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1 Basic Terminology

Problem 1.1
A ball is thrown straight up from ground level and reaches its greatest height
after 5 seconds. Find the initial velocity of the ball and the value of its
maximum height above ground level.

Solution.
Let y(t) be the height of the ball above ground level at time t seconds after
it was thrown. We are given that y(0) = 0. We are also told that the ball
reaches its maximum height after 5 seconds at which point the velocity is
zero, i.e., v(5) = 0.
The body’s position is governed by the differential equation y′′(t) = −32 ft/sec.
So y′(t) = v(t) = −32t + C1 for some constant C1. Since v(5) = 0, solving
the equation −32(5) + C1 = 0 for C1 we find C1 = 160. Hence,

y′(t) = v(t) = −32t+ 160.

Using this equation we have now that the initial velocity of the ball was
v(0) = 160 ft/sec. We still need to find the position of the ball at time
5 seconds (when the ball was at its greatest height). By integrating the
previous equation we find

y(t) = −16t2 + 160t+ C2.

Since the ball was thrown from ground level, we have that y(0) = 0, so C2 = 0
and

y(t) = −16t2 + 160t.

We were told that the maximum height was reached after five seconds, so
the maximum height’s value is given by

y(5) = −16(5)2 + 160(5) = 400 ft

Problem 1.2
Find the order of the following differential equations.
(a) ty′′ + y = t3

(b) y′ + y2 = 2
(c) sin y′′′ + 3t2y = 6t
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Solution.
(a) Since the highest derivative appearing in the equation is 2, the order of
the equation is 2.
(b) Order is 1.
(c) Order is 3

Problem 1.3
What is the order of the differential equation?
(a) y′(t)− 1 = 0.
(b) y′′(t)− 1 = 0.
(c) y′′(t)− 2ty(t) = 0.

(d) y′′(t)(y′(t))
1
2 − t

y(t)
= 0.

Solution.
(a) First order.
(b) , (c), and (d) second order

Problem 1.4
In the equation

∂u

∂x
− ∂u

∂y
= x− 2y

identify the independent variable(s) and the dependent variable.

Solution.
u is the depedent variable whereas x and y are the independent variables

Problem 1.5
Classify the following equations as either ordinary or partial.
(a) (y′′′)4 + t2

(y′)2+4
= 0.

(b) ∂u
∂x

+ y ∂u
∂y

= y−x
y+x

.

(c) y′′ − 4y = 0.

Solution.
(a) ODE.
(b) PDE.
(c) ODE
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Problem 1.6
Solve the equation y′′′(t)− 2 = 0 by computing successive antiderivatives.

Solution.
Integrating for the first time we find y′′(t) = 2t + C1. Integrating the last
equation we find y′(t) = t2 +C1t+C2. Integrating for a third and final time
we get y(t) = t3

3
+ C1

t2

2
+ C2t+ C3

Problem 1.7
Solve the initial-value problem

dy

dt
= 3y(t), y(0) = 50.

What is the domain of the solution?

Solution.
The general solution is of the form y(t) = Ce3t. Since y(0) = 50, we have
50 = Ce3·0, and so C = 50. The solution is y(t) = 50e3t. The domain is the
set of all real numbers

Problem 1.8
For what real value(s) of λ is y = cosλt a solution of the equation y′′+9y = 0?

Solution.
Finding the first and second derivatives, we find that y′(t) = −λ sinλt and
y′′(t) = −λ2 cosλt. By substitution, cosλt is a solution if and only if λ2−9 =
0. This equation has the real roots roots λ = ±3

Problem 1.9
For what value(s) of m is y = emt a solution of the equation y′′+3y′+2y = 0?

Solution.
Since d

dt
(emt) = memt and d2

dt2
(emt) = m2emt the requirement on m becomes

m2 + 3m+ 2 = 0. Factoring the left-hand side to obtain (m+ 2)(m+ 1) = 0.
Thus, m = −2 and m = −1

Problem 1.10
Show that y(t) = et is a solution to the differential equation

y′′ −
(

2 +
2

t

)
y′ +

(
1 +

2

t

)
y = 0.
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Solution.
Substituting y(t) = y′(t) = y′′(t) = et into the equation we find

y′′ −
(

2 +
2

t

)
y′ +

(
1 +

2

t

)
y =et −

(
2 +

2

t

)
et +

(
1 +

2

t

)
et

=et − 2et − 2

t
et + et +

2

t
et = 0

Problem 1.11
Show that any function of the form y(t) = C1 cosωt + C2 sinωt satisfies the
differential equation

d2y

dt2
+ ω2y = 0.

Solution.
Finding the first and the second derivatives of y we obtain

y′(t) = −C1ω sinωt+ C2ω cosωt

and
y′′(t) = −C1ω

2 cosωt− C2ω
2 sinωt

Substituting this into the equation to obtain

d2y

dt2
+ ω2y =− C1ω

2 cosωt −C2ω
2 sinωt+ ω2(C1 cosωt+ C2 sinωt)

=0

Problem 1.12
Suppose y(t) = 2e−4t is the solution to the initial value problem y′ + ky =
0, y(0) = y0. Find the values of k and y0.

Solution.
We have y0 = y(0) = 2. The given function satisfies the equation y′+ky = 0,
that is, −8e−4t+2ke−4t = 0. Dividing through by 2e−4t to obtain −4+k = 0.
Thus, k = 4

Problem 1.13
Consider t > 0. For what value(s) of the constant n, if any, is y(t) = tn a
solution to the differential equation

t2y′′ − 2ty′ + 2y = 0?
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Solution.
Since t2y′′ − 2ty′ + 2y = t2(n(n − 1)tn−2) − 2t(ntn−1) + 2tn = 0 we have
n(n− 1)− 2n+ 2 = 0 or n2− 3n+ 2 = 0. This last equation can be factored
as (n− 1)(n− 2) = 0. Solving we find n = 1 or n = 2

Problem 1.14
(a) Show that y(t) = C1e

2t +C2e
−2t is a solution of the differential equation

y′′ − 4y = 0, where C1 and C2 are arbitrary constants.
(b) Find the solution satisfying y(0) = 2 and y′(0) = 0.
(c) Find the solution satisfying y(0) = 2 and limt→∞ y(t) = 0.

Solution.
(a) Finding the first and the second derivatives of y(t) to obtain y′(t) =
2C1e

2t − 2C2e
−2t and y′′(t) = 4C1e

2t + 4C2e
−2t. Thus, y′′ − 4y = 4C1e

2t +
4C2e

−2t − 4(C1e
2t + C2e

−2t) = 0
(b) The condition y(0) = 2 implies that C1 +C2 = 2. The condition y′(0) = 0
implies that 2C1 − 2C2 = 0 or C1 = C2. But C1 + C2 = 2 and this implies
that C1 = C2 = 1. In this case, the particular solution is y(t) = e2t + e−2t.
(c) The first condition implies that C1+C2 = 2. The second condition implies

that C1 = limt→∞
y(t)−C2e−2t

e2t
= 0. Thus, C2 = 2 and the particular solution

is given by y(t) = 2e−2t

Problem 1.15
Suppose that the graph below is the particular solution to the initial value
problem y′(t) = m + 1, y(1) = y0. Determine the constants m and y0 and
then find the formula for y(t).
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Solution.
From the figure we see that y0 = y(1) = 1. Since y is the slope of the line
which is −1, we have y′(t) = −1 = m + 1. Solving for m we find m = −2.
Hence, y(t) = −t+ 2

Problem 1.16
Suppose that the graph below is the particular solution to the initial value
problem y′(t) = mt, y(t0) = −1. Determine the constants m and t0 and then
find the formula for y(t).

Solution.
From the graph we see that y(0) = −1 so that t0 = 0. Also, by integration
we see that y = m

2
t2 + C. From the figure we see that C = −1. Finally,

y(1) = −0.5 implies −1
2

= m
2
− 1. Solving for m we find m = 1. Thus,

y(t) = t2

2
− 1

Problem 1.17
Show that y(t) = e2t is not a solution to the differential equation y′′+4y = 0.

Solution.
Finding the second derivative and substituting into the equation we find

y′′ + 4y = 4e2t + 4e2t = 8e2t 6= 0

Thus, y(t) = e2t is not a solution to the given equation
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Problem 1.18
At time t = 0 an object having mass m is released from rest at a height y0

above the ground. Let g represent the constant gravitational acceleration.
Derive an expression for the impact time (the time at which the object strikes
the ground). What is the velocity with which the object strikes the ground?

Solution.
The motion satisfies the differential equation y′′ = −g. Integrating twice and
using the facts that v(0) = 0 and y(0) = y0 we find

y(t) = −1

2
gt2 + y0.

The object strikes the ground when y(t) = 0. Thus, −1
2
gt2 + y0 = 0. Solving

for t we find t =
√

2y0
g
. The velocity with which the object strikes the ground

is v(
√

2y0
g

) = −g(
√

2y0
g

) = −
√

2gy0

Problem 1.19
At time t = 0, an object of mass m is released from rest at a height of
252 ft above the floor of an experimental chamber in which gravitational
acceleration has been slightly modified. Assume (instead of the usual value
of 32 ft/sec2), that the acceleration has the form 32−ε sin

(
πt
4

)
ft/sec2, where

ε is a constant. In addition, assume that the projectile strikes the ground
exactly 4 sec after release. Can this information be used to determine the
constant ε? If so, determine ε.

Solution.
The motion of the object satisfies the equation y′′ = −(32− ε sin

(
πt
4

)
). The

velocity is given by v(t) = −32t− ( 4
π
)ε cos

(
πt
4

)
). The displacement function

is given by

y(t) = −16t2 −
(

4

π

)2

ε sin

(
πt

4

)
+ 252.

The projectile strikes the ground at t = 4 sec. In this case y(4) = 0. Since
sin π = 0, ε cannot be determined from the given information

Problem 1.20
Consider the initial-value problem

y′ + 3y = 6t+ 5, y(0) = 3.
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(a) Show that y = Ce−3t + 2t + 1 is a solution to the above differential
equation.
(b) Find the value of C.

Solution.
(a) Substituting y and y′ into the equation we find

−3Ce−3t + 2 + 3[Ce−3t + 2t+ 1] = −3Ce−3t + 3Ce−3t + 6t+ 5 = 6t+ 5.

(b) Since y(0) = 3 we have C + 1 = 3. Solving for C we find C = 2. Thus,
the solution to the initial value problem is y(t) = 2e−3t + 2t+ 1

11



2 Qualitative Analysis: Direction Field of y′ =

f (t, y)

Problem 2.1
Sketch the direction field for the differential equation in the window −3 ≤
t ≤ 3,−3 ≤ y ≤ 3.
(a) y′ = y (b) y′ = t− y.

Solution.

Problem 2.2
Sketch solution curves to the differential equation

dy

dt
= 20− 0.03y

represented by the slope field below for the initial values

(t0, y0) = {(0, 200), (0, 400), (0, 600), (0, 650), (0, 800)}.
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Solution.

Problem 2.3
Match each direction field with the equation that the slope field could repre-
sent. Each direction field is drawn in the portion of the ty-plane defined by
−6 ≤ t ≤ 6,−4 ≤ y ≤ 4.
(a) y′ = −t (b) y′ = sin t (c) y′ = 1− y (d) y′ = y(2− y).
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Solution.
(A) y′ = sin t (B) y′ = y(2− y) (c) y′ = −t (D) y′ = 1− y

Problem 2.4
State whether or not the equation is autonomous.
(a) y′ = −t (b) y′ = sin t (c) y′ = 1− y (d) y′ = y(2− y).

Solution.
(a) No (b) No (c) Yes (d) Yes

Problem 2.5
Find the equations of the isoclines for the DE y′ = 2y

t
.

Solution.
The isoclines have equations of the form 2y

t
= c or y = c

2
t

Problem 2.6
Find all the equilibrium solutions of each of the autonomous differential equa-
tions below
(a) y′ = (y − 1)(y − 2).
(b) y′ = (y − 1)(y − 2)2.
(c) y′ = (y − 1)(y − 2)(y − 3).
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Solution.
(a) y(t) ≡ 1, y(t) ≡ 2
(b) y(t) ≡ 1, y ≡ 2
(c) y ≡ 1, y ≡ 2, y ≡ 3

Problem 2.7
Find an autonomous differential equation with an equilibrium solution at
y = 1 and satisfying y′ < 0 for −∞ < y < 1 and 1 < y <∞.

Solution.
One answer is the differential equation: y′′ = −(y − 1)2

Problem 2.8
Find an autonomous differential equation with no equilibrium solutions and
satisfying y′ > 0.

Solution.
Consider the differential equation y′ = ey. Then y′ > 0 for all y. Also, ey 6= 0
for all y. That is, the DE does not have equilibrium solutions

Problem 2.9
Find an autonomous differential equation with equilibrium solutions y = n

2
,

where n is an integer.

Solution.
One answer is the DE y′ = sin (2πy)

Problem 2.10
Find an autonomous differential equation with equilibrium solutions y = 0
and y = 2 and satisfying the properties y′ > 0 for 0 < y < 2; y′ < 0 for y < 0
or y > 2.

Solution.
An answer is y′ = y(2− y)

Problem 2.11
Classify whether the equilibrium solutions are stable, unstable, or neither.
(a) y′ = 1− y2.
(b) y′ = (y + 1)2.
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Solution.
Using the direction fields shown below we find
(a) y = 1 stable, y = −1 unstable
(b) y = −1 is neither. This is a semi-stable equilibrium

Problem 2.12
Consider the direction field below. Classify the equilibrium points, as asymp-
totically stable, semi-stable, or unstable.
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Solution.
The equilibrium solution at y = 1 is asymptotically stable where as the
equilibrium solution at y = 0 is unstable

Problem 2.13
Sketch the direction field of the equation y′ = y3. Sketch the solution satis-
fying the condition y(1) = −1. What is the domain of this solution?

Solution.
As shown in the figure below, the domain of the solution is the interval
−∞ < t < 2

Problem 2.14
Find the equilibrium solutions and determine their stability

y′ = y2(y2 − 1), y(0) = y0.

