
A First Book of ANSI C
Fourth Edition

Chapter 13
Dynamic Data Structures

A First Book of ANSI C, Fourth Edition 2

Objectives

• Introduction to Linked Lists
• Dynamic Memory Allocation
• Stacks
• Queues
• Dynamically Linked Lists
• Common Programming and Compiler Errors

A First Book of ANSI C, Fourth Edition 3

Introduction

• Dynamic memory allocation: an alternative to
fixed memory allocation in which memory space
grows or diminishes during program execution

• Dynamic memory allocation makes it unnecessary
to reserve a fixed amount of memory for a scalar,
array, or structure variable in advance
– Also known as run-time allocation
– Requests are made for allocation and release of

memory space while the program is running

A First Book of ANSI C, Fourth Edition 4

Introduction to Linked Lists

• An array of structures can be used to insert and
delete ordered structures, but this is not an efficient
use of memory
– Better alternative: a linked list

• Linked list: set of structures, each containing at
least one member whose value is the address of the
next logically ordered structure in the list
– Also known as self-referencing structures

A First Book of ANSI C, Fourth Edition 5

Introduction to Linked Lists (continued)

A First Book of ANSI C, Fourth Edition 6

Introduction to Linked Lists (continued)

A First Book of ANSI C, Fourth Edition 7

Introduction to Linked Lists (continued)

• A NULL acts as a sentinel or flag to indicate when
the last structure has been processed

• In addition to an end-of-list sentinel value, we must
provide a special pointer for storing the address of
the first structure in the list

A First Book of ANSI C, Fourth Edition 8

Introduction to Linked Lists (continued)

A First Book of ANSI C, Fourth Edition 9

Introduction to Linked Lists (continued)

A First Book of ANSI C, Fourth Edition 10

A structure can contain any data type, including a
pointer. A pointer member of a structure is used like
any other pointer variable.

Introduction to Linked Lists (continued)

A First Book of ANSI C, Fourth Edition 11

is evaluated as (t1.nextaddr)->name
it can be replaced by (*t1.nextaddr).name

Introduction to Linked Lists (continued)

A First Book of ANSI C, Fourth Edition 12

Introduction to Linked Lists (continued)

A First Book of ANSI C, Fourth Edition 13

Introduction to Linked Lists (continued)

Disadvantage: exactly three structures are
defined in main() by name, and storage
for them is reserved at compile time

A First Book of ANSI C, Fourth Edition 14

Introduction to Linked Lists (continued)

can be replaced by while(!contents)

A First Book of ANSI C, Fourth Edition 15

Dynamic Memory Allocation

A First Book of ANSI C, Fourth Edition 16

Dynamic Memory Allocation
(continued)

• The malloc() and calloc() functions can
frequently be used interchangeably
– The advantage of calloc() is that it initializes all

newly allocated numeric memory to 0 and character
allocated memory to NULL

– We use malloc() because it is the more general
purpose of the two functions

– malloc(10*sizeof(char)) or
calloc(10,sizeof(char)) requests enough
memory to store 10 characters

• The space allocated by malloc() comes from the
computer’s heap

A First Book of ANSI C, Fourth Edition 17

…

Necessary because malloc() returns void

Dynamic Memory Allocation
(continued)

A First Book of ANSI C, Fourth Edition 18

Dynamic Memory Allocation
(continued)

• malloc() is more typically used for dynamically
allocating memory for structures
struct OfficeInfo *Off;

/* request space for one structure */

Off = (struct OfficeInfo *) malloc(sizeof(struct
OfficeInfo));

/* check that space was allocated */

if (Off == (struct OfficeInfo*) NULL)

{

printf("\nAllocation failed\n");

exit(1);

}

A First Book of ANSI C, Fourth Edition 19

Stacks

• Stack: special type of linked list in which objects can
only be added to and removed from the top of the list
– Last-in, first-out (LIFO) list

• In a true stack, the only item that can be seen and
accessed is the top item

A First Book of ANSI C, Fourth Edition 20

Stacks (continued)

