A First Book of ANSI C
Fourth Edition

Chapter 13
Dynamic Data Structures

Objectives

* Introduction to Linked Lists

* Dynamic Memory Allocation

» Stacks

* Queues

* Dynamically Linked Lists

 Common Programming and Compiler Errors

A First Book of ANSI C, Fourth Edition

Introduction

 Dynamic memory allocation: an alternative to
fixed memory allocation in which memory space
grows or diminishes during program execution

* Dynamic memory allocation makes it unnecessary
to reserve a fixed amount of memory for a scalar,
array, or structure variable in advance

— Also known as run-time allocation

— Requests are made for allocation and release of
memory space while the program is running

A First Book of ANSI C, Fourth Edition

Introduction to Linked Lists

* An array of structures can be used to insert and
delete ordered structures, but this is not an efficient
use of memory

— Better alternative: a linked list

* Linked list: set of structures, each containing at
least one member whose value is the address of the
next logically ordered structure in the list

— Also known as self-referencing structures

A First Book of ANSI C, Fourth Edition 4

Introduction to Linked Lists (continued)

Figure 13.2 Using pointers to link structures

A First Book of ANSI C, Fourth Edition 5

Introduction to Linked Lists (continued)

—

Figure 13.3 Adjusting addresses to point to appropriate structures

A First Book of ANSI C, Fourth Edition 6

Introduction to Linked Lists (continued)

A NULL acts as a sentinel or flag to indicate when
the last structure has been processed

In addition to an end-of-list sentinel value, we must

provide a special pointer for storing the address of
the first structure in the list

A First Book of ANSI C, Fourth Edition

Introduction to Linked Lists (continued)

Figure 13.4 Use of the initial and final pointer values

A First Book of ANSI C, Fourth Edition 8

Introduction to Linked Lists (continued)

emp structure
pay

1dNum:

ptPay:

Figure 13.5 Storing an address in a structure member

A First Book of ANSI C, Fourth Edition 9

Introduction to Linked Lists (continued)

‘a Program 13.1

O 0 3 0 U b= W N -

e I S e N
W W J oUW N RO

20

#include <stdio.h>

struct Test

{
int idNum;
double *ptPay;

bi A structure can contain any data type, including a
. . pointer. A pointer member of a structure is used like
int main()))
{ any other pointer variable.

struct Test emp;

double pay = 456.20;

emp.idNum = 12345;

emp.ptPay = &pay;

printf ("Employee number %d was paid $%6.2f\n", emp.idNum,

*emp.ptPay) ;

return 0;

}

A First Book of ANSI C, Fourth Edition 10

Introduction to Linked Lists (continued)

0 30 U k&= WD

0

10
11
12
1Lzl
14
15
1L (5
17
18
19
20
21
22
23
24
25
26
27

Program 13.2

#include <stdio.h>
#define MAXNAME 30
#define MAXPHONE 15

struct TeleType

{

Iy 5

char name [MAXNAME] ;
char phonelNum[MAXPHONE] ;

struct TeleType *nextaddr;

int main()

{

struct TeleType tl
struct TeleType t2

{"Acme, Sam"," (555) 898-2392"};
{"Dolan, Edith", " (555) 682-3104"};

struct TeleType t3 = {"Lanfrank, John", " (555) 718-4581"};

struct TeleType *first;

first = &tl1;

tl.nextaddr = &t2;
t2 .nextaddr = &t3;
t3 .nextaddr NULL;

/*
/*
/*
/*

/* create a pointer to a structure */

store tl's address in first */

store t2's address in tl.nextaddr */
store t3's address in t2.nextaddr */
store the NULL address in t3.nextaddr */

printf ("%$s\n%s\n%¥s\n", first->name, tl.nextaddr->name, t2 .nextaddr->name) ;

return 0;

-~

is evaluated as (t1.nextaddr)->name
it can be replaced by (*t1.nextaddr) .name

A First Book of ANSI C, Fourth Edition

11

Introduction to Linked Lists (continued)

first

t1 structure

_

| — — . —— _—

I tl.name tl.phoneNum tl.nextaddr

Starting storage location for t1

t2 structure

_

t2.name t2.phoneNum t2.nextaddr

Starting storage location for t2

t3 structure

—

t3.name t3.phoneNum t3.nextaddr

Starting storage location for t3

Figure 13.6 The relationship between structures in Program 13.2
A First Book of ANSI C, Fourth Edition