Solution.
The direction field is given below.
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The equilibrium point y = 1 is unstable; y = 0 is semi-stable; y = −1 is
asymptotically stable

Problem 2.15
Find the equilibrium solutions of the equation

y′ = y2 − 4y

then decide whether they are asymptotically stable, semi-stable, or unstable.
What is the long-time behavior if y(0) = 5?y(0) = 4?y(0) = 3?

Solution.
The direction field is given below.

The equilibrium point y = 4 is unstable while y = 0 is asymptotically stable.
If y(0) = 5 then limt→∞ y(t) = ∞. If y(0) = 4 then limt→∞ y(t) = 4. If
y(0) = 3 then limt→∞ y(t) = 0

Problem 2.16
Consider the six direction fields shown. Associate a direction field with each

18



of the following differential equations.
(i) y′ = −y (ii) y′ = −t+ 1 (iii) y′ = y2 − 1 (iv) y′ = −1

2
(v) y′ = y + t

(vi) y′ = 1
y2+1

.
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Solution.
(i) (c) (ii) (f) (iii) (a) (iv) (b) (v) (d) (vi) (e)

Problem 2.17
What is limt→∞ y(t) for the initial-value problem

y′ = sin (y(t)), y(0) =
π

2
?

Solution.
According to the direction field shown below we conclude that

lim
t→∞

y(t) = π

Problem 2.18
The slope fields of y′ = 2 − y and y′ = t

y
are shown in Figure 2.9(a) and

Figure 2.9(b).
(a) On each slope field, sketch solution curves with initial conditions

(i) y(0) = 1 (ii) y(1) = 0 (iii) y(0) = 3.

(b) For each solution curve, what can you say about the long run behavior
of y? That is, does limt→∞ y exist? If so, what is its value?
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Solution.
(a)

(b) See graphs in part (a)

Problem 2.19
The slope field for the equation y′ = t(y − 1) is shown in Figure 2.10.
(a) Sketch the solutions passing through the points

(i) (0, 1) (ii) (0,−1) (iii) (0, 0).

(b) From your sketch, write down the equation of the solution with y(0) = 1.
(c) Check your solution to part (b) by substituting it into the differential

21



equation.

Figure 2.10

Solution.
(a)

(b) y(t) ≡ 1 for all t.
(c) Since y′ = 0 and t(y − 1) = 0 when y = 1, y′ = t(y − 1) is satisfied by
y(t) ≡ 1

Problem 2.20
Consider the autonomous differential equation dy

dt
= f(y) where the graph of

f(y) is
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(a) Sketch the phase line.
(b) Sketch the Slope Field of this differential equation.
(c) Sketch the graph of the solution to the IVP y′ = f(y), y(0) = 1

2
. Find

limt→∞ y(t).
(d) Sketch the graph of the solution to the IVP y′ = f(y), y(0) = −1

2
. Find

limt→∞ y(t).

Solution.
(a)

(b)

(c) We notice from the figure below that limt→∞ y(t) =∞
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(d) We notice from the figure below that limt→∞ y(t) =∞
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3 Existence and Uniqueness of Solutions to

First Order Linear IVP

Problem 3.1
Find p(t) and y0 so that the function y(t) = 3et

2
is the solution to the IVP

y′ + p(t)y = 0, y(0) = y0.

Solution.
Since y(t) = 3et

2
, we find y(0) = y0 = 3e0 = 3. On the other hand, y(t)

satisfies the equation y′+p(t)y = 0 or 6tet
2
+p(t)3et

2
= 0. Hence, p(t) = −2t

Problem 3.2
For each of the initial conditions, determine the largest interval a < t < b on
which Theorem 3.2 guarantees the existence of a unique solution.

y′ +
1

t2 + 1
y = sin t.

(a) y(0) = π (b) y(π) = 0.

Solution.
Here we have p(t) = 1

t2+1
and g(t) = sin t.

(a) (−∞,∞).
(b) (−∞,∞)

Problem 3.3
For each of the initial conditions, determine the largest interval a < t < b on
which Theorem 3.2 guarantees the existence of a unique solution

y′ +
t

t2 − 4
y =

et

t− 3
.

(a) y(5) = 2 (b) y(−3
2
) = 1 (c) y(−6) = 2.

Solution.
Notice that p(t) and g(t) are defined for all t 6= −2, 2, 3.
(a) 3 < t <∞.
(b) −2 < t < 2.
(c) −∞ < t < −2
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Problem 3.4
(a) For what values of the constant C and the exponent r is y = Ctr the
solution of the IVP

2ty′ − 6y = 0, y(−2) = 8?

(b) Determine the largest interval of the form a < t < b on which Theorem
3.2 guarantees the existence of a unique solution.
(c) What is the actual interval of existence for the solution found in part (a)?

Solution.
(a) Substitution leads to 2trCtr−1 − 6Ctr = 0. Divide through by Ctr to
obtain 2r − 6 = 0 or r = 3. Now, since y(−2) = 8 we find C(−2)3 = 8 or
C = −1. Thus, y(t) = −t3.
(b) Rewriting the equation in the form

y′ − 3

t
y = 0

so that p(t) = −3
t

and g(t) = 0. The largest interval of the form a < t < b
that guarantees the existence of a unique solution is the interval −∞ < t < 0
since −2 is in that interval.
(c) By part (a) the actual interval of existence is the set of all real numbers

Problem 3.5
Solve the IVP

y′ + 0.196y = 9.8, y(0) = 48.

Solution.
Let p(t) = 0.196, g(t) = 9.8, t0 = 0, y0 = 48 in Equation (3) to obtain
(detailed left to the reader)

y(t) = 50− 2e−0.196t

Problem 3.6
Solve the IVP

y′ +
2

t
y = 4t, y(1) = 2.

26



Solution.
Let I(t) = e

∫
2
t
ds = t2. Then

(I(t)y)′ =4tI(t)

I(t)y =t4 + C

y(t) =t2 +
C

t2
.

Since y(1) = 2 we find C = 1. Hence, the unique solution is y(t) = t2 + 1
t2

Problem 3.7
Let w(t) be the unique solution to w′ + p(t)w = 0 for all a < t < b and
w(t0) = w0. Show that either w(t) ≡ 0 for all a < t < b or w(t) 6= 0 for all
a < t < b depending on whether w0 = 0 or w0 6= 0. This result will be very
useful when discussing Abel’s Theorem (i.e., Theorem 16.3) in Section 16.

Solution.
By Equation (5), w(t) = w(t0)e

∫ t
t0
p(s)ds

. If w0 = 0 then w(t) ≡ 0 for all
a < t < b. If w0 6= 0 then w(t) 6= 0 for all a < t < b

Problem 3.8
What information does the Existence and Uniqueness Theorem gives about
the initial value problem ty′ = y + t3 cos t, y(1) = 1?y(−1) = 1?

Solution.
The given differential equation can be written as

y′ − y

t
= t2 cos t.

We have p(t) = −1
t

which is continuous for all t 6= 0 whereas g(t) = t2 cos t is
continuous everyhwere. It follows that the interval of existence is 0 < t <∞
if y(1) = 1 and −∞ < t < 0 if y(−1) = 1

Problem 3.9
Consider the following differential equation

(t− 4)y′ + 3y =
1

t2 + 5t
.

Without solving, find the interval over which a unique solution is guaranteed
for each of the following initial conditions:
(a) y(−3) = 4 (b) y(1.5) = −2 (c) y(−6) = 0 (d) y(4.1) = 3
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Solution.
Rewriting the equation in the form

y′ +
3

t− 4
y =

1

(t− 4)(t2 + 5t)

we find that p(t) and g(t) are continuous for all t 6= −5, 0, 4.
(a) −5 < t < 0.
(b) 0 < t < 4.
(c) −∞ < t < −5.
(d) 4 < t <∞

Problem 3.10
Without solving the initial value problem, (t−1)y′+(ln t)y = 2

t−3
, y(t0) = y0,

state whether or not a unique solution is guaranteed to exist for the y(t0) = y0

listed below. If a unique solution is guaranteed, find the largest interval for
which the solution satisfies the differential equation and the initial condition.
(a) y(2) = 4 (b) y(0) = 0 (c) y(4) = 2.

Solution.
Rewriting the equation in the form

y′ +
ln t

t− 1
y =

2

(t− 3)(t− 1)

we find that p(t) and g(t) are continuous on (0, 1) ∪ (1, 3) ∪ (3,∞)
(a) 1 < t < 3.
(b) No such solution.
(c) 3 < t <∞

Problem 3.11
(a) State precisely the theorem (hypothesis and conclusion) for existence and
uniqueness of a first order initial value problem.
(b) Consider the equation y′ + t2y = et

3
with initial conditions y(t0) = y0.

Briefly discuss if this has a solution, if it is unique and why.

Solution.
(a) If p(t) and g(t) are continuous functions in the open interval I = (a, b)
and t0 a point inside I then the IVP

y′ + p(t)y = g(t), y(t0) = y0
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has a unique solution y(t) defined on I.
(b) Since p(t) = t2 and g(t) = et

3
, the IVP has a unique solution for any

choice of t0

Problem 3.12
Consider the initial value problem

y′ + p(t)y = g(t), y(3) = 1.

Suppose that p(t) and/or g(t) have discontinuities at t = −2, t = 0, and t = 5
but are continuous for all other values of t. What is the largest interval (a, b)
on which the exitence and uniqueness theorem is applied.

Solution.
Because of the initial condition the largest interval of existence guaranteed
by the existence and uniqueness theorem is 0 < t < 5

Problem 3.13
Determine α and y0 so that the graph of the solution to the initial-value
problem

y′ + αy = 0, y(0) = y0

passes through the points (1, 4) and (3, 1).

Solution.
The general solution is given by y(t) = y(0)e−αt. Since y(1) = 4 and y(3) = 1
we have

y(0)e−α

y(0)e−3α
= 4

Solving for α we find α = ln 4
2

= ln 2. Thus, y(t) = y(0)e−t ln 2. Since y(1) = 4,

we find y(0)
2

= 4 so that y0 = 8

Problem 3.14
Match the following objects with the correct description. Every equation
matches exactly one description.
(a) y′ = 3y − 5t.

(b) ∂y
t

= ∂2y
∂t2

+ ∂2y
∂x2 .

(c) y′ − y2 = sin t.
(d) y′ + 3y = 0.
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(i) A partial differential equation
(ii) A homogeneous one-dimensional first order linear differential equation.
(iii) A nonlinear first order differential equation.
(iv) An nonhomogenous first order linear differential equation

Solution.
(a) (iv) (b) (i) (c) (iii) (d) (ii)

Problem 3.15
Consider the differential equation y′ = −t2y+sin y. What is the order of this
equation? Is it linear or nonlinear?

Solution.
A linear first order ordinary differential equation

Problem 3.16
Verify that y(t) = et

2 ∫ t
0
e−s

2
ds+ et

2
is a solution of the differential equation

y′ − 2ty = 1.

Solution.
Finding the derivative we obtain

y′ = 2tet
2

∫ t

0

e−s
2

ds+ e−t
2 · et2 + 2tet

2

Thus,

y′ − 2ty =2tet
2

∫ t

0

e−s
2

ds+ 1 + 2tet
2

−2tet
2

∫ t

0

e−s
2

ds− 2tet
2

= 1

Problem 3.17
Consider the initial value problem

y′ = −y
t

+ 2, y(1) = 2.

(a) Are the conditions of the Existence and Uniqueness theorem satisfied?
Why or why not?
(b) Solve the IVP and state the domain of definition.
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Solution.
(a) Since p(t) = 1

t
and g(t) = 2, both functions are continuous for all t 6= 0.

Since the initial condition is at t = 1, a unique solution on the interval
0 < t <∞ exists.
(b) We have

y′ +
y

t
=2(

e
∫

1
t
dty
)′

=2e
∫

1
t
dt

(ty)′ =2t

ty =t2 + C

y =t+ Ct−1.

Since y(1) = 2, C = 1. Thus, y(t) = t + t−1. The domain of this function
consists for all nonzero real numbers

Problem 3.18
Solve the differential equation y′′ + y′ = et as follows. Let z = y′ + y, find
a differential equation for z, and find the general solution. Then using this
general value of z, find y by solving the differential equation y′ + y = z.

Solution.
The differential equation in terms of z is z′ = et. Thus, z(t) = et + C. Thus,
y′ + y = et + C. We solve this equation as follows:

y′ + y =et + C(
e
∫
dty
)′

=e2t + Cet

ety =
1

2
e2t + Cet + C ′

y =
1

2
et + C ′e−t + C
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4 Solving First Order Linear Homogeneous

DE

Problem 4.1
Solve the IVP

y′ = −2ty, y(1) = 1.

Solution.
First we rearrange the equation to the form recognizable as first-order linear.

y′ + 2ty = 0.

From this we see that p(t) = 2t so that
∫

2tdt = t2. Thus, the general solution

to the DE is y(t) = Ce−t
2
. But y(1) = 1 so that C = e. Hence, y(t) = e1−t

2

Problem 4.2
Solve the IVP

y′ + ety = 0, y(0) = 2.

Solution.
Since p(t) = et,

∫
etdt = et so that the general solution to the DE is y(t) =

Ce−e
t
. But y(0) = 2 so that C = 2e. Hence, the unique solution is y(t) =

e2−e
t

Problem 4.3
Consider the first order linear nonhomogeneous IVP

y′ + p(t)y = αp(t), y(t0) = y0.

(a) Show that the IVP can be reduced to a first order linear homogeneous
IVP by the change of variable z(t) = y(t)− α.
(b) Solve this initial value problem for z(t) and use the solution to determine
y(t).

Solution.
(a) Note that the given DE can be written as y′ + p(t)(y − α) = 0. Since
z(t) = y(t)− α, we get the IVP

z′ + p(t)z = 0, z(t0) = y(t0)− α.

(b)The general solution to the DE is z(t) = (y0 − α)e
−
∫ t
t0
p(s)ds

. Thus, y(t) =

(y0 − α)e
−
∫ t
t0
p(s)ds

+ α
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Problem 4.4
Apply the results of the previous problem to solve the IVP

y′ + 2ty = 6t, y(0) = 4.

Solution.
Letting z(t) = y(t)− 3 the given IVP reduces to

z′ + 2tz = 0, z(0) = 1.

