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Abstract 

Object-Oriented Programming (OOP), in the past two decades, has become the most 

influential and dominant programming paradigm for developing large and complex software 

systems. With OOP, developers can rely on design patterns that are widely accepted as solutions 

for recurring problems and used to develop flexible, reusable and modular software. However, 

recent studies have shown that Objected-Oriented Abstractions are not able to modularize these 

pattern concerns and tend to lead to programs with poor modularity. Feature-Oriented 

Programming (FOP) is an extension of OOP that aims to improve the modularity and to support 

software variability in OOP by refining classes and methods. In this thesis, based upon the work 

of integrating an online tutor systems, ASSISTments, with other online learning management 

systems, we evaluate FOP with respect to modularity. This proof-of-concept effort demonstrates 

how to reduce the effort in designing integration code. 
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Chapter 1. Introduction 

1.1. Motivation 

Before the advent of mass production, the manufacturing process required handcrafted 

work and each product was unique, in the sense that is was built from scratch. During the age of 

industrialization, mass production based upon assembly lines used standard parts were 

constructed individually but then could be combined/assembled to create more complex 

products. The focus on standardized products reduced production costs and improved the quality 

of products and processes. Recognizing that different customers have different needs and wishes, 

manufacturers started to increase diversity in their product portfolios. In a way, mass production 

is similar to mass customization with just a few variations. Below is an example from the fast-

food industry of mass production with individualized configuration [8]. 

  

 

Figure 1.1. Modeling variability in a domain 
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1.2. Literature review on software integration perspective 

We have found no other research targeting the use of feature oriented programming 

(FOP) in integration code at the time that this thesis was written. However, there is a similar 

engineering technique that aims to develop software systems by reusing pre-existing software 

components rather than features called Component-based software engineering (CBSE). Lau et 

al Error! Reference source not found. summarized that component-based approaches tend to 

use the concept of composition by taking two or more components then putting them together in 

some way. Component composition mechanisms fall into two main categories: direct message 

passing and indirect message passing. In general, with direct message passing scheme, there are 

two distinct role: the sender and the receiver. And when components are connected by direct 

message, data flow and control flow are mixed with the computation, and thus the message tends 

to “hard-wired” into component. It makes sender and receiver tightly couple together. 

Connection by indirect message passing typically happens with glue code that passes messages 

between components. To connect a component to another component, a connector is used, when 

notified by the former, invokes a method in the latter.  

 

Figure 1.2. Connector with direct messaging 
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Figure 1.3. Connector with indirect messaging 

 

Example of direct messaging are remote procedure calls (RPC). Models that adopt direct 

messaging include the CORBA Component Model (CCM) [17]. Models that adopt indirect 

message include JavaBeans [18].  

1.3. The Need to Integrate Learning Management Systems 

Learning mathematics in classroom’s today is different than it was twenty years ago. 

While there is no definite proof for the one “right way” to teach mathematics, it increasingly 

important for teachers to adopt effective teaching strategies. Incorporating technology into the 

teaching of mathematics has proven to be an effective method of mathematics Error! Reference 

source not found.. Hadley and Sheingold suggest that technology is most valuable to teaching 

and learning once teachers integrate it as a tool into everyday classroom practice and into  

subject-matter curricula Error! Reference source not found.. The need to integrate between 

technologies emerges when teachers need to use a variety of teaching activities, while each 

integrated learning technology is designed only to deliver one particular set of instructional 

content.  
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Besides the purpose of integrating learning technologies for sharing content across, there 

are increasingly requirements for utilizing data between systems for researching purpose. As 

Harmelen and Workman identify, learning analytics refers to the interpretation of a wide range 

of data, which can be collected by outcomes data across a wide variety of learning tools [20]. For 

example, ASSISTments collect data from students such as assignment performance but social 

interactions, provided by Edmodo from its social learning platform, are not directly assessed as 

part of student’s educational purpose.  
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Chapter 2. Background 

2.1. Software Product Lines 

Software product lines emerged since late of 1960s and gained more momentum in 

software industry from 1990s. The main idea is that software systems should be constructed from 

reusable parts instead of being developed from scratch. And instead of composing a software 

system always in the same way, it should be based upon the customer’s requirements, where 

customers can choose from pool of configuration options. A clear example of a successful 

software product line is the Linux kernel which runs on a variety of platforms, such as embedded 

devices, desktop systems, and large-scale servers Error! Reference source not found.. Linux 

also supports different applications, from office software and games, to high-performance 

computing and server software. In able to efficiently supports all kinds of different platforms and 

application scenarios, Linux allows users to choose among large set of options (up to 10,000 

features according to Tartler et al. [23]) to define the Linux kernel to fit their needs. The Figure 

below is a screenshot of Linux’s configuration tool, called Kconfig.  
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Figure 2.1. Linux’s kernel configuration tool 

 

Clearly, the industrialization of software development is facilitated by software product 

lines. Ideally, based on set of reusable parts, a software manufacturer can generate a software 

product that adapt to certain customer’s requirements. The concept of feature is a core concept to 

distinguish the products of a product line. For example: some customers requires Email client 

that supports both IMAP and POP3 but others only need POP3. 

2.2. What is Feature 

Feature-Oriented Programming (FOP) is a paradigm for the construction, customization, 

and synthesis of large-scale software systems. FOP is the study of feature modularity and 

programming models that support feature modularity. The concept of a feature is at the heart of 

FOP. A feature is a unit of functionality of a software system that satisfies a requirement, 

represents a design decision, and provides a potential configuration option. The basic idea of 
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FOP is to decompose a software system in terms of the features it provides. The goal of the 

decomposition is to construct well-structured software that can be tailored to the needs of the 

user. Typically, from a set of features, many different software systems can be generated that 

share common features and differ in other features. The set of software systems generated from a 

set of features is also called a software product line. In other words, A product line shares a 

common set of features developed from a common set of software artifacts [3][5][6]. 

According to Czarnecki, feature models, in their basic form, contain mandatory/optional 

features, feature groups, and implies and excludes relationships [8]. A feature model is a tree of 

features, whose root encapsulates the base feature, the minimum unit of functionality required 

for the existence of the system. Other nodes in the tree represent either solitary features, which 

can be optional or mandatory, or grouped features, which can be either exclusive-or groups or or-

groups. 

2.3. Eclipse FeatureIDE 

FeatureIDE is an open-source solution tool for product line implementation, targeted 

primarily at researchers, teachers, and students. FeatureIDE is installed using the Eclipse plug-in 

mechanism. In FeatureIDE, the whole application is divided into parts representing different 

features. While this may sound similar to the concept of object-oriented classes there is an 

important difference. A feature in our sense always represents a certain aspect of the application.  

