
A Feature-Oriented Software Engineering Approach to

Integrate ASSISTments with Learning Management Systems

 by

Hien D. Duong

 A Thesis

 Submitted to the Faculty

 of the

 WORCESTER POLYTECHNIC INSTITUTE

 In partial fulfillment of the requirements for the

 Degree of Master of Science

 in

 Computer Science

 by

 May 2014

APPROVED:

Professor George T. Heineman, Thesis Advisor

Professor Gary Police, Thesis Reader

Professor Craig Wills, Department Head

2

Abstract

Object-Oriented Programming (OOP), in the past two decades, has become the most

influential and dominant programming paradigm for developing large and complex software

systems. With OOP, developers can rely on design patterns that are widely accepted as solutions

for recurring problems and used to develop flexible, reusable and modular software. However,

recent studies have shown that Objected-Oriented Abstractions are not able to modularize these

pattern concerns and tend to lead to programs with poor modularity. Feature-Oriented

Programming (FOP) is an extension of OOP that aims to improve the modularity and to support

software variability in OOP by refining classes and methods. In this thesis, based upon the work

of integrating an online tutor systems, ASSISTments, with other online learning management

systems, we evaluate FOP with respect to modularity. This proof-of-concept effort demonstrates

how to reduce the effort in designing integration code.

3

Acknowledgements

It is my privilege to have Professor George Heineman as my advisor for my graduate

research. Without his generous support, warm guidance and patience, this work would not have

been possible. Thanks Professor Heineman for his advice and guidance on both academics and

life.

Thanks to my thesis reader, Professor Gary Police, for his time and valuable suggestions.

Thanks to Professor Neil T. Heffernan, Cristina Heffernan and David Magid for detail

workflow suggestions while I developed ASSISTments apps. Without your participations,

ASSISTments apps would never be Live in Edmodo Store during the time I worked on my

thesis.

Thanks to ASSISTments lab mates who help me a lot while doing the development work

of ASSISTments.

Last but not least, I would like to thank my wife. This thesis is a product of her

unconditional love, support, and encouragement throughout years.

4

Content

Chapter 1. Introduction... 9

1.1. Motivation .. 9

1.2. Literature review on software integration perspective .. 10

1.3. The Need to Integrate Learning Management Systems .. 11

Chapter 2. Background ... 13

2.1. Software Product Lines ... 13

2.2. What is Feature .. 14

2.3. Eclipse FeatureIDE .. 15

2.4. Integrating Systems ... 18

2.4.1. ASSISTments .. 18

2.4.2. Edmodo ... 21

2.4.3. inBloom ... 24

Chapter 3. Case study ... 27

3.1. KombatSolitaire Design .. 28

3.2. KombatSolitaire Feature-Based Design ... 33

Chapter 4. Methodology ... 36

4.1. Our Approach .. 36

4.2. Connection Model ... 38

Chapter 5. Connector Code .. 41

5.1. Overview integration between ASSISTments and inBloom .. 41

5.2. Overview integration between ASSISTments and Edmodo ... 43

5.3. Detailed Integration Scenario with Edmodo .. 44

5.4. Object Oriented design and implementation.. 49

Chapter 6. Featured-based Approach .. 57

6.1. Refactoring OOP to extract features .. 58

6.2. Layers design and implementation ... 59

6.2.1. Get Edmodo Teacher and Students ... 60

6.2.2. Create Teachers and Students accounts in ASSISTments ... 60

6.2.3. Create dictionary data in Edmodo ... 61

5

6.2.4. Create school data in ASSISTments.. 61

6.2.5. Assign users to school. ... 61

6.2.6. Create class: .. 62

6.2.7. Enroll students in class in ASSISTments .. 62

6.2.8. Create assignment in ASSISTments .. 62

6.2.9. Student login Edmodo to do assignment in ASSISTments.. 63

6.2.10. Transfer back assignment grade back to Edmodo .. 63

Chapter 7. Conclusions and Future Work ... 64

7.1. Conclusion ... 64

7.2. Future Work ... 65

Appendix A. Example of data return back from Edmodo.. 66

Appendix B: Connector code table .. 67

B1. API tables already exists in ASSISTments: ... 67

B.1.1. external_reference_types ... 67

B.1.2. external_references .. 67

B.1.3. access_tokens ... 68

B.2. A new bridge API tables... 68

Appendix C. Connector Classes .. 70

C1. Model Classes .. 70

C2. Controller Classes .. 71

References ... 71

6

List of figures

Figure 1.1. Modeling variability in a domain ... 9

Figure 1.2. Connector with direct messaging ... 10

Figure 1.3. Connector with indirect messaging .. 11

Figure 2.1. Linux’s kernel configuration tool ... 14

Figure 2.2. Sample Feature Model .. 16

Figure 2.3. Hello Feature Sample Code .. 17

Figure 2.4. Wonderful Feature Sample Code ... 17

Figure 2.5. World Feature Sample Code ... 17

Figure 2.6. Valid HelloWorld Configuration .. 18

Figure 2.7. Sample ASSISTments screen ... 20

Figure 2.8. Sample Edmodo screen ... 22

Figure 2.9. Sample inBloom screen... 25

Figure 3.1. A feature diagram that captures Solitaire variations ... 27

Figure 3.2. Sample KombatSolitaire Klondike Screenshot ... 29

Figure 4.1. FORM Methodology ... 37

Figure 4.2. Our Methodology .. 37

Figure 4.3. Sample integration between LMSs... 39

Figure 4.4. Multiple instances of connector code adapt to each system ... 40

Figure 5.1. Screening ASSISTments HTML Report.. 42

Figure 5.2. Promoted integration scenario with inBloom .. 42

Figure 5.3. Promoted integration scenario with Edmodo... 43

Figure 5.4. Edmodo Integration Flowchart ... 44

Figure 5.5. Teacher search for app .. 45

Figure 5.6. Teacher installs the app ... 45

Figure 5.7. License and Group of students the app will be applied to .. 46

Figure 5.8. Teacher launches ASSISTment app. He/she automatically forward to ASSISTments

without prompting ask for credentials ... 48

Figure 5.9. Integration detail steps between ASSISTments and Edmodo under Student Role 48

Figure 5.10. ASSISTments appears inside an iFrame in Edmodo .. 49

Figure 5.11. High level connector design ... 50

7

Figure 5.12. Sample code to present json object .. 52

Figure 5.13. Sample code to serialize an json object ... 52

Figure 5.14. Sample code to represent data access object ... 52

Figure 5.15. Example code invoked automatically. ... 53

Figure 5.16. Sample code to send API request. .. 55

Figure 5.17. Sample code to construct API request. .. 56

Figure 6.1. Proposed approach for connectors.. 57

Figure 6.2. OOP dynamic website invokes a feature ... 58

Figure 6.3. Edmodo Feature ... 58

Figure 6.4. Edmodo Integration ... 59

Figure 6.5. ASSISTments final screen .. 61

8

List of tables
Table 3.1. Reusability Comparison ... 28

Table 3.2. Classes within KS model hierarchy ... 28

Table 5.1. Example API return. ... 46

Table 5.2. Connector code packages listed ... 50

9

Chapter 1. Introduction

1.1. Motivation

Before the advent of mass production, the manufacturing process required handcrafted

work and each product was unique, in the sense that is was built from scratch. During the age of

industrialization, mass production based upon assembly lines used standard parts were

constructed individually but then could be combined/assembled to create more complex

products. The focus on standardized products reduced production costs and improved the quality

of products and processes. Recognizing that different customers have different needs and wishes,

manufacturers started to increase diversity in their product portfolios. In a way, mass production

is similar to mass customization with just a few variations. Below is an example from the fast-

food industry of mass production with individualized configuration [8].