12

Introduction to Linked Lists (continued)

‘g Program 13.3

WO 0 3 0 U = W N -

e R = T I S S S
S e S I IV S R =

18

#include <stdio.h>
#define MAXNAME 30
#define MAXPHONE 15

struct TeleType

{
char name [MAXNAME] ;
char phonelNum[MAXPHONE] ;
struct TeleType *nextaddr;

bi Disadvantage: exactly three structures are

int main() defined inmain () by name, and storage
{ /for them is reserved at compile time

struct TeleType tl = {"Acme, Sam", " (555) 898-2392"};

struct TeleType t2 = {"Dolan, Edith", " (555) 682-3104"};

struct TeleType t3 = {"Lanfrank, John", " (555) 718-4581"};
struct TeleType *first; /* create a pointer to a structure */
void display(struct TeleType *); /* function prototype */

A First Book of ANSI C, Fourth Edition 13

Introduction to Linked Lists (continued)

19
20
21
22
23
24
25
26
27
28
29
30
31
32
S
34
=i
36
S

first = &tl; /* store tl's address in first */
tl.nextaddr &t2; /* store t2's address in tl.nextaddr */

t2 .nextaddr &t3; /* store t3's address in t2.nextaddr */

t3 .nextaddr NULL; /* store the NULL address in t3.nextaddr */

display (first); /* send the address of the first structure
return 0;

}

void display(struct TeleType *contents) /* contents is a pointer

{ /* to a structure of type TeleType
while (contents != NULL) /* display till end of linked list */

{ "Ncan be replaced by while (!contents)

printf("%$-30s %-20s\n",contents->name, contents->phoneNum) ;
contents = contents->nextaddr; /* get next address */

*/

*/
*/

A First Book of ANSI C, Fourth Edition

14

Dynamic Memory Allocation

Table 13.1 Functions to Dynamically Allocate and Deallocate Memory Space

Function Name | Description

malloc () Reserves the number of bytes requested by the argument passed
to the function. Returns the address of the first reserved location,
as an address of a void data type, or NULL if sufficient memory
is not available.

calloc() Reserves space for an array of n elements of the specified size.

Returns the address of the first reserved location and initializes all
reserved bytes to 0s, or returns a NULL if sufficient memory is not
available.

realloc()

Changes the size of previously allocated memory to a new size. If
the new size is larger than the old size, the additional memory
space is uninitialized and the contents of the original allocated
memory remain unchanged; otherwise, the new allocated memory
remains unchanged up to the limits of the new size.

free()

Releases a block of bytes previously reserved. The address of the
first reserved location is passed as an argument to the function.

A First Book of ANSI C, Fourth Edition

15

Dynamic Memory Allocation
(continued)

e Themalloc () and calloc () functions can
frequently be used interchangeably
— The advantage of calloc () is that it initializes all

newly allocated numeric memory to 0 and character
allocated memory to NULL

— We usemalloc () because it is the more general
purpose of the two functions

—malloc(l10*sizeof (char)) or
calloc (10, sizeof (char)) requests enough
memory to store 10 characters
* The space allocated by malloc () comes from the
computer’s heap

A First Book of ANSI C, Fourth Edition 16

Dynamic Memory Allocation

continued
8 Program 13.4

4 ht main()

5 {

6 int numgrades, i;

7 int *grades;

8

9 printf ("\nEnter the number of grades to be processed: ") ;
10 scanf ("%4d", &numgrades) ;

all

12 /* here is where the request for memory is made */

13 grades = (int *) malloc (numgrades * sizeof (int)):; ‘__~
14

s /* here we check that the allocation was satisfied */

o _ o -~ .

o lgmeees = GmE M AR Necessary because malloc () returns void
18 printf ("\nFailed to allocate grades array\n") ;

19 exit(1l);

20 }
21
22 for(i = 0; i < numgrades; i++)
23 {
24 printf (" Enter a grade: ") ;
25 scanf ("%d4d", &grades[i]):;
26 }
27
28 printf ("\nAn array was created for %d integers", numgrades) ;
29 printf ("\nThe wvalues stored in the array are:\n");