The unique solution to this IVP is z(t) = e−t
2
. Hence, y(t) = e−t

2
+ 3

Problem 4.5
Consider the three direction fields shown below. Match each of the direction
field with one of the following differential equations.
(a) y′ + y + 0 (b) y′ + t2y = 0 (c) y′ − y = 0.
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Solution.
(a) Direction Field 2 (b) Direction Field 3 (c) Direction Field 1

Problem 4.6
The unique solution to the IVP

ty′ − αy = 0, y(1) = y0

goes through the points (2, 1) and (4, 4). Find the values of α and y0.

Solution.
Rewriting the given IVP in the standard form

y′ − α

t
y = 0, y(1) = y0

we find p(t) = −α
t

and
∫
−α

t
dt = −α ln |t| = ln |t|−α. Thus, the general

solution to the DE is given by y(t) = Ce− ln |t|−α = C|t|α. But y(2) = 1
and y(4) = 4 so that C2α = 1 and C4α = 4. Taking the ratio of these last
equations we find 2α = 4 and thus α = 2. From this we find C = 2−α = 0.25.
Finally, y0 = y(1) = 0.25(1)2 = 0.25

Problem 4.7
The table below lists values of t and ln [y(t)] where y(t) is the unique solution
to the IVP

y′ + tny = 0, y(0) = y0.

t 1 2 3 4
ln [y(t)] -0.25 -4.00 -20.25 -64.00

(a) Determine the values of n and y0.
(b) What is y(−1)?

Solution.

(a) The general solution to the DE is y(t) = Ce−
tn+1

n+1 . Since y(0) = y0, C = y0

so that the unique solution is y(t) = y0e
− t

n+1

n+1 . Thus, ln [y(t)] = ln (y0)− tn+1

n+1
.

Since ln y(1) = −1
4

and ln y(2) = −4 we find ln y0 − 1
n+1
− ln y0 + 2n+1

n+1
=

4 − 1
4

= 15
4
. Thus, 2n+1−1

n+1
= 15

4
. Using a calculator one finds n = 3. Finally,

ln y0 = −1
4

+ 1
n+1

= −1
4

+ 1
4

= 0 so that y0 = 1.

(b) y(−1) = 1 · e−
(−1)4

4 =
4
√
e−1
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Problem 4.8
The figure below is the graph of ln [y(t)] versus t, 0 ≤ t ≤ 4, where y(t) is the
solution to the IVP

y′ + p(t)y = 0, y(0) = y0.

Determine p(t) and y0

Solution.
From the figure we see that ln y0 = ln y(0) = 1 so that y0 = e. Also, ln y(t) =
t
2

+ 1. Thus, p(t) = − d
dt

(ln y) = −1
2

Problem 4.9
Given the initial value problem y′ + cy = 0, y(0) = y0. A portion of the
graph of the solution is shown. Use the information contained in the graph
to determine the constants c and y0.
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Solution.
Solving the given differential equation we find y(t) = y0e

−ct. From the graph
we have that y(0) = 2 so that y0 = 2. Thus, y(t) = 2e−ct. Again, using
the graph we see that y(−0.4) = 3, that is 2e0.4c = 3. Solving for c we find
c = 2.5 ln (1.5)

Problem 4.10
Given the four graphs of ln [y(t)] versus 0 ≤ t ≤ 4, corresponding of the four
differential equations (a)-(d). Match the graphs to the differential equations.
For each match identify the initial condition, y(0).
(a) y′ + y = 0 (b) y′ − (sin (4t) + 4t cos (4t))y = 0 (c) y′ + ty = 0 (d)
y′ − (1− 4 cos (4t))y = 0.
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Solution.
(a) Solving the DE we find y(t) = y0e

−t. Taking the natural logarithm of
both sides we find ln [y(t)] = −t+ ln y0. This DE corresponds to Graph # 2
with y0 = y(0) = eln y(0) = e2.
(b) Solving the DE we find y(t) = y0e

t sin (4t). Taking the natural logarithm of
both sides we find ln [y(t)] = t sin (4t) + ln y0. This DE corresponds to Graph
# 1 with y0 = y(0) = eln y(0) = 1.

(c) Solving the DE we find y(t) = y0e
− t

2

2 . Taking the natural logarithm of
both sides we find ln [y(t)] = − t2

2
+ ln y0. This DE corresponds to Graph #

4 with y0 = y(0) = eln y(0) = e.
(d) Solving the DE we find y(t) = y0e

t−sin (4t). Taking the natural logarithm
of both sides we find ln [y(t)] = t − sin (4t) + ln y0. This DE corresponds to
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Graph # 3 with y0 = y(0) = eln y(0) = 1

Problem 4.11
Consider the differential equation y′ + p(t)y = 0. Find p(t) so that y = c

t
is

the general solution.

Solution.
Substituting in the equation we find

− c
t2

+
c

t
p(t) = 0.

Solving for p(t) we find p(t) = 1
t

Problem 4.12
Consider the differential equation y′ + p(t)y = 0. Find p(t) so that y = ct3 is
the general solution.

Solution.
Substituting in the equation we find

3ct2 + p(t)(ct3) = 0.

Solving for p(t) we find p(t) = −3
t

Problem 4.13
Solve the initial-value problem: y′ − 3

t
y = 0, y(2) = 8.

Solution.
From the previous problem, we see that y(t) = ct3 is the general solution.
Since y(2) = 8, c23 = 8 and thus c = 1. The unique solution to the initial-
value problem is y(t) = t3

Problem 4.14
Solve the differential equation y′ − 2ty = 0.

Solution.
Since p(t) = −2t, y(t) = Ce

∫
2tdt = cet

2

Problem 4.15
Solve the initial-value problem dP

dt
− kP = 0, P (0) = P0.
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Solution.
The general solution to the differential equation is P (t) = Cekt. Since P (0) =
P0, C = P0. Thus, P (t) = P (0)ekt

Problem 4.16
Find the value of t so that P (t) = P0

2
where P (t) is the solution to the

initial-value problem dP
dt

= −kP, k > 0, P (0) = P0.

Solution.
From the previous problem, we have P (t) = P0e

−kt. If P (t) = P0

2
then e−kt =

0.5. Solving for t we find t = ln 2
k

Problem 4.17
Find the function f(t) that crosses the point (0, 4) and whose slope satisfies
f ′(t) = 2f(t).

Solution.
Solving the differential equation we find f(t) = Ce2t. Since f(0) = 4 we find
C = 4. Thus, f(t) = 4e2t

Problem 4.18
Find the general solution to the differential equation y′′ − 2y′ = 0.

Solution.
Let z = y′ so that z′ = y′′. Thus, z′− 2z = 0 and y′(t) = z(t) = Ce2t. Hence,
y(t) = Ce2t + C ′

Problem 4.19
Consider the differential equation: y′ = 3y − 2.
(a) Find the general solution yh to the equation y′ = 3y.
(b) Show that yp = 2

3
is a solution to y′ = 3y − 2.

(c) Show that y = yh + yp satisfies the given equation.
(d) Find the solution to the initial-value problem y′ = 3y − 2, y(0) = 2.

Solution.
(a) yh(t) = Ce3t.
(b) y′p = 0 and 3yp − 2 = 3(2

3
)− 2 = 0 so that y′p = 3yp − 2.

(c) y′ = y′h + y′p = 3Ce3t and 3y − 2 = 3Ce3t + 2− 2 = 3Ce3t.
(d) Since y(t) = Ce3t + 2

3
and y(0) = 2 we find C + 2

3
= 2 and C = 4

3
. Thus,

y(t) = 4
3
e3t + 2

3
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Problem 4.20
Consider the differential equation y′′ = 3y′ − 2.
(a) Find the general solution yh to the equation y′′ = 3y′.
(b) Show that yp = 2

3
t is a solution to y′′ = 3y′ − 2.

(c) Show that y = yh + yp satisfies the given equation.

Solution.
(a) Let z = y′. Then z′ = 3z and z(t) = Ce3t. Thus, yh(t) =

∫
z(t)dt =

Ce3t + C ′.
(b) Since y′′p = 0 and 3y′p − 2 = 2− 2 = 0 we find y′′p = 3y′p − 2.
(c) Since y′′ = y′′h+y′′p = 9Ce3t and 3y′−2 = 9Ce3t+2−2 = 9Ce3t, y satisfies
the differential equation

40



5 Solving First Order Linear Non Homoge-

neous DE: The Method of Integrating Fac-

tor

Problem 5.1
Solve the IVP: y′ + 2ty = t, y(0) = 0.

Solution.
Since p(t) = 2t, µ(t) = e

∫
2tdt = et

2
. Multiplying the given equation by et

2
to

obtain (
et

2

y
)′

= tet
2

.

Integrating both sides with respect to t and using substitution on the right-
hand integral to obtain

et
2

y =
1

2
et

2

+ C.

Dividing the last equation by et
2

to obtain

y(t) = Ce−t
2

+
1

2
.

Since y(0) = 0, C = −1
2
. Thus, the unique solution to the IVP is given by

y =
1

2
(1− e−t2)

Problem 5.2
Find the general solution: y′ + 3y = t+ e−2t.

Solution.
Since p(t) = 3, the integrating factor is µ(t) = e3t. Thus, the general solution
is

y(t) =e−3t

∫
e3t(t+ e−2t)dt+ Ce−3t

=e−3t

∫
(te3t + et)dt+ Ce−3t

=e−3t

(
e3t

9
(3t− 1) + et

)
+ Ce−3t

=
3t− 1

9
+ e−2t + Ce−3t
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Problem 5.3
Find the general solution: y′ + 1

t
y = 3 cos t, t > 0.

Solution.
Since p(t) = 1

t
, the integrating factor is µ(t) = e

∫
dt
t = eln t = t. Using the

method of integrating factor we find

y(t) =
1

t

∫
3t cos tdt+

C

t

=
3

t
(t sin t+ cos t) +

C

t

=3 sin t+
3 cos t

t
+
C

t

Problem 5.4
Find the general solution: y′ + 2y = cos (3t).

Solution.
We have p(t) = 2 so that µ(t) = e2t. Thus,

y(t) = e−2t

∫
e2t cos (3t)dt+ Ce−2t

But ∫
e2t cos (3t)dt =

e2t

3
sin (3t)− 2

3

∫
e2t sin (3t)dt

=
e2t

3
sin (3t)− 2

3
(−e

2t

3
cos (3t) +

2

3

∫
e2t cos (3t)dt)

13

9

∫
e2t cos (3t)dt =

e2t

9
(3 sin (3t) + 2 cos (3t))∫

e2t cos (3t)dt =
e2t

13
(3 sin (3t) + 2 cos (3t)).

Hence,

y(t) =
1

13
(3 sin (3t) + 2 cos (3t)) + Ce−2t

Problem 5.5
Find the general solution: y′ + (cos t)y = −3 cos t.
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Solution.
Since p(t) = cos t, µ(t) = esin t. Thus,

y(t) =e− sin t

∫
esin t(−3 cos t)dt+ Ce− sin t

=− 3e− sin tesin t + Ce− sin t

=Ce− sin t − 3

Problem 5.6
Given that the solution to the IVP ty′ + 4y = αt2, y(1) = −1

3
exists on the

interval −∞ < t <∞. What is the value of the constant α?

Solution.
Solving this equation with the integrating factor method with p(t) = 4

t
we

find µ(t) = t4. Thus,

y =
1

t4

∫
t4(αt)dt+

C

t4

=
α

6
t2 +

C

t4
.

Since the solution is assumed to be defined for all t, we must have C = 0.
On the other hand, since y(1) = −1

3
we find α = −2

Problem 5.7
Suppose that y(t) = Ce−2t + t + 1 is the general solution to the equation
y′ + p(t)y = g(t). Determine the functions p(t) and g(t).

Solution.
The integrating factor is µ(t) = e2t. Thus,

∫
p(t)dt = 2t and this implies that

p(t) = 2. On the other hand, the function t + 1 is the particular solution
to the nonhomogeneous equation so that (t + 1)′ + 2(t + 1) = g(t). Hence,
g(t) = 2t+ 3

Problem 5.8
Suppose that y(t) = −2e−t + et + sin t is the unique solution to the IVP
y′ + y = g(t), y(0) = y0. Determine the constant y0 and the function g(t).
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Solution.
First, we find y0 : y0 = y(0) = −2 + 1 + 0 = −1. Next, we find g(t) : g(t) =
y′+ y = (−2e−t + et + sin t)′+ (−2e−t + et + sin t) = 2e−t + et + cos t− 2e−t +
et + sin t = 2et + cos t+ sin t

Problem 5.9
Find the value (if any) of the unique solution to the IVP y′ + (1 + cos t)y =
1 + cos t, y(0) = 3 in the long run.

Solution.
The integrating factor is µ(t) = e

∫
(1+cos t)dt = et+sin t. Thus, the general solu-

tion is

y(t) =e−(t+sin t)

∫
et+sin t(1 + cos t)dt+ Ce−(t+sin t)

=1 + Ce−(t+sin t).

Since y(0) = 3, C = 2 and therefore y(t) = 1 + 2e−(t+sin t). Finally,

lim
t→∞

y(t) = lim
t→∞

(1 + 2e− sin te−t) = 1

Problem 5.10
Find the solution to the IVP

y′ + p(t)y = 2, y(0) = 1

where

p(t) =

{
0 if 0 ≤ t ≤ 1
1
t

if 1 < t ≤ 2.

Solution.
First, we solve the IVP

y′ = 2, y(0) = 1, 0 ≤ t ≤ 1.

The general solution is y1(t) = 2t + C. Since y(0) = 1, C = 1. Hence,
y1(t) = 2t+ 1 and y(1) = 3.
Next, we solve the IVP

y′ +
1

t
y = 2, y(1) = 3, 1 < t ≤ 2.
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The integrating factor is µ(t) = t and the general solution is y2(t) = t + C
t
.

Since y2(1) = 3, C = 2. Thus,

y(t) =

{
2t+ 1 if 0 ≤ t ≤ 1
t+ 2

t
if 1 < t ≤ 2

Problem 5.11
Find the solution to the IVP

y′ + (sin t)y = g(t), y(0) = 3

where

g(t) =

{
sin t if 0 ≤ t ≤ π
− sin t if π < t ≤ 2π.