Figure 1.1. Modeling variability in a domain

10

1.2. Literature review on software integration perspective

We have found no other research targeting the use of feature oriented programming

(FOP) in integration code at the time that this thesis was written. However, there is a similar

engineering technique that aims to develop software systems by reusing pre-existing software

components rather than features called Component-based software engineering (CBSE). Lau et

al Error! Reference source not found. summarized that component-based approaches tend to

use the concept of composition by taking two or more components then putting them together in

some way. Component composition mechanisms fall into two main categories: direct message

passing and indirect message passing. In general, with direct message passing scheme, there are

two distinct role: the sender and the receiver. And when components are connected by direct

message, data flow and control flow are mixed with the computation, and thus the message tends

to “hard-wired” into component. It makes sender and receiver tightly couple together.

Connection by indirect message passing typically happens with glue code that passes messages

between components. To connect a component to another component, a connector is used, when

notified by the former, invokes a method in the latter.

Figure 1.2. Connector with direct messaging

11

Figure 1.3. Connector with indirect messaging

Example of direct messaging are remote procedure calls (RPC). Models that adopt direct

messaging include the CORBA Component Model (CCM) [17]. Models that adopt indirect

message include JavaBeans [18].

1.3. The Need to Integrate Learning Management Systems

Learning mathematics in classroom’s today is different than it was twenty years ago.

While there is no definite proof for the one “right way” to teach mathematics, it increasingly

important for teachers to adopt effective teaching strategies. Incorporating technology into the

teaching of mathematics has proven to be an effective method of mathematics Error! Reference

source not found.. Hadley and Sheingold suggest that technology is most valuable to teaching

and learning once teachers integrate it as a tool into everyday classroom practice and into

subject-matter curricula Error! Reference source not found.. The need to integrate between

technologies emerges when teachers need to use a variety of teaching activities, while each

integrated learning technology is designed only to deliver one particular set of instructional

content.

12

Besides the purpose of integrating learning technologies for sharing content across, there

are increasingly requirements for utilizing data between systems for researching purpose. As

Harmelen and Workman identify, learning analytics refers to the interpretation of a wide range

of data, which can be collected by outcomes data across a wide variety of learning tools [20]. For

example, ASSISTments collect data from students such as assignment performance but social

interactions, provided by Edmodo from its social learning platform, are not directly assessed as

part of student’s educational purpose.

13

Chapter 2. Background

2.1. Software Product Lines

Software product lines emerged since late of 1960s and gained more momentum in

software industry from 1990s. The main idea is that software systems should be constructed from

reusable parts instead of being developed from scratch. And instead of composing a software

system always in the same way, it should be based upon the customer’s requirements, where

customers can choose from pool of configuration options. A clear example of a successful

software product line is the Linux kernel which runs on a variety of platforms, such as embedded

devices, desktop systems, and large-scale servers Error! Reference source not found.. Linux

also supports different applications, from office software and games, to high-performance

computing and server software. In able to efficiently supports all kinds of different platforms and

application scenarios, Linux allows users to choose among large set of options (up to 10,000

features according to Tartler et al. [23]) to define the Linux kernel to fit their needs. The Figure

below is a screenshot of Linux’s configuration tool, called Kconfig.

14

Figure 2.1. Linux’s kernel configuration tool

Clearly, the industrialization of software development is facilitated by software product

lines. Ideally, based on set of reusable parts, a software manufacturer can generate a software

product that adapt to certain customer’s requirements. The concept of feature is a core concept to

distinguish the products of a product line. For example: some customers requires Email client

that supports both IMAP and POP3 but others only need POP3.

2.2. What is Feature

Feature-Oriented Programming (FOP) is a paradigm for the construction, customization,

and synthesis of large-scale software systems. FOP is the study of feature modularity and

programming models that support feature modularity. The concept of a feature is at the heart of

FOP. A feature is a unit of functionality of a software system that satisfies a requirement,

represents a design decision, and provides a potential configuration option. The basic idea of

15

FOP is to decompose a software system in terms of the features it provides. The goal of the

decomposition is to construct well-structured software that can be tailored to the needs of the

user. Typically, from a set of features, many different software systems can be generated that

share common features and differ in other features. The set of software systems generated from a

set of features is also called a software product line. In other words, A product line shares a

common set of features developed from a common set of software artifacts [3][5][6].

According to Czarnecki, feature models, in their basic form, contain mandatory/optional

features, feature groups, and implies and excludes relationships [8]. A feature model is a tree of

features, whose root encapsulates the base feature, the minimum unit of functionality required

for the existence of the system. Other nodes in the tree represent either solitary features, which

can be optional or mandatory, or grouped features, which can be either exclusive-or groups or or-

groups.

2.3. Eclipse FeatureIDE

FeatureIDE is an open-source solution tool for product line implementation, targeted

primarily at researchers, teachers, and students. FeatureIDE is installed using the Eclipse plug-in

mechanism. In FeatureIDE, the whole application is divided into parts representing different

features. While this may sound similar to the concept of object-oriented classes there is an

important difference. A feature in our sense always represents a certain aspect of the application.

Every feature can be related to an arbitrary number of software artifacts. In FeatureIDE,

these artifacts can be classes, methods, fields or even single statements as well as additional

resources like graphics or user-documentation. Especially, the option to change only parts of a

method offers great flexibility in the design of features. In software product lines, not all

16

combinations of features are considered valid and lead to useful software systems. A feature

model defines the valid combinations of features in a domain Error! Reference source not

found.. Features models have a hierarchical structure, whereas each feature can have sub-

features Error! Reference source not found.. The graphical representation of a sample feature

model is feature diagram and example is shown below:

 Figure 2.2. Sample Feature Model

The features Hello and World are mandatory and simply print the features name. The

features Wonderful and Beautiful are not required. Connections between a feature and its group

of sub-features are distinguished as: and, or, and alternative [25]. The children of and groups can

be either mandatory or optional. A feature is abstract if it is not mapped to implementation

artifacts and concrete otherwise [26]. A feature model may also have cross-tree constraints to

define dependencies which cannot be expressed otherwise.

Feature models are a common notion for variability and their semantics is as follows: the

selection of a feature implies the selection of its parent feature. Furthermore, if a feature is

selected, all mandatory sub-features of an and group must be selected. In or groups, at least one

sub-feature must be selected and in alternative groups, exactly one sub-feature has to be selected.

In FOP, classes are decomposed into feature modules, each implementing a certain

feature. A feature module may contain methods and fields of several classes. Feature modules

can be composed into a program based on a given configuration and order of the features.

17

Using the example in the figure above, here are the actual object-oriented classes

contained within each of the designated features:

Hello Feature

public class Main {
 public void print() {
 System.out.print("Hello");
 }

 public static void main(String[] args) {
 new Main().print();
 }
}

Figure 2.3. Hello Feature Sample Code

Wonderful Feature

public refines class Main {
 public void print() {
 Super().print();
 System.out.print(" Beautiful");
 }
}

Figure 2.4. Wonderful Feature Sample Code

Beautiful Feature (similar to Wonder Feature)

World Feature.

public refines class Main {
 public void print() {
 Super().print();
 System.out.print(" World!");
 }
}

Figure 2.5. World Feature Sample Code

Example of valid configurations are shown below:

18

Hello Beautiful World

Hello Wonderful Beautiful World

Figure 2.6. Valid HelloWorld Configuration

2.4. Integrating Systems

2.4.1. ASSISTments

Assistance and assessment are integrated in ASSISTments, a web-based math tutoring

system for 7th-12th grade students which offers instruction to students while providing a detailed

evaluation of their abilities to teachers. The ASSISTments System is being built to identify the

difficulties individual students––and the class as a whole––are having, and teachers will be able

to use this detailed feedback to tailor their instruction to focus on those difficulties. Unlike other

assessment systems, the ASSISTments system also provides students with intelligent tutoring

assistance while assessment information is collected. Tutorial help is given if a student answers

the question wrong or asks for help. The tutorial help assists the student learn the required

knowledge by breaking the problem into sub questions called scaffolding or giving the student

hints on how to solve the question.

