
A federated architecture for 

by DENNIS McLEOD and DENNIS HEIMBIGNER 
University of Southern California 
Los Angeles, California 

INTRODUCTION 

The contemporary approach to database system architecture 
requires the complete integration of data into a single, cen­
tralized database; while multiple logical databases can be 
supported by current database management software, tech­
niques for relating these databases are strictly ad hoc. This 
problem is aggravated by the trend toward networks of 
small to medium size computer systems, as opposed to large, 
stand-alone main-frames. Moreover, while current research 
on distributed databases1'2'34-5 aims to provide techniques 
that support the physical distribution of data items in a com­
puter network environment, current approaches require a 
distributed database to be logically centralized. 

Decentralized databases 

A decentralized database is a collection of (structured) 
information, which may be logically distributed, physically 
distributed, or both. Specifically, it is possible to identify 
two distinguishable though related aspects of database de­
centralization: 

1. Logical decentralization concerns the division of da­
tabase into components, for purposes of allowing sep­
arate control over each component; the control that 
may be exercised for each component includes speci­
fying the meaning and logical structure of data, de­
scribing the accessibility of data items to users, and 
specifying the form in which users will see the data. 

2. Physical distribution concerns the allocation of data for 
storage to the nodes of a network or other assembly 
of interconnected computer system components. 

A comprehensive approach to decentralized database man­
agement must address both the issue of logical decentrali­
zation as well as the issue of physical distribution. 

* This research was supported, in part, by the Joint Services Electronics Pro­
gram through the Air Force Office of Scientific Research under contract 
F44620-76-C-0061. 

database systems 

The need for logical decentralization 

Traditionally, a database is viewed as a complete and total 
integration of the data associated with a family of related, 
though distinct, applications. A database has associated with 
it a single structural specification: its conceptual/logical 
schema. Users and application programs manipulate the data 
by performing operations phrased in terms of the schema. 
The database is then physically realized by a particular phys­
ical design, which is a collection of storage structures and 
access methods that actually implement the schema. 

In contrast to the approach in which data files are closely 
associated with application systems and isolated from one 
another, the "integrated database" approach is founded on 
the principle of logical centralization. The complete cen­
tralization of data at the logical level has many benefits as­
sociated with it; in fact, these benefits are largely responsible 
for the great success of the "database approach" during the 
past decade: 

— Complete integration provides a global view of the data 
resources of an organization, and provides a basis for 
the resolution of conflicts; the importance of the da­
tabase as an organizational resource is recognized. 

— By constructing a single integrated database, the 
amount of data redundancy in the overall information 
system is significantly reduced; this reduction in re­
dundancy diminishes the opportunities for data incon­
sistencies and related problems. 

— Centralization enables the more ready implementation 
of database applications that require data from several 
sources. 

— Logical centralization of a database allows uniform 
modes of access and usage to be established for all the 
data. 

While logical database centralization has important as­
sociated benefits, it does impose certain limitations on da­
tabase-intensive information systems. Specifically, it is often 
extremely difficult to completely integrate applications that 
are related, yet separate; integration may go too far in tightly 
coupling together aggregates of data that ought to retain 
"ome individual autonomy. 

283 



284 National Computer Conference, 1980 

In the conventional view of database design, based on the 
concept of complete logical centralization/integration, a cen­
tral authority is responsible for designing and maintaining 
"the" database; this authority, be it a single person or a 
group of individuals acting together, is usually called the 
database administrator (DBA). The DBA maintains control 
over all the data, and is responsible for determining and ad­
judicating the disparate needs of the various database ap­
plications and users. In such an approach, the ultimate prov­
iders and users of the data must relinquish their authority 
over it to the DBA; this raises a number of concerns: 

— Users are often hesitant to entrust their data to an ex­
ternal authority, despite any assurances they receive; 
experience has shown that these reservations may in­
deed be valid. 

— The DBA is charged with developing a unified speci­
fication of the content and meaning of a database. In 
practice, this is a difficult task, since various database 
users will have different perceptions of the data. 

