwise comparisons did not
detect significant differences among length, distance, and angle.
In other words, length, distance and angle were interpreted with
similar accuracy. We also found that shading was significantly less
accurate than all other encodings. Moreover, area and curve fall
somewhere in the middle in terms of the accuracy ranking.

Participants had the fastest interaction times using length,
position, and angle, respectively. Although results of pairwise
comparisons did not show significant difference among the three
interactive graphical encodings, they were significantly faster than
area, curve, distance, and shading. Curve, distance, and area were
in the middle in terms of time. Results indicate that ranking of the
interactive graphical encodings by accuracy is slightly different
from the ranking based on interaction time. Rankings of the
encodings for both accuracy and interaction time are shown in
Table 1. Position, length and angle are among the best and shading
is the worst in term of both accuracy and interaction time. More
details are shown in Figure 6.

Adjustment Orientation. The tests failed to detect significant
main effects of adjustment orientation for either accuracy (F(1,34) =
0.7, p> 0.05) or interaction time (F(1,34) = 6.6, p> 0.05); therefore,
the results do not serve as evidence for interaction performance
being influenced by horizontal or vertical orientation.

Interactive Graphical Encodings × Adjustment Orienta-
tion. There was a significant interaction between graphical en-
codings and adjustment orientation for both accuracy (F(1.7,58.5) =
4.7, p < 0.5) and interaction time (F(2.5,87.6) = 17, p < 0.05). While
participants had more accurate interactions for the vertical versions
of length, curve, and position, accuracy was lower for the vertical
distance. In terms of time, participants were faster with vertical
position and distance than the horizontal versions. This was
opposite for length and curve; participants had a slower interaction
with vertical length and curve than their horizontal versions.

4.3 Task Performance: Discussion
Table 1 shows rankings of the interactive graphical encodings based
on the different metrics assessed in this paper alongside rankings
of graphical encodings provided by Cleveland and McGill [8]. In
each column, interactive graphical encodings are ranked from best
to worse according to performance in each metric. For example,
position has the best and shading has the worst accuracy in our
study. Unlike the study by Cleveland and McGill [8], we did
not include some graphical encodings such as volume, color and
direction. Using volume is not recommended in many visualizations
due to confusion that this type of graphical encoding might
cause [49]. Similar to previous work [17], we excluded color mainly
because we lacked control over participants’ display configurations
in the online study.

In our ranking, accuracy of curve was not significantly different
from area. Note that this was a different result as the ranking
provided in previous work (see Table 1), which found area to be
more accurate than curvature. While average accuracy of curve was
higher than area in our ranking, the pairwise comparison did not
indicate a significant difference between their accuracy. Additional
testing would be required to determine the ordering or equivalence
between these two encodings. As previous work [17] discusses, the
study by Cleveland and McGill did not find a significant difference
between length and angle encodings (as psychophysical theory
would predict [8], [52]). However, the results of our study found
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TABLE 1
Ranking of the interactive graphical encodings based on completion
accuracy and interaction time. Rows indicate significant differences

between encodings.

Our Study Cleveland & McGill [8]

Time Accuracy Accuracy

Length, Position, Angle Position Position
Distance, Curve, Area Length, Distance Length, Direction, Angle
Shading Angle Area

Curve, Area Curve, Volume
Shading Shading, Color

a significant difference between these two encodings in terms of
accuracy.

4.4 Bias Analysis

We conducted chi-squared tests to check whether user interactions
with different encodings were biased towards overestimation or
underestimation (see Table 2). For each encoding, we ran separate
tests for trials asking for increasing values and for those requiring
decreasing values. For these tests, we excluded responses with
exact accuracy for the level of precision in data collection.

The results show that there are significant effects in responses
being biased towards either over or underestimation—particularly
for responses where participants were asked to decrease an
encoding’s value, where significant effects were detected for all
encodings. When participants were asked to increase the values,
significant response biases were observed for 3 out of the 7
encodings (shading, curve, area)—the encodings having lowest
overall accuracy. For example, area is the only encoding with
an underestimation bias for increasing the value. This could be
explained by the fact that increasing the value in area is not a linear
increase but a squared increase. Among all encodings, shading
has the highest skew towards under or over estimation, which is
likely related to the ineffectiveness of the encoding. For responses
where participants were asked to decrease the value of the shading
encoding, all the responses underestimated the expected value.
While these results indicate that bias is important when exploring
the effectiveness of interactive graphical encodings, further studies
will be needed to fully understand what causes these biases.