Figure below shows a screenshot of an ASSISTments problem with three scaffolding

questions. Solving this problem involved understanding congruence, perimeter, and equation

solving. If the student had answered correctly, she would have moved on to a new problem.

However, she incorrectly answered 23, and the system responded with, “Hmm, no. Let me break

19

this down for you.” It then presented the student with some questions that would help to isolate

the skills with which she had difficulty and to tutor her so that she could figure out the correct

actions. The tutor began by asking a scaffolding question that isolated the step involving

congruence. Eventually she got the scaffolding question correct (by answering “AC”) and then

was given a question about perimeter. The figure shows that the student selected ½ * 8 * x as the

formula for perimeter, and the system responded with a “buggy message” letting the student

know she seems to be confusing perimeter with area. The student requested two hint messages,

as shown at the bottom of the screen. The tutoring ends with a final question, which is actually

the original question asked again. The student then will go on to do another math problem and

will again get tutoring if she gets it wrong.

20

 Figure 2.2. Sample ASSISTments screen

ASSISTments provides a set of RESTful APIs that allow external partners to integrate

with the system. Some highlight APIs that allows to create users account, ask for access_token,

and forward users to go inside ASSISTments without asking for credentials. Those APIs that

allow ASSISTments to interact with other systems in seamless manner, without interruption, rely

on Single Sign On capability.

21

Some examples ASSISTments APIs include:

User Login:

Create User

2.4.2. Edmodo

Edmodo can be incorporated into classrooms through a variety of applications including

Reading, Assignments, and Paper-studying. Current uses include posting assignments, creating

polls for student responses, embedding video clips, create learning groups, post a quiz for

students to take, and create a calendar of events and assignments. Students can also turn in

assignments or upload assignments for their teachers to view and grade. Teachers can annotate

the assignments directly in Edmodo to provide instant feedback.

22

Parents can also view this website, either under their child's username or they may create

their own account. The Parent accounts allow parents to see their children's assignments and

grades. Teachers, subject to creating and maintaining parental records, could send alerts to

parents about school events, missed assignments, and other important messages. Similarly,

teachers can, subject to creating and maintaining class-participant data, generate printable class

rosters. so if a teacher is going to have a substitute teacher in their classroom who needs a printed

roster, they can print one from an Edmodo account.

Figure 2.3. Sample Edmodo screen

Student and, possibly parental, data is normally already maintained in a school's

information management system and so would require ongoing effort and care to duplicate and

maintain data on Edmodo outside the school's own security controls.

Edmodo, as with any social network, can be used as a place to post and critique work,

facilitate collaboration, and post creative writing for an audience. Educational social networking

23

sites, like Edmodo, offer an opportunity to “connect with students and help them create norms

and reflect on how different online actions will be interpreted. Edmodo and other social

networking sites offer educators a chance to explore the use of social networks and use of media

and online formats. Edmodo is used worldwide but mainly from the US. In Edmodo, teachers

can put posts with attachments such as videos or pictures from their iPad, iPhone or computer

and put it in a group folder in which pupils and teachers can access the post in a safe learning

environment. It can be used to teach children how to create podcasts, posts and basic website

designing.

With Edmodo's Apps API, Apps can integrate with Edmodo’s core features such as:

Students can turn in Edmodo assignments, teachers can upload grades into teachers’ grade

books, and content can be stored immediately into teachers’ libraries

This figure below list an example Edmodo APIs:

24

Launch Request

2.4.3. inBloom

inBloom funded by the Bill & Melinda Gates Foundation and the Carnegie Corporation,

with mission is to provide a valuable resource to teachers, students and families, to improve

education. inBloom makes it easier for teachers to see a more complete picture of individual

student progress than what most currently have access to through its secure, single-access point.

With this information teachers are able to better identify where each student needs extra

attention, and to tailor education materials that maximize the one-on-one time they spend with

25

students. Further, currently it’s difficult for teachers to find the many valuable instructional

materials that exist across the country or even in their own school districts. Through its resource

index, inBloom saves teachers valuable time by helping them more easily search for and share

these materials.

inBloom provides REST API, full client-server Web service with features such as: Bult-

in HTTP basic access authentication, support JSON data-interchange format and HTTP methods

to exchange representation of resources.

Figure 2.4. Sample inBloom screen

26

This figure below list an example inBloom APIs:

27

Chapter 3. Case study

Heineman introduced an approach to construct encapsulate varieties via layers [9]. His

undergraduate class developed dozen of plugin components for a card solitaire game engine with

MVC (Model-View-Controller) design patterns. To maximize reusable code, he developed a set

of layers that can be assembled to form solitaire variation plugins.

Figure 3.1. A feature diagram that captures Solitaire variations

In the figure above, a feature model that describes the variability of Kombat solitaire

game. The variants of KombatSolitaire can be produced in this domain. The root of the tree

denotes the concept that is modeled. All other boxes denotes features, where child features

depend on parent features.

Table 3.1 below compares the reusability factor for generated layers of four solitaire

plugin components against their hand-coded counterparts.

28

Table 3.1. Reusability Comparison

 Java ACDK

 #Classes (#reused) # Layers (#reused) %

Idiot 6 (0) 16 (13) 81%

Narcotic 7 (0) 17 (13) 76%

GrandFatherClock 6 (0) 31 (29) 93%

Klondike 11 (0) 31 (25) 80%

3.1. KombatSolitaire Design

Kombat Solitaire (KS) is a Java application that enables head-to-head competition of

solitaire variations played simultaneously over the Internet. KS was developed as part of an

undergraduate software engineering course. Each plugin represents a single solitaire variation. A

rich set of model elements are already provided, as shown in Table 3.2.

Table 3.2. Classes within KS model hierarchy

Card Single Card in a deck

Stack Abstract representation of cards in sequence

from bottom to top

Pile Stack whose topmost card is visible

Deck A stack of 52 cards forming a playing deck

Column Stack of cards that reveals cards below the

topmost card

BuildablePile Pile of face down cards on top of which a

Column can be built (as in Klondike)

29

Each model element shown (except for the abstract Stack class) has a corresponding view

element that depicts the model element within the solitaire playing field. Each KS plugin is

responsible for constructing a model of the game, which may include a deck, columns where

cards are stacked, a running score, and waste piles. The plugin then defines the views for these

model elements over a 2-dimensional playing field such that no two views intersect each other.

Finally, a controller is registered with each view to manage mouse events (press, release, and

click) and perform moves as allowed by the solitaire variation. The sum total of all the

controllers enforces the rules of a solitaire variation.

The KombatSolitaire case study presented here is a microcosm of the overall thesis effort.