  

Every feature can be related to an arbitrary number of software artifacts. In FeatureIDE, 

these artifacts can be classes, methods, fields or even single statements as well as additional 

resources like graphics or user-documentation. Especially, the option to change only parts of a 

method offers great flexibility in the design of features. In software product lines, not all 
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combinations of features are considered valid and lead to useful software systems. A feature 

model defines the valid combinations of features in a domain Error! Reference source not 

found.. Features models have a hierarchical structure, whereas each feature can have sub-

features Error! Reference source not found.. The graphical representation of a sample feature 

model is feature diagram and example is shown below:  

 

        Figure 2.2. Sample Feature Model 

The features Hello and World are mandatory and simply print the features name. The 

features Wonderful and Beautiful are not required. Connections between a feature and its group 

of sub-features are distinguished as: and, or, and alternative [25]. The children of and groups can 

be either mandatory or optional. A feature is abstract if it is not mapped to implementation 

artifacts and concrete otherwise [26]. A feature model may also have cross-tree constraints to 

define dependencies which cannot be expressed otherwise.  

Feature models are a common notion for variability and their semantics is as follows: the 

selection of a feature implies the selection of its parent feature. Furthermore, if a feature is 

selected, all mandatory sub-features of an and group must be selected. In or groups, at least one 

sub-feature must be selected and in alternative groups, exactly one sub-feature has to be selected.  

In FOP, classes are decomposed into feature modules, each implementing a certain 

feature. A feature module may contain methods and fields of several classes. Feature modules 

can be composed into a program based on a given configuration and order of the features. 
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Using the example in the figure above, here are the actual object-oriented classes 

contained within each of the designated features: 

Hello Feature 

public class Main { 
 public void print() { 
  System.out.print("Hello"); 
 } 

  
 public static void main(String[] args) { 
  new Main().print(); 
 } 
} 

Figure 2.3. Hello Feature Sample Code 

Wonderful Feature 

public refines class Main { 
 public void print() { 
  Super().print(); 
  System.out.print(" Beautiful"); 
 } 
} 

Figure 2.4. Wonderful Feature Sample Code 

Beautiful Feature (similar to Wonder Feature) 

World Feature. 

public refines class Main { 
 public void print() { 
  Super().print(); 
  System.out.print(" World!"); 
 } 
} 

Figure 2.5. World Feature Sample Code 

 

Example of valid configurations are shown below: 
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Hello Beautiful World 

 
 
Hello Wonderful Beautiful World 

Figure 2.6. Valid HelloWorld Configuration 

 

2.4. Integrating Systems 

2.4.1. ASSISTments 

Assistance and assessment are integrated in ASSISTments, a web-based math tutoring 

system for 7th-12th grade students which offers instruction to students while providing a detailed 

evaluation of their abilities to teachers. The ASSISTments System is being built to identify the 

difficulties individual students––and the class as a whole––are having, and teachers will be able 

to use this detailed feedback to tailor their instruction to focus on those difficulties. Unlike other 

assessment systems, the ASSISTments system also provides students with intelligent tutoring 

assistance while assessment information is collected. Tutorial help is given if a student answers 

the question wrong or asks for help. The tutorial help assists the student learn the required 

knowledge by breaking the problem into sub questions called scaffolding or giving the student 

hints on how to solve the question. 

Figure below shows a screenshot of an ASSISTments problem with three scaffolding 

questions. Solving this problem involved understanding congruence, perimeter, and equation 

solving. If the student had answered correctly, she would have moved on to a new problem. 

However, she incorrectly answered 23, and the system responded with, “Hmm, no. Let me break 
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this down for you.” It then presented the student with some questions that would help to isolate 

the skills with which she had difficulty and to tutor her so that she could figure out the correct 

actions. The tutor began by asking a scaffolding question that isolated the step involving 

congruence. Eventually she got the scaffolding question correct (by answering “AC”) and then 

was given a question about perimeter. The figure shows that the student selected ½ * 8 * x as the 

formula for perimeter, and the system responded with a “buggy message” letting the student 

know she seems to be confusing perimeter with area. The student requested two hint messages, 

as shown at the bottom of the screen. The tutoring ends with a final question, which is actually 

the original question asked again. The student then will go on to do another math problem and 

will again get tutoring if she gets it wrong. 
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            Figure 2.2. Sample ASSISTments screen 

 

ASSISTments provides a set of RESTful APIs that allow external partners to integrate 

with the system. Some highlight APIs that allows to create users account, ask for access_token, 

and forward users to go inside ASSISTments without asking for credentials. Those APIs that 

allow ASSISTments to interact with other systems in seamless manner, without interruption, rely 

on Single Sign On capability. 



21 
 

Some examples ASSISTments APIs include: 

User Login: 

 

Create User 

 

2.4.2. Edmodo 

Edmodo can be incorporated into classrooms through a variety of applications including 

Reading, Assignments, and Paper-studying. Current uses include posting assignments, creating 

polls for student responses, embedding video clips, create learning groups, post a quiz for 

students to take, and create a calendar of events and assignments. Students can also turn in 

assignments or upload assignments for their teachers to view and grade. Teachers can annotate 

the assignments directly in Edmodo to provide instant feedback. 
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Parents can also view this website, either under their child's username or they may create 

their own account. The Parent accounts allow parents to see their children's assignments and 

grades. Teachers, subject to creating and maintaining parental records, could send alerts to 

parents about school events, missed assignments, and other important messages. Similarly, 

teachers can, subject to creating and maintaining class-participant data, generate printable class 

rosters. so if a teacher is going to have a substitute teacher in their classroom who needs a printed 

roster, they can print one from an Edmodo account. 

 

Figure 2.3. Sample Edmodo screen 

Student and, possibly parental, data is normally already maintained in a school's 

information management system and so would require ongoing effort and care to duplicate and 

maintain data on Edmodo outside the school's own security controls. 

Edmodo, as with any social network, can be used as a place to post and critique work, 

facilitate collaboration, and post creative writing for an audience. Educational social networking 
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sites, like Edmodo, offer an opportunity to “connect with students and help them create norms 

and reflect on how different online actions will be interpreted. Edmodo and other social 

networking sites offer educators a chance to explore the use of social networks and use of media 

and online formats. Edmodo is used worldwide but mainly from the US. In Edmodo, teachers 

can put posts with attachments such as videos or pictures from their iPad, iPhone or computer 

and put it in a group folder in which pupils and teachers can access the post in a safe learning 

environment. It can be used to teach children how to create podcasts, posts and basic website 

designing. 