— In the process of selecting a physical design for a da­
tabase, the DBA must ascertain the global usage pat­
terns and response requirements, and then select the 
alternative physical design that provides the best over­
all performance. While this approach may indeed best 
serve the overall organization, it may not be well suited 
to the needs of the principal users of a given portion 
of the database. A compromise physical design that 
attempts to satisfy all database users may in fact satisfy 
none of them. 

— Charged with the problem of serving as a liaison be­
tween the database and all of its users, the DBA can 
easily become a bottleneck. All requests for database 
extensions and revisions are funnelled through the 
DBA; this indirection can and often does introduce 
serious delays and inconsistencies, particularly as the 
complexity of a database grows. 

— New databases are often created as combinations of 
old databases; that is, it is not always true that a da­
tabase is designed in strictly top-down fashion. In con­
sequence, it is often very difficult to try to totally in­
tegrate two related, but separate, databases into a 
unified whole. 

Distributed databases 

One particular approach to database decentralization is 
commonly called distributed database systems. In this ap­
proach, a single logical database schema is defined, which 
describes all the data in the database system; the physical 
realization of the database is then distributed among the 
computers of a network. The physical data of a distributed 
database can be divided in three ways: 

1. partitioned, where no data is duplicated, 
2. fully duplicated, where all data is duplicated in every 

computer, 
3. partially duplicated, where some data is duplicated at 

some computers. 

There are two main advantages to distributed databases: 

1. A distributed database system is potentially more ef­
ficient than a physically centralized database system, 
because the data can be placed close to where it is 
needed. If it is needed at two or more places, then it 
can be duplicated. 

2. If data is duplicated, then a distributed database is po­
tentially more reliable than a physically centralized 
database, because even if one computer fails other 
computers in the network may continue to operate. 

Although there are advantages to distributed database sys­
tems, there are also a number of difficult design issues as­
sociated with them: 

— How can the data be optimally allocated to the com­
puters to minimize some cost, such as access time or 
physical storage space? 

— How can a distributed database continue to operate 
after the failure of a computer? 

— How can duplicated data be kept consistent? 

In response to the observation that decentralized com­
puting systems are of increasing general importance, and the 
realization that logical centralization of a database (with or 
without physical decentralization) has many problems in 
practice, it is clear that a fresh approach is required. The 
goal of this new approach must be to serve as a compromise 
between total integration/centralization and the disorgani­
zation of completely diffused and decentralized databases. 
The key to successfully realizing this goal is to balance the 
need for decentralization and the largely conflicting need for 
effective sharing of information. 

A FEDERATED APPROACH TO DATABASES 

The approach to database decentralization advocated here 
is termed federated databases; the basic idea of federation 
was introduced by Hammer and McLeod.6 A federated da­
tabase consists of a number of logical components, each 
having its own logical/conceptual schema (component 
schema). These components are related, but independent, 
and they may or may not be disjoint. Typically, a component 
of a federation corresponds to a collection of information 
needed by a particular application or a set of closely related 
applications. 

All of the components in a federation are tied together by 
one or more federal schemas that express the commonality 
of data throughout the federation; these federal schemas are 
used to specify the information that can be shared by the 
federation components, and to provide a common basis for 
communication among them. 

Database system users and application programs manip­
ulate a database by issuing transactions, viz., operations that 
retrieve information from or modify information in a data­
base. As a database user or application program is most com­
monly affiliated with a single component of a federation, that 



A Federated Architecture for Database Systems 285 

user (or application program) normally issues transactions 
that can be performed within the local component. This 
property may be termed locality of reference and is funda­
mental to federated database systems. 

On occasion, a user of component CI may need to issue 
a transaction that involves data that belongs to another com­
ponent, C2 (or several other components). In this case, the 
user consults a federal schema to find the necessary data; 
this reference can be explicit or implicit (i.e., the user may 
either refer to the data in the context of the federal schema, 
or may refer to it as local derived data (in which case the 
derivation specification must have already been provided)7. 
A transaction involving nonlocal data is processed by issuing 
a request to the federal controller, which issues the neces­
sary instruction to C2 to actually provide the necessary data. 
While transactions involving local data execute with all pos­
sible speed, transactions that require non-local data are in 
general substantially less efficient, because the federal con­
troller must intervene to perform data movement and trans­
lation. The federal controller is thus an important part of a 
federated database system, playing the role of coordinator 
and translator. 