That is, this thesis will demonstrate how to convert ordinary Java code into a set of features that

represent the same functionality. In a straight object-oriented implementation of a solitaire

variation, a programmer would construct objects from pre-existing classes (such as found in

Table 3.2) to implement the required variation. For example, assume a developer wanted to

implement the FreeCell solitaire variation, shown below:

Figure 52. Sample KombatSolitaire Klondike Screenshot

30

In this variation, there are four Free Cells in the upper left corner which can store a single

face up card. In the upper right corner are four Base Cells which show face up cards, but they

can contain up to thirteen cards each (one per suit). At the bottom of the game are eight

Buildable Piles showing the arrangement of face up cards at play. A snippet of code in such a

stand-alone object-oriented implementation would look something like the following:

public void initialize (int seed) {
 deck = new Deck ("deck");
 deck.shuffle(seed);
 for (int i = 0; i < columns.length; i++) {
 columns[i] = new Column("col" + (i+1));
 }

 for (int i = 0 ; i < freeCells.length; i++) {
 freeCells[i] = new Pile ("free" + (i+1));
 }

 for (int i = 0 ; i < baseCells.length; i++) {
 baseCells[i] = new Pile ("base" + (i+1));
 }
 ...
}

That is, the program would first create the model elements forming the structure of the

game. Then they would create view objects to visually place these model elements on the screen:

 public void initializeView () {
 CardImages ci = getCardImages();
 int cw = ci.getWidth();
 int ch = ci.getHeight();

 for (int i = 0; i < freeCellViews.length; i++) {
 freeCellViews[i] = new PileView (freeCells[i]);
 freeCellViews[i].setBounds (10+15*i+i*cw, 20, cw, ch);
 }

 for (int i = 0; i < baseCellViews.length; i++) {
 baseCellViews[i] = new PileView (baseCells[i]);
 baseCellViews[i].setBounds (125+15*i+(i+4)*cw, 20, cw, ch);
 }

 int colH = 13*ch; // allow up to 13 cards
 for (int i = 0; i < 8; i++) {
 columnViews[i] = new ColumnView (columns[i]);
 columnViews[i].setBounds (45+15*i+i*cw, 40 + ch, cw, colH);

31

 }

Once all view elements are created, then the user needs to register the appropriate AWT

Mouse Listeners to react to mouse events over these objects

public void initializeControllers() {
 for (int i = 0; i < 4; i++) {
 freeCellViews[i].setMouseAdapter(new FreeCellFreeCellController (
 this, freeCellViews[i]));
 }
 for (int i = 0; i < 4; i++) {
 baseCellViews[i].setMouseAdapter(new FreeCellBasePileController (
 this, baseCellViews[i]));
 }

 for (int i = 0; i < 8; i++) {
 columnViews[i].setMouseAdapter(new FreeCellColumnController (
 this, columnViews[i]));
 }

These Controller classes contain the real logic of the FreeCell variation. Indeed, the

structure of two solitaire variations may be identical (both model and view elements) and the

only difference remains in the Controller objects.

The controller classes process low-level MouseEvent events and decides users actions by

interpreting the sequence of MousePress, MouseDrag and MouseRelease events. The following

controller snippet for the FreeCell Game processes MouseRelease events over one of the four

base piles:

public void mouseReleased(MouseEvent me) {
 Container c = theGame.getContainer();

 Widget w = c.getActiveDraggingObject();
 if (w == Container.getNothingBeingDragged())
 return;

 boolean changed = false;
 if (w instanceof CardView) {
 changed = processDraggingCardView ((CardView) w);
 } else if (w instanceof ColumnView) {

32

 changed = processDraggingColumnView ((ColumnView) w);
 }

 // try auto moves
 if (changed) {
 ((FreeCell)theGame).tryAutoMoves();
 }

 // release the dragging object and repaint everything

 c.releaseDraggingObject();
 c.repaint();
}

The reason for inserting this code here is to demonstrate the intertwined logic of these

controllers. This one, for example, is able to process cards being dragged to the base pile from a

free cell or one of the buildable piles. It also automatically advances any automatic moves that

the game of FreeCell can determine to execute. We are omitting the additional detail found in the

processDraggingCardView and processDraggingColumnView methods.

In poorly designed code, the Controller logic is intertwined with the Model and View

classes, which reduces their reusability and overall coherence. However, when they are cleanly

separated, the Controller classes quickly become overly detailed and complicated.

In Java – indeed in any object-oriented language – the unit of composition is an object

(which really means the class used to define the object). Because the controllers contain the true

logic, they often are not reusable themselves, as Heineman observed [9]. The irony is that the

reusable model and view widgets have none of the Solitaire behaviors associated with them,

whereas the non-reusable controllers contain all of the “important” code for the solitaire

variation.

33

3.2. KombatSolitaire Feature-Based Design

Heineman observed that using MVC naturally leads to the inability to reuse controllers

[9]. Domain experts have considerable expertise in using inheritance to capture the rich

information to be stored in a model. HCI experts show how to build user interfaces that decouple

the model from the view presented to the users. But the complex logic found in controllers can

quickly be unmanageable because of the inherent limitations of the basic extension constructs in

OO programming languages. Since business logic is encapsulated within controllers, MVC may

actually be an impediment to the proper reuse or extension of business logic. For this reason,

Heineman investigated how to convert the KombatSolitaire code base into features, using

Batory’s AHEAD tool suite. Ultimately the final system was realized using the FeatureIDE

Eclipse Plugin.

The layers designed for this solution are intended to be the unit of composition, rather

than individual classes. To achieve this goal, the premise is that as each additional layer is

composed, there will always be a working solitaire implementation, albeit one with reduced

functionality.

To represent a composition of layers, we use the dot ● notation. Starting from the game

layer, one constructs a solitaire variation by the repeated composition of additional layers as

designed in the solitaire solution space. In general, a solitaire variation is defined by equations of

the following form, using features defined earlier.

variation = {Variations} ● {moves} ● {types} ● game

Let’s propose the following as the simplest Solitaire variation.

34

There is a deck of cards and two piles. To deal a card from the deck to the empty

waste pile, click on the deck. Players can drag the card from the waste pile to the

home pile. Once all cards have been played, the game is over.

To assemble this variation using Features, you use existing layers and write three

additional layers to describe the layout and the rules for this variation. Here is the final equation

simplest = { SimplestRules, SimplestLayout, Simplest, Variations} ● {deckToStack,

stacktostack, moves} ● {pile, deck, integer, types} ● game

Most of these features are pre-existing and exist to support other solitaire variations as

well. This exercise will demonstrate that it is possible to assemble an implementation of a

solitaire variation predominantly from existing Feature layers.

The design of these layers support the model-view-controller (MVC) paradigm inherent

in the underlying Java object-oriented implementation, however the true novelty appears when

expanding (or contracting) the basic elements in a solitaire variation.

The best way to explain the logic is to show the full details for one of the layers, in this

case, the pile layer, which contains the following JAK artifacts:

● class FlipPile extends Move

● refines class Game

● class PileAdapter extends MouseAdapter

● class PileManager

● class PileToPile extends MoveCardMove

35

The pile layer refines an existing class (Game) and introduces four new classes to deal

with the behaviors associated with Solitaire piles. Specifically, you can view only the top card in

a pile, although it may contain any number of cards. You can interact with a pile by removing its

top card (pressing the left mouse button) or releasing a card (or a column of cards) onto the pile

(by releasing the left mouse button over the pile).

The PileAdapter class extends MouseAdapter which allows it to be a drop-in replacement

for any MouseListener interface.

<< heineman adds more detail on Simplest>>

36

Chapter 4. Methodology

Like in the construction industry, you would have to know what you are going to build

before you can build it. So the first step in methodology is what software will be integrated and

figure out integration method. We need to integrate between ASSISTments with other Learning

Management Systems (LMSs) to utilize research in educational data mining and to share content

across educational community. The contents of LMSs can be accessed immediately by all users

(teachers, student, parents and administrators etc.) – all applications appear in one system,

through a seamless online environment with a single sign-on learning portal.

The goal or scope of the thesis is to implement a system based layers that generates

connector code for each of the system need to be integrated with ASSISTments.