Solution.
First, we solve the IVP

y′ + sin ty = sin t, y(0) = 3, 0 ≤ t ≤ π.

The integrating factor is µ(t) = e− cos t and the general solution is y1(t) =
1 + Cecos t. Since y1(0) = 3, C = 2e−1. Hence, y1(t) = 1 + 2ecos t−1 and
y1(π) = 1 + 2e−2.
Next, we solve the IVP

y′ + sin ty = − sin t, y(π) = 1 + 2e−2, π < t ≤ 2π.

The integrating factor is µ(t) = e− cos t and the general solution is y2(t) =
−1 + Cecos t. Since y2(π) = 1 + 2e−2, C = 2

(
1
e
− e
)
. Thus,

y(t) =

{
1 + 2ecos t−1 if 0 ≤ t ≤ π

−1 + 2
(

1
e
− e
)
ecos t if π < t ≤ 2π

Problem 5.12
Find the solution to the IVP

y′ + y = g(t), t > 0, y(0) = 3

where

g(t) =

{
1 if 0 ≤ t ≤ 1
0 if t > 1.

Sketch an accurate graph of the solution, and discuss the long-term behavior
of the solution. Is the solution differentiable on the interval t > 0? Explain
your answer.
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Solution.
First, we solve the IVP

y′ + y = 1, y(0) = 3, 0 ≤ t ≤ 1.

The integrating factor is µ(t) = et and the general solution is y1(t) = 1+Ce−t.
Since y1(0) = 3, C = 2. Hence, y1(t) = 1 + 2e−t and y1(1) = 1 + 2e−1.
Next, we solve the IVP

y′ + y = 0, y(1) = 1 + 2e−1, t > 1.

The integrating factor is µ(t) = et and the general solution is y2(t) = Ce−t.
Since y2(1) = 1 + 2e−1, C = 2 + e. Thus,

y(t) =

{
1 + 2e−t if 0 ≤ t ≤ 1

(2 + e)e−t if t > 1

Problem 5.13
Find the solution to the IVP

y′ + p(t)y = 0, y(0) = 3

where

p(t) =


2t− 1 if 0 ≤ t ≤ 1

0 if 1 < t ≤ 3
−1

t
if 3 < t ≤ 4.

Solution.
First, we solve the IVP

y′ + (2t− 1)y = 0, y(0) = 3, 0 ≤ t ≤ 1.

The integrating factor is µ(t) = et
2−t and the general solution is y1(t) =

Cet−t
2
. Since y1(0) = 3, C = 3. Hence, y1(t) = 3et−t

2
and y1(1) = 3.

Next, we solve the IVP

y′ = 0, y(1) = 3, 1 < t ≤ 3.

The general solution is y2(t) = C. Since y2(1) = 3, C = 3 and y2(t) ≡ 3.
Next, we solve the IVP

y′ − 1

t
y = 0, y(3) = 3, 3 < t ≤ 4.
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The integrating factor is µ(t) = 1
t

and the general solution is y3(t) = Ct.
Since y3(3) = 3, C = 1. Hence, y3(t) = t. Hence,

y(t) =

 3et−t
2

if 0 ≤ t ≤ 1
3 if 1 < t ≤ 3
t if 3 < t ≤ 4.

The graph of y(t) is shown below

It follows that limt→∞ y(t) = ∞. The function y(t) is not differentiable at
t = 1 and t = 3 on the domain t > 0

Problem 5.14
Solve y′ − 1

t
y = sin t, y(1) = 3. Express your answer in terms of the sine

integral, Si(t) =
∫ t

0
sin s
s
ds.

Solution.
Since p(t) = −1

t
, µ(t) = 1

t
. Thus,(

1

t
y

)′
=

(∫ t

0

sin s

s
ds

)′
1

t
y(t) =Si(t) + C

y(t) =tSi(t) + Ct.

Since y(1) = 3, C = 3− Si(1). Hence, y(t) = tSi(t) + (3− Si(1))t

Problem 5.15
Solve the initial-value problem ty′ + 2y = t2 − t+ 1, y(1) = 1

2
.
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Solution.
Rewriting the equation in the form

y′ +
2

t
y = t− 1 +

1

t
.

Since p(t) = 2
t
, µ(t) = t2. The general solution is then given by

y(t) =
t2

4
− t

3
+

1

2
+
C

t2
.

Since y(1) = 1
2
, C = 1

12
. Hence,

y(t) =
t2

4
− t

3
+

1

2
+

1

12t2

Problem 5.16
Solve the initial-value problem y′ + y = ety2, y(0) = 1 using the substitution
u(t) = 1

y(t)
.

Solution.
Substituting into the equation we find

u′ − u = −et, u(0) = 1.

Solving this equation by the method of integrating factor with µ(t) = e−t we
find

u(t) = −tet + Cet.

Since u(0) = 1, C = 1 and therefore u(t) = −tet + et. Finally, we have

y(t) = (−tet + et)−1

Problem 5.17
Show that if a and λ are positive constants, and b is any real number, then
every solution of the equation

y′ + ay = be−λt

has the property that y → 0 as t→∞. Hint: Consider the cases a = λ and
a 6= λ separately.
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Solution.
Since p(t) = a, µ(t) = eat. Suppose first that a = λ. Then

y′ + ay = be−at

and the corresponding general solution is

y(t) = bte−at + Ce−at.

Thus,
limt→∞ y(t) = limt→∞( bt

eat
+ C

eat
)

= limt→∞
b

aeat
= 0.

Now, suppose that a 6= λ then

y(t) =
b

a− λ
e−λt + Ce−at.

Thus,
lim
t→∞

y(t) = 0

Problem 5.18
Solve the initial value problem ty′ = y + t, y(1) = 7.

Solution.
Rewriting the equation in the form

y′ − 1

t
y = 1

we find p(t) = −1
t

and µ(t) = 1
t
. Thus, the general solution is given by

y(t) = t ln |t|+ Ct.

But y(1) = 7 so that C = 7. Hence,

y(t) = t ln |t|+ 7t

Problem 5.19
Solve the differential equation y′ = −ay + b by using the susbtitution w =
−ay + b where a and b are constants with a 6= 0 and y(t) 6= b

a
.
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Solution.
Letting w = −ay + b we find w′ + aw = 0. Thus, w′

w
= −a. Integrating both

sides with respect to t we obtain ln |w(t)| = −at + C. Thus, w(t) = Ce−at.
From this we find y(t) = b−w

a
= b

a
+ Ce−at

Problem 5.20
Consider the following method of solving the equation

y′ + p(t)y = g(t).

(a) Show that yh(t) = Ce−
∫
p(t)dt is the general solution to the homogeneous

equation y′ + p(t)y = 0.
(b) Find a funcion u(t) such that yp(t) = u(t)e−

∫
p(t)dt is a solution to the

nonhomogeneous equation.
This technique of finding a solution to the nonhomogeneous equation is
known as the method of variation of parameters.

Solution.
(a) If g(t) ≡ 0 then y′ + p(t)y = 0. Thus,

(
e
∫
p(t)dty

)′
= 0. Integrating with

respect to t to obtain e
∫
p(t)dty = C. Hence, y(t) = Ce−

∫
p(t)dt.

(b) Substituting yp and its derivative in the equation we obtain

u′e−
∫
p(t)dt − p(t)ue−

∫
p(t)dt + p(t)ue−

∫
p(t)dt = g(t).

Thus,
u′e−

∫
p(t)dt = g(t)

and solving for u′(t) we find

u′(t) = e
∫
p(t)dtg(t).

Integrating this last equation we find

u(t) =

∫
e
∫
p(t)dtg(t).

Hence,

yp(t) =

[∫
e
∫
p(t)dtg(t)

]
e−

∫
p(t)dt
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6 Modeling with First Order Linear Differ-

ential Equations

Problem 6.1
Translating a value to the present is referred to as discounting. We call
(1 + r

n
)−nt the discount factor. What principal invested today will amount

to $8, 000 in 4 years if it is invested at 8% compounded quarterly?

Solution.
The present value is found using the formula

P = B
(

1 +
r

n

)−nt
= 8, 000

(
1 +

0.08

4

)−16

≈ $5, 827.57

Problem 6.2
What is the effective rate of interest corresponding to a nominal interest rate
of 5% compounded quarterly?

Solution.

effective rate =

(
1 +

0.05

4

)4

− 1 ≈ 0.051 = 5.1%

Problem 6.3
Suppose you invested $1200 on January 1 of this year in an account at an
annual rate of 6%, compounded monthly.
1. Set up (write down) the equation that models this problem.
2. Determine your account balance after 5 years.

Solution.
1. B(t) = 1200

(
1 + 0.06

12

)12t
.

2. B(5) = 1200
(
1 + 0.06

12

)12(5) ≈ $1618.62

Problem 6.4
Which is better: An account that pays 8% annual interest rate compounded
quarterly or an account that pays 7.95% compounded continuously?
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Solution.
The effective rate corresponding to the first option is(

1 +
0.08

4

)4

− 1 ≈ 8.24%.

That of the second option

e0.0795 − 1 ≈ 8.27%.

Thus, we see that 7.95% compounded continuously is better than 8% com-
pounded quarterly

Problem 6.5
An amount of $2,000.00 is deposited in a bank paying an annual interest rate
of 2.85 %, compounded continuously.
(a) Find the balance after 3 years.
(b) How long would it take for the money to double?

Solution.
Use the continuous compound interest formula, B = Pert, with P = 2000, r =
2.85/100 = 0.0285, t = 3.
(a) Therefore,

B = 2000e0.0285(3) ≈ $2178.52.

(b) Since the original investment is $2,000.00, doubling means that the cur-
rent balance is $4,000.00. To find out how long it takes for this to happen (
i.e. to find t ), plug in P = 2000, B = 4000, and r = 0.0285 in the continuous
compound interest formula, and solve for t. Doing this, one gets,

2000e0.0285t =4000

e0.0285t =2

0.0285t = ln 2

t =
ln 2

0.0285
≈ 24.32 years

Problem 6.6
Carbon-14 is a radioactive isotope of carbon that has a half life of 5600 years.
It is used extensively in dating organic material that is tens of thousands of
years old. What fraction of the original amount of Carbon-14 in a sample
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would be present after 10,000 years?
Recall that the half life of a substance of a decaying material (or population)
is the amount of time it takes for 50% of the original amount of substance
(or material or population) to decay.

Solution.
Let m(t) be the amount of C-14 present after t years. Since the problem is a
decay problem, m(t) satisfies the equation m(t) = m(0)ekt, k < 0. Since the
half life is given,we

e5600k =
1

2
5600k =− ln 2

k =− ln 2

5600
≈ −1.2× 10−4.

The fraction of the original amount left after 10,000 years is

m(10, 000)

m(0)
= e−1.2·10−4·104 ≈ 0.3.

Hence, 30% of the original amount is left after 10,000 years

Problem 6.7
In 1986 the Chernobyl nuclear power plant exploded, and scattered radioac-
tive material over Europe. Of particular note were the two radioactive ele-
ments iodine-131 whose half-life is 8 days and cesium-137 whose half life is
30 years. Predict how much of this material would remain over time.

Solution.
Let mI(t) be the amount of Iodine-13 after t days. Then mI(t) = mI(0)ekt.
Since the half-life of Iodine-13 is 8 days, we obtain 0.5 = e8k. Solving this
equation for k we find k = ln 0.5

8
≈ −0.08664. Thus, mI(t) = mI(0)e−0.08664t.

Now, let mC(t) be the amount of Cesium-137 after t years. Then mC(t) =
mC(0)ekt. Since the half-life is 30 years, we have e30t = 0.5. Solving for k we
find k = ln 0.5

30
≈ −0.02315. Hence, mC(t) = mC(0)e−0.02315t

Problem 6.8
A team of archaeologists thinks they may have discovered Fred Flintsone’s
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fossilized bowling ball. But they want to determine whether the fossil is au-
thentic before they report their discovery to ABC’s “Nightline.” (Otherwise
they run the risk of showing up on “Hard Copy” instead.) Fortunately, one
of the scientists is a graduate of ATU’s Math 3163, so he calls upon his ex-
perience as follows:
The radioactive substance (Carbon 14) has a half-life of 5730 years. By mea-
suring the amount of Carbon present in a fossil, scientists can estimate how
old the fossil is.
Analysis of the “Flinstone bowling ball” determines that 15% of the radioac-
tive substance has already decayed. How old is the fossil ?

Solution.
Let m(t) denote the amount of the radioactive substance left after t years.
Then m(t) = m(0)ekt, k < 0. Since the half-life is 5730 years, we obtain
e5730k = 0.5. Solving for k we find k = ln 0.5

5730
≈ −1.21× 10−4.

Now, since 15% decayed, e−1.21×10−4t = 0.85. Solving for t we find t =
ln 0.85

−1.21×10−4 ≈ 1343 years

Problem 6.9
The half-life of Iodine-123 is about 13 hours. You begin with 50 grams of
this substance. What is a formula for the amount of Iodine-123 remaining
after t hours?

Solution.
Since the problem involves exponential decay, if Q(t) is the quantity remain-
ing after t hours then Q(t) = 50at with 0 < t < 1. But Q(13) = 25. That is,

50a13 = 25 or a13 = 0.5. Thus a = (0.5)
1
13 ≈ 0.95 and Q(t) = 50(0.95)t

Problem 6.10
Statistics indicate that the world population since World War II has been
growing at the rate of 1.9% per year. Further, United Nations records indi-
cate that the world population in 1975 was (approximately) 4 billion. As-
suming an exponential growth model,
(a) what will the population of the world be in the year 2000?
(b) When will the world population be 7 billion?

Solution.
(a) Let P (t) be the world population t years after 1975. Then P (t) = 4e0.19t.
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In the year 2000, the value of t is 25. In this case, the world population is
P (25) = 4e0.19(25) ≈ 6.43 billion.
(b) We want to find t that satisfies the equation C(t) = 7. That is, 4e0.19t = 7.