In the federated approach, the (conceptual/logical) schema 
of each component is defined by a component DBA. A com­
ponent schema is designed to suit the users and applications 
of the component; and, the physical design used to imple­
ment a component schema is developed (and will evolve) so 
as to best satsify the performance requirements of these local 
users. In this way, the principal goal of each component is 
to satisfy its most frequent and important users (viz., the 
local ones). 

All federal schemas are defined and controlled by the fed­
eral DBA. Each federal schema is a virtual one, in the sense 
that there does not exist a physical database that corre­
sponds to it; rather, a specification is provided that describes 
how the federal schema constructs are materialized from 
data maintained by the individual components. In particular, 
each component defines a subset of its component schema 
as available to the federal schema(s). 

The duties of the federal DBA supplement, rather than 
conflict with, the activities of the component DBAs. The 
principal responsibility of the federal DBA is to define the 
federal schema(s), relate them to the component schemas, 
and define the interface that each component must provide. 
The federal DBA is also responsible for determining how 
logical redundancy in the federation ought to be handled: in 
some cases, it is appropriate for a single component to take 
responsibility for it; in other cases, it is better for each com­
ponent to maintain its own version (with a variety of possible 
consistency restrictions established to ensure that the var­
ious versions remain appropriately related, e.g., the same). 
The choice may be determined for reasons of efficiency, re­
liability, or requirements of components that need to access 
the data. 

In addition to directly accommodating logical database 
decentralization, the federated architecture also enhances 
the evolvability of a database. A federation evolves either 
by changes to components or changes to a federal schema. 
As long as a component continues to support its interface 

to the federation, it is free to change either its physical struc­
ture or its logical structure without affecting other compo­
nents (except possibly with regard to performance). The fed­
eral schema can change for one of four reasons: 

1. a deliberate policy decision to change the federal 
schema, 

2. a radical change in a component that requires a change 
in its interface to the federation, 

3. adding a new component to the federation, 
4. deleting a component from the federation. 

Changes that enlarge or restructure the federal schema, such 
as by the addition of components, will impact components 
to the extent that they must accommodate the new infor­
mation in the federal schema. Changes that actually remove 
information, such as the deletion of a component, in general 
require other components both to accept an altered federal 
schema and to redesign transactions that access the deleted 
information. 

In sum, in the federated approach, primary control over 
a database component resides with its principal maintainers 
and users, but adequate centralized authority is exercised 
in order to ensure appropriate levels of sharing, data com­
patibility and data consistency. Each federation component 
can determine how to optimize its part of the database ac­
cording to its own needs, and can decide what information 
should be made available to other components. Sharing of 
information is accommodated by the federal schema, and 
conflicts are resolved by the federal DBA. Finally, the fed­
erated database architecture is based on the observation that 
many contemporary integrated databases are actually better 
suited to partial decentralization than complete centraliza­
tion; for example, despite the availability of an integrated 
database, it is often the case in practice that the functional 
units of an organization make use of only a subset of the 
total schema and a limited portion of the data; in such cases, 
the remainder of the database can actually be a burden to 
a user. 

DESIGN ALTERNATIVES FOR FEDERATED 
DATABASE SYSTEMS 

Any design for a federated database system must deal spe­
cifically with the following issues: 

— the precise structure of the federation (viz., the num­
ber and organization of the federal schemas, and their 
relationship with the component schemas), 

— the handling of physical data storage and access in the 
federation, 

— the specific approach to the operation of the federal 
controller, 

— the component facilities to support interaction with the 
federation. 

These four important design issues are specifically examined 
immediately below. 



286 National Computer Conference, 1980 

Logical distribution 

The logical distribution of a federation determines the ease 
with which changes to the schemas can be made and ease 
of maintaining the federal schemas. There are four principal 
logical distribution alternatives, with differing ability to han­
dle change and maintenance: 

1. The first logical distribution strategy involves a single, 
global, federal schema derived from all the compo­
nents. This structure is simple for the federal DBA to 
maintain, because there is only one federal schema. But 
such a comprehensive federal schema is difficult for the 
DBA to design, because it must reflect all the desired 
interactions between components. In addition, com­
ponents are restricted from making radical changes in 
their component schemas because it may require 
changes to the federal schema. Components may be 
prohibited from seceding from the federation, because 
that may also require changes to the federal schema. 