4.1. Our Approach

K.Lee et al, 2000 proposed Feature-Based Object-Oriented Engineering, or Feature-

Oriented Reuse Method (FORM), which instead identifying objects by popular method such as

Keyword analysis [10][11], structured analysis [12], scenario-based analysis [5][6], but identify

reusable objects by linking feature categories to object categories. FORM could extract

important relationships between objects (aggregation and generalization) from feature model

(composed-of, generalization, and implemented by). This leads FORM method favor object

composition than class inheritance when design and development of reusable components (e.g.,

modules).

37

Figure 4.16. FORM Methodology

Our approach, however, does not start with feature model. What we believe is that even

objected that properly abstracted and modeled for future reuses more likely subject to change

than functions [15][16].

Figure 4.2. Our Methodology

38

To capture all the variants of each connector code, before going into integration layers

design step, we programmed a prototype of integration between ASSISTments and inBloom.

After that, there is one prototype need to be integrated with ASSISTments including: Edmodo.

All two systems are what client requests to see the integration works. Then we can gather more

functional requirements from the client based upon prototype system. All of the prototypes be

programmed in Java.

 After capturing all variants of integration between systems, but before writing any layer

code, we first design integration based layers. Those layers could be assembled to satisfy all

functional specification that describes in detail the functions to perform by the system.

Moreover, those layers should be assembled easily enough to generate connector code.

 Once all appropriate layers and specifications have been determined, the development of

system based layers is started. During the development process, we perform unit test to verify

new layers system reliability by comparing the result of integration with each prototype system.

Finally, we can test the entire system by generating separate connector code for not only all

inBloom and Edmodo, but also any system that desire.

4.2. Connection Model

Integration between two systems, even they are built for similar purpose, can be very

complex process, since they can be very different in nature.

Each Learning Management System (LMS) provides its own interface, which is defined

by an API (Application Programming Interface), to enable it to communicate with other systems

according to a particular set of rules. Because of each own particular API, you cannot

immediately "plug and play" one system to communicate with others; we need connector code.

Figure 1 below is the flowchart describes connecting between systems:

39

Figure 4.3. Sample integration between LMSs

The connector code above is specialized code that adapts to particular rules of both

ASSISTments and inBloom to make them work together. When ASSISTments wants to connect

with another LMS, Edmodo for example, this connection again requires writing special purpose

connector code between two systems with independent APIs. Much of the effort in writing these

connectors will be wasted because of the way that the object oriented code has to be written. The

primary issue is the lack of modularity in object-oriented design patterns [1]. When code

implements an interface, the internal (almost arbitrary) code written cannot be used and

extended; rather this leads to copy/paste style reuse when attempting to bridge to multiple

systems.

Figure 4.4 shows an example of creating grades using ASSISTments API with inBloom

and Edmodo. Consider how we would export grades out of ASSISTments. In this figure, we

shows the schema differences in the APIs of inBloom and Edmodo. Some of this functionality

can be shared but there are noticeable differences.

40

Figure 4.47. Multiple instances of connector code adapt to each system

The premise of this thesis is that we need to properly engineering “glue” or bridge code,

and existing languages do little to help the reuse problem in this domain. Rather we must turn to

a model that allows code to be woven together to achieve reuse. As shown in the figure above,

the processing of extract data for sending and receiving is similar but data fields are different.

These differences lead to diverse behaviors in object-oriented design. Recently, in Software

Engineering, there are advanced programming techniques gain momentum to encapsulate

variability such as Feature-Oriented Programming (FOP) or Aspected-Oriented Programming

[2][8]. In this thesis work, we propose to design features that are not rigidly based upon class

structure, and can be composed appropriately to create different connecter code as desire.

41

Chapter 5. Connector Code

5.1. Overview integration between ASSISTments and inBloom

Figure 5.1 is the scenario promoted for integrating between ASSISTments and inBloom.

This has been coded and tested to work successfully in connecting two systems.

Two big rectangles represent two systems needed to be connected. Left hand side is

inBloom and right hand side is ASSISTments. Each rectangle inside is an operation which

triggered by the connector code. The arrows show data exchanged between two systems and

managed by connector code. The down arrow in each system shows the previous step needed to

be completed in order to continue. In this diagram, some required bean classes of connector code

map to object of two systems not to be listed here. Those bean classes are required to build,

serialize objects to json data and deserialize json data to objects. Example of the bean classes

will be provided in later part of the thesis.

In this scenario, the upload back students grade into inBloom is optional. For the current

release of connector code, ASSISTments does not support API to get student grades. The code of

submitting back data to inBloom is done by screening ASSISTments HTML report, based upon

some predefined text to obtain student performance result. Crawling large text file to extract

desire data is not an efficient method.

42

Figure 5.1. Screening ASSISTments HTML Report

Figure 5.2. Promoted integration scenario with inBloom

43

5.2. Overview integration between ASSISTments and Edmodo

Below is the high level view of integration between ASSISTments and Edmodo. The

scenario is very similar to inBloom. Then naturally, the class structure is similar but the code

inside is different in some senses. For example, with inBloom, Authorize.java have to deal with

OAuth2 security while with Edmodo is OAuth.

Figure 5.3. Promoted integration scenario with Edmodo

44

5.3. Detailed Integration Scenario with Edmodo

With all the scenarios below, the integration process is activated by Edmodo site. It

means teachers and students have to have accounts in Edmodo site first.

Figure 5.4. Edmodo Integration Flowchart

45

First of all, teachers in Edmodo would know about ASSISTments. They could search in

Edmodo Store to install the app from ASSISTments.

Figure 5.5. Teacher search for app

Figure 5.6. Teacher installs the app

46

The teacher then makes decision to install the app. Teacher has to pay the fee if needed.

In case the app is free, teacher can immediately chooses which groups of students the app

applied to. And the app then automatically appears in students view.

Figure 5.7. License and Group of students the app will be applied to

Please notice that each ASSISTments app is one problem set. So readers can assume that

there would be hundreds of ASSISTments app in Edmodo. If the teacher first installs

ASSISTments app, via Edmodo API, below are what information we can get:

Teacher user_token: unique number that identify user in the system.
first_name

last_name
user_type: TEACHER
time_zone
groups: list of group that teacher are the owner.
access_token: Authorizes and authenticates user login and
permissions.

Student user_type: STUDENT
user_token
first_name
last_name

 Table 5.1. Example API return.

Based on those information get from Edmodo, ASSISTments automatically does

following steps:

47

1. Create principal account for teacher with assume that:

+ login name: user_token@edmodo.com (538237@edmodo.com)

+ email: login name

+ First name: first_name

+ Last name: last_name

+ Password: randomize (then would reset later if teacher provides the real email address)

+ display name: first_name last_name

2. Create proxy account for students:

+ Username: first_namelast_name. Notice that student never have to login ASSISTments

so Username just for tracing purpose.

 + First name: first_name

 + Last name: last_name

 + display name: first_name last_name

3. Automatically enroll teacher and students into “Edmodo School” (with assume that this

school is created beforehand).

4. Automatically using teacher permission to create class. Class name is the combination of

teacher name, skill builder name.

5. Enroll students in class.

6. Automatically create a new assignment and assigns to students.

Now both students and teacher from Edmodo can be navigate to ASSISTments without

any login required from ASSISTments.

mailto:first_namelast_name@junk.com
mailto:lindakim@junk.com

48

Figure 5.8. Teacher launches ASSISTment app. He/she automatically forward to ASSISTments without
prompting ask for credentials

In case of students:

Figure 5.9. Integration detail steps between ASSISTments and Edmodo under Student Role

In both cases, if teachers or students launch the app successfully, they will be forwarded

inside ASSISTments, which is embeded as an iFrame inside Edmodo.