Solving this equation for t we find t = ln 7/4
0.19
≈ 29.5 years

Problem 6.11
During the 1980s the population of a certain city went from 100,000 to
205,000. Populations by year are listed in the table below. N(t) is the
population (in thousands) at time t (in years).

Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
N(t) 100 108 117 127 138 149 162 175 190 205

(a) Use your calculator (i.e. exponential regression) to show that the popu-
lation satisfies an equation of the form N(t) = n(0)ekt.
(b) Use the model to predict the population of the city in 1994.
(c) According to our model, when will the population reach 300 thousand?

Solution.
(a) Using an exponential regression procedure found in a calculator we find
N(t) = 99.8(1.08)t.
(b) N(14) = 99.8(1.08)14 ≈ 293.132.
(c) We must solve the equation 300 = 99.8(1.08)t. Solving for t we find

99.8(1.08)t =300

(1.08)t =
300

99.8

t =
ln 300

99.8

ln 1.08
≈ 14.3.

Thus, the population will surpass the 300,000 mark in the year 1995

Problem 6.12
The population of fish in a pond is modeled by the differential equation

dN

dt
= 480− 4N

where time t is measured in years.
(a) Towards what number does the population of fish tend?
(b) If there are initially 10 fish in the pond, how long does it take for the
number of fish to reach 90% of the eventual population?
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Solution.
(a) Using the integrating factor method with p(t) = 4 and µ(t) = e4t we find

N(t) =e−4t

∫
e4t(480)dt+ Ce−4t

=120 + Ce−4t

So in the long run, limt→∞N(t) = 120 fish.
(b) Since N(0) = 10, 10 = C + 120 so that C = −110. Thus, N(t) =
−110e−4t + 120. Now, we are trying to find t such that N(t) = 90%(120) =
108. That is, we must solve the equation −110e−4t + 120 = 108. Solving for
t we find t = ln 12110

−0.4
≈ 0.554

Problem 6.13
The number of bacteria in a liquid culture is observed to grow at a rate
proportional to the number of cells present. At the begining of the experiment
there are 10,000 cells and after three hours there are 500,000. How many will
there be after one day of growth if this unlimited growth continues? What
is the doubling time of the bacteria, i.e. the amount of time it takes for the
population to double in size?

Solution.
The population model satisfies the initial-value problem

dP

dt
= kP, P (0) = 10, 000.

The solution to this IVP is

P (t) = 10, 000ekt.

Since P (1) = 500, 000, ek = 50 and therefore k = ln 50 ≈ 3.912. After one
day the population is

p(24) = 10, 000e(3.912)(24) ≈ 5.96× 1044.

The doubling time is

t =
ln 2

3.912
≈ 0.177 hr
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Problem 6.14
Bacteria is being cultured for the production of medication. Without har-
vesting the bacteria, the rate of change of the population is proportional to
its current population, with a proportionality constant of 0.2 per hour. Also,
the bacteria are being harvested at a rate of 1000 per hour. If there are
initially 8000 bacteria in the culture, solve the initial value problem:

dN

dt
= 0.2N − 1000, N(0) = 8000

for the number N of bacteria as a function of time and find the time it takes
for the population to double its initial number.

Solution
Using the method of integrating factor we find(

e−0.2tN
)′

=− 1000e−0.2t

e−0.2tN(t) =5000e−.2t + C

N(t) =5000 + Ce0.2t

But N(0) = 8000 so that C = 3000. Thus, N(t) = 5000 + 3000e−0.2t. The
doubling time is

t =
ln 2

0.2
≈ 3.5 hours

Problem 6.15
A small lake supports a population of fish which, under normal circum-
stances, enjoys a natural birth process with birth rate r > 0. However, a
fishing company has just discovered the lake and is now drawing fish out of
the lake at a rate of h fish per day. A model capturing this situation is:

dP

dt
= −h+ rP, P (0) = P0.

(a) Find the equilibrium level Pe of fish in the lake.
(b) Find P (t) explicitly (i.e. solve the initial value problem.)

Solution.
(a) The equilibrium level occurs when Pe = h

r
.
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(b) Using the method of integrating factor we find(
e−rtP

)′
=− he−rt

e−rtP =
h

r
e−rt + C

P (t) =Pe + Cert.

But P (0) = P0 so that C = P0 − Pe. Hence, P (t) = Pe + (p0 − Pe)ert

Problem 6.16
The population of mosquitoes in a certain area increases at a rate propor-
tional to the current population and, in the absence of other factors, the
population doubles each week. There are 200,000 mosquitoes in the area ini-
tially, and predators (birds, etc.) eat 20,000 mosquitoes per day. Determine
the population of mosquitoes in the area at any time.

Solution.
Since the doubling time is 1, we have

k = ln 2 ≈ 0.693.

The model is given by the differential equation

dP

dt
= 0.693P − 20000, P (0) = 200, 000.

Solving this IVP problem we find(
e−0.693tP

)′
=− 20000e−0.693t

e−0.693tP (t) =28860e−0.693t + C

P (t) =28860 + Ce0.693t.

But P (0) = 200000 so that C = 171140. Thus,

P (t) = 28860 + 171140e0.693t

Problem 6.17
At the time of the 1990 census the city of Renton, WA had a population of
8000 people. The last (2000) census revealed that the population of Renton
was 12000 people. The city planners do not wish to limit growth until the
population reaches 18000. Assuming the rate of change of the population is
proportional to the population, when will this occur?
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Solution.
The population at time t is given by the formula P (t) = 8000ekt. But P (10) =
12000 so that e10k = 1.5. Thus, k = ln 1.5

10
≈ 0.04. Thus, P (t) = 8000e0.04t. If

P (t) = 18000 then e0.04t = 2.25 so that

t =
ln 2.25

0.04
≈ 20.27years

Problem 6.18
If initially there are 50 grams of a radioactive substance and after 3 days
there are only 10 grams remaining, what percentage of the original amount
remains after 4 days?

Solution.
The formula for the quantity of radioactive susbtance after t days is given
by m(t) = 50e−kt. Since m(3) = 10, we have k = ln 5

3
≈ 0.207. Hence,

m(t) = 50e−0.207t. The percentage of the original amount remaining after 4
days is

50− P (4)

50
= 1− e−0.828 ≈ .563 = 56.3%

Problem 6.19
The half-life of radioactive cobalt is 5.27 years. A sample of radioactive cobalt
weighing 100 kilograms is buried in a nuclear waste storage facility. After
200 years, how much cobalt will remain in the sample? (Give the answer in
exact form, involving a fractional power of 2.)

Solution.
The mass of radiactive Cobalt after t years is given by m(t) = 100e−kt. Since
the half-life is 5.27 years we find 1

2
= e−5.27k. Solving for k we find k = ln 2

5.27
.

Finally, P (200) = 100e−
ln 2
5.27

200 = 2−
200
5.27
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7 Additional Applications: Mixing Problems

and Cooling Problems

Problem 7.1
Consider a tank with volume 100 liters containing a salt solution. Suppose
a solution with 2kg/liter of salt flows into the tank at a rate of 5 liters/min.
The solution in the tank is well-mixed. Solution flows out of the tank at a
rate of 5 liters/min. If initially there is 20 kg of salt in the tank, how much
salt will be in the tank as a function of time?

Solution.
Let y(t) denote the amount of salt in kg in the tank after t minutes. We use
a fundamental property of rates:

Total Rate = Rate in − Rate out.

To find the rate in we use

5
liters

min
· 2 kg

liter
= 10

kg

min
.

The rate at which salt leaves the tank is equal to the rate of flow of solution
out of the tank times the concentration of salt in the solution. Thus, the rate
out is

5 liters

min
·
( y

100

) kg

liter
=
( y

20

) kg

min
.

Notice that the volume is always constant at 100 since the inflow rate and
the outflow rate are the same.
The initial value problem for the amount of salt is{

y′ = 10− y
20

y(0) = 20.

Using the method of integrating factor we find the general solution

y(t) = 200− Ce−0.05t.

But y(0) = 20 so that C = 180. Hence, the amount of salt in the tank after
t minutes is given by the formula

y(t) = 200− 180e−0.05t
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Problem 7.2
A tank initially contains 50 gal of pure water. A solution containing 2 lb/gal
of salt is pumped into the tank at 3 gal/min. The mixture is stirred constantly
and flows out at the same rate of 3 gal/min.
(a) What initial-value problem is satisfied by the amount of salt y(t) in the
tank at time t?
(b) What is the actual amount of salt in the tank at time t?
(c) How much salt is in the tank at after 20 minutes?
(d) How much salt in in the tank after a long time?

Solution.
(a) y′ = 6− 3y

50
, y(0) = 0.

(b) By using the method of integrating factor one finds y(t) = 100(1−e−0.06t).
(c) y(20) = 100(1− e−0.06(20) ≈ 69.9 lb.
(d) limt→∞ y(t) = 100 lb

Problem 7.3
Brine containing 1 lb/gal of salt is poured at 1 gal/min into a tank that
initially contained 100 gal of fresh water. The stirred mixture is drained off
at 2 gal/min.
(a) what initial value problem is satisfied by the amount of salt in it?
(b) What is the formula for this amount of salt?

Solution.
Since the inflow rate is different from the outflow rate, we have

V (t) = 100 +

∫ t

0

(1− 2)ds = 100− t.

(a) y′ = 1− 2y
100−t , y(0) = 0, 0 ≤ t < 100.

(b) y(t) = −0.01(100− t)2 + 100− t

Problem 7.4
Consider a large tank holding 1000 L of pure water into which a brine solution
of salt begins to flow at a constant rate of 6 L/min. The solution inside the
tank is kept well stirred, and is flowing out of the tank at a rate of 6 L/min. If
the concentration of salt in the brine solution entering the tank is 0.1 Kg/L,
determine when the concentration of salt will reach 0.05 Kg/L.
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Solution.
Let the amount of salt in the tank at time t be y(t). We can determine
the concentration of the salt in the tank by dividing y(t) by the volume of
solution in the tank at time t. Since the input and output flow rates are
equal, the volume of the solution in the tank remains constant at 1000 L. We
first compute the input rate

input rate = 6 L
min
× 0.1 Kg

L
= 0.6 Kg

min
.

The output rate will be the product of output flow rate and the concentration
of salt in the outgoing solution. Since we have assumed that the solution is
kept well stirred, we can assume that the concentration of salt in any part
of the tank at time t is y(t) = 1000 Kg/L, the volume of the solution in the
tank being 1000 L. Hence the output rate of salt is

output rate = 6 L
min
× y(t)

1000
= 3y(t)

500
Kg/min.

Also, since the tank initially contains pure water, we can set y(0) = 0. We
can now model the problem as an initial-value problem

y′ = 0.6− 3y(t)

500
, y(0) = 0.

This equation is linear, and we can solve it using the method of integrating
factor, and use the initial condition to get

y(t) = 100(1− e−
3t
500 ).

Thus the concentration of salt in the tank at time t is given by

y(t)

1000
= 0.1(1− e−

3t
500 ) Kg/L.

In order to find out at what time the concentration becomes 0.05 Kg/min,
we set

0.1(1− e−
3t
500 ) = 0.05.

Solving this equation for t we find t ≈ 115.32 min

Problem 7.5
A tank containing chocolate milk initially contains a mixture of 460 gallons
of milk and 40 gallons of chocolate syrup. Milk is added to the tank at the
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rate of 8 gallons per minute and syrup is added at a rate of 2 gallons per
minute. At the same time, chocolate milk is withdrawn at the rate of 10
gallons per minute. Assuming perfect mixing of milk and syrup:
(a) Write up an initial value problem for the amount of syrup in the tank.
(b) Determine how much syrup will be in the tank over a long time.
(c) Determine how much syrup will be in the tank after 10 minutes.

Solution.
(a) Let y(t) be the number of gallons of syrup in the tank at time t. Then
the initial-value problem is given by

dy
dt

= input rate - output rate = 2− y
50
, y(0) = 40.

(b) Using the method of integrating factor we find y(t) = 100− 60e−0.02t. In
the long run, y(t) approaches 100 gallons.
(c) y(10) = 100− 60e−0.2 ≈ 50.88 gallons

Problem 7.6
A tank contains 100 L of water with 5kg of salt initially. An inlet pipe adds
salt water with concentration of 2 kg/L at the constant rate of 10 L/min.
The solution is well-stirred and is flowing out of the tank at the rate of 10
L/min. Give the IVP for the amount of salt y(t) in the tank at time t. Solve
the IVP and determine y(2).

Solution.
The model is described by the initial-value problem

y′ = 20− 0.1y, y(0) = 5.

Using the method of integrating factor we find y(t) = 200 + Ce−0.1t. But
y(0) = 5 so that C = −195. It follows that y(t) = 200 − 195e−0.1t. Finally,
y(2) = 200− 195e−0.2 ≈ 40.35 liters

Problem 7.7
A tank initially contains 120 liters of pure water. A mixture containing a
concentration of γ g/liter of salt enters the tank at the rate of 2 liters/min,
and the well-stirred mixture leaves the tank at the same rate. Find an ex-
pression in terms of γ for the amount of salt in the tank at any time t. Also
find the limiting amount of salt in the tank at t→∞.
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Solution.
Let y(t) be the amount of salt in the tank at any time t. Then the model is
represented by the initial-value problem

y′ = 2γ − y

60
, y(0) = 0.

Solving this differential equation by the method of integrating factor we find
y(t) = 120γ(1− e− t

60 ). As t→∞, y(t)→ 120γ

Problem 7.8
Consider a large tank holding 2,000 gallons of brine solution, initially con-
taining 10 lbs of salt. At time t = 0, more brine solution begins to flow into
the tank at the rate of 2 gal/min. The concentration of salt in the solution
entering the tank is 3e−t lbs/gal, i.e. varies in time. The solution inside the
tank is well-stirred and is flowing out of the tank at the rate of 5 gal/min.
Write down the initial value problem giving y(t) = the amount of salt in the
tank (in lbs.) at time t. Do not solve for y(t).

Solution.
Since the rate in is different from the rate out, the volume of the solution at
any time t is given by

V (t) = V0 +

∫ t

0

(2− 5)ds = 2000− 3t.