5 INTERACTION EFFECTIVENESS RESULTS

We used line charts to visualize the collected interaction logs for
each interactive graphical encodings; see Figure 9. The red lines
show the target value that participants were trying to match with
the interaction. The small dark dots indicate the final value for each
participant at the end of the trial.

We only include logs for tasks with the target value of 200% in
the paper, but log visualizations for all tasks are provided online 2.
In Figure 9, we scaled the horizontal axis to 10 seconds and the
vertical axis to 300% for all interactive graphical encodings for
the sake of readability and comparability. In addition, we note that
outlier trials were not included in the log charts, as outliers were
removed as described in the previous section.

2. http://va.gatech.edu/encodings/

TABLE 2
Percentages of overestimated and underestimated responses when

increasing or decreasing values using different encodings. Chi-squared
tests compared frequencies of overestimated and underestimated

responses to test for directional response bias. Significant differences
are indicated by star (?).

ENCODING DIRECTION OVER UNDER CHI-SQUARED TEST

Angle Decrease 60.6% 39.4% χ2 = 14.4, p < 0.001 ?
Increase 53.6% 46.4% χ2 = 3.7, p = 0.07

Area Decrease 32.4% 64.8% χ2 = 36.1, p < 0.05 ?
Increase 35.7% 62.5% χ2 = 24.3, p < 0.05 ?

Curve Decrease 32.4% 57.6% χ2 = 13.3, p < 0.001 ?
Increase 56.1% 38.6% χ2 = 16.3, p < 0.001 ?

Distance Decrease 56.2% 41.8% χ2 = 10.7, p < 0.05 ?
Increase 48.0% 51.0% χ2 = 2.4, p = 0.11

Length Decrease 40.5% 51.4% χ2 = 9.2, p < 0.05 ?
Increase 43.9% 49.6% χ2 = 3.7, p = 0.06

Position Decrease 56.0% 42.5% χ2 = 5.1, p < 0.05 ?
Increase 43.2% 40.0% χ2 = 0.2, p = 0.59

Shading Decrease 0.0% 100% χ2 = 105, p < 0.001 ?
Increase 80.7% 19.3% χ2 = 52.8, p < 0.001 ?

5.1 Interaction Behavior: Data Analysis

To analyze interaction behavior, we considered target re-entry
(TRE) and movement direction change (MDC). While we briefly
describe these metrics and discuss their meaning for our study,
MacKenzie et al. [30] explain the metrics in more detail. Table 8
shows the means and standard deviations of the interaction behavior
metrics (TRE and MDC), interaction time and accuracy for all
interactive graphical encodings. We averaged the horizontal and
vertical adjustments.

Target Value

First MDC

Second MDC

 Third MDC

Re-entering the 
target value so the 
first TRE happens

Entering the 
target value 

Interaction Time

Fig. 7. This indicates part of a line chart used to visualize the interaction
log for a particular user. This part of the interaction log enters the target
value, leaves, and re-enters once. In this case, there is one target re-entry
(TRE), and three movement direction changes (MDC).

Target Re-entry. During an interaction, if a user enters the
target value, leaves, and then re-enters, this is an instance of TRE;
see Figure 7.

Movement Direction Change. As it is shown in Figure 7, an
instance of MDC occurs when a user changes the direction of the
interaction. Figure 7 shows value selection over time with respect
to the target value.

In order to get the final TRE and MDC values for each
interactive graphical encoding, we divided the number of times
each behavior happened by the total number of participants. We
excluded outliers from this analysis.

http://va.gatech.edu/encodings/
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Fig. 8. Means and standard deviations of TRE and MDC for each interactive graphical encoding. The units in this table are “mean count per participant”
for TRE and MDC. Error bars represent standard error.

5.2 Interaction Behavior: Results Overview

Our analysis of interaction behaviors revealed that, overall, the
encodings with high accuracy (distance, position, and length) have
smoother interaction patterns compared to shading, area, and
curve. For the encodings with high accuracy, participants started
by making large changes early, and then they made small changes
while they were getting closer to the correct value; see Figure 9.

The charts for curves (Figure 9-h, i) demonstrate a surprising
degree of consistency of error, with the vertical positions of dots
showing many participants adjusting the value to 160% instead
of 200%. This could suggest underestimation of quantitative
representations with curves. Another finding is how participants
adjusted values while working with shading (see Figure 9-l). Many
participants ended with their final values lower rather than higher
than the starting point, which suggests that their interpretation of
the direction corresponding to “increasing” the value was probably
the opposite of the implementation (and the version shown in
the practice/instructions). This analysis also reveals a probable
reason why accuracy was so poor with shading. This provides
information about how inconsistent people can be in mapping
shading to quantitative values, and it could suggest different groups
of interpretation (such as participants moving in one direction or
another). It is important to note that even if adjusting the calculation
of accuracy to account for supposed alternative targets, the accuracy
would still be extremely poor, and the rankings would remain
unchanged.