49

Figure 5.10. ASSISTments appears inside an iFrame in Edmodo

5.4. Object Oriented design and implementation

The bridge code is actually a servlet runs on Apache Tomcat server and waits for . It

handles requests from source system, manipulate them to adapt to target system’s API, sends

request to target system, receives respond from target system, manipulate the respond and

forward respond to source system.

50

Figure 5.11. High level connector design

When we successfully did object-oriented approach for bridging ASSISTments with both

inBloom and Edmodo, there are the structure of code in both package are very similar. Below is

the packages in two solutions:

Table 5.2. Connector code packages listed

inBloom Edmodo

assist.bean assist.bean

assist.job assist.job

global global

51

inbloom.bean edmodo.bean

inbloomJob edmodoJob

inbloomLogin edmodoLogin

utilities utilities

Details of these package classes are listed in an Appendix C.

In the context of functionality, we can see the similar in code structure in both solution.

Both solutions have 7 packages and each package pair inline exposed very similar

functionalities.

The assist.bean package contains data objects that map to API payload of ASSISTments.

It also contains Serializer object responsible for serial data object into Json format. And

assist.bean also contains the data access object that map to data fields in database.

This Json object then be transferred between system via Internet.

package assist.bean;

public class Class {
 private String courseName;
 private String courseNumber;
 private String sectionNumber;
 public String getCourseName() {
 return courseName;
 }
 public void setCourseName(String courseName) {
 this.courseName = courseName;
 }
 public String getCourseNumber() {
 return courseNumber;
 }
 public void setCourseNumber(String courseNumber) {
 this.courseNumber = courseNumber;
 }
 public String getSectionNumber() {
 return sectionNumber;
 }
 public void setSectionNumber(String sectionNumber) {
 this.sectionNumber = sectionNumber;
 }

52

}

Figure 5.12. Sample code to present json object

public class ClassSerializer implements JsonSerializer<Class> {

 @Override
 public JsonElement serialize(Class classObj, Type type,
 JsonSerializationContext context) {

 final JsonObject jsonObject = new JsonObject();
 jsonObject.addProperty("courseName",
 classObj.getCourseName());
 jsonObject.addProperty("courseNumber",
 classObj.getCourseNumber());
 jsonObject.addProperty("sectionNumber",
 classObj.getSectionNumber());
 return jsonObject;
 }
}

Figure 5.13. Sample code to serialize an json object

public class ClassDaoBean implements Serializable {
 private String partner_refernce;
 private int external_refernce_type_id;
 private String external_refernce;
 private String user_access_token;
 private String partner_external_reference;
 private String user_connector_token;
 private String note;

 public String getPartner_refernce() {
 return partner_refernce;
 }
 public void setPartner_refernce(String partner_refernce) {
 this.partner_refernce = partner_refernce;
 }
 public int getExternal_refernce_type_id() {
 return external_refernce_type_id;
 }
 public void setExternal_refernce_type_id(int

 external_refernce_type_id) {
 this.external_refernce_type_id = external_refernce_type_id;
 }
 public String getExternal_refernce() {
 return external_refernce;
 }
 (...)
}

Figure 5.14. Sample code to represent data access object

53

In the assist.job package, all classes are servlet and responsible for sending GET request

to ASSISTments by using ASSISTments API. Each servlet is invoked automatically if dictionary

data need to be created in ASSISTments side or manually if users trigger an event in external

system side.

Invoked automatically if a new teacher from a new system wants to use ASSSITments.

The bridge code will ask ASSISTments to automatically teacher into school without teacher

notice.

Invoked manually if teacher requests such as he/she wants to create assignment in

ASSISTments. Then the bridge code will ask ASSISTments to do so.

Figure 5.15. Example code invoked automatically.

String nces = ApplicationSettings.SchoolNCES;

School school = new School();
school.setNces(nces);

GsonBuilder gsonBuilder = new GsonBuilder();
gsonBuilder.registerTypeAdapter(School.class, new SchoolSerializer());
Gson gson = gsonBuilder.create();

String payloadJson = gson.toJson(school);
(...)
String resJson = ASSISTAPIUtilities.getJSONNotBehalf(APISchool,

payloadJson);

Gson gsonSchoolRef = new GsonBuilder().create();
SchoolRef schoolRef = gsonSchoolRef.fromJson(resJson, SchoolRef.class);

Global package

This package contains configuration information for the bridge code to work. Those

global settings are used everywhere in the bridge code and convenient to access. The information

such as ASSISTments API URLs are stored here.

External system bean

54

The external system beans, such as edmodo.bean or inbloom.bean, are very similar to

assist.bean in structure of code. But their functionalities are map external system API object. The

difference is all of the objects are transaction objects because dictionary data already exist in

external system. We should notice again that external system is the trigger entity. And all the

dictionary data needed to be set up beforehand to allow trigger to be fired from external system.

External system job

Similar to assist.job package, all classes under inbloom.job or edmodo.job are servlets

and controllers. Those servlets receive requests, initiate correspond controllers then and waiting

controllers to be invoked. Transactions are invoked manually with users notice or automatically.

Example of invoked automatically such as connector code wants to get more detail information

of user by sending extra API request to Edmodo.

External system login

The login functionality is grouped in separate package because of its natural complexity.

Each external system has its own authentication and authorization methods to validate users. For

example, with inBloom, it uses oAuth2 and with Edmodo it uses oAuth1a.

Utilities package

This package has classes responsible for constructing API requests to ASSISTments or

Edmodo. Methods in those classes are static and are invoked by controllers when needed. It also

handle the response returned. And when it finishes, it will return control to controllers with status

of response is valid or exception occurs to let controllers what need to be done next.

public static String sendURLGet(String fullURL) {

 BufferedReader reader = null;
 String checkResponse = "";

55

 try {

 URL url = new URL(fullURL);
 HttpURLConnection connection = (HttpURLConnection) url
 .openConnection();

 connection.setRequestMethod("GET");

 BufferedReader in = new BufferedReader(new
 InputStreamReader(
 connection.getInputStream()));

 ApplicationSettings.setErrorStatusCode(
 connection.getResponseCode());

 String inputLine;
 StringBuffer response = new StringBuffer();
 while ((inputLine = in.readLine()) != null) {
 response.append(inputLine);
 }
 in.close();
 checkResponse = response.toString();

 } catch (Exception e) {
 System.out.println("An error might occur with sendURLGet:
 " + fullURL);
 e.printStackTrace();
 ApplicationSettings.setErrorTitle("Error while
 communicating with Edmodo. We are sorry cannot proceed
 further!");
 ApplicationSettings.setErrorDetail("An error
 might occur with sendURLGet: " + fullURL);
 return null;
 }
 return checkResponse;
 }
}

Figure 5.16. Sample code to send API request.

public String getProfile(ArrayList<String> userTokens) {

 String request = "";
 setResources("profiles");

 Gson gson = new Gson();
 String userTokensJson = gson.toJson(userTokens);

 request = "/" + getResources() + "?" + "api_key=" +

getApi_key()+"&access_token="+getAccess_token()+"&user_tokens="+userTokensJs

on;
 request = ApplicationSettings.EdmodoAPIBase + request;
 return request;

56

 }
}

Figure 5.17. Sample code to construct API request.

57

Chapter 6. Featured-based Approach

P. Elizondo and K-K Lau proposes different approach than direct and indirect message

connector approach [27]. As illustrated in the figure below, components do not call methods in

other components. Instead, all method calls are initiated and coordinated by the connectors. The

round dots denote the origins of the communication and coordination.

Figure 6.1. Proposed approach for connectors

This is clear contrast to both direct and indirect messaging technology since components

originate communication and coordination. And they are convinced that their connector types

support reusable not only at design but also at implementation phase.