The model is represented by the initial-value problem

y′ = 6e−t − 5y(t)

2000− 3t
, y(0) = 10

Problem 7.9
As part of his summer job at a resturant, Jim learned to cook up a big
pot of soup late at night, just before closing time, so that there would be
plenty of soup to feed customers the next day. He also found out that, while
refrigeration was essential to preserve the soup overnight, the soup was too
hot to be put directly into the fridge when it was ready. (The soup had just
boiled at 100◦C, and the fridge was not powerful enough to accomodate a big
pot of soup if it was any warmer than 20◦C). Jim discovered that by cooling
the pot in a sink full of cold water, (kept running, so that its temperature
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was roughly constant at 5◦C) and stirring occasionally, he could bring the
temperature of the soup to 60◦C in ten minutes. How long before closing
time should the soup be ready so that Jim could put it in the fridge and
leave on time ?

Solution.
Let H(t) = Temperature of the soup at time t (in min).
H(0) = Initial Temperature of the soup = 100◦. S = Ambient temperature
(temp of water in sink) = 5◦C. Since H(0) = C+S then C = 100−5 = 95◦C.
Thus,

H(t) = 95e−kt + 5.

But we know that after 10 minutes, the soup cools to 60 degrees, so that
H(10) = 60 . Plugging into the last equation, we find that

95e−10k + 5 = 60

95e−10k = 55

e−10k = 55
95

e10k = 95
55
≈ 1.73

10k = ln (1.73)

k = ln (1.73)
10
≈ 0.054.

Hence, the soup will cool according to the equation

H(t) = 95e−0.054t + 5.

Let us determine how long it takes for the soup to be cool enough to put into
the refrigerator. We need to wait until H(t) = 20 , so at that time

20 = 95e−0.054t + 5.
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We solve this equation for t as follows:

95e−0.054t + 5 = 20

e−0.054t = 15
95

t = − 1
0.054

ln
(

15
95

)
≈ 34.18.

Thus, it will take a little over half an hour for Jim’s soup to cool off enough
to be put into the refrigerator

Problem 7.10 (Determintating Time of Death)
Police arrive at the scene of a murder at 12 am. They immediately take and
record the body’s temperature, which is 90◦F, and thoroughly inspect the
area. By the time they finish the inspection, it is 1:30 am. They again take
the temperature of the body, which has dropped to 87◦F, and have it sent
to the morgue. The temperature at the crime scene has remained steady at
82◦F.

Solution.
Let H(t) denote the temperature of the body at time t. We are given that
H(0) = 90◦C and H(1.5) = 87◦C. By Newton’s Law of Cooling we have

dH

dt
= k(H − 82).

Using the seperation of variables we find

H(t) = Cekt + 82.

Since H(0) = 90 we find C + 82 = 90 or C = 8. Since H(1.5) = 87 we have

8e1.5k +82 = 87. Solving for k we find k = ln 5/8
1.5
≈ −0.313336. Hence, H(t) =

8e−0.313336t+82. The temperature of the body at the moment of death is 98.6◦.
So we want to find t such that H(t) = 98.6. That is, 8e−0.313336t + 82 = 98.6.
Solving this equation for t we find t ≈ −2hr20min. So the crime occurred at
9:40 pm
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Problem 7.11
Suppose you have just made a cup of tea with boiling water in a room where
the temperature is 20◦C. Let y(t) denote the temperature (in Celsius) of the
tea at time t (in minutes).
(a) Write a differential equation that expresses Newton’s Law of Cooling in
this particular situation. What kind of differential equation is it?
(b) What is the initial condition?
(c) Substitute u(t) = y(t) − 20. What initial value problem does this new
function u(t) satisfy? What is the solution?
(d) Suppose it is known that the tea cools at a rate of 2◦C per minute when
its temperature is 70◦C. Write a formula for y(t).
(e) What is the temperature of the tea a half an hour later?
(f) When will the tea have cooled to 37◦C?

Solution.
(a) The equation is dy

dt
= k(y − 20), k < 0 and y(0) = 100◦C. This is a first

order linear differential equation.
(b) y(0) = 100◦.
(c) If u(t) = y(t) − 20 then this will lead to the equation du

dt
= ku(t) with

u(0) = 80. Solving this equation will give u(t) = 80ekt.
(d) From part (c), y(t) = 80ekt+20. Since dy

dt
= k(y−20) we find k(70−20) =

−2. Thus, k = − 2
50

= −0.04. Hence, y(t) = 80e−0.04t + 20.
(e) y(30) = 80e−0.04(30) + 20 ≈ 44◦C.
(f) 80e−0.04t + 20 = 37 implies that 80e−0.04t = 17. Solving for t we find
t = ln 1780

−0.04
≈ 38.72 minutes

Problem 7.12
Newton’s Law of Heating is a corresponding principle which applies if an
object is being warmed rather than cooled. The same formulas apply except
the constant of proportionality is positive in the warming case. Use Newton’s
Law of Heating to solve the following problem: A chicken is removed from
the refrigerator at a temperature of 40◦F and placed in an oven kept at
the constant temperaturre of 350◦F. After 10 minutes the temperature of
the chicken is 70◦F. The chicken is considered cooked when its temperature
reaches 180◦F. How long must it remain in the oven?

Solution.
Solving the differential equation

dH

dt
= k(350−H), k > 0
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we find
H(t) = Ce−kt + 350.

But H(0) = 40 so that C = −310◦F. Hence,

H(t) = 350− 310e−kt.

Now, we are given that H(10) = 70 so that 70 = 350− 310e−10k. Solving for
k we find k ≈ 0.0102. Hence,

H(t) = 350− 310e−0.0102t.

Finally, we want to find the time so that H(t) = 180. That is, 180 = 350 −
310e−0.0102t. Solving this equation for t we find t =≈ 59minutes

Problem 7.13
A corpse is discovered at midnight and its body temperature is 84◦F. If the
body temperature at death is 98◦F, the room temperature is constant at
66◦F, and the proportionality constant is .10 per hour, how many hours have
passed since the time of death when the corpse is found?

Solution.
By Newton’s Second Law of Cooling we have

dH

dt
= 0.10(66−H), H(0) = 84.

Solving for H we find
H(t) = 66 + 18e−0.10t.

The time of death is the solution to the equation H(t) = 98. Solving this
equation for t we find t ≈ −5.75 hours or 5hr45min. So the time of death is
at 6:15 pm

Problem 7.14
A tank initially contains 100 gal of a salt-water solution containing 0.05 = 1

20

lb of salt for each gallon of water. At time t = 0, pure water [containing no
salt] is poured into the tank at a flow rate of 2 gal per minute. Simultaneously,
a drain is opened at the bottom of the tank that allows salt-water solution
to leave the tank at a flow rate of 3 gal per minute. What will be the salt
content in the tank when precisely 50 gal of salt solution remain?
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Solution.
Let y(t) be the amount of salt in the tank at time t. Then y(0) = 100× 1

20
= 5

lbs of salt. Since

dy
dt

= rate in - rate out = 2 gal
min
× 0 lb

gal
− 3 gal

min
× y

100−t
lb
gal

the model is described by the initial-value problem

y′ =
3y

t− 100
, y(0) = 5.

Solving this equation for y we find y(t) = C(t − 100)3. Since y(0) = 5 we
find C = 1

200,000
. Thus,

y(t) =
(t− 100)3

200, 000
.

The tank is losing solution at the rate of 1 gal/min. Since there was 100 gal
in the tank at the start, after 50 min there will be 50 gal in the tank. The
amount of salt in the tank at that time will be

y(50) =
503

200, 000
= 0.625 lb

Problem 7.15
A tank contains 200 gal of a 2 % solution of HCl. A 5 % solution of HCl is
added at 5 gal/min. The well mixed solution is being drained at 5 gal/min.
When does the concentration of HCl in the solution reach 4 %?

Solution.
Let y(t) be the concentration of HCL in the tanl at time t. Then y(t) satisfies
the initial-value problem

y′ = 5(.05)− 5 · y

200
=

1

4
− y

40
, y(0) = 4.

Solving this equation by the method of integrating factor we find

y(t) = e−
t
4

∫
e
t
40

(
1

4

)
dt = 10 + Ce−

t
40 .

Since y(0) = 4 we find C = −6. Thus, y(t) = 10− 6e−
t
40 . We want the value

of t which gives a concentration of 4%, so

200(0.4) = 10− 6e−
t
40 .

Solving for t we find t ≈ 43.94
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Problem 7.16
Suppose that the temperature of the cup of coffee obeys Newton’s law of
cooling. If the coffee has a temperature of 200◦F when freshly poured, and
one minute later has cooled to 190◦F in a room at 70◦F, determine when the
coffee reaches a temperature of 150◦F.

Solution.
By Newton’s Second Law of Cooling we have

dH

dt
= k(70−H), H(0) = 200.

Solving for H we find
H(t) = 70 + Ce−kt.

Since H(0) = 200 we find C = 130. Since H(1) = 190 we find 70 + 130e−k =
190 and solving for k we find k ≈ 0.08. Thus, H(t) = 70 + 130e−0.08t. Finally,
we want to find t such that H(t) = 150 that is 70 + 130e−0.08t = 150. Solving
for t we find t ≈ 6.07 minutes

Problem 7.17
Suppose that at 1:00 pm one winter afternoon, there is a power failure at
your condo in Nanaimo, and your heat does not work without electricity.
When the power goes out, it is 68◦F in your condo. At 10:00 pm, it is 57◦F
in your condo, and you notice it is 10◦F outside (what a pity!).
(i) Assuming that the temperature, H, in your condo obeys Newton’s Law
of Cooling, write the differential equation satisfied by H and then solve the
intial-value problem.
(ii) Estimate the temperature in your condo when you get up at 7:00 am the
next morning.

Solution.
(i) By Newton’s Law of Cooling we have

dH

dt
= k(10−H), H(0) = 68.

Solving for H be the method of separation of variables we find

H(t) = 10 + Ce−kt.

But H(0) = 68 so that C = 58. Hence, H(t) = 10 + 58e−kt. Since H(9) = 57
we have 10 + 58e−9k = 57. Solving for k we find k ≈ 0.02337.
(ii) At 7:00 am, t = 18 so that H(18) = 10 + 58e−0.02337(18) ≈ 48◦F
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Problem 7.18
Johnny is in the basement watching over a tank with a capacity of 100
L. Originally, the tank is full of pure water. Water containing a salt at a
concentration of 2 g/L is flowing into the tank at a rate of r L/minute, and
the well mixed liquid in the tank is flowing out at the same rate.
(a) Write down and solve an initial value problem describing the quantity of
salt in the mixture at time t in terms of r.
(b) If Johnny’s mixture contains 10 g of salt after 50 minutes, what is r?

Solution.
(a) The equation sets up as:

dy

dt
= 2r − y

100
r.

Integrating factor is e
rt
100 , so the equation becomes

e
rt
100 =

∫
2re

rt
100dt = 200e

rt
100 + C.

Initial conditions give 0 = 200 + C so C = −200, and the formula for y is

y(t) = 200(1− e−
rt
100 ).

(b) y(50) = 10 = 200(1− e− r2 ), so after a little algebra, r = −2 ln 19
20

Problem 7.19
A brine tank holds 15000 gallons of continuously mixed liquid. Let y(t) be
the amount of salt (in pounds) in the tank at time t. Brine is flowing in and
out at 150 gallons per hour, and the concentration of salt flowing is 1 pound
per 10 gallons of water.
(a) Find the differential equation of y(t) and find the solution assuming that
there is no salt in the water at time t.
(b) What is the limiting amount of salt as t→∞?

Solution.
(a) The rate at which brine flows in is 150 gallons per hour, and the concen-
tration of salt is 1 lb per 10 gallons of water or 0.1 lb per gallon, so salt is
entering the tank at the rate of 15 pounds per hour.
The mixture flowing out at 150 gallons per hour, and the concentration is
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y(t)
15000

pounds per gallon, so the rate at which salt is leaving the tank is
150 y

15000
= 0.01y(t) pounds per hour. The initial-value problem is therefore

y′ = 15− 0.01y, y(0) = 0.

Solving this equation by the method of integrating factor we find

(e0.01ty)
′

= 15e0.01t

e0.01ty = 1500e0.01t + C
y(t) = 1500 + Ce−0.01t.

But y(0) = 0 so that 1500. Hence, y(t) = 1500(1− e−0.01t).
(b)

lim
t→∞

y(t) = 155 lb

Problem 7.20
A 10 gal. tank initially contains an effluent at a concentration of 1 lb/gal.
Water with an increasing concentration given by 1 − e−t lbs/gal of effluent
flows into the tank at a rate of 5 gal/day and the mixture in the tank flows
out at the same rate.
(a) Assuming that the salt distributes itself uniformly, construct a mathe-
matical model of this flow process for the effluent content y(t) of the tank.
(b) Solve the initial-value problem.
(c) What is the limiting value of the effuent content as t→∞?

Solution.
(a) The initial-value problem descibing this problem is

y′ = 5(1− e−t)− 5
y

10
, y(0) = 10.

(b) Using the method of integrating factor we find(
e
t
2y
)′

= 5e
t
2 (1− e−t)

e
t
2y = 10(e−

t
2 + e

t
2 ) + C

y(t) = 10(1 + e−t) + Ce−
t
2 .

But y(0) = 10 so that C = −10. Hence

y(t) = 10(1 + e−t)− 10e−
t
2 .

(c)
lim
t→∞

y(t) = 10
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8 Existence and Uniqueness of Solutions to

the IVP y′ = f (t, y), y(t0) = y0

Problem 8.1
Use Picard iterations to find the solution to the IVP

y′ = y − t, y(0) = 2.

Solution.
Finding the first six iterations we find

y0(t) =2

y1(t) =2 + 2t− t2

2

y2(t) =2 + 2t+
t2

2
− t3

6

y3(t) =2 + 2t+
t2

2
+
t3

6
− t4

24

y4(t) =2 + 2t+
t2

2
+
t3

6
+
t4

24
− t5

120

y5(t) =2 + 2t+
t2

2
+
t3

6
+
t4

24
+

t5

120
− t6

720

y6(t) =2 + 2t+
t2

2
+
t3

6
+
t4

24
+

t5

120
+

t6

720
− t7

5040
.