With Edmodo's Apps API, Apps can integrate with Edmodo’s core features such as: 

Students can turn in Edmodo assignments, teachers can upload grades into teachers’ grade 

books, and content can be stored immediately into teachers’ libraries  

This figure below list an example Edmodo APIs: 
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Launch Request 

 
 

2.4.3. inBloom 

inBloom funded by the Bill & Melinda Gates Foundation and the Carnegie Corporation, 

with mission is to provide a valuable resource to teachers, students and families, to improve 

education. inBloom makes it easier for teachers to see a more complete picture of individual 

student progress than what most currently have access to through its secure, single-access point. 

With this information teachers are able to better identify where each student needs extra 

attention, and to tailor education materials that maximize the one-on-one time they spend with 
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students. Further, currently it’s difficult for teachers to find the many valuable instructional 

materials that exist across the country or even in their own school districts. Through its resource 

index, inBloom saves teachers valuable time by helping them more easily search for and share 

these materials. 

inBloom provides REST API, full client-server Web service with features such as: Bult-

in HTTP basic access authentication, support JSON data-interchange format and HTTP methods 

to exchange representation of resources.  

 

 
Figure 2.4. Sample inBloom screen 
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This figure below list an example inBloom APIs: 
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Chapter 3. Case study 

Heineman introduced an approach to construct encapsulate varieties via layers  [9]. His 

undergraduate class developed dozen of plugin components for a card solitaire game engine with 

MVC (Model-View-Controller) design patterns. To maximize reusable code, he developed a set 

of layers that can be assembled to form solitaire variation plugins. 

  

 

Figure 3.1. A feature diagram that captures Solitaire variations 

 

In the figure above, a feature model that describes the variability of Kombat solitaire 

game. The variants of KombatSolitaire can be produced in this domain. The root of the tree 

denotes the concept that is modeled. All other boxes denotes features, where child features 

depend on parent features. 

  

Table 3.1 below compares the reusability factor for generated layers of four solitaire 

plugin components against their hand-coded counterparts. 
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Table 3.1. Reusability Comparison 

  Java ACDK 

  #Classes (#reused) # Layers (#reused)  % 

Idiot 6 (0) 16 (13) 81% 

Narcotic 7 (0) 17 (13) 76% 

GrandFatherClock 6 (0) 31 (29) 93% 

Klondike 11 (0) 31 (25) 80% 

 

3.1. KombatSolitaire Design 

Kombat Solitaire (KS) is a Java application that enables head-to-head competition of 

solitaire variations played simultaneously over the Internet. KS was developed as part of an 

undergraduate software engineering course. Each plugin represents a single solitaire variation. A 

rich set of model elements are already provided, as shown in Table 3.2. 

Table 3.2. Classes within KS model hierarchy 

Card Single Card in a deck 

Stack  Abstract representation of cards in sequence 

from bottom to top 

Pile Stack whose topmost card is visible 

Deck A stack of 52 cards forming a playing deck 

Column Stack of cards that reveals cards below the 

topmost card 

BuildablePile Pile of face down cards on top of which a 

Column can be built (as in Klondike) 
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Each model element shown (except for the abstract Stack class) has a corresponding view 

element that depicts the model element within the solitaire playing field. Each KS plugin is 

responsible for constructing a model of the game, which may include a deck, columns where 

cards are stacked, a running score, and waste piles. The plugin then defines the views for these 

model elements over a 2-dimensional playing field such that no two views intersect each other. 

Finally, a controller is registered with each view to manage mouse events (press, release, and 

click) and perform moves as allowed by the solitaire variation. The sum total of all the 

controllers enforces the rules of a solitaire variation. 

 

The KombatSolitaire case study presented here is a microcosm of the overall thesis effort. 

That is, this thesis will demonstrate how to convert ordinary Java code into a set of features that 

represent the same functionality. In a straight object-oriented implementation of a solitaire 

variation, a programmer would construct objects from pre-existing classes (such as found in 

Table 3.2) to implement the required variation. For example, assume a developer wanted to 

implement the FreeCell solitaire variation, shown below: 

 

 
Figure 52. Sample KombatSolitaire Klondike Screenshot 
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In this variation, there are four Free Cells in the upper left corner which can store a single 

face up card. In the upper right corner are four Base Cells which show face up cards, but they 

can contain up to thirteen cards each (one per suit). At the bottom of the game are eight 

Buildable Piles showing the arrangement of face up cards at play. A snippet of code in such a 

stand-alone object-oriented implementation would look something like the following: 

 

public void initialize (int seed) { 
   deck = new Deck ("deck"); 
   deck.shuffle(seed); 
   for (int i = 0; i < columns.length; i++) { 
     columns[i] = new Column("col" + (i+1)); 
   } 

      
   for (int i = 0 ; i < freeCells.length; i++) { 
     freeCells[i] = new Pile ("free" + (i+1)); 
   } 

 
   for (int i = 0 ; i < baseCells.length; i++) { 
      baseCells[i] = new Pile ("base" + (i+1));      
   } 
  ...   
} 

That is, the program would first create the model elements forming the structure of the 

game. Then they would create view objects to visually place these model elements on the screen: 

 

  public void initializeView () { 
    CardImages ci = getCardImages(); 
    int cw = ci.getWidth(); 
    int ch = ci.getHeight(); 

 
    for (int i = 0; i < freeCellViews.length; i++) { 
      freeCellViews[i] = new PileView (freeCells[i]); 
      freeCellViews[i].setBounds (10+15*i+i*cw, 20, cw, ch); 
    } 

 
    for (int i = 0; i < baseCellViews.length; i++) { 
       baseCellViews[i] = new PileView (baseCells[i]); 
       baseCellViews[i].setBounds (125+15*i+(i+4)*cw, 20, cw, ch); 
    }      

      
   int colH = 13*ch; // allow up to 13 cards  
   for (int i = 0; i < 8; i++) { 
     columnViews[i] = new ColumnView (columns[i]); 
     columnViews[i].setBounds (45+15*i+i*cw, 40 + ch, cw, colH); 
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   } 

 

Once all view elements are created, then the user needs to register the appropriate AWT 

Mouse Listeners to react to mouse events over these objects 

 

public void initializeControllers() { 
 for (int i = 0; i < 4; i++) { 
  freeCellViews[i].setMouseAdapter(new FreeCellFreeCellController ( 
                                   this, freeCellViews[i])); 
 } 
 for (int i = 0; i < 4; i++) { 
  baseCellViews[i].setMouseAdapter(new FreeCellBasePileController ( 
                                   this, baseCellViews[i])); 
 } 

 
 for (int i = 0; i < 8; i++) { 
  columnViews[i].setMouseAdapter(new FreeCellColumnController ( 
                                 this, columnViews[i])); 
 } 

 

These Controller classes contain the real logic of the FreeCell variation. Indeed, the 

structure of two solitaire variations may be identical (both model and view elements) and the 

only difference remains in the Controller objects. 