To determine whether new accuracy metrics are related to
completion time and accuracy, we first calculated the correlation
between TRE, MDC, completion accuracy, and interaction time.
Our results indicate that there is a strong negative correlation
between accuracy and MDC (Pearson’s r(7) = −0.76, p < 0.05),
which means the higher the accuracy, the lower the number of
directional changes in users interaction. This confirms hypothesis
H3. We also found a strong positive correlation between accuracy
and target re-entry (Pearson’s r(7) = 0.78, p < 0.05). This means
the higher the accuracy, the more times the users pass and re-enter
the expected value. A possible explanation for this might be that
for encodings that exhibit a high bias (Section 4.4), there are fewer
target re-entries because participants form a mental target that is
below/above the target value.

Finally, we found that each of the behavior metrics were
strongly correlated with interaction time (Pearson’s r(7) = 0.85, p<
0.05). This means the longer the interaction time, the higher the
number of movement direction changes.

We summarize the findings of this section as following:

• More movement direction changes result in lower accuracy
and longer interaction time.

• More target re-entries result in a higher accuracy.

6 DISCUSSION

Designers might find ranking of one metric more important than
another depending on their requirements. As an example, one might
argue that the accuracy of an interactive graphical encoding plays
a more important role than interaction time. Depending on the
application of the visualization, designers might take into account
one or several of these rankings while designing an interactive
visualization. While we do not claim that making design decisions
based on completion time and accuracy metrics is wrong, we
emphasize that looking at metrics computed based on user behavior
during the interaction cycle (e.g., TRE, MDC) can be helpful as
well. Comparing interactive graphical encodings based on several
metrics might help designers have a more holistic view of how well
embedded interactions might work with certain encodings.

6.1 Incorporating the Interactive Graphical Encodings
If the decision is made to adapt the interactive graphical encodings
in a visualization system, we suggest the following guidelines.

Making encodings interactive requires careful design con-
siderations. Not every encoding used in a given visualization needs
to be interactive. In cases where the chosen visual representation
requires the use of an encoding with low performance, perhaps the
use of traditional control panels for interaction is the better design
decision. For example, visual representations that use shading or
area as the primary method to encode data may be augmented
with control panels to control the filtering or querying rather than
embedded interaction (e.g., geospatial choropleth maps). Instead,
visual representations that use effective encodings lend themselves
better to incorporating interactivity directly on the encoding.

Provide additional feedback if accuracy is important.
Providing additional feedback might be helpful to improve the
performance of specific encodings. For example, during em-
bedded interaction with shading, interaction performance might
be improved by also showing exact values via textual overlay.
Additionally, we could highlight the aspects of the encodings that
contribute to the value change. For example, for angular encodings,
we could highlight the angle subtended or the height between the
two arcs. Similarly, for area encodings, we could highlight the
width and height of the square to show the squared value. While we
did not test the effectiveness of such potential design improvements
in our study, these considerations could be of interest for future
design and evaluation efforts.
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(a) Horizontal Distance (b) Vertical Distance (c) Angle

(d) Horizontal Position (e) Vertical Position (f) Horizontal Length

(g) Vertical Length (h) Horizontal Curve (i) Vertical Curve

(j) Circlular Area (k) Square Area (l) Shading

Fig. 9. Representations of interaction logs for 12 interactive graphical encodings assessed in this study. The X axis (interaction time) is per second
and the Y axis (encoding values) is based on percentage. All participants were asked to manipulate each interactive graphical encoding to 200% of
its current value. All current values are shown as 100%. The small dark circles show the final point of each interaction log. Each line in the charts
represents one interaction log for a participant who completed the task using the specific encoding. The same set of participants interacted with all
encodings.
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6.2 Applications of Our Findings

In information visualization and visual analytics, the results of
this study can be applied to inform the design of interactive
legends [24], [35]. Interactive legends are controls that allow users
to select or filter data by directly interacting with the graphical
encodings used on the legends [35]. With the knowledge gained
from this study, we suggest using the graphical encodings that have
high accuracy (e.g., length) while designing interactive legends.
Alternatively, legends using encodings with lower accuracy can
provide additional feedback to users (e.g. textual values) to improve
the accuracy of interaction. Another approach could be to resort
to more conventional user interface widgets to perform tasks like
filtering.