30

31 for (i = 0; i < numgrades; i++)

32 printf (" $d\n", grades[i]) ;

=)z

34 free (grades) ;

35

36 return 0;

37 }

A First Book of ANSI C, Fourth Edition

17

Dynamic Memory Allocation
(continued)

« malloc () Is more typically used for dynamically

allocating memory for structures
struct OfficelInfo *Off;
/* request space for one structure */

Off = (struct OfficeInfo *) malloc(sizeof (struct
OfficeInfo));

/* check that space was allocated */
1f (Off == (struct OfficelInfo*) NULL)
{
printf ("\nAllocation failed\n");
exit (1) ;
}

A First Book of ANSI C, Fourth Edition 18

Stacks

« Stack: special type of linked list in which objects can
only be added to and removed from the top of the list

— Last-in, first-out (LIFO) list

* In a true stack, the only item that can be seen and
accessed is the top item

A First Book of ANSI C, Fourth Edition 19

Stacks (continued)

(@) (®) () (d (e) i

Figure 13.8 An expanding and contracting stack of names

A First Book of ANSI C, Fourth Edition 20

Stack Implementation

* Creating a stack requires the following four
components:

— A structure definition

— A method of designating the current top stack
structure

— An operation for placing a new structure on the stack
— An operation for removing a structure from the stack

A First Book of ANSI C, Fourth Edition 21

PUSH and POP

PUSH (add a new structure to the stack)
Dynamically create a new structure

Put the address in the top-of-stack pointer into the address
field of the new structure

Fill in the remaining fields of the new structure

Put the address of the new structure into the top-of-stack
pointer

POP (remove a structure from the top of the stack)

Move the structure contents pointed to by the top-of-stack
pointer into a work area

Free the structure pointed to by the top-of-stack pointer
Move the address in the work area address field into the top-
of-stack pointer

A First Book of ANSI C, Fourth Edition 22

PUSH and POP (continued)

tosp Record 3

Points to
last record

Record 2

—

Record 1

|

Figure 13.9 A stack consisting of three structures

Record 4

Record 3

Record 2

Record 1

Figure 13.10 The stack after a PUSH

A First Book of ANSI C, Fourth Edition

23

0 30 0O k= W

0

10
1Ll
12
Lzl
14
1Ll
1L(E
17
18
Lt
20
21
22
23
24
2)\5;
26
27

PUSH and POP (continued)

Program 13.5

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAXCHARS 30
#define DEBUG 0

/* here is the declaration of a stack structure */
struct NameRec

{
char name [MAXCHARS] ;
struct NameRec *priorAddr;

b5

/* here is the definition of the top-of-stack pointer */
struct NameRec *tosp;

int main()

{
void readPush(); /* function prototypes */
void popShow() ;

tosp = NULL; /* initialize the top-of-stack pointer */
readPush () ;
popShow() ;

return 0;

}
A First Book of ANSI C, Fourth Edition

24

PUSH and POP (continued)

29 /* get a name and push it onto the stack */
30 wvoid readPush()

=)l {

32 char name [MAXCHARS] ;

33 void push (char *);

34

=5, printf ("Enter as many names as you wish, one per line");
36 printf ("\nTo stop entering names, enter a single x\n");
37 while (1)

38 {

39 printf ("Enter a name: ") ;

40 gets (name) ;

41 if (strcmp (name, "xX") == 0)

42 break;

43 push (name) ;

44 }

45 }

46

47 /* pop and display names from the stack */
48 wvoid popShow()

49 {

50 char name [MAXCHARS] ;

syl void pop(char *);

52

5E printf ("\nThe names popped from the stack are:\n");
54 while (tosp != NULL) /* display till end of stack */
55 {

56 pop (name) ;

57 printf("%$s\n", name) ;

58 }

59 }
A First Book of ANSI C, Fourth Edition

PUSH and POP (continued)

61 void push(char *name)

62 {

63 struct NameRec *newaddr; /* pointer to structure of type NameRec */
64

65 if (DEBUG)

66 printf("Before the push the address in tosp is %p", tosp):;

67

68 newaddr = (struct NameRec *) malloc (sizeof (struct NameRec)) ;