2. An alternative distribution uses a separate federal 
schema for each pair of components. In the worst case 
of n components totally interconnected, there will be 
n(n-l)/2 federal schemas. Defining and maintaining 
this number of federal schemas may well place an in­
tolerable burden upon the federal DBA, particularly for 
a large n. However, it may be that for a given federation 
only some small portion of the possible interconnec­
tions is needed. Each pairwise federal schema is sim­
pler than a global schema, since fewer components are 
interacting. In this pairwise federal schema approach, 
adding or removing components is simple: the com­
ponent and its federal schemas are removed. 

3. A third logical distribution alternative is to associate 
a federal schema with each component, for use by all 
other components. Each component maintains two in­
terfaces, a local one for its users and another one for 
use by all other components. In this approach, it is easy 
to add or remove components, and the number of fed­
eral schemas is equal to the number of components. 

4. A final logical distribution strategy is a variation of the 
global distribution strategy: instead of a single global 
federal schema, there are several federal schemas ar­
ranged in a hierarchy. In this organization, the com­
ponents are separated into disjoint sets with a federal 
schema for each such set. The federal schemas at the 
first level are partitioned into groups, and a second 
level set of federal schemas is defined upon the sets of 
first level federal schemas. This continues until a single 
federal schema (designated the root) is constructed. 
The result is a tree of schemas; the leaves are the com­
ponent schemas and all interior nodes are federal sche­
mas. In this approach the effects of adding or removing 
a component may be limited to some subtree of the 
hierarchy. Clearly, in this strategy, the simplicity of the 
federal schema hierarchy is determined by the criteria 
used to structure the tree. 

Also at issue in logical distribution is the nature of the 
view seen by a user associated with a given federation com­
ponent. A user associated with a given component must be 
able to access both local data, through the local schema, and 
non-local data through a federal schema. The local data is 
accessed by the normal mechanisms of the system (i.e., a 
data manipulation facility/language or programming lan­
guage interface). Access to non-local data depends upon the 
user's view of the federation. At one extreme, the federal 
schema is integrated with and extends the local schema in 
such a way that the user cannot tell if he is accessing local 
data or non-local data. At the other extreme, the federal 
schema is separate from the local schema, although not nec­
essarily disjoint; in this situation, the user must specifically 
address his request to the local schema or the federal 
schema. 

Complete integration makes it simple for a user to express 
a database transaction, since both local and non-local data 
look the same; the principal problem with this approach is 
that the user cannot directly observe that a potentially ex­
pensive non-local reference may be required to process the 
transaction. When there is no integration, the user must per­
form extra steps to retrieve non-local data, which may then 
be combined with a manipulation of local data. In this case, 
the user knows that a potentially expensive non-local ref­
erence is needed. There is, of course, a viable middle ground 
between these extremes, in which the user sees two separate 
schemas, (component and federal) and the database trans­
action processor accepts combined references to both local 
and non-local data. In this way, the user knows a costly non­
local reference is being made, but the details of accessing 
are delegated to the database system. 

Physical distribution 

The federated database architecture does not assume that 
a database will actually be supported in a distributed envi­
ronment; that is, it is not assumed that the database is to 
span a number of nodes in a computer network. A federated 
database could well be implemented on a single computer. 
However, there are advantages to physically distributing 
data: 

1. to achieve better performance and allow higher degrees 
of concurrency by placing data close to its principal 
sources and users, 

2. to provide a higher degree of reliability and surviva­
bility by redundantly storing data items. 

The federated database architecture directly addresses the 
first of these two main goals; the concept of locality of ref­
erence is key in the federated architecture. Moreover, the 
federated architecture provides a basis, through the federal 
schema and federal DBA, for establishing a policy for re­
dundant data storage. 