And we found that our connector works as similar as Elizondo and Lau suggested. As

describe before in connection workflow in Figure 5.4, users from Edmodo initiate the process

then that is all. Subsequence steps are to be performed by the connector. The connector invokes

ASSISTments or Edmodo services when it needs.

58

6.1. Refactoring OOP to extract features

A feature is a unit of functionality of a software system that satisfies a requirement.

Therefore in attempt to refactor already working code, we move all the functionalities into

features. However, we still have to keep the service handler in the object-oriented project. This is

because for the time being, FeatureIDE cannot create a dynamic website project. So the OOP

dynamic web application will delegate its work to correspond feature.

@WebServlet("/CreateAssignment")
public class CreateAssignment extends HttpServlet {
private features.CreateAssignment f_createAssignment = new
 features.CreateAssignment();

 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {
 f_createAssignment.doGet(request,response);
 }
}

Figure 6.2. OOP dynamic website invokes a feature

public class CreateAssignment {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,IOException {
 ….
}

Below is the model of Edmodo feature for the first attempt:

Figure 6.3. Edmodo Feature

59

6.2. Layers design and implementation

A layer is a set of files that define a feature of an application. Code representations are

expressed as .jak files. For convenience, we list the integration scenario of inBloom and

ASSISTments below for reference. In this scenario, we remove all the java classes represent

controllers in OOP approach. We replace those controllers by layer classes. Detail of the

designation is listed below.

And because of similar features design and implementation between feature-based

connector between inBloom and Edmodo, we are going to list features of Edmodo connector

code.

Figure 6.4. Edmodo Integration

60

6.2.1. Get Edmodo Teacher and Students

Feature: Authorize.jak.

Initiate entity: Edmodo users

Functionalities: An Edmodo user clicks one ASSISTments app. This app automatically

send an API call to connector code requesting to launch ASSISTments app. Connector code

handles the request but there is some security check happen there. The connector code has to

make sure who is making the request by checking known api_key.

Connector code then has to check whether or not it is the user first launch ASSISTments

app.

If it is the first launch then it has to save user information such as user_token from

Edmodo into connector database and then automatically request ASSISTments to create user

account. If a user is a teacher then students accounts in his group also created.

If users already have accounts then he/she is forward directly inside ASSISTments.

6.2.2. Create Teachers and Students accounts in ASSISTments

Feature: TransferUserFromEdmodo.jak.

Initiate entity: Automatically invoked after Authorize.jak

Functionalities: Right after authorize and authenticate users from Edmodo, connector

sends request to create user accounts in ASSISTments. Normally, accounts will be created in

ASSISTments. Teacher will be a principal account and student will be a proxy account. If there

is something wrong with the process then Edmodo user will be saved in connector database

without creating a new users in ASSISTments.

61

6.2.3. Create dictionary data in Edmodo

Feature: CreateAssignment.jak.

Initiate entity: Automatically invoked when TransferUserFromEdmodo.jak finishes.

Functionalities: This will be invokded when ASSISTments allows teacher to create an

Edmodo assignment. This function maybe useful when teacher wants to transfer students

performance from ASSISTments back to Edmodo.

Figure 6.58. ASSISTments final screen

6.2.4. Create school data in ASSISTments

Feature: CreateSchool.jak

Initiate entity: Invoked automatically by connector after successfully create user

accounts in ASSISTments.

Functionalities: In order for users do his/her normal job in ASSISTments, ASSISTments

requires he/she needs to be assigned to a school. If user from Edmodo has valid school NCES

code then new school automatically created if this school is not existed before. Otherwise,

teacher and his students are in “Edmodo School”.

6.2.5. Assign users to school.

Feature: AssignUserSchool.jak

62

Initiate entity: Invoked automatically by connector after school created in ASSISTments

Functionalities: Schools are required for every users in ASSISTments. This feature does

assign new users to a school.

6.2.6. Create class

Feature: CreateClass.jak

Initiate entity: Invoked automatically by connector after assigning users to school in

ASSISTments

Functionalities: Teacher needs class to organize his/her students. ASSISTments requires

teacher access_token to behaves on his/her behalf to create class. One group in Edmodo

correspond to one and only one class in ASSISTments. Number of groups in Edmodo will be

created exactly the same number of classes in ASSISTments.

6.2.7. Enroll students in class in ASSISTments

Feature: EnrollStudentClass.jak

Initiate entity: Invoked automatically by connector after creating classes.

Functionalities: Students with the same group in Edmodo will be automatically enrolled

into the same class in ASSISTments.

6.2.8. Create assignment in ASSISTments

Feature: CreateAssignmentASSIST.jak

Initiate entity: Invoked automatically by connector after assign users to school in

ASSISTments

Functionalities: Connector code automatically send REST API to ASSISTments to

request for creating an assignment in ASSISTments. Each ASSISTments app in Edmodo is one

63

assignment in ASSISTments. With this, students from Edmodo can login and do the assignment

in ASSISTments.

6.2.9. Student login Edmodo to do assignment in ASSISTments.

Feature: Authorize.jak

Initiate entity: Students in Edmodo

Functionalities: Students from Edmodo click on an ASSISTments app and they are able

to forward inside ASSISTments to do the assignment.

6.2.10. Transfer back assignment grade back to Edmodo

Feature: ScreenHTMLReport.jak and UploadGradeToEdmodo.jak

Initiate entity: Teachers in Edmodo

Functionalities: This functionality is optional for a teacher in ASSISTments when they

want to send back the grade to Edmodo. First of all, the connector code will crawl generated

HTML report in ASSISTments, reads each student performance. Then connector code sends

request back to Edmodo to update or create new grade there.

64

Chapter 7. Conclusions and Future Work

7.1. Conclusion

In this thesis, we put forward the idea of using Feature-Oriented Programming technique

in practice by developing connectors between systems. In the first part, we introduce the basic

concepts of FOP with examples from academics simple program HelloWord to Linux

configuration tool, an industrial complex program. Then we go more in-depth details on

designing and implementing the connector code by using Objected Oriented Programming

technique. This step is important since FOP is an extension of OOP. The successful of the OOP

solution is illustrated by having many ASSISTments apps reviewed by Edmodo development

teams and appears in Edmodo Store.

By having working OOP connector code, we can capture all the variations of each

working solution between ASSISTments and inBloom, and ASSISTments and Edmodo. Then

we refactor OOP connector code to develop working connector solution in FOP. However,

during the time of the thesis work, FeatureIDE does not support for creating dynamics web

project. So we have no choice to keep the servlet class structure from OOP and apply to FOP.

Most of effort reduced is in development of controller classes in FOP ASSISTments side.

The main contribution work of this thesis is to represent a case study to integrate systems

using FOP technique. There are no literature on integrating system using FOP but similar

concepts in Component-based Software Engineering. Based upon this thesis work, we conclude

that using FOP technique is totally possible and very promising on integrating systems.

65

7.2. Future Work

FeatureIDE currently one of the best academics tool supports for Feature-Oriented

Software Development. However, this tool is still in early development stage and not all standard

Java is supported such as ability to create dynamics web application. FeatureIDE is open-source

and published under General Public License, so developers are encourage to extend it. We hope

that in the near future, we could spend effort to the development of FeatureIDE by let it

understand web application notation.

In this thesis work, we only have the connector code working for two prototype systems,

Edmodo and inBloom. Since we are receiving increasing requests to integrate ASSISTments

with Learning Tools Interoperability (LTI), we hope that in the near future, we could advance the

thesis work by integrating seamlessly more learning management systems with ASSISTments.