69 if (newaddr == (struct NameRec *) NULL)

70 {

71 printf("\nFailed to allocate memory for this structure\n") ;

72 exit (1) ;

73 }

74 strcpy (newaddr->name, name) ; /* store the name */

715 newaddr->priorAddr = tosp; /* store address of prior structure */
76 tosp = newaddr; /* update the top-of-stack pointer */
77

78 if (DEBUG)

79 printf("\n After the push the address in tosp is %p\n", tosp):;
80 1}

82 woid pop(char *name)

83 {

84 struct NameRec *tempAddr;

85

86 if (DEBUG)

87 printf("Before the pop the address in tosp is %$p\n", tosp);

89 strcpy (name, tosp->name) ; /* retrieve the name from the top-of-stack */
90 tempAddr = tosp->priorAddr; /* retrieve the prior address */

91 free(tosp) ; /* release the structure's memory space */
92 tosp = tempAddr; /* update the top-of-stack pointer */
93

94 if (DEBUG)

95 printf (" After the pop the address in tosp is %p\n", tosp):;

96 }

A First Book of ANSI C, Fourth Edition

PUSH and POP (continued)

« A sample run using Program 13.5 produced the following:

Enter as many names as you wish, one per line

To stop
Enter a
Enter a
Enter a
Enter a

entering names, enter a single x

name.
name:
name:
name.

Jane Jones
Rill Smith
Jim Robinson

X

The names popped from the stack are:

Jim Robinson
Rill Smith
Jane Jones

A First Book of ANSI C, Fourth Edition 27

Queues

« A second important data structure that relies on
linked structures is called a queue

— ltems are removed from a queue in the order in
which they were entered

— Itis afirst in, first out (FIFO) structure

A First Book of ANSI C, Fourth Edition

28

Queues (continued)

Harriet Wright «——— last name on the queue (queueln)

Jim Robinson
Bill Smith
Jane Jones «—— first name on the queue (queueOut)

Figure 13.11 A queue with its pointers

A First Book of ANSI C, Fourth Edition 29

Queues (continued)

Teresa Filer -—— queueln
Lou Hazlet

Harriet Wright

Jim Robinson

Bill Smith <+ queueOut

Figure 13.12 The updated
queue pointers

A First Book of ANSI C, Fourth Edition 30

Enque and Serve

 Enqueueing: placing a new item on top of the
queue

« Serving: removing an item from a queue

A First Book of ANSI C, Fourth Edition

31

Enque and Serve (continued)

queueln
pointer

Record 3

queueOut
pointer

Record 2

Record 1

Figure 13.13 A queue consisting of three structures

A First Book of ANSI C, Fourth Edition

32

Enque and Serve (continued)

Enqueue (add a new structure to an existing queue)
Dynamically create a new a structure
Set the address field of the new structure to a NULL
Fill in the remaining fields of the new structure

Set the address field of the prior structure (which is

pointed to by the queueln pointer) to the address of
the newly created structure

Update the address in the queueln pointer with the
address of the newly created structure

A First Book of ANSI C, Fourth Edition 33

Enque and Serve (continued)

Record 4

queueln
pointer

Record 3 |

Record 2

queueOut
pointer Record 1

Figure 13.14 The queue after an enqueue (PUSH)

A First Book of ANSI C, Fourth Edition

34

Enque and Serve (continued)

Serve (remove a structure from an existing queue)

Move the contents of the structure pointed to by the
queueQut pointer info a work area

Free the structure pointed to by the queueOut
pointer

Move the address in the work area address field into
the queueOut pointer

A First Book of ANSI C, Fourth Edition 35

Enque and Serve (continued)

Record 4

queueln
pointer

Record 3 |
queueOut
pointer Record 2

Figure 13.15 The queue after a serve (POP)

A First Book of ANSI C, Fourth Edition

il
2
3
4
B
6
7
8

Vo]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Enque and Serve (continued)

Program 13.6

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAXCHARS 30
#tdefine DEBUG 0

/* here is the declaration of a queue structure */
struct NameRec
{

char name [MAXCHARS] ;

struct NameRec *nextAddr;