Another set of applications that could leverage the results of
our study are graphical editing tools (e.g., Adobe Photoshop and
Illustrator) and visualization authoring tools (e.g., Lyra [39], Data-
driven Guides [20]). Our findings can assist design decisions about
where interactions must be enabled on the graphical encodings
versus where additional widgets may be required. For example,
to allow users to create a rectangle with a specific texture, these
tools could let users adjust the dimensions of the rectangle using
embedded interaction and provide additional widgets on a separate
control panel.

6.3 Interaction Combines Perception and Manipulation

Although the methodology used in this study is different from
that by Cleveland and McGill [8] due to our use of interactive
magnitude adjustment, our ranking of the interactive graphical
encodings produced a similar ranking. At a high level, our ranking
follows that of the prior studies, with the exception of our results
indicating a significant difference between length and angle (in
terms of accuracy). An explanation for this similarity may be
that manipulation and perception are not mutually exclusive, and
input from perception continually influences interaction. Thus, the
performance of interaction with an encoding might be connected
to the perception of the encoding itself. If an encoding supports
sheer perception well, it would also support interactivity well.

One possible follow-up research direction includes quantifying
the distribution of how much of an effect both perception and
manipulation have while interacting with a graphical encoding.
To do so, the study design would need to directly control for,
and decouple, perception from interaction. For example, this might
involve shielding the participants’ line of sight for the encoding they
are asked to manipulate. However, this seems to be at odds with
the design guidelines of embedded interaction, where users directly
interact with handles superimposed on the graphical encodings
Thus, performing a study where perception is intentionally excluded
may limit the applicability of the results to informing the design of
embedded interaction for visualization. However, the results of such
a controlled study would reveal knowledge about the perception
has on interaction.

6.4 Indirection, Compatibility, and Integration

The graphical encodings used in our study have different degrees
of compatibility, indirection, and integration [2]. Position, length,
angle and distance have low degrees of integration and indirection,
and high degrees of compatibility. Thus, these encodings are
more efficient than others encodings that have higher degrees
of indirection and integration, and lower degrees of compatibility.

The differences in degrees of compatibility, indirection, and
integration among various encodings may affect their performance.
In particular, having a higher degree of indirection and lower
degree of compatibility might decrease the performance of an
encoding. One interesting avenue for continued research could be
the investigation of effects of the parameters of this Instrumental
Interaction framework proposed by Beaudouin-Lafon [2] on the
performance of the encodings.

6.5 Confidence Initiation
We found interesting patterns by visualizing interaction logs
(e.g., Figure 9). In some log visualizations, participants started
making changes with high variation at first, then they considerably
reduced the variation of the changes as they narrowed down on
their final values. We can consider the interaction bahaviors and
confidence initiation findings with respect to Fitts’ Law, which
is often used when describing the tradeoff between speed and
accuracy during target selection [28]. Fitts’ Law can describe how
multiple successive movements (e.g., fluctuations in increasing
and decreasing value adjustments) are likely to be more common
before an expected termination point is known or expected. In
our scenario, the adjustment “noise” will significantly diminish
as the user approaches confidence of the intended value. For
the interpretation of the interaction behaviors in our study, we
refer to the point where participants started making changes with
small variations as the confidence initiation point. In other words,
confidence initiation is the point when coarse adjustments end,
and participants are close enough to the target value for finer
adjustments. There are several noticeable findings here:
• Overall, for the interactive graphical encodings with higher

overall accuracy, participants came to the confidence initiation
point faster than with the other encodings.

• It took participants longer to come to the confidence initiation
point using curve. Refer to Figures 9-h and i. Interestingly,
participants’ interaction logs for both horizontal and vertical
curve ended by converging somewhere below the real target
value (the red line). This suggests a mismatch between perceived
and actual values represented by the encoding.

• Interaction paths for area and shading either do not converge
(e.g., area) or the variation in their changes does not decrease
(e.g., shading). This could mean that participants never reached
a point where they felt confident about the changes they were
making. In other words, they did not know whether the changes
they made were correct. Another possibility is that they felt the
need to test a wide range of options with the interactive graphical
encoding before quickly deciding on the final setting.