A First Book of ANSI C, Fourth Edition 21

Stack Implementation

• Creating a stack requires the following four
components:
– A structure definition
– A method of designating the current top stack

structure
– An operation for placing a new structure on the stack
– An operation for removing a structure from the stack

A First Book of ANSI C, Fourth Edition 22

PUSH and POP

PUSH (add a new structure to the stack)
Dynamically create a new structure
Put the address in the top-of-stack pointer into the address

field of the new structure
Fill in the remaining fields of the new structure
Put the address of the new structure into the top-of-stack

pointer
POP (remove a structure from the top of the stack)

Move the structure contents pointed to by the top-of-stack
pointer into a work area

Free the structure pointed to by the top-of-stack pointer
Move the address in the work area address field into the top-

of-stack pointer

A First Book of ANSI C, Fourth Edition 23

PUSH and POP (continued)

A First Book of ANSI C, Fourth Edition 24

PUSH and POP (continued)

A First Book of ANSI C, Fourth Edition 25

PUSH and POP (continued)

A First Book of ANSI C, Fourth Edition 26

PUSH and POP (continued)

A First Book of ANSI C, Fourth Edition 27

PUSH and POP (continued)

• A sample run using Program 13.5 produced the following:

Enter as many names as you wish, one per line
To stop entering names, enter a single x
Enter a name: Jane Jones
Enter a name: Bill Smith
Enter a name: Jim Robinson
Enter a name: x

The names popped from the stack are:
Jim Robinson
Bill Smith
Jane Jones

A First Book of ANSI C, Fourth Edition 28

Queues

• A second important data structure that relies on
linked structures is called a queue
– Items are removed from a queue in the order in

which they were entered
– It is a first in, first out (FIFO) structure

A First Book of ANSI C, Fourth Edition 29

Queues (continued)

A First Book of ANSI C, Fourth Edition 30

Queues (continued)

A First Book of ANSI C, Fourth Edition 31

Enque and Serve

• Enqueueing: placing a new item on top of the
queue

• Serving: removing an item from a queue

A First Book of ANSI C, Fourth Edition 32

Enque and Serve (continued)

A First Book of ANSI C, Fourth Edition 33

Enque and Serve (continued)

Enqueue (add a new structure to an existing queue)
Dynamically create a new a structure
Set the address field of the new structure to a NULL
Fill in the remaining fields of the new structure
Set the address field of the prior structure (which is
pointed to by the queueIn pointer) to the address of
the newly created structure

Update the address in the queueIn pointer with the
address of the newly created structure

A First Book of ANSI C, Fourth Edition 34

Enque and Serve (continued)

A First Book of ANSI C, Fourth Edition 35

Enque and Serve (continued)

Serve (remove a structure from an existing queue)
Move the contents of the structure pointed to by the
queueOut pointer into a work area

Free the structure pointed to by the queueOut
pointer

Move the address in the work area address field into
the queueOut pointer

A First Book of ANSI C, Fourth Edition 36

Enque and Serve (continued)

A First Book of ANSI C, Fourth Edition 37

Enque and Serve (continued)

A First Book of ANSI C, Fourth Edition 38

Enque and Serve (continued)

A First Book of ANSI C, Fourth Edition 39

Enque and Serve (continued)

A First Book of ANSI C, Fourth Edition 40

Enque and Serve (continued)

A First Book of ANSI C, Fourth Edition 41

Enque and Serve (continued)

• A sample run using Program 13.6 produced the
following:
Enter as many names as you wish, one per line
To stop entering names, enter a single x
Enter a name: Jane Jones
Enter a name: Bill Smith
Enter a name: Jim Robinson
Enter a name: x

The names served from the queue are:
Jane Jones
Bill Smith
Jim Robinson

A First Book of ANSI C, Fourth Edition 42

Dynamically Linked Lists

• Both stacks and queues are examples of linked
lists in which elements can only be added to and
removed from the ends of the list