Iy 5

/* here is the definition of the top and bottom queue pointers */
struct NameRec *queueln, *gqueuelOut;

int main ()
{
void readEnque(); /* function prototypes */
volid serveShow() ;
queuelIn = NULL; /* initialize queue pointers */
queueOut = NULL;
readEnque () ;
serveShow () ;

}

A First Book of ANSI C, Fourth Edition

37

Enque and Serve (continued)

26 /* get a name and enque it onto the queue */
27 wvoid readEnque ()

28 {

29 char name [MAXCHARS] ;

30 void enque (char *);

31

32 printf ("Enter as many names as you wish, one per line");
33 printf ("\nTo stop entering names, enter a single x\n");
34 while (1)

=) {

36 printf ("Enter a name: ") ;

)7 gets (name) ;

38 if (strcomp(name, "x") == 0)

39 break;

40 enque (name) ;

41 }

42 }

43 /* serve and display names from the queue */
44 void serveShow()

45 {

46 char name [MAXCHARS] ;

47 void serve (char *);

48

49 printf ("\nThe names served from the queue are:\n");
50 while (queueOut != NULL) /* display till end of queue */
51 {

52 serve (name) ;

53 printf ("$s\n",name) ;

54 }

S5

A First Book of ANSI C, Fourth Edition

Enque and Serve (continued

57 void enque (char *name)

58 {

59 struct NameRec *newaddr; /* pointer to structure of type NameRec */
60

61 if (DEBUG)

62 {

63 printf ("Before the enque the address in queueln is %p", queueln) ;
64 printf ("\nand the address in gqueueOut is %p", gueueOut) ;

65 }

66

67 newaddr = (struct NameRec *) malloc(sizeof (struct NameRec)) ;

68 if (newaddr == (struct NameRec *) NULL)

69 {

70 printf ("\nFailed to allocate memory for this structure\n") ;

71 exit (1) ;

72 }

73

74 /* the next two if statements handle the empty queue initialization */
75 if (queueOut == NULL)

76 queueOut = newaddr;

77 if (queueln != NULL)

78 queueIn->nextAddr = newaddr; /* f£ill in prior structure's address field */
79 strcpy (newaddr->name, name) ; /* store the name */

80 newaddr->nextAddr = NULL; /* set address field to NULL */

81 queueln = newaddr; /* update the top-of-queue pointer */

82

83 if (DEBUG)

84 {

85 printf("\n After the enque the address in queueln is %p\n", queueln);
86 printf (" and the address in queueOut is %p\n", queueOut) ;

87 }

88 1}

A First Book of ANSI C, Fourth Edition

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

Enque and Serve (continued)

void serve (char *name)

{

struct NameRec *nextAddr;

if (DEBUG)
printf ("Before the serve the address in queueCut is %$p\n", queueOut);

/* retrieve the name from the bottom-of-queue */
strcpy (name, queueOut->name) ;

/* capture the next address field */
nextAddr = queueOut->nextAddr;

free (queuelut) ;

/* update the bottom-of-queue pointer */
queueOut = nextAddr;
if (DEBUG)
printf(" After the serve the address in queueOut is %u\n",
queueOut) ;

A First Book of ANSI C, Fourth Edition 40

Enque and Serve (continued)

* A sample run using Program 13.6 produced the
following:

Enter as many names as you wish, one per line

To stop

Enter
Enter
Enter
Enter

a

a
a
a

entering names, enter a single x

name.
name:
name:
name.

Jane Jones
Rill Smith
Jim Robinson

X

The names served from the queue are:

Jane Jones
Rill Smith
Jim Robinson

A First Book of ANSI C, Fourth Edition

41

Dynamically Linked Lists

« Both stacks and queues are examples of linked
lists in which elements can only be added to and
removed from the ends of the list

* In a dynamically linked list, this capability is
extended to permit adding or deleting a structure
from anywhere within the list

* Such a capability is extremely useful when
structures must be kept within a specified order

A First Book of ANSI C, Fourth Edition 42

INSERT and DELETE

Key field

Record 3

pre—

Record 2

—

start-of-list
pointer Record 1

Figure 13.16 The initial linked list

N

A First Book of ANSI C, Fourth Edition

INSERT and DELETE (continued)