The controller classes process low-level MouseEvent events and decides users actions by 

interpreting the sequence of MousePress, MouseDrag and MouseRelease events. The following 

controller snippet for the FreeCell Game processes MouseRelease events over one of the four 

base piles: 

 

public void mouseReleased(MouseEvent me) { 
   Container c = theGame.getContainer(); 

 
   Widget w = c.getActiveDraggingObject(); 
   if (w == Container.getNothingBeingDragged()) 
    return; 

 
   boolean changed = false; 
   if (w instanceof CardView) { 
    changed = processDraggingCardView ((CardView) w); 
   } else if (w instanceof ColumnView) { 
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    changed = processDraggingColumnView ((ColumnView) w); 
   } 

 
   // try auto moves 
   if (changed) { 
     ((FreeCell)theGame).tryAutoMoves(); 
   } 

 
   // release the dragging object and repaint everything 

   c.releaseDraggingObject(); 
   c.repaint(); 
} 

 

The reason for inserting this code here is to demonstrate the intertwined logic of these 

controllers. This one, for example, is able to process cards being dragged to the base pile from a 

free cell or one of the buildable piles. It also automatically advances any automatic moves that 

the game of FreeCell can determine to execute. We are omitting the additional detail found in the 

processDraggingCardView and processDraggingColumnView methods. 

In poorly designed code, the Controller logic is intertwined with the Model and View 

classes, which reduces their reusability and overall coherence. However, when they are cleanly 

separated, the Controller classes quickly become overly detailed and complicated.  

In Java – indeed in any object-oriented language – the unit of composition is an object 

(which really means the class used to define the object). Because the controllers contain the true 

logic, they often are not reusable themselves, as Heineman observed [9]. The irony is that the 

reusable model and view widgets have none of the Solitaire behaviors associated with them, 

whereas the non-reusable controllers contain all of the “important” code for the solitaire 

variation. 
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3.2. KombatSolitaire Feature-Based Design 

 

Heineman observed that using MVC naturally leads to the inability to reuse controllers  

[9]. Domain experts have considerable expertise in using inheritance to capture the rich 

information to be stored in a model. HCI experts show how to build user interfaces that decouple 

the model from the view presented to the users. But the complex logic found in controllers can 

quickly be unmanageable because of the inherent limitations of the basic extension constructs in 

OO programming languages. Since business logic is encapsulated within controllers, MVC may 

actually be an impediment to the proper reuse or extension of business logic. For this reason, 

Heineman investigated how to convert the KombatSolitaire code base into features, using 

Batory’s AHEAD tool suite. Ultimately the final system was realized using the FeatureIDE 

Eclipse Plugin. 

The layers designed for this solution are intended to be the unit of composition, rather 

than individual classes. To achieve this goal, the premise is that as each additional layer is 

composed, there will always be a working solitaire implementation, albeit one with reduced 

functionality. 

To represent a composition of layers, we use the dot ● notation. Starting from the game 

layer, one constructs a solitaire variation by the repeated composition of additional layers as 

designed in the solitaire solution space. In general, a solitaire variation is defined by equations of 

the following form, using features defined earlier. 

 

variation = {Variations} ● {moves} ● {types} ● game  

 

Let’s propose the following as the simplest Solitaire variation. 
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There is a deck of cards and two piles. To deal a card from the deck to the empty 

waste pile, click on the deck. Players can drag the card from the waste pile to the 

home pile. Once all cards have been played, the game is over. 

 

To assemble this variation using Features, you use existing layers and write three 

additional layers to describe the layout and the rules for this variation. Here is the final equation 

 

simplest = { SimplestRules, SimplestLayout, Simplest, Variations} ● {deckToStack, 

stacktostack, moves} ● {pile, deck, integer, types} ● game 

 

Most of these features are pre-existing and exist to support other solitaire variations as 

well. This exercise will demonstrate that it is possible to assemble an implementation of a 

solitaire variation predominantly from existing Feature layers. 

The design of these layers support the model-view-controller (MVC) paradigm inherent 

in the underlying Java object-oriented implementation, however the true novelty appears when 

expanding (or contracting) the basic elements in a solitaire variation. 

The best way to explain the logic is to show the full details for one of the layers, in this 

case, the pile layer, which contains the following JAK artifacts: 

● class FlipPile extends Move 

● refines class Game 

● class PileAdapter extends MouseAdapter 

● class PileManager 

● class PileToPile extends MoveCardMove 
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The pile layer refines an existing class (Game) and introduces four new classes to deal 

with the behaviors associated with Solitaire piles. Specifically, you can view only the top card in 

a pile, although it may contain any number of cards. You can interact with a pile by removing its 

top card (pressing the left mouse button) or releasing a card (or a column of cards) onto the pile 

(by releasing the left mouse button over the pile). 

The PileAdapter class extends MouseAdapter which allows it to be a drop-in replacement 

for any MouseListener interface. 

 

<< heineman adds more detail on Simplest>> 
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Chapter 4. Methodology 

Like in the construction industry, you would have to know what you are going to build 

before you can build it. So the first step in methodology is what software will be integrated and 

figure out integration method. We need to integrate between ASSISTments with other Learning 

Management Systems (LMSs) to utilize research in educational data mining and to share content 

across educational community. The contents of LMSs can be accessed immediately by all users 

(teachers, student, parents and administrators etc.) – all applications appear in one system, 

through a seamless online environment with a single sign-on learning portal. 

The goal or scope of the thesis is to implement a system based layers that generates 

connector code for each of the system need to be integrated with ASSISTments. 

4.1. Our Approach 

K.Lee et al, 2000 proposed Feature-Based Object-Oriented Engineering, or Feature-

Oriented Reuse Method (FORM), which instead identifying objects by popular method such as 

Keyword analysis [10][11], structured analysis [12], scenario-based analysis [5][6], but identify 

reusable objects by linking feature categories to object categories. FORM could extract 

important relationships between objects (aggregation and generalization) from feature model 

(composed-of, generalization, and implemented by). This leads FORM method favor object 

composition than class inheritance when design and development of reusable components (e.g., 

modules).  
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Figure 4.16. FORM Methodology 

Our approach, however, does not start with feature model. What we believe is that even 

objected that properly abstracted and modeled for future reuses more likely subject to change 

than functions [15][16].  

 

Figure 4.2. Our Methodology 
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To capture all the variants of each connector code, before going into integration layers 

design step, we programmed a prototype of integration between ASSISTments and inBloom.  

After that, there is one prototype need to be integrated with ASSISTments including: Edmodo. 

All two systems are what client requests to see the integration works. Then we can gather more 

functional requirements from the client based upon prototype system. All of the prototypes be 

programmed in Java. 

 After capturing all variants of integration between systems, but before writing any layer 

code, we first design integration based layers. Those layers could be assembled to satisfy all 

functional specification that describes in detail the functions to perform by the system. 