• In a dynamically linked list, this capability is
extended to permit adding or deleting a structure
from anywhere within the list

• Such a capability is extremely useful when
structures must be kept within a specified order

A First Book of ANSI C, Fourth Edition 43

INSERT and DELETE

Key field

A First Book of ANSI C, Fourth Edition 44

INSERT and DELETE (continued)
INSERT (add a new structure into a linked list)

Dynamically allocate space for a new structure
If no structures exist in the list

Set the address field of the new structure to a NULL
Set address in the first structure pointer to address of newly created structure

Else /* we are working with an existing list */
Locate where this new structure should be placed
If this structure should be the new first structure in the list

Copy current contents of first structure pointer into address field of newly
created structure
Set address in the first structure pointer to address of newly created structure

Else
Copy the address in the prior structure’s address member into the address
field of the newly created structure
Set address of prior structure’s address member to address of newly created
structure

EndIf
EndIf

A First Book of ANSI C, Fourth Edition 45

INSERT and DELETE (continued)

A First Book of ANSI C, Fourth Edition 46

INSERT and DELETE (continued)

LINEAR LOCATION for INSERTING a NEW STRUCTURE
If the key field of the new structure is less than the first structure’s

key field the new structure should be the new first structure
Else
While there are still more structures in the list
Compare the new structure’s key value to each structure key
Stop the comparison when the new structure key either falls
between two existing structures or belongs at the end of the
existing list

EndWhile
EndIf

A First Book of ANSI C, Fourth Edition 47

See Slide 50

See Slide 50

INSERT and DELETE (continued)

A First Book of ANSI C, Fourth Edition 48

INSERT and DELETE (continued)

A First Book of ANSI C, Fourth Edition 49

INSERT and DELETE (continued)

A First Book of ANSI C, Fourth Edition 50

...(code for insert() and locate() goes here)…

INSERT and DELETE (continued)

A First Book of ANSI C, Fourth Edition 51

INSERT and DELETE (continued)

• The following sample run shows the results of
these tests:
Enter as many names as you wish, one per line
To stop entering names, enter a single x
Enter a name: Binstock
Enter a name: Arnold
Enter a name: Duberry
Enter a name: Carter
Enter a name: x

The names currently in the list, in alphabetical
order, are:
Arnold
Binstock
Carter
Duberry

A First Book of ANSI C, Fourth Edition 52

Common Programming Errors

• Not checking the return codes provided by
malloc() and realloc()

• Not correctly updating all relevant pointer
addresses when adding or removing structures
from dynamically created stacks, queues, and
linked lists

• Forgetting to free previously allocated memory
space when the space is no longer needed

A First Book of ANSI C, Fourth Edition 53

Common Programming Errors
(continued)

• Not preserving the integrity of the addresses
contained in the top-of-stack pointer, queue-in,
queue-out, and list pointer when dealing with a
stack, queue, and dynamically linked list,
respectively

• Related to the previous error is the equally
disastrous one of not correctly updating internal
structure pointers when inserting and removing
structures from a stack, queue, or dynamically
linked list

A First Book of ANSI C, Fourth Edition 54

Common Compiler Errors

A First Book of ANSI C, Fourth Edition 55

Common Compiler Errors (continued)

A First Book of ANSI C, Fourth Edition 56

Summary

• An alternative to fixed memory allocation for variables
at compile time is the dynamic allocation of memory at
run time

• malloc() reserves a requested number of bytes and
returns a pointer to the first reserved byte

• realloc() operates in a similar fashion as
malloc() except it is used to expand or contract an
existing allocated space

• free() is used to deallocate previously allocated
memory space

A First Book of ANSI C, Fourth Edition 57

Summary (continued)

• A stack is a list consisting of structures that can
only be added and removed from the top of the list

• A queue is a list consisting of structures that are
added to the top of the list and removed from the
bottom of the list

• A dynamically linked list consists of structures that
can be added or removed from any position in the
list