66

Appendix A. Example of data return back from Edmodo

Teacher and student tokens

Teacher user_token: unique number that identify user in the system (do not change).
first_name
last_name
user_type: TEACHER
time_zone
groups: list of group that teacher are the owner.
access_token: Authorizes and authenticates user login (change each time app

launched)

Student user_type: STUDENT
user_token: unique number that indentify user in the system (do not change)
first_name
last_name
access_token (change each time app lauched)

Teacher school profile

Profile edmodo_school_id:123456
nces_school_id:ABC987654
name:Edmodo High
address:1200 Park Place, Suite 350
city:San Mateo
state:CA
zip_code:94403
country_code:US

Group Info

Group group_id:379557
title:Period 1
member_count:20,
owners:[
 b020c42d1,
 693d5c765
],
subject:Math,
sub-subject:Algebra
start_level:9th,
end_level:9th

67

Appendix B: Connector code table

B1. API tables already exists in ASSISTments:

B.1.1. external_reference_types

This table provides type of reference created.

Field Type Foreign Key Note

id integer

table_name character[] Values now:
1. users
2. schools
3. student class sections
4. class assignment
5. individual assignments
6. student classes.

B.1.2. external_references

This table will tell what type of data created via API by ASSISTments.

Field Type Foreign Key Note

id integer

external_reference character[] Values in this column are automatically
generated by ASSISTments
correspond to request to create users,
class, school via API

partner_id integer Point out who makes API request

type_id integer Yes reference to id field in
external_reference_types table

db_id integer Yes reference to id field in correspond
table.

For example, if type_id = 1 (mean
user) then this db_id reference to id
field in users table.

68

B.1.3. access_tokens

Field Type Foreign Key Note

id integer

user_id character[] Yes point to id field of users table

partner_id integer

expiration timestamp

token character[]

B.2. A new bridge API tables

Table name: partner_external_references

Field Type Foreign Key Note

id integer

partner_referen
ce

character[] Shows users
belongs to which
connecting system.
Point to
partner_refernece of
api_partners table.

Point out who makes API request
This is the partner’s reference identifier
provided by ASSISTments.

external_refere
nce_type_id

integer Specifies the object type of
represented by this row. This is the id
value found in the table
external_reference_types

external_refere
nce

character[] This is an ASSISTments-provided
unique identifier to an ASSISTments
object.

The type of object is specfified by the
external_reference_type_id above.

user_access_t
oken

character[] When external_reference refers to an
ASSISTments user, this is the access
token granted to partner_reference to
act on behalf of the ASSISTments
user.

69

partner_extern
al_reference

character[] This value comes from the partner
application (or site) and uniquely
identifies an object in the partner’s
application.

The type of object is specfified by the
external_reference_type_id above.

user_connector
_token

character[] When partner_external_reference
refers to a partner’s user, this is the
access token granted to act on behalf
of the partner’s user.

note text Data, specific to the partner application
/ site, about the object represented by
this row.

70

Appendix C. Connector Classes

C1. Model Classes

71

C2. Controller Classes

References

[1] Hannemann, J., Kiczales, G., “Design Patterns Implementation in Java and AspectJ”,

Proceedings of the 17th ACM conference on Object-oriented programming, systems,

languages, and applications (OOPSLA ’02), Nov 2002.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J.

Irwin. Aspect-Oriented Programming. In Proceedings of the European Conference on

Object-Oriented Programming (ECOOP), pages 220–242, 1997.

72

[3] D. Batory, J. Liu, and J. N. Sarvela. Refinements and Multi-Dimensional Separation of

Concerns. In Proceedings of the International Symposium on Foundations of Software

Engineering (FSE), pages 48–57, 2003.

[4] H. Ossher and P. Tarr. Hyper/J: Multi-Dimensional Separation of Concerns for Java. In

Proceedings of the International Conference on Software Engineering (ICSE), pages 734–

737, 2000.

[5] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. Addison-

Wesley, 2002.

[6] K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engineering. Foundations,

Principles, and Techniques. Springer-Verlag, 2005.

[7] C. Prehofer. Feature-Oriented Programming: A Fresh Look at Objects. In Proceedings of the

European Conference on Object-Oriented Programming (ECOOP), pages 419–443, 1997.

[8] Czarnecki, K.; Wasowski, A., "Feature Diagrams and Logics: There and Back Again,"

Software Product Line Conference, 2007. SPLC 2007.

[9] George T. Heineman, An Instance-Oriented Approach to Constructing Product Lines from

Layers, WPI-CS-TR-05-06.

[10] Abbott R. Program design by informal English descriptions. Communications of the ACM

1983; 26(11).

[11] Wirfs-Brock R, Wilkerson B, Wiener L. Designing Object-Oriented Software. Prentice-

Hall: Englewood Cliffs, New Jersey, 1990.

[12] Gomaa H. Software Design Methods for Concurrent and Real-Time Systems. Addison-

Wesley: Reading, Massachusetts, 1993.

73

[13] Jacobson I, Christerson M, Jonsson P, Overgaard G. Object-Oriented Software Engineering.

Addison-Wesley: Workingham, England, 1992.

[14] Beck K, Cunningham W. A laboratory for teaching object-oriented thinking. SIGPLAN

 Notices 1989; 24(10).

[15] M Kuhlemann, M Rosenmüller, S Apel, T Leich, On the duality of aspect-oriented and

feature-oriented design patterns. Proceedings of the 6th workshop on Aspects, components,

and patterns for infrastructure software, 2010

[16] Thüm et al, Applying Design by Contract to Feature-Oriented Programming, FASE 2012

[17] P. Velasco Elizondo and K.-K. Lau, A Catalogue of Component Connectors to Support

Development with Reuse. The Journal of Systems and Software 83(1165-1178), 2010.

[18] Emmerich, W.; Kaveh, N., Component technologies: Java beans, COM, CORBA, RMI, EJB

and the CORBA component model, ICSE 2002. Proceedings of the 24rd International

Conference, 2002.

[19] Nastasi, B.K., & D.H. Clements. Motivational and social outcomes of cooperative education

environments. Journal of Computing in Childhood Education, 1993

[20] Hadley, M., & Sheingold, K. Commonalties and distinctive patterns in teachers’ integration

of computers. American Journal of Education, 1993

[21] Harmelen and Workman, Analytics for Learning and Teaching, CETIS 2013.

[22] Sincero J, Schirmeier H, Schröder-Preikschat W, Spinczyk O, Is the Linux kernel a software

product line? In: Proc. Int’l Workshop Open Source Software and Product Lines (SPLC-

OSSPL), 2007.

http://scholar.google.com/citations?view_op=view_citation&hl=en&user=j27MIVUAAAAJ&citation_for_view=j27MIVUAAAAJ:WF5omc3nYNoC
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=j27MIVUAAAAJ&citation_for_view=j27MIVUAAAAJ:WF5omc3nYNoC

74

[23] Tartler R, Lohmann D, Sincero J, Schröder-Preikschat W. Feature consistency in

compiletime-configurable system software: Facing the linux 10,000 feature problem. In:

Proc. Int’l EuroSys Conference (EuroSys). ACM Press, 2011.

[24] K. Kang, S. Cohen, J. Hess, W. Novak, S. Peterson. Feature-oriented domain analysis

(FODA) feasibility study. Technical Report CMU/SEI-90-TR-021, 1990.

[25] K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and

Applications. Addison-Wesley, 2000.

[26] J. Liu, D. Batory, and S. Nedunuri. Modeling Interactions in Feature-Oriented Designs. In

Proceedings of the International Conference on Feature Interactions in Software and

Communication Systems (ICFI), 2005.

[27] Thum, T., Kastner, C., Erdweg, S., and Siegmund, N. Abstract features in feature modeling.

In Proceedings of the 2011 15th International Software Product Line Conference, 2011.

[28] A catalogue of component connectors to support development with reuse P Velasco-

Elizondo, KK Lau Journal of Systems and Software 83 (7), 2010.