Moreover, those layers should be assembled easily enough to generate connector code.  

 Once all appropriate layers and specifications have been determined, the development of 

system based layers is started. During the development process, we perform unit test to verify 

new layers system reliability by comparing the result of integration with each prototype system. 

Finally, we can test the entire system by generating separate connector code for not only all 

inBloom and Edmodo, but also any system that desire. 

4.2. Connection Model 

Integration between two systems, even they are built for similar purpose, can be very 

complex process, since they can be very different in nature.  

Each Learning Management System (LMS) provides its own interface, which is defined 

by an API (Application Programming Interface), to enable it to communicate with other systems 

according to a particular set of rules. Because of each own particular API, you cannot 

immediately "plug and play" one system to communicate with others; we need connector code. 

Figure 1 below is the flowchart describes connecting between systems: 
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Figure 4.3. Sample integration between LMSs 

 

The connector code above is specialized code that adapts to particular rules of both 

ASSISTments and inBloom to make them work together. When ASSISTments wants to connect 

with another LMS, Edmodo for example, this connection again requires writing special purpose 

connector code between two systems with independent APIs. Much of the effort in writing these 

connectors will be wasted because of the way that the object oriented code has to be written. The 

primary issue is the lack of modularity in object-oriented design patterns [1]. When code 

implements an interface, the internal (almost arbitrary) code written cannot be used and 

extended; rather this leads to copy/paste style reuse when attempting to bridge to multiple 

systems. 

 

Figure 4.4 shows an example of creating grades using ASSISTments API with inBloom 

and Edmodo. Consider how we would export grades out of ASSISTments. In this figure, we 

shows the schema differences in the APIs of inBloom and Edmodo. Some of this functionality 

can be shared but there are noticeable differences. 
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Figure 4.47. Multiple instances of connector code adapt to each system 

 

The premise of this thesis is that we need to properly engineering “glue” or bridge code, 

and existing languages do little to help the reuse problem in this domain. Rather we must turn to 

a model that allows code to be woven together to achieve reuse. As shown in the figure above, 

the processing of extract data for sending and receiving is similar but data fields are different. 

These differences lead to diverse behaviors in object-oriented design. Recently, in Software 

Engineering, there are advanced programming techniques gain momentum to encapsulate 

variability such as Feature-Oriented Programming (FOP) or Aspected-Oriented Programming 

[2][8]. In this thesis work, we propose to design features that are not rigidly based upon class 

structure, and can be composed appropriately to create different connecter code as desire. 
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Chapter 5. Connector Code 

5.1. Overview integration between ASSISTments and inBloom  

Figure 5.1 is the scenario promoted for integrating between ASSISTments and inBloom.  

This has been coded and tested to work successfully in connecting two systems. 

Two big rectangles represent two systems needed to be connected. Left hand side is 

inBloom and right hand side is ASSISTments. Each rectangle inside is an operation which 

triggered by the connector code. The arrows show data exchanged between two systems and 

managed by connector code. The down arrow in each system shows the previous step needed to 

be completed in order to continue. In this diagram, some required bean classes of connector code 

map to object of two systems not to be listed here. Those bean classes are required to build, 

serialize objects to json data and deserialize json data to objects. Example of the bean classes 

will be provided in later part of the thesis. 

In this scenario, the upload back students grade into inBloom is optional. For the current 

release of connector code, ASSISTments does not support API to get student grades. The code of 

submitting back data to inBloom is done by screening ASSISTments HTML report, based upon 

some predefined text to obtain student performance result. Crawling large text file to extract 

desire data is not an efficient method. 
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Figure 5.1. Screening ASSISTments HTML Report 

 

Figure 5.2. Promoted integration scenario with inBloom 
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5.2. Overview integration between ASSISTments and Edmodo 

Below is the high level view of integration between ASSISTments and Edmodo. The 

scenario is very similar to inBloom. Then naturally, the class structure is similar but the code 

inside is different in some senses. For example, with inBloom, Authorize.java have to deal with 

OAuth2 security while with Edmodo is OAuth. 

 

 

Figure 5.3. Promoted integration scenario with Edmodo 
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5.3. Detailed Integration Scenario with Edmodo 

With all the scenarios below, the integration process is activated by Edmodo site. It 

means teachers and students have to have accounts in Edmodo site first.  

 

 
Figure 5.4. Edmodo Integration Flowchart 
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First of all, teachers in Edmodo would know about ASSISTments. They could search in 

Edmodo Store to install the app from ASSISTments.  

 

Figure 5.5. Teacher search for app 

 

 
Figure 5.6. Teacher installs the app 
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The teacher then makes decision to install the app. Teacher has to pay the fee if needed. 

In case the app is free, teacher can immediately chooses which groups of students the app 

applied to. And the app then automatically appears in students view.  

 

 
Figure 5.7. License and Group of students the app will be applied to 

 

Please notice that each ASSISTments app is one problem set. So readers can assume that 

there would be hundreds of ASSISTments app in Edmodo. If the teacher first installs 

ASSISTments app, via Edmodo API, below are what information we can get:  

Teacher user_token: unique number that identify user in the system.  
first_name 

last_name 
user_type: TEACHER 
time_zone 
groups: list of group that teacher are the owner. 
access_token: Authorizes and authenticates user login and 
permissions. 

Student user_type: STUDENT 
user_token 
first_name 
last_name 

                                                                   Table 5.1. Example API return. 

Based on those information get from Edmodo, ASSISTments automatically does 

following steps: 
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1. Create principal account for teacher with assume that: 

+ login name: user_token@edmodo.com (538237@edmodo.com) 

+ email: login name 

+ First name: first_name 

+ Last name: last_name 

+ Password: randomize (then would reset later if teacher provides the real email address) 

+ display name: first_name last_name 

2. Create proxy account for students:  

+ Username: first_namelast_name. Notice that student never have to login ASSISTments 

so Username just for tracing purpose.  

            + First name: first_name 

 + Last name: last_name 

 + display name: first_name last_name 

3. Automatically enroll teacher and students into “Edmodo School” (with assume that this 

school is created beforehand). 

4. Automatically using teacher permission to create class. Class name is the combination of 

teacher name, skill builder name. 

5. Enroll students in class. 

6. Automatically create a new assignment and assigns to students.  

Now both students and teacher from Edmodo can be navigate to ASSISTments without 

any login required from ASSISTments. 