As noted above, one of the main principles of the federated 
database architecture is that the responsibility for storing 
and supporting physical access to the data in each compo* 



A Federated Architecture for Database Systems 287 

nent of a federation is the responsibility of that component. 
Thus, the most general approach might be to allow each com­
ponent to choose its own method for storing data; if a com­
puter network is being used to implement a federated da­
tabase, each component may distribute its own data 
throughout the network. 

However, intolerable complexity may result from com­
plete flexibility for physical distribution along with complete 
flexibility for logical decentralization. Moreover, logical de­
centralization and physical distribution are not orthogonal 
issues. In consequence, it is appropriate in many cases to 
directly combine logical decentralization with physical dis­
tribution. In this approach, if a computer network is avail­
able for database implementation, then each federation com­
ponent is allocated to a node in the network. The matching 
of a federation component to a node in a computer network 
provides a direct and natural way to implement a database 
that can be both logically decentralized and physically dis­
tributed. 

Another aspect of physical distribution is the control of 
duplicate data. When two components contain duplicate in­
formation in their schemas, the federal DBA must decide 
how that data is to be handled in the federation. Duplicate 
data can be eliminated from the physical level of the fed­
eration by selecting one copy as the official copy; all ref­
erences to a specific data item then refer to the official copy. 

If duplicate data is retained, and it is desired that it be 
kept consistent (i.e., that all copies ultimately reach the same 
value after database modifications cease), then it is possible 
to apply the techniques developed for controlling duplicate 
data in distributed databases. 

A number of control algorithms for maintaining consist­
ency in distributed databases have been developed;5 the al­
gorithms that support partially duplicated data are directly 
relevant to federated databases. The proposed algorithms for 
maintaining the consistency of partially duplicated data are 
complex, since they attempt to keep all duplicate data as 
current as possible. This is important in a distributed data­
base system so that the users continue to see a logically 
centralized database. However, complete consistency is not 
necessarily important for federated databases, because they 
are logically decentralized. In consequence, it may be pos­
sible to apply looser and simpler algorithms for controlling 
duplicate data in the federated environment. 

Federal controller operation 

A federated database requires a control component not 
present in conventional (centralized) database system: the 
federal controller. As described above, the federal controller 
performs the bulk of the transformations necessary to satisfy 
a request from a component for information described in a 
federal schema (and that is contained in another component); 
the request takes the form of a specified transaction. The 
federal controller must perform a sequence of seven steps 
for each such request/transaction: 

1. The transaction is checked for legality against the fed­

eral schema. The access rights of the requester are also 
verified at this time. 

2. The transaction is decomposed into a collection of sim­
pler target transactions, each of which can be ulti­
mately satisfied by a single target component. The tar­
get component is the component that supports that part 
of the federal schema referenced by the target trans­
action. 

3. Each target transaction is translated from a reference 
to the federal schema to a reference to the target com­
ponent schema. 

4. The target transactions are sent to the corresponding 
target components for processing. 

5. The federal controller waits for all the target transac­
tions to be processed, and then the controller collects 
the results. 

6. The results are translated from target schema form back 
to federal schema form. 

7. The translated results are combined and returned to the 
requester. 

Steps five through seven can be performed in either set-
at-a-time or element-at-a-time fashion. In set-at-a-time pro­
cessing, the federal controller collects the results from all 
of the target components into a single result set, which is 
then returned to the requester. In element-at-a-time pro­
cessing the federal controller translates and returns to the 
requester each element of the result as it is made available 
by a target component. The choice between set-at-a-time 
and element-at-a-time processing should be made based on 
storage cost and communication cost information. 

The federal controller can itself be either centralized or 
distributed. If a computer network is used for implementing 
a federated database system, then there are three main ap­
proaches to federal controller placement: 

— The federal controller resides on a special node of the 
network, i.e., one which does not also contain a com­
ponent. This approach has the advantage of isolating 
the federal controller, and the controller node need 
possess only the computational power necessary to 
perform the controller's functions. In this approach, 
it is also possible to easily replace the controller, 
should it fail. The disadvantages of a special controller 
node include the need for additional hardware, and the 
potential problem of a system performance and relia­
bility bottleneck. 