• In the first half of a second, participants made changes with
high variation using all interactive graphical encodings except
shading. Looking at Figures 9-l, it seems that participants did
not make many changes at the beginning of their interaction with
shading. This delay in interaction with shading might be because
participants spent that period of time thinking of a correct way
to map degree of shading/texture density to a quantitative value.

7 LIMITATIONS

Our results should be interpreted in the context of the specified
encodings, adjustment orientations, target values, and tasks. We
wanted to first gain a basic understanding of the rankings for simple
interactive graphical encodings to see if and how they are different
from the graphical perception results from prior studies [8], [17].
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7.1 Lack of Control for Physical Devices

Since our study was online, we did not have control over users’
physical devices. This decision was intentional so that participants
could use input devices that they were familiar and comfortable
with, but it also allows the possibility of effects due to system
differences. We did record participants’ operating system types and
input devices, and we tested for effects using t tests. The results
did not indicate a statistically significant effects due to mouse and
trackpad for either accuracy (t(33) = 0.08, p = 0.93, power = 0.72)
or interaction time (t(33) = 0.49, p = 0.06, power = 0.38). The
near-significant trend in time due to interaction device reinforces
the need to study the effect of interaction device in future studies.

We also did not find a significant effect of operating system for
either performance time (F(2,32) = 3.02, p= 0.07, power = 0.95) or
accuracy (F(2,32) = 0.69, p = 0.51, power = 0.93). Unfortunately,
our collected logs did not contain information about participants’
browser types and screen sizes; we suggest that future interaction-
related online experiments take these two factors into account.

7.2 Limited Training

To perform the tasks in this study, participants had to first estimate
a percentage of change needed and then adjust the graphical
encodings accordingly. However, estimating the amount of changes
required for some encodings (e.g., curvature, shading) might be
harder and more ambiguous than others (e.g., length, distance).

The ambiguity of the tasks might have been lowered if
participants had been trained prior to the primary trials. Our
study included an instructional phase in which participants were
required to perform a set of trial tasks, and they were given
feedback after completing each trial. The system showed them
their accuracy (visually and percentage) compared to the correct
response. However, we did not enforce or control participant
accuracy before continuing to the main trials. For instance, an
alternative approach would have been to have participants perform
trials until they achieve a given success rate with each encoding.
Since we did not do this, it could potentially explain the low
accuracy for some encodings such as shading, area, and curvature.

8 FUTURE WORK

Another interesting factor for further study could involve considera-
tion for different user methods for judging graphical representations.
In previous work, Talbot et al. [46] indicated that people might
use different approximation methods to make judgments of a
graphical encoding. More specifically, they found that people
use either inner angle or height approximations when making
slope judgments. During the trial session of our study, the task
description and training showed participants how to perceive and
manipulate each encoding. However, we did not explicitly control
the approximation methods participants used to make judgments of
individual graphical encodings in our study. It could be interesting
for future work to investigate which approximation methods people
use to perceive each of the encodings. In future studies, it might
be interesting, for instance, to use eye-tracking during participant
trials to contribute more insight about where participants look
when making value adjustments, and that might help us to better
understand how participants are perceiving values.

Matejka et al. [32] recently studied the effects of slider
appearance to understand trade-offs between bias, accuracy, and
speed-of-use. Their findings suggest providing dynamic feedback

on the slider handle if a task requires precision. As part of future
work, it would be interesting to explore how the appearance of a
representation affects the interaction with corresponding encodings.

Another research avenue could be exploring the study of
different types of input devices and mechanisms (e.g., touch
and multi-touch instead of mouse and trackpad). Different input
devices involve different physical motions. Though we did not
detect evidence of effects due to input device in our study, the
study was not designed to focus on this issue. Studying additional
interactions or more complex interaction types could also involve
different types of physical movements or sequences of multiple
movements. Studying such interactions could further the knowledge
of interactive graphical encodings and broaden the understanding
of embedded interactions for more complex scenarios.

9 CONCLUSION

We studied the effectiveness of interacting with 12 elementary
graphical encodings for basic value-adjustment tasks, and compared
our ranking of the interactive graphical encodings from Cleveland
and McGill [8]. In general, our ranking follows that of the prior
studies, with the exception of our study observing a significant
difference between length and angle in terms of accuracy. By
studying interaction behavior, our results contribute the finding
that users achieve confidence during interaction more quickly
when adjusting encodings that exhibit higher overall accuracy. We
discuss these results in the greater context of the role of user
interaction for visualization. Through our research, we strive to
motivate data visualization designers to incorporate such interactive
graphical encodings into their interaction design in concert with
direct manipulation and dynamic querying techniques.
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