 

mailto:first_namelast_name@junk.com
mailto:lindakim@junk.com
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Figure 5.8. Teacher launches ASSISTment app. He/she automatically forward to ASSISTments without 
prompting ask for credentials 

In case of students:  

 

Figure 5.9. Integration detail steps between ASSISTments and Edmodo under Student Role 

 

In both cases, if teachers or students launch the app successfully, they will be forwarded 

inside ASSISTments, which is embeded as an iFrame inside Edmodo.  
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Figure 5.10. ASSISTments appears inside an iFrame in Edmodo 

5.4. Object Oriented design and implementation 

The bridge code is actually a servlet runs on Apache Tomcat server and waits for . It 

handles requests from source system, manipulate them to adapt to target system’s API, sends 

request to target system, receives respond from target system, manipulate the respond and 

forward respond to source system.  
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Figure 5.11. High level connector design 

 

When we successfully did object-oriented approach for bridging ASSISTments with both 

inBloom and Edmodo, there are the structure of code in both package are very similar. Below is 

the packages in two solutions:  

 
Table 5.2. Connector code packages listed 

inBloom Edmodo 

assist.bean assist.bean 

assist.job assist.job 

global global 
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inbloom.bean edmodo.bean 

inbloomJob edmodoJob 

inbloomLogin edmodoLogin 

utilities utilities 

 

Details of these package classes are listed in an Appendix C. 

In the context of functionality, we can see the similar in code structure in both solution. 

Both solutions have 7 packages and each package pair inline exposed very similar 

functionalities. 

The assist.bean package contains data objects that map to API payload of ASSISTments. 

It also contains Serializer object responsible for serial data object into Json format. And 

assist.bean also contains the data access object that map to data fields in database.  

This Json object then be transferred between system via Internet.  

  

package assist.bean; 

 
public class Class { 
 private String courseName; 
 private String courseNumber; 
 private String sectionNumber; 
 public String getCourseName() { 
  return courseName; 
 } 
 public void setCourseName(String courseName) { 
  this.courseName = courseName; 
 } 
 public String getCourseNumber() { 
  return courseNumber; 
 } 
 public void setCourseNumber(String courseNumber) { 
  this.courseNumber = courseNumber; 
 } 
 public String getSectionNumber() { 
  return sectionNumber; 
 } 
 public void setSectionNumber(String sectionNumber) { 
  this.sectionNumber = sectionNumber; 
 } 
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} 

Figure 5.12. Sample code to present json object 

 

public class ClassSerializer  implements JsonSerializer<Class> { 
  
 @Override 
 public JsonElement serialize(Class classObj, Type type, 
   JsonSerializationContext context) { 

   
     final JsonObject jsonObject = new JsonObject(); 
     jsonObject.addProperty("courseName", 
                         classObj.getCourseName()); 
     jsonObject.addProperty("courseNumber",  
                         classObj.getCourseNumber()); 
     jsonObject.addProperty("sectionNumber",  
                         classObj.getSectionNumber()); 
     return jsonObject; 
 } 
} 

Figure 5.13. Sample code to serialize an json object 

 

public class ClassDaoBean  implements Serializable { 
 private String partner_refernce;  
 private int external_refernce_type_id;  
 private String external_refernce;  
 private String user_access_token;  
 private String partner_external_reference;  
 private String user_connector_token;  
 private String note; 
  
 public String getPartner_refernce() { 
  return partner_refernce; 
 } 
 public void setPartner_refernce(String partner_refernce) { 
  this.partner_refernce = partner_refernce; 
 } 
 public int getExternal_refernce_type_id() { 
  return external_refernce_type_id; 
 } 
 public void setExternal_refernce_type_id(int  

                       external_refernce_type_id) { 
  this.external_refernce_type_id = external_refernce_type_id; 
 } 
 public String getExternal_refernce() { 
  return external_refernce; 
 } 
          (...) 
} 

Figure 5.14. Sample code to represent data access object 
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In the assist.job package, all classes are servlet and responsible for sending GET request 

to ASSISTments by using ASSISTments API. Each servlet is invoked automatically if dictionary 

data need to be created in ASSISTments side or manually if users trigger an event in external 

system side.  

Invoked automatically if a new teacher from a new system wants to use ASSSITments. 

The bridge code will ask ASSISTments to automatically teacher into school without teacher 

notice. 

Invoked manually if teacher requests such as he/she wants to create assignment in 

ASSISTments. Then the bridge code will ask ASSISTments to do so.  

 
Figure 5.15. Example code invoked automatically. 

String nces = ApplicationSettings.SchoolNCES; 
      
School school = new School(); 
school.setNces(nces); 
      
GsonBuilder gsonBuilder = new GsonBuilder(); 
gsonBuilder.registerTypeAdapter(School.class, new SchoolSerializer()); 
Gson gson = gsonBuilder.create(); 

      
String payloadJson = gson.toJson(school); 
(...)      
String resJson = ASSISTAPIUtilities.getJSONNotBehalf(APISchool, 

payloadJson); 

      
Gson gsonSchoolRef = new GsonBuilder().create(); 
SchoolRef schoolRef = gsonSchoolRef.fromJson(resJson, SchoolRef.class); 

 

Global package  

This package contains configuration information for the bridge code to work. Those 

global settings are used everywhere in the bridge code and convenient to access. The information 

such as ASSISTments API URLs are stored here.  

External system bean 
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The external system beans, such as edmodo.bean or inbloom.bean, are very similar to 

assist.bean in structure of code. But their functionalities are map external system API object. The 

difference is all of the objects are transaction objects because dictionary data already exist in 

external system. We should notice again that external system is the trigger entity. And all the 

dictionary data needed to be set up beforehand to allow trigger to be fired from external system.  

External system job 

Similar to assist.job package, all classes under inbloom.job or edmodo.job are servlets 

and controllers. Those servlets receive requests, initiate correspond controllers then and waiting 

controllers to be invoked. Transactions are invoked manually with users notice or automatically. 

Example of invoked automatically such as connector code wants to get more detail information 

of user by sending extra API request to Edmodo. 

External system login 

The login functionality is grouped in separate package because of its natural complexity. 

Each external system has its own authentication and authorization methods to validate users. For 

example, with inBloom, it uses oAuth2 and with Edmodo it uses oAuth1a.  

Utilities package 

This package has classes responsible for constructing API requests to ASSISTments or 

Edmodo. Methods in those classes are static and are invoked by controllers when needed. It also 

handle the response returned. And when it finishes, it will return control to controllers with status 

of response is valid or exception occurs to let controllers what need to be done next. 