Notice that when the last term in the Picard approximation is dropped,
what is left is a Taylor polynomial approximation which converges uniformly
to 1 + t+ et. That is, the unique solution to the IVP is y(t) = 1 + t+ et

Problem 8.2
On what interval we expect unique solutions to

y′ =
y2

1− t2
, y(0) = 0?

Solution.
We have

f(t, y) =
y2

1− t2
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and
∂f

∂y
(t, y) =

2y

1− t2
.

These are both continuous functions as long as we avoid the lines t = ±1.
The Existence and Uniqueness Theorem tells us that we can expect one and
only one solution of

y′ =
y2

1− t2
, y(t0) = y0

as long as t0 is in the set (−∞,−1) ∪ (−1, 1) ∪ (1,∞)

Problem 8.3
Consider the IVP

y′ =
1

2
(−t+

√
t2 + 4y), y(2) = −1.

(a) Show that y(t) = 1 − t and y(t) = − t2

4
are two solutions to the above

IVP.
(b) Does this contradict Theorem 8.3?

Solution.
(a) You can verify that the two functions are solutions by substitution.
(b) Since f(t, y) = 1

2
(−t +

√
t2 + 4y) and fy(t, y) = 1√

t2+4y
, these two func-

tions are not continuous at (2,−1). Thus, we can not apply Theorem 8.3 for
this problem.

For the given initial value problem in Problems 8.4 - 8.8,
(a) Rewrite the differential equation, if necessary, to obtain the form

y′ = f(t, y), y(t0) = y0.

Identify the function f(t, y).
(b) Compute ∂f

∂y
. Determine where in the ty-plane both f(t, y) and ∂f

∂y
are

continuous.
(c) Determine the largest open rectangle in the ty-plane that contains the
point (t0, y0) and in which the hypotheses of Theorem 8.3 are satisfied.

Problem 8.4

3y′ + 2t cos y = 1, y(
π

2
) = −1.
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Solution.
(a) y′ = 1

3
(1− 2t cos y) = f(t, y).

(b) ∂f
∂y

(t, y) = 2
3
t sin y. The functions f(t, y) and fy(t, y) are both continuous

in the entire plane,

D = {(t, y) : −∞ < t <∞, −∞ < y <∞}.

(c) R = {(t, y) : −∞ < t <∞, −∞ < y <∞}

Problem 8.5

3ty′ + 2 cos y = 1, y(
π

2
) = −1.

Solution.
(a) y′ = 1

3t
(1− 2 cos y) = f(t, y).

(b) fy(t, y) = 2
3t

sin y. Both f(t, y) and fy(t, y) are continuous in

D = {(t, y) : −∞ < t < 0, 0 < t <∞, −∞ < y <∞}.

(c) R = {(t, y) : 0 < t <∞, −∞ < y <∞}

Problem 8.6

2t+ (1 + y3)y′ = 0, y(1) = 1.

Solution.
(a) y′ = − 2t

1+y3
= f(t, y).

(b) fy(t, y) = 6ty2

(1+y3)2
. Both f(t, y) and fy(t, y) are continuous in

D = {(t, y) : −∞ < t <∞, −∞ < y < −1, − 1 < y <∞}.

(c) R = {(t, y) : −∞ < t <∞, − 1 < y <∞}

Problem 8.7

(y2 − 9)y′ + e−y = t2, y(2) = 2.
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Solution.
(a) y′ = t2−e−y

y2−9
= f(t, y).

(b) fy(t, y) = (y2+2y−9)e−y−2t2y2

y2−9
. Both f(t, y) and fy(t, y) are continuous in

D = {(t, y) : −∞ < t <∞, −∞ < y < −3, − 3 < y < 3, 3 < y <∞}.

(c) D = {(t, y) : −∞ < t <∞, − 3 < y < 3}

Problem 8.8

cos yy′ = 2 + tan t, y(0) = 0.

Solution.
(a) y′ = 2+tan t

cos y
= f(t, y).

(b) fy(t, y) = (2 + tan t) sec y tan y. Both f(t, y) and fy(t, y) are continuous
in

D = {(t, y) : t 6= (2n+ 1)π
2
, y 6= (2m+ 1)π

2
, where n and m are integers.}

(c) R = {(t, y) : −π
2
< t < π

2
, − pi

2
< y < π

2
}

Problem 8.9
Give an example of an initial value problem for which the open rectangle

R = {(t, y) : 0 < t < 4,−1 < y < 2}

represents the largest region in the ty-plane where the hypotheses of Theorem
8.3 are satisfied.

Solution.
An example is

y′ =
1

t(t− 4)(y + 1)(y − 2)
, y(2) = 0

Problem 8.10
Consider the initial value problem: t2y′ − y2 = 0, y(1) = 1.
(a) Determine the largest open rectangle in the ty-plane, containing the point
(t0, y0) = (1, 1), in which the hypotheses of Theorem 8.3 are satisfied.
(b) A solution of the initial value problem is y(t) = t. This solution exists on
−∞ < t <∞. Does this fact contradicts Theorem 8.3? Explain your answer.
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Solution.
We have f(t, y) = y2

t2
, fy(t, y) = 2y

t2
. So

R = {(t, y) : 0 < t <∞, −∞ < y <∞}.

(b) No. Theorem 8.3 is a local existence theorem and not a global one

Problem 8.11 (Gronwall’s Inequality)
Let u(t) and h(t) be continuous functions defined on a closed interval [a, b],
with h ≥ 0, let C be a non-negative constant, and suppose that

u(t) ≤ C +

∫ t

a

u(s)h(s)ds (1)

for all t in the interval. Show that

u(t) ≤ Ce
∫ t
a h(s)ds

for all t in the interval.
Note in particular that if C = 0, then u(t) ≤ 0 for all t.

Solution.
Let us write U(t) = C +

∫
a
tu(s)h(s)ds. By the Fundamental Theorem of

Calculus and (1), U is differentiable and

U ′(t) = u(t)h(t) ≤ U(t)h(t). (2)

Now if (2) were a differential equation rather than a differential inequality,

we would solve it by multiplying by the integrating factor µ(t) = e−
∫ t
a h(s)ds.

In fact however, the same method works on the inequality; multiplying (2)
by µ(t) and rearranging leads to (µU)′(t) ≤ 0, and integrating this inequality
yields

µ(s)U(s)
∣∣t
a = µ(t)U(t)− C ≤ 0

and hence
u(t) ≤ U(t) ≤ C[µ(t)]− 1

Problem 8.12
Find the first three Picard iterates of the solution of the initial-value problem

y′ = cos t, y(0) = 0

and then try to find the nth Picard iterates.
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Solution.
Since y0(t) ≡ 0, the next three Picard iterates are

y1(t) =0 +

∫ t

0

cos sds = sin t (3)

y2(t) =0 +

∫ t

0

cos sds = sin t

y3(t) =0 +

∫ t

0

cos sds = sin t.

The nth iterates is given by

yn(t) = sin t.

Thus, yn(t)→ sin t as n→∞ and for all t. Hence, y(t) = sin t is the solution
to the initial-value problem

Problem 8.13
Set up the Picard iteration technique to solve the initial value problem y′ =
y2, y(0) = 1 and do the first three iterations.

Solution.
(a) Since y0(t) ≡ 1 we have

y1(t) =1 +

∫ t

0

12ds = 1 + t

y2(t) =1 +

∫ t

0

(1 + s)2ds = 1 + t+ t2 +
t3

3

y3(t) =1 +

∫ t

0

(1 + s+ s2 +
s3

3
ds = 1 + t+ t2 + t3 +

2

3
t4 +

1

3
t5 +

1

9
t6 +

1

63
t7

Problem 8.14
Can we apply the basic existence and uniqueness theorem to the following
problem ? Explain what (if anything) we can conclude, and why (or why
not):

y′ =
y√
t
, y(0) = 2.
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Solution.
Since f(t, y) = y√

t
and fy(t, y) = 1√

t
, both functions are continuous in the

region
D = {(t, y) : 0 < t <∞, −∞ < y <∞}.

Since (0, 2) is not in D, Theorem 8.3 can not be applied in this case

Problem 8.15
Consider the differential equation y′ = t−y

t+y
. For which of the following initial

value conditions does Theorem 8.3 apply?
(a) y(0) = 0 (b) y(1) = −1 (c) y(−1) = −1.

Solution.
The function f(t, y) = t−y

t+y
is continuous everywhere except along the line

t + y = 0. Since both (0, 0) and (1,−1) lie on this line, we cannot conclude
existence from Theorem 8.3. On the other hand, the point (−1,−1) is not on
that line so we can find a small rectangle around this point where Theorem 8.3
guarantees the existence of a solution. Furthermore, since fy(t, y) = − 2t

(t+y)2

is continuous at (−1,−1), the solution is unique

Problem 8.16
Does the initial value problem y′ = y

t
+ 2, y(0) = 1 satisfy the conditions of

Theorem 8.3?

Solution.
The equation is of the form y′ = f(t, y) = y

t
+2. The function f is continuous

outside the line t = 0. The initial value point is (0, 1), so there is no rectangle
containing it in which f is continuous, and the conditions of Theorem 8.3 are
not satisfied

Problem 8.17
Is it possible to find a function f(t, y) that is continuous and has continuous
partial derivatives such that the functions y1(t) = cos t and y2(t) = 1− sin t
are both solutions to the equation y′ = f(t, y) near t = π

2
?

Solution.
Since f is continuous and has continuous partial derivatives in the entire
ty-plane, the equation y′ = f(t, y) satisfies the conditions of Theorem 8.3.
Notice that y1(

π
2
) = y2(

π
2
) = 0, so the curves y1(t) = cos t and y2(t) = 1−sin t
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have a common point (π
2
, 0), so if they were both solutions of our equation, by

the uniqueness theorem they would have to agree on any rectangle containing
(π

2
, 0). Since they do not, they cannot both be solutions of the equation

y′ = f(t, y)

Problem 8.18
Does the initial value problem y′ = y sin y + t, y(0) = −1 satisfy the condi-
tions of Theorem 8.3?

Solution.
The equation is of the form y′ = f(t, y) = y sin y + t. the function f is
continuous in the whole plane, and so is its partial derivative fy(t, y) =
sin y+ y cos y. In particular, any rectangle around the initial value point will
satisfy the conditions of Theorem 8.3

Problem 8.19
The condition of continuity of f(t, y) in Theorem 8.3 can be replaced by the
so-called Lipschitz continuous: A function f(t, y) is said to be Lipschitz
continuous in y on a closed interval [a, b] if there is a positive constant k
such that |f(t, y1)− f(t, y2)| ≤ k|y1 − y2| for all y1, y2 and a ≤ t ≤ b.
Show that the function f(t, y) = 1 + t sin ty is Lipschitz continuous in y for
0 ≤ t ≤ 2. Hint: Use the Mean Value Theorem.

Solution.
Fix t between 0 and 2. Let y1 and y2 be two given number where f is defined
and such that y1 < y2.. By the Mean Value Theorem, there is y1 < y∗ < y2

such that
f(t, y1)− f(t, y2) = fy(t, y∗)(y1 − y2).

But fy(t, y) = t2 cos (ty). Thus, |fy(t, y)| ≤ 4 for all t and all y. Hence,

|f(t, y1)− f(t, y2)| ≤ 2|y1 − y2|.

This shows that f is Lipschitz continuous in y

Problem 8.20
Find the region R of the ty-plane where both

f(t, y) =
1√

y − sin t

and ∂f
∂y

(t, y) are continuous.
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Solution.
Since fy(t, y) = −1√

(y−sin t)3
, the functions f and fy are defined in the ty-region

D = {(t, y) : y − sin t > 0}.

Therefore there is a unique solution passing through every point which lies
above the graph of y = sin t
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9 Separable Differential Equations

Problem 9.1
Solve the (separable) differential equation

y′ = tet
2−ln y2 .

Solution.
At first, this equation may not appear separable, so we must simplify the
right hand side until it is clear what to do.

y′ =tet
2−ln y2

=tet
2 · eln

(
1
y2

)

=tet
2 · 1

y2

=
t

y2
et

2

.

Separating the variables and solving the equation we find

y2y′ =tet
2

1

3

∫
(y3)′dt =

∫
tet

2

1

3
y3 =

1

2
et

2

+ C

y3 =
3

2
et

2

+ C

Problem 9.2
Solve the (separable) differential equation

y′ =
t2y − 4y

t+ 2
.

Solution.
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Separating the variables and solving we find

y′

y
=
t2 − 4

t+ 2
= t− 2∫

(ln |y|)′dt =

∫
(t− 2)dt

ln |y| =t
2

2
− 2t+ C

y(t) =Ce
t2

2
−2t

Problem 9.3
Solve the (separable) differential equation

ty′ = 2(y − 4).

Solution.
Separating the variables and solving we find

y′

y − 4
=

2

t∫
(ln |y − 4|)′dt =

∫
2

t
dt

ln |y − 4| = ln t2 + C

ln |y − 4

t2
| =C

y(t) =Ct2 + 4

Problem 9.4
Solve the (separable) differential equation

y′ = 2y(2− y).

Solution.
Separating the variables and solving (using partial fractions in the process)
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we find

y′

y(2− y)
=2

y′

2y
+

y′

2(2− y)
=2

1

2

∫
(ln |y|)′dt− 1

2

∫
(ln |2− y|)′dt =

∫
2dt

ln

∣∣∣∣ y

2− y

∣∣∣∣ =4t+ C∣∣∣∣ y

2− y

∣∣∣∣ =Ce4t

y(t) =
2Ce4t

1 + Ce4t

Problem 9.5
Solve the IVP

y′ =
4 sin (2t)

y
, y(0) = 1.

Solution.
Separating the variables and solving we find

yy′ =4 sin (2t)

(y2)′ =8 sin (2t)∫
(y2)′dt =

∫
8 sin (2t)dt

y2 =− 4 cos (2t) + C

y(t) =±
√
C − 4 cos (2t).

Since y(0) = 1 we find C = 5 and hence

y(t) =
√

5− 4 cos (2t)

Problem 9.6
Solve the IVP:

yy′ = sin t, y(
π

2
) = −2.
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Solution.
Separating the variables and solving we find∫ (

y2

2

)′
dt =

∫
sin tdt

y2

2
=− cos t+ C

y2 =− 2 cos t+ C.