— The federal controller can be co-located on a node with 
one of the components of the federation. This saves 
the cost of extra hardware, at the cost of possible com­
petition for node resources with the component con­
troller. The controller can also be made to migrate from 
one component node to another, should a node fail or 
a performance improvement be possible by shifting 
control. 

— The federal controller can be distributed, in which case 
a part of the controller is located at every node (or 
some subset of the nodes). This has advantages for 



288 National Computer Conference, 1980 

reliable operation, but the coordination of all the con­
trollers is a difficult problem. 

The choice between a centralized or a distributed federal 
controller must be made in the context of the relative com­
plexity of the algorithms for supporting coordination (anal­
ogous ' to work on distributed database control 
algorithms5'8'9101112), and the relative storage and commu­
nication costs involved. 

Component control 

In most respects, the control aspects of a component of 
a federation are the same as those for a centralized database 
system; but since a component is part of a federation, it must 
support an appropriate interface to the federation. In par­
ticular, there are several important issues that a component 
must address, vis-a-vis its interaction with the federation: 

— The component must allow for concurrent access to 
its data, because while a local user is accessing some 
part of the component data, some other component 
may be attempting to simultaneously access the same 
data (through the federal controller). If the component 
already has the capability for concurrency control for 
local users, then requests by the federal controller 
present no difficulty. Otherwise, the component soft­
ware must be augmented by software to control the 
simultaneous access attempts. 

— The component software must provide for communi­
cating results back to the federal controller, on either 
a set-at-a-time or an element-at-a-time bases. Set-at-a-
time processing requires bulk transfer of information 
to the federal controller, and element-at-a-time pro­
cessing requires the buffering of the results at the com­
ponent followed by single element transfers to the fed­
eral controller. 

— The component must recognize locally-issued trans­
actions that require accessing the federal schema, and 
forward an appropriate request for processing to the 
federal controller. When the federal controller returns 
the result of a transaction, the component combines 
the results from the federal controller with the results 
of any portion of the transaction that referenced data 
local to the component. 

In sum, it is the combined functioning of the components 
and the federal controller that allows a federated database 
system to effectively support information sharing and the 
decentralization of data. 

SUMMARY 

A federated architecture for database systems has been 
presented, which supports the logical decentralization of 
databases, and provides a basis for database physical dis­
tribution (in a network of computer systems). The federated 

architecture responds to a number of problems associated 
with the complete centralization and integration of database 
systems (as detailed above). 

A federated database consists of a number of logical com­
ponents, each having its own user-level structural specifi­
cation (component schema). The components of a federation 
are related, but independent, and they may or may not be 
disjoint. Typically, a component corresponds to a collection 
of information needed by a particular user or application. The 
components in a federation are tied together by one or more 
federal schemas that describe the data that is to be shared 
by the various federation components, and provide a com­
mon basis for communication among them. A federal con­
troller, which is an essential constituent of a federated da­
tabase system, supports communication and translation of 
data among federation components, based on the federal 
schema(s). 

In this paper, a number of design issues and alternatives 
for federated database systems have been reviewed. Alter­
native logical distributions and physical distributions were 
described, and the issues relevant to the operation of the 
federal controller and federation components discussed. We 
are presently developing a specific design approach based 
on the principles described in this paper.7 A critical aspect 
of our present approach is the use of a meaning-based (se­
mantic) database description and structuring formalism (da­
tabase model) (such as those described in 13-14-i5-16-17-'8.i9-20-2i) 
to specify the component schema interface with the federal 
schema(s). 

ACKNOWLEDGMENTS 

The authors are grateful for the very helpful efforts of 
Michael Hammer of MIT, a co-developer of the federated 
database concept. Gerald Short of TRW and the CAD AM 
group of the Lockheed California Company (under Don 
Kawamoto) have provided additional motivation for the fed­
erated architecture. 

REFERENCES 

1. Champine, G., "Six Approaches to Distributed Databases," Datamation, 
Pages 45-48, May 1977. 

2. Lien, Y. E. and Ying, J. H., "Design of a Distributed Entity-Relationship 
Database System," Proceeding of International Conference on Very 
Large Data Bases, Tokyo, Japan, 6-8 October 1978. 