 

public static String sendURLGet(String fullURL) { 
 
  BufferedReader reader = null; 
  String checkResponse = ""; 
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  try { 
 
   URL url = new URL(fullURL); 
   HttpURLConnection connection = (HttpURLConnection) url 
     .openConnection(); 

    
   connection.setRequestMethod("GET"); 
 
   BufferedReader in = new BufferedReader(new    
                  InputStreamReader( 
     connection.getInputStream())); 

      
                  ApplicationSettings.setErrorStatusCode( 
                  connection.getResponseCode()); 

    
   String inputLine; 
   StringBuffer response = new StringBuffer(); 
   while ((inputLine = in.readLine()) != null) { 
    response.append(inputLine); 
   } 
   in.close(); 
   checkResponse = response.toString(); 
 
  } catch (Exception e) { 
   System.out.println("An error might occur with sendURLGet:  
                  " + fullURL); 
   e.printStackTrace(); 
   ApplicationSettings.setErrorTitle("Error while  
                  communicating with Edmodo. We are sorry cannot proceed  
                  further!"); 
   ApplicationSettings.setErrorDetail("An error  
                  might occur with sendURLGet: " + fullURL); 
   return null; 
  } 
  return checkResponse; 
 } 
} 

Figure 5.16. Sample code to send API request. 

 

public String getProfile(ArrayList<String> userTokens) { 
   
  String request = ""; 
  setResources("profiles"); 
   
  Gson gson = new Gson(); 
  String userTokensJson = gson.toJson(userTokens); 
   
  request = "/" + getResources() + "?" + "api_key=" + 

getApi_key()+"&access_token="+getAccess_token()+"&user_tokens="+userTokensJs

on; 
  request = ApplicationSettings.EdmodoAPIBase + request; 
  return request; 
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 } 
} 

Figure 5.17. Sample code to construct API request. 
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Chapter 6. Featured-based Approach 

P. Elizondo and K-K Lau proposes different approach than direct and indirect message 

connector approach [27]. As illustrated in the figure below, components do not call methods in 

other components. Instead, all method calls are initiated and coordinated by the connectors. The 

round dots denote the origins of the communication and coordination.  

 

Figure 6.1. Proposed approach for connectors 

 

This is clear contrast to both direct and indirect messaging technology since components 

originate communication and coordination. And they are convinced that their connector types 

support reusable not only at design but also at implementation phase.  

And we found that our connector works as similar as Elizondo and Lau suggested. As 

describe before in connection workflow in Figure 5.4, users from Edmodo initiate the process 

then that is all. Subsequence steps are to be performed by the connector. The connector invokes 

ASSISTments or Edmodo services when it needs.  
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6.1. Refactoring OOP to extract features 

A feature is a unit of functionality of a software system that satisfies a requirement. 

Therefore in attempt to refactor already working code, we move all the functionalities into 

features. However, we still have to keep the service handler in the object-oriented project. This is 

because for the time being, FeatureIDE cannot create a dynamic website project. So the OOP 

dynamic web application will delegate its work to correspond feature. 

 

@WebServlet("/CreateAssignment") 
public class CreateAssignment extends HttpServlet { 
private features.CreateAssignment f_createAssignment = new                      
                                         features.CreateAssignment(); 
 
    protected void doGet(HttpServletRequest request,      
              HttpServletResponse response) throws ServletException,    
              IOException { 
              f_createAssignment.doGet(request,response); 
 } 
} 

Figure 6.2. OOP dynamic website invokes a feature 

 

public class CreateAssignment { 
 public void doGet(HttpServletRequest request,  
         HttpServletResponse response) throws ServletException,IOException { 
                     …. 
} 

 

Below is the model of Edmodo feature for the first attempt: 

 

Figure 6.3. Edmodo Feature 
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6.2. Layers design and implementation  

A layer is a set of files that define a feature of an application. Code representations are 

expressed as .jak files. For convenience, we list the integration scenario of inBloom and 

ASSISTments below for reference. In this scenario, we remove all the java classes represent 

controllers in OOP approach. We replace those controllers by layer classes. Detail of the 

designation is listed below. 

And because of similar features design and implementation between feature-based 

connector between inBloom and Edmodo, we are going to list features of Edmodo connector 

code. 

 

Figure 6.4. Edmodo Integration 
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6.2.1. Get Edmodo Teacher and Students 

Feature: Authorize.jak.  

Initiate entity: Edmodo users 

Functionalities:  An Edmodo user clicks one ASSISTments app.  This app automatically 

send an API call  to connector code requesting to launch ASSISTments app. Connector code 

handles the request but there is some security check happen there. The connector code has to 

make sure who is making the request by checking known api_key. 

Connector code then has to check whether or not it is the user first launch ASSISTments 

app. 

If it is the first launch then it has to save user information such as user_token from 

Edmodo into connector database and then automatically request ASSISTments to create user 

account. If a user is a teacher then students accounts in his group also created.  

If users already have accounts then he/she is forward directly inside ASSISTments.  

6.2.2. Create Teachers and Students accounts in ASSISTments 

Feature: TransferUserFromEdmodo.jak.  

Initiate entity: Automatically invoked after Authorize.jak 

Functionalities:  Right after authorize and authenticate users from Edmodo, connector 

sends request to create user accounts in ASSISTments. Normally, accounts will be created in 

ASSISTments. Teacher will be a principal account and student will be a  proxy account. If there 

is something wrong with the process then Edmodo user will be saved in connector database 

without creating a new users in ASSISTments. 
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6.2.3. Create dictionary data in Edmodo 

Feature: CreateAssignment.jak.  

Initiate entity: Automatically invoked when TransferUserFromEdmodo.jak finishes. 

Functionalities: This will be invokded when ASSISTments allows teacher to create an 

Edmodo assignment. This function maybe useful when teacher wants to transfer students 

performance from ASSISTments back to Edmodo.  

 

Figure 6.58. ASSISTments final screen 

6.2.4. Create school data in ASSISTments 

Feature: CreateSchool.jak 

Initiate entity: Invoked automatically by connector after successfully create user 

accounts in ASSISTments. 

Functionalities: In order for users do his/her normal job in ASSISTments, ASSISTments 

requires he/she needs to be assigned to a school. If user from Edmodo has valid school NCES 

code then new school automatically created if this school is not existed before. Otherwise, 

teacher and his students are in “Edmodo School”.  

6.2.5. Assign users to school. 

Feature: AssignUserSchool.jak 
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Initiate entity: Invoked automatically by connector after school created in ASSISTments 

Functionalities: Schools are required for every users in ASSISTments. This feature does 

assign new users to a school.  

6.2.6. Create class 

Feature: CreateClass.jak 

Initiate entity: Invoked automatically by connector after assigning users to school in 

ASSISTments 

Functionalities: Teacher needs class to organize his/her students. ASSISTments requires 

teacher access_token to behaves on his/her behalf to create class. One group in Edmodo 

correspond to one and only one class in ASSISTments. Number of groups in Edmodo will be 

created exactly the same number of classes in ASSISTments.  

6.2.7. Enroll students in class in ASSISTments 

Feature: EnrollStudentClass.jak 

Initiate entity: Invoked automatically by connector after creating classes. 