INSERT (add a new structure into a linked list)
Dynamically allocate space for a new structure
If no structures exist in the list
Set the address field of the new structure to a NULL
Set address in the first structure pointer to address of newly created structure
Else /* we are working with an existing list */
Locate where this new structure should be placed
If this structure should be the new first structure in the list

Copy current contents of first structure pointer into address field of newly
created structure

Set address in the first structure pointer to address of newly created structure
Else

Copy the address in the prior structure’s address member into the address
field of the newly created structure

Set address of prior structure’s address member to address of newly created
structure

Endif
Endlf

A First Book of ANSI C, Fourth Edition 44

INSERT and DELETE (continued)

Record 4

Record 3

Record 2

start-of-list
pointer Record 1

Figure 13.17 Adding a new name to the list

A First Book of ANSI C, Fourth Edition 45

INSERT and DELETE (continued)

LINEAR LOCATION for INSERTING a NEW STRUCTURE

If the key field of the new structure is less than the first structure’s
key field the new structure should be the new first structure

Else
While there are still more structures in the list
Compare the new structure’s key value to each structure key

Stop the comparison when the new structure key either falls
between two existing structures or belongs at the end of the
existing list

EndWhile
EndIf

A First Book of ANSI C, Fourth Edition 46

INSERT and DELETE (continued)

Program 13.7

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4 #define MAXCHARS 30

5 #define DEBUG 0

6

7 /* here is the declaration of a linked list structure */
8 struct NameRec

9 {
10 char name [MAXCHARS] ;
11 struct NameRec *nextAddr;
12 };
13

14 /* here is the definition of the first structure pointer */

15 struct NameRec *firstRec; 0
17 See Slide 50

int main()

18 —

19 void readInsert () ; /* function prototypes */

20 void display(); \See Slide 50

21

22 firstRec = NULL; /* initialize list pointer */
23 readInsert () ;

24 display/() ;

25

26 return 0;

27 }

A First Book of ANSI C, Fourth Edition

47

INSERT and DELETE (continued

47 void insert (char *name)

48 {

49 struct NameRec *1linear Locate(char *); /* function prototype */
50 struct NameRec *newaddr, *here; /* pointers to structure

Sl of type NameRec */

52

53

54 newaddr = (struct NameRec *) malloc(sizeof (struct NameRec)) ;
515 if (newaddr == (struct NameRec *) NULL) /* check the address */
56 {

57 printf ("\nCould not allocate the requested space\n");

58 exit (1) ;

59 }

60

61 /* locate where the new structure should be placed and */

62 /* update all pointer members */

63 if (firstRec == NULL) /* no list currently exists */

64 {

65 newaddr->nextAddr = NULL;

66 firstRec = newaddr;

67 }

68 else if (strcocmp(name, firstRec->name) < 0) /* a new first structure */
69 {

70 newaddr->nextAddr = firstRec;

71 firstRec = newaddr;

72 }

73 else /* structure is not the first structure of the list */
74 {

75 here = linear Locate (name) ;

76 newaddr->nextAddr = here->nextAddr;

77 here->nextAddr = newaddr;

78 }

79

80 strcepy (newaddr->name, name) ; /* store the name */

81 }

A First Book of ANSI C, Fourth Edition 48

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

106
107

108
109
110
ilalal
82
N3

INSERT and DELETE (continued)

/* This function locates the address of where a new structure
should be inserted within an existing list.
It receives the address of a name and returns the address of a
structure of type NameRec

&
struct NameRec *linear Locate(char *name)
{
struct NameRec *one, *two;
one = firstRec;
two = one->nextAddr;
if (two == NULL)
return(one); /* new structure goes after the existing single structure */
while (1)

{

if (strcmp (name, two->name) < 0) /* if it is located within the list */

break;
else if (two->nextAddr == NULL) /* it goes after the last structure */
{
one = two;
break;
}
else /* more structures to search against */
{
one = two;
two = one->nextAddr;
}
} /* the break takes us here */

return (one) ;

}

A First Book of ANSI C, Fourth Edition

49

INSERT and DELETE (continued)

29 /* get a name and insert it into the linked list */
30 void readInsert ()

31 {

32 char name [MAXCHARS] ;

33 volid insert (char *);

34

35 printf ("\nEnter as many names as you wish, one per line");
36 printf ("\nTo stop entering names, enter a single x\n");
37 while (1)