3. Miller, M., "A Survey of Distributed Data Base Management," Infor­
mation and Management, Pages 243-264, 1978. 

4. Ramamoorthy, C. V. and Wah, B. W., "Data Management in Distributed 
Data Bases," Proceedings of National Computer Conference, New York, 
NY, 4-7 June 1979. 

5. Rothnie, J. B. and Goodman, N., "A Survey of Research and Devel­
opment in Distributed Database Management," Proceedings of Inter­
national Conference on Very Large Data Bases, Tokyo, Japan, 6-8 Oc­
tober 1977. 

6. Hammer, M. and McLeod, D., On the Architecture of Database Man­
agement Systems, Technical Report 79-4, Computer Science Department, 
University of Southern California, Los Angeles CA, April 1979. 

7. McLeod, D., An Approach to Database Decentralization, Technical Re­
port, Computer Science Department, University of Southern California, 
Los Angeles CA, 1980 (to appear). 



A Federated Architecture for Database Systems 289 

8. Bernstein, P. A., Rothnie, J. B., Goodman, N., and Papadimitriou, C. 
D., "The Concurrency Control Mechanism of SDD-1: A System for Dis­
tributed Databases (the Fully Redundant Case)," IEEE Transactions on 
Software Engineering, Volume SE-4, Number 3, May 1978. 

9. Bernstein, P. A. and Shipman, D., "A Formal Model of Concurrency 
Control Mechanisms for Distributed Database Systems," Proceedings of 
Third Berkeley Conference on Distributed Data Management and Com­
puter Networks, Berkeley CA, 29-31 August 1978. 

10. Garcia-Molina, H., "Performance Comparison of Two Update Algo­
rithms for Distributed Databases," Proceedings of Third Berkeley Con­
ference on Distributed Data Management and Computer Neworks, 
Berkeley CA, 29-31 August 1978. 

11. Stonebraker, M. and Neuhold, E., "A Distributed Database Version of 
INGRES," Proceedings of Second Berkeley Conference on Distributed 
Data Management and Computer Networks, Berkeley CA, May 1977. 

12. Thomas, R. H., "A Majority Consensus Approach to Concurrency Con­
trol," ACM Transactions on Database Systems, Volume 4, Number 2, 
June 1979. 

13. Buneman, P. and Frankel, R. E., "FQL—A Functional Query Lan­
guage," Proceedings of ACM-SIGMOD International Conference on the 
Management of Data, Boston MA, 30 May-1 June 1979. 

14. Chen, P. P. S., "The Entity-Relationship Model: Toward a Unified View 
of Data," ACM Transactions on Database Systems, Volume 1, Number 
1, Pages 9-36, March 1976. 

15. Codd, E. F., "Extending the Database Relational Model," ACM Trans­
actions on Database Systems, vol. 4, no. 4, December 1979. 

16. Hammer, M. and McLeod, D., "The Semantic Data Model: A Modelling 
Mechanism for Database Applications," Proceedings of ACM SIGMOD 
International Conference on the Management of Data, Austin TX, 31 
May-2 June 1978. 

17. Hammer, M. and McLeod, D., SDM: A Semantic Database Model, Tech­
nical Report, Computer Science Department, University of Southern 
California, Los Angeles CA, 1980 (to appear). 

18. McLeod, D. and King, R., "Applying a Semantic Database Model," 
Proceedings of International Conference on the Entity-Relationship Ap­
proach to Systems Analysis and Design, Los Angeles CA, 10-12 Decem­
ber 1979. 

19. Shipman, D., "The Functional Data Model and the Data Language DA-
PLEX," ACM Transactions on Database Systems, 1980 (to appear). 

20. Smith, J. M. and Smith, D. C. P., "Database Abstractions: Aggregation 
and Generalization," ACM Transactions on Database Systems, Volume 
2, Number 2, Pages 105-133, June 1977. 

21. Su, S. and Lo, D., "A Semantic Association Model for Conceptual Da­
tabase Design," Proceedings of International Conference on the Enti-
Relationship Approach to Systems Analysis and Design, Los Angeles 
CA, 10-12 December 1979. 