Functionalities: Students with the same group in Edmodo will be automatically enrolled 

into the same class in ASSISTments.  

6.2.8. Create assignment in ASSISTments 

Feature: CreateAssignmentASSIST.jak 

Initiate entity: Invoked automatically by connector after assign users to school in 

ASSISTments 

Functionalities: Connector code automatically send REST API to ASSISTments to 

request for creating an assignment in ASSISTments. Each ASSISTments app in Edmodo is one 



63 
 

assignment in ASSISTments. With this, students from Edmodo can login and do the assignment 

in ASSISTments.  

6.2.9. Student login Edmodo to do assignment in ASSISTments. 

Feature: Authorize.jak 

Initiate entity:  Students in Edmodo 

Functionalities: Students from Edmodo click on an ASSISTments app and they are able 

to forward inside ASSISTments to do the assignment.  

6.2.10. Transfer back assignment grade back to Edmodo 

Feature: ScreenHTMLReport.jak and UploadGradeToEdmodo.jak 

Initiate entity: Teachers in Edmodo 

Functionalities: This functionality is optional for a teacher in ASSISTments when they 

want to send back the grade to Edmodo. First of all, the connector code will crawl generated 

HTML report in ASSISTments, reads each student performance. Then connector code sends 

request back to Edmodo to update or create new grade there.  
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Chapter 7. Conclusions and Future Work 

7.1. Conclusion 

In this thesis, we put forward the idea of using Feature-Oriented Programming technique 

in practice by developing connectors between systems. In the first part, we introduce the basic 

concepts of FOP with examples from academics simple program HelloWord to Linux 

configuration tool, an industrial complex program. Then we go more in-depth details on 

designing and implementing the connector code by using Objected Oriented Programming 

technique. This step is important since FOP is an extension of OOP. The successful of the OOP 

solution is illustrated by having many ASSISTments apps reviewed by Edmodo development 

teams and appears in Edmodo Store.  

By having working OOP connector code, we can capture all the variations of each 

working solution between ASSISTments and inBloom, and ASSISTments and Edmodo. Then 

we refactor OOP connector code to develop working connector solution in FOP. However, 

during the time of the thesis work, FeatureIDE does not support for creating dynamics web 

project. So we have no choice to keep the servlet class structure from OOP and apply to FOP. 

Most of effort reduced is in development of controller classes in FOP ASSISTments side.   

The main contribution work of this thesis is to represent a case study to integrate systems 

using FOP technique. There are no literature on integrating system using FOP but similar 

concepts in Component-based Software Engineering. Based upon this thesis work, we conclude 

that using FOP technique is totally possible and very promising on integrating systems. 
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7.2. Future Work 

FeatureIDE currently one of the best academics tool supports for Feature-Oriented 

Software Development. However, this tool is still in early development stage and not all standard 

Java is supported such as ability to create dynamics web application. FeatureIDE is open-source 

and published under General Public License, so developers are encourage to extend it. We hope 

that in the near future, we could spend effort to the development of FeatureIDE by let it 

understand web application notation.  

 

In this thesis work, we only have the connector code working for two prototype systems, 

Edmodo and inBloom. Since we are receiving increasing requests to integrate ASSISTments 

with Learning Tools Interoperability (LTI), we hope that in the near future, we could advance the 

thesis work by integrating seamlessly more learning management systems with ASSISTments. 
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Appendix A. Example of data return back from Edmodo 
 

Teacher and student tokens 

 

Teacher user_token: unique number that identify user in the system (do not change). 
first_name 
last_name 
user_type: TEACHER 
time_zone 
groups: list of group that teacher are the owner. 
access_token: Authorizes and authenticates user login (change each time app 

launched) 

Student user_type: STUDENT 
user_token: unique number that indentify user in the system (do not change) 
first_name 
last_name 
access_token (change each time app lauched) 

 

Teacher school profile 

Profile edmodo_school_id:123456 
nces_school_id:ABC987654 
name:Edmodo High 
address:1200 Park Place, Suite 350 
city:San Mateo 
state:CA 
zip_code:94403 
country_code:US 

 

 

Group Info 

Group group_id:379557 
title:Period 1 
member_count:20, 
owners:[ 
    b020c42d1, 
    693d5c765 
], 
subject:Math, 
sub-subject:Algebra 
start_level:9th, 
end_level:9th 

 

 

  



67 
 

Appendix B: Connector code table 
 

B1. API tables already exists in ASSISTments:  

B.1.1. external_reference_types 

 

This table provides type of reference created.  

 

Field Type Foreign Key Note 

id integer   

table_name character[]  Values now: 
1. users 
2. schools 
3. student class sections 
4. class assignment 
5. individual assignments 
6. student classes. 

 

B.1.2. external_references 

 

This table will tell what type of data created via API by ASSISTments.  

 

Field Type Foreign Key Note 

id integer   

external_reference character[]  Values in this column are automatically 
generated by ASSISTments 
correspond to request to create users, 
class, school via API 

partner_id integer  Point out who makes API request 

type_id integer Yes reference to id field in 
external_reference_types table 

db_id integer Yes reference to id field in correspond 
table.  
 
For example, if type_id = 1 (mean 
user) then this db_id reference to id 
field in users table.  
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B.1.3. access_tokens 

 

Field Type Foreign Key Note 

id integer   

user_id character[] Yes point to id field of users table 

partner_id integer   

expiration timestamp   

token character[]   

 

B.2. A new bridge API tables 

Table name: partner_external_references 

 

Field Type Foreign Key Note 

id integer   

partner_referen
ce 

character[] Shows users 
belongs to which 
connecting system. 
Point to 
partner_refernece of 
api_partners table.  

Point out who makes API request 
This is the partner’s reference identifier 
provided by ASSISTments.  

 
external_refere
nce_type_id 

integer  Specifies the object type of 
represented by this row. This is the id 
value found in the table 
external_reference_types 

external_refere
nce 

character[]  This is an ASSISTments-provided 
unique identifier to an ASSISTments 
object.  
 
The type of object is specfified by the 
external_reference_type_id above. 

user_access_t
oken 

character[]  When external_reference refers to an 
ASSISTments user, this is the access 
token granted to partner_reference to 
act on behalf of the ASSISTments 
user. 
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partner_extern
al_reference 

character[]  This value comes from the partner 
application (or site) and uniquely 
identifies an object in the partner’s 
application.  
 
The type of object is specfified by the 
external_reference_type_id above. 

user_connector
_token 

character[]  When partner_external_reference 
refers to a partner’s user, this is the 
access token granted to act on behalf 
of the partner’s user. 

note text  Data, specific to the partner application 
/ site, about the object represented by 
this row. 
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Appendix C. Connector Classes 

C1. Model Classes 
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C2. Controller Classes 
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