38 {

39 printf ("Enter a name: ") ;

40 gets (name) ;

41 if (strcmp (name, "xX") == 0)

42 break;

43 insert (name) ;

44 }

45 }

...(code for insert () and locate () goes here)...
114 /* display names from the linked list */

115 void display()

116 {

117 struct NameRec *contents;

118

119 contents = firstRec;

120 printf ("\nThe names currently in the list, in alphabetical") ;
121 printf ("\norder, are:\n");

122 while (contents != NULL) /* display till end of list */
123 {

124 printf ("$s\n", contents->name) ;

125 contents = contents->nextAddr;

126 }

127 }

A First Book of ANSI C, Fourth Edition

50

INSERT and DELETE (continued)

* The following sample run shows the results of
these tests:

Enter as many names as you wish, one per line
To stop entering names, enter a single x
Enter a name: Binstock

Enter a name: Arnold

Enter a name: Duberry
Enter a name: Carter

Enter a name: X

The names currently in the list, in alphabetical
order, are:

Arnold

Binstock

Carter

Duberry

A First Book of ANSI C, Fourth Edition 51

Common Programming Errors

* Not checking the return codes provided by
malloc () and realloc ()

* Not correctly updating all relevant pointer
addresses when adding or removing structures
from dynamically created stacks, queues, and
linked lists

* Forgetting to free previously allocated memory
space when the space is no longer needed

A First Book of ANSI C, Fourth Edition

52

Common Programming Errors
(continued)

* Not preserving the integrity of the addresses
contained in the top-of-stack pointer, queue-in,
gueue-out, and list pointer when dealing with a
stack, queue, and dynamically linked list,
respectively

* Related to the previous error is the equally
disastrous one of not correctly updating internal
structure pointers when inserting and removing
structures from a stack, queue, or dynamically
linked list

A First Book of ANSI C, Fourth Edition 53

Common Compiler Errors

Error

Typical Unix-
based Compiler
Error Message

Typical
Windows-based
Compiler Error

Message
Forgetting to provide malloc () with a (E) Missing error:
memory size argument when allocating argument (s) . 'malloc’

#include <stdio.h>
int main|()
{

int *p;

P =0 (int
*)malloc(sizeof (int));
return 0;

}

allowed.

memory. function does
For example: not take 0
#include <stdlib.h> arguments
int main()
{

AME “heg

p = (int *)malloc();

return 0;
}
Forgetting to include the stdlib.h header | (W) Operation | :error:
file whenever malloc () is used in a between types 'malloc':
program. "int*" and identifier
For example: "int" is not not found,

even with
argument-
dependent
lookup

A First Book of ANSI C, Fourth Edition

54

Common Compiler Errors

(continued)

Error

Typical Unix-
based Compiler
Error Message

Typical
Windows-based
Compiler Error

Message

Forgetting to pass a pointer argument to (E) Missing error:
the free () function. argument (s) . 'free'
For example: function does
#include <stdio.h> not take 0
int main() arguments
{

int *p;

p = (int
*)malloc(sizeof(int)) ;

free() ;

return 0;

}

Forgetting to include the indirection
operator when creating a pointer member
to the structure.
For example:
struct NR
{
char name[30];
struct NR nameRec;
Iy
rather than
struct NR
{
char name[30];
struct NR *nameRec;

1T

(E) "struct
NR" uses
"struct NR"
in its
definition.

:error C2460:
'NR: :nameRec'
uses 'NR',
which is
being defined

A First Book of ANSI C, Fourth Edition

95

Summary

* An alternative to fixed memory allocation for variables
at compile time is the dynamic allocation of memory at
run time

« malloc () reserves a requested number of bytes and
returns a pointer to the first reserved byte

« realloc () operates in a similar fashion as
malloc () except it is used to expand or contract an
existing allocated space

« free () IS used to deallocate previously allocated
memory space

A First Book of ANSI C, Fourth Edition 56

Summary (continued)

* Astack is a list consisting of structures that can
only be added and removed from the top of the list

* A queue is a list consisting of structures that are
added to the top of the list and removed from the
bottom of the list

* A dynamically linked list consists of structures that
can be added or removed from any position in the
list

A First Book of ANSI C, Fourth Edition 57

