Supplementary Material for:

A facile construction of quaternized polymer brush-grafted graphene

modified polysulfone based composite anion exchange membranes with

enhanced performance

Bo Hu, Lingdi Liu, Yanxu Zhao and Changli Lü*

Institute of Chemistry, Northeast Normal University, Changchun 130024, PR China

Figure S1. ¹H NMR spectrum of VBTAC

Figure S2. FTIR spectra of VBTAC

Figure S3. Deconvoluted XPS spectra (a), in the Si_{2p} region of A-FGs (b), in the N_{1s} region of A-FGs (c), in the S_{2p} region of R-FGs (d), and in the Cl_{2p} region of QPbGs.

Figure S4. ¹H NMR spectra of QPbGs.

There are two broad peaks (a and b) at 6.56 and 7.11 ppm, which belongs to the hydrogen of benzene ring of PVBTAC brushes. Peak c at 3.19 is attributed to the hydrogen on $-CH_2$ - nearby the sulfur atom. The area integral ratio of c and (a + b) of hydrogen is 1 : 14, and the degree of polymerization (n) can be calculated as 7. The theoretical molecular weight of PVBTAC calculated by ¹HNMR is 1500 g mol⁻¹, which is close to the result of GPC.

Figure S5. Digital photoes of QPSU and QPSU-1%- QPbGs before and after alkaline resistance test.

Table S1.

sample	atomic composition (wt %)					
	С	Ν	Si	S	Cl	0
GO	68.65	0	0	0	0	31.35
A-FGs	73.56	2.85	4.92	0	0	18.67
R-FGs	67.24	4.53	8.02	2.40	0	17.80
QPbGs	70.42	3.97	5.59	1.64	1.84	16.54

Elementary Composition of GO, A-FGs, R-FGs and QPbGs.

Table S2.

Membrane material	IEC (meq g ⁻¹)	Conductivity	Reference	
		(mS cm ⁻¹) 80 °C		
QPSU-1%-QPbGs	1.84	56.0ª	This study	
QPSU-2%-QPbGs	1.87	49.7ª	This study	
QPSU-0.5%-QGs	1.20	18.7ª	35	
PVA-20wt%FGO		21.0 ^b	36	
fGO-PEI-5	2.83	72.0 ^b	37	
CLQCPAES/10%ZrO2	1.18	49.4 ^b	14	

Ionic conductivity values reported in the literature for different AEMs.

^a bicarbonate conductivities.

^b hydroxide conductivities.

The calculation of grafting density

The grafting density can be determined from the data of TGA analysis combined with the molar mass of the PVBTAC brushes.¹ The weight fractions of A-FGs, R-FGs and QPbGs can be obtained from Figure 6 and the molar mass of the PVBTAC brushes was determined to be 1200 g mol⁻¹ by GPC according to the method reported in literature.²

The grafting density is calculated by the following formula:

Functional groups per carbon: $A_{mg} = M_c \times W_R / M_R \times W_c$

Chain per carbon: $A_{pg} = M_c \times W_p / M_p \times W_c$

where M_c is the relative molar mass of carbon ($M_c=12 \text{ g mol}^{-1}$), M_R is the molar mass of RAFT agent ($M_R=350 \text{ g mol}^{-1}$), M_p is the average-number molar mass (M_n) of grafted polymer ($M_n=1200 \text{ g mol}^{-1}$), The values of W_c , W_R and W_p were obtained from the TGA curves in Figure 6. When calculating the functional groups per carbon, $W_c = 73.8\%$ and $W_R = 26.2\%$, and so the grafting density of RAFT agent on A-FGs was calculated to be 1.22 functional groups per 100 carbons. When calculating the Chain per carbon, $W_c = 52.9\%$ and $W_p = 47.1\%$, so the grafting density of PVBTAC chains on QPbGs was calculated to be 0.9 chains per 100 carbons.

References

P. Ding, J. Zhang, N. Song, S. Tang, Y. Liu and L. Shi, *COMPOS. PART A-APPL. S.*, 2015, **69**, 186-94.
Y. Yang, X. Song, L. Yuan, M. Li, J. Liu, R. Ji and H. Zhao, *J. Polym. Sci. Part A: Polym. Chem.*, 2012, **50**, 329-337.