Since y(π
2
) = −2 we find C = 4. Thus, y(t) = ±

√
(−2 cos t+ 4). Since

y(π
2
) = −2 we must have y(t) = −

√
(−2 cos t+ 4)

Problem 9.7
Solve the IVP:

y′

y + 1
= −1, y(1) = 0.

Solution.
Separating the variables and solving we find

(ln (y + 1))′ =− 1

ln (y + 1) =− t+ C

y + 1 =Ce−t

y(t) =Ce−t − 1.

Since y(1) = 0 we find C = e. Thus, y(t) = e1−t − 1

Problem 9.8
Solve the IVP:

y′ − ty3 = 0, y(0) = 2.

Solution.
Separating the variables and solving we find∫

y′y−3dt =

∫
tdt∫ (

y−2

−2

)′
dt =

t2

2
+ C

− 1

2y2
=
t2

2
+ C

y2 =
1

−t2 + C
.
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Since y(0) = 2 we find C = 1
4
. Thus, y(t) = ±

√
4

−4t2+1
. Since y(0) = 2 we

find y(t) = 2√
−4t2+1

Problem 9.9
Solve the IVP:

y′ = 1 + y2, y(
π

4
) = −1.

Solution.
Separating the variables and solving we find

y′

1 + y2
=1

arctan y =t+ C

y(t) = tan (t+ C).

Since y(π
4
) = −1 we find C = −π

2
. Hence, y(t) = tan

(
t− π

2

)
Problem 9.10
Solve the IVP:

y′ = t− ty2, y(0) =
1

2
.

Solution.
Separating the variables and solving we find

y′

y2 − 1
=− t

y′

y − 1
− y′

y + 1
=− 2t

ln

∣∣∣∣y − 1

y + 1

∣∣∣∣ =− t2 + C

y − 1

y + 1
=Ce−t

2

y(t) =
1 + Ce−t

2

1− Ce−t2
.

Since y(0) = 1
2

we find C = −1
3
. Thus,

y(t) =
3− e−t2

3 + e−t2
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Problem 9.11
Solve the IVP

(2y − sin y)y′ = sin t− t, y(0) = 0.

Solution.
Separating the variables and solving we find∫

(2y − sin y)y′dt =

∫
(sin t− t)dt

y2 + cos y =− cos t− t2

2
+ C.

Since y(0) = 0 we find C = 2. Thus,

y2 + cos y + cos t+
t2

2
= 2

Problem 9.12
For what values of the constants α, y0, and integer n is the function y(t) =

(4 + t)−
1
2 a solution of the initial value problem?

y′ + αyn = 0, y(0) = y0.

Solution.
We have y0 = y(0) = (4 + 0)−

1
2 = 1

2
. Also, y′ = −1

2
(4 + t)−

3
2 = −1

2
y3. Thus,

y′ +
1

2
y3 = 0

so that α = 1
2

and n = 3

Problem 9.13
State an initial value problem, with initial condition imposed at t0 = 2,
having implicit solution y3 + t2 + sin y = 4.

Solution.
Differentiating both sides of the given equation we find

3y2y′ + cos y + 2t = 0, y(2) = 0
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Problem 9.14
Consider the initial value problem

y′ = 2y2, y(0) = y0.

For what value(s) of y0 will the solution have a vertical asymptote at t = 4,
where the t-interval of existence is −∞ < t < 4?

Solution.
Solving the differential equation by the method of separating the variables
we find

y′

y2
=2∫

y′

y2
dt =

∫
2dt

−1

y
=2t+ C

y(t) =
1

C − 2t
.

Since y(0) = y0 we find C = 1
y0
. Thus, y(t) = y0

1−2y0t
. This function will have

a vertical asymptot at t = 4 when 1− 2y0(4) = 0 or y0 = 1
8

Problem 9.15
Consider the differential equation y′ = |y|.
(a) Is this differential equation linear or nonlinear? Is the differentiable equa-
tion separable?
(b) A student solves the two initial value problems y′ = |y|, y(0) = 1 and
y′ = y, y(0) = 1 and then graphs the two solution curves on the interval
−1 ≤ t ≤ 1. Sketch the two graphs.
(c) The student next solves the two initial value problems y′ = |y|, y(0) = −1
and y′ = y, y(0) = −1. Sketch the solution curves.

Solution.
(a) The equation is nonlinear and separable since y′

|y| − 1 = 0.

(b) Notice first that y′ ≥ 0. If y ≥ 0 then y′ = y. Solving this equation we
find y(t) = Cet. But y(0) = 1 so that y(t) = et. If y < 0 then y′ = −y.
Solving this equation we find y(t) = e−t. But for this one y′ < 0. Thus, the
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solution of the initial-value problem y′ = |y|, y(0) = 1 coincides with that of
the initial-value problem y′ = y, y(0) = 1 and is given by y(t) = et for all
real numbers t.
(c) If y(0) = −1 then the solution to y′ = |y|, y(0) = −1 is y(t) = −e−t. The

solution to y′ = y, y(0) = −1 is y(t) = −et

Problem 9.16
Assume that y sin y − 3t + 3 = 0 is an implicit solution of the initial value
problem y′ = f(y), y(1) = 0. What is f(y)? What is an implicit solution to
the initial value problem y′ = t2f(y), y(1) = 0?

Solution.
Taking the derivative of the given equation with respect to t we find

y′ sin y + yy′ cos y − 3 = 0.

Thus,

y′ =
3

sin y + y cos y
= f(y).

If y′ = t2f(y) then

y′ =
3t2

sin y + y cos y
.

Solving this equation by the method of separation of variables we find

y′ sin y + yy′ cos y =3t2

(y sin y)′ =3t2

y sin y =t3 + C.

Since y(1) = 0 we find C = −1. Hence, the implicit solution is given by

y sin y − t3 + 1 = 0
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Problem 9.17
Find all the solutions to the differential equation y′ = 2ty

1+t
.

Solution.
Separating the variables to obtain

y′

y
=

2t

1 + t
= 2− 2

t+ 1
(4)

ln |y| =2t− ln (t+ 1)2 + C

ln |(t+ 1)2y| =2t+ C

(t+ 1)2y =Ce2t

y(t) =
Ce2t

(t+ 1)2
.

Problem 9.18
Solve the initial-value problem y′ = cos2 y cos2 t, y(0) = π

4
.

Solution.
Solving by the method of separation of variables we find

y′

cos2 y
= cos2 t

tan y =
t

2
+

1

4
sin 2t+ C.

Since y(0) = π
4

we find C = 1. Hence,

tan y =
t

2
+

1

4
sin 2t+ 1

Problem 9.19
Solve the initial-value problem y′ = et+y, y(0) = 0 and determine the interval
on which the solution y(t) is defined.

Solution.
Separating the variable we obtain

y′e−y = et.
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Integrating both sides to obtain

e−y = −et + C.

But y(0) = 0 so that C = 2. Hence, e−y = −et + 2. Solving for y we find

y(t) = − ln(2− et).

This function is defined for t < ln 2

Problem 9.20
Solve the initial-value problem

y′ =
t2

e−y
− ey

t2
.

(a) State the name of the method you are using.
(b) Find the solution which satisfies the condition y(1) = 1.

Solution.
(a) Using the method of separation of variables we find

y′e−y =t2 − 1

t2

e−y =− t3

3
− 1

t
+ C.

(b) Since y(1) = 1 we find C = e−1 + 4
3
. Thus, the unique solution is defined

implicitly by the expression

e−y +
t3

3
+

1

t
= e−1 +

4

3
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10 Exact Differential Equations

Problem 10.1
Find ∂f

∂t
and ∂f

∂y
if f(t, y) = y ln y − e−ty.

Solution.

∂f
∂t

= ye−ty

∂f
∂y

= ln y + 1 + te−ty

Problem 10.2
Find ∂f

∂t
and ∂f

∂y
if f(t, y) = ln ty + t2+1

y−5
.

Solution.

∂f
∂t

= 1
t

+ 2t
y−5

∂f
∂y

= 1
y
− t2+1

(y−5)2

Problem 10.3
Let f(u, v) = 2u− 3uv where u(t) = 2 cos t and v(t) = 2 sin t. Find df

dt
.

Solution.
By the Chain Rule

df

dt
=
∂f

∂u

du

dt
+
∂f

∂v

dv

dt
=(2− 3v)(−2 sin t)− 3u(2 cos t) = (2− 6 sin t)(−2 sin t)− 6 cos t(2 cos t)

=12 sin2 t− 12 cos2 t− 4 sin t

=24 sin2 t− 4 sin t− 12

In Problems 10.4 - 10.8, determine whether the given differential equation is
exact. If the equation is exact, find an implicit solution and (where possible)
an explicit solution.

Problem 10.4

yy′ + 3t2 − 2 = 0, y(−1) = −2.
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Solution.
We have M(t, y) = 3t2− 2 and N(t, y) = y. Thus, ∂M

∂y
(t, y) = 0 = ∂N

∂t
(t, y) so

that the equation is exact.

∂H

∂t
(t, y) = 3t2 − 2 =⇒ H(t, y) =

∫
(3t2 − 2)dt = t3 − 2t+ h(y).

But ∂H
∂y

(t, y) = y so that h′(y) = y and hence h(y) = y2

2
. Therefore

t3 − 2t+
y2

2
= C.

Since y(−1) = 2 we find C = 3. It follows

t3 − 2t+
y2

2
= 3.

Solving for y we find y(t) = ±
√

4t− 2t3 + 6. Since y(−1) = 2 we find y(t) =
−
√

4t− 2t3 + 6

Problem 10.5

y′ = (3t2 + 1)(y2 + 1), y(0) = 1.

Since the equation is separable, it is exact. Integrating ∂H
∂t

(t, y) = 3t2 + 1
with respect to t we find H(t, y) = t3 + t+ h(y). But ∂H

∂y
(t, y) = −(y2 + 1)−1

which implies that h′(y) = −(y2 + 1)−1. Thus, h(y) = − arctan y. Hence,

t3 + t− arctan y = C.

Since y(0) = 1 we find C = −π
4
. It follows

t3 + t− arctan y = −π
4
.

Solving for y(t) we find

y(t) = tan
(
t3 + t+

π

4

)
Problem 10.6

(6t+ y3)y′ + 3t2y = 0, y(1) = 2.
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Solution.
We have M(t, y) = 3t2y and N(t, y) = 6t + y3. Since ∂M

∂y
(t, y) = 3t2 and

∂N
∂t

(t, y) = 6, the given differential equation is not exact

Problem 10.7

(et+y + 2y)y′ + (et+y + 3t2) = 0, y(0) = 0.

Solution.
We have M(t, y) = et+y+3t2 and N(t, y) = et+y+2y. Since ∂M

∂y
(t, y) = et+y =

∂N
∂t

(t, y), the given differential equation is exact.

∂H

∂t
(t, y) = et+y + 3t2 =⇒ H(t, y) =

∫
(et+y + 3t2)dt = et+y + t3 + h(y).

Also

∂H

∂y
(t, y) = et+y + 2y = h′(y) + et+y =⇒ h′(y) = 2y =⇒ h(y) = y2.

Hence,
et+y + t3 + y2 = C.

Since y(0) = 0 we find C = 1. Therefore,

et+y + t3 + y2 = 1

Problem 10.8

(sin (t+ y) + y cos (t+ y) + t+ y)y′ + (y cos (t+ y) + y+ t) = 0, y(1) = −1.

Solution.
We haveM(t, y) = y cos (t+ y)+t+y andN(t, y) = sin (t+ y)+y cos (t+ y)+
t+y. Since ∂M

∂y
(t, y) = cos (t+ y)−y sin (t+ y)+1 = ∂N

∂t
(t, y), the differential

equation is exact.
Now

∂H

∂t
(t, y) =y cos (t+ y) + t+ y

H(t, y) =

∫
(y cos (t+ y) + t+ y)dt = y sin (t+ y) +

t2

2
+ yt+ h(y).
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Also

∂H

∂y
(t, y) = sin (t+ y) + y cos (t+ y) + t+ y

=y cos (t+ y) + sin (t+ y) + t+ h′(y)

h′(y) =y

h(y) =
y2

2
.

Hence,

y sin (t+ y) +
t2

2
+ ty +

y2

2
= C.

Since y(1) = −1 we find C = 0. Therefore,

y sin (t+ y) +
t2

2
+ ty +

y2

2
= 0

Problem 10.9
For what values of the constants m,n, and α (if any) is the following differ-
ential equation exact?

tmy2y′ + αt3yn = 0

Solution.
We have M(t, y) = αt3yn and N(t, y) = tmy2. Thus, ∂M

∂y
(t, y) = nαt3yn−1

and ∂N
∂y

(t, y) = mtm−1y2. For the differential equation to be exact we must

have ∂M
∂y

(t, y) = ∂N
∂t

(t, y), i.e.,

nαt3yn−1 = mtm−1y2.

This shows that m − 1 = 3 so that m = 4. Also, n − 1 = 2 so that n = 3.
Finally, 3α = 4 so that α = 4

3

Problem 10.10
Assume that N(t, y)y′ + t2 + y2 sin t = 0 is an exact differential equation.
Determine the general form of N(t, y).

Solution.
We have M(t, y) = t2 + y2 sin t. Since the differential equation is exact then
∂N
∂t

(t, y) = ∂M
∂y

(t, y) = 2y sin t. Hence,

N(t, y) =

∫
2y sin tdt = −2y cos t+ h(y)
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Problem 10.11
Assume that t3y + et + y2 = 5 is an implicit solution to the differential
equation

N(t, y)y′ +M(t, y) = 0, y(0) = y0.

Determine possible functions M(t, y), N(t, y), and the possible value(s) for
y0

Solution.
Replacing y by y0 and t by 0 to obtain y0 = ±2. Differentiating the given
equation with respect to t we find 3t2y+et+(t3 +2y)y′ = 0. Thus, M(t, y) =
3t2 + et and N(t, y) = t3 + 2y

Problem 10.12
Assume that y = −t−

√
4− t2 is an explicit solution of the following initial

value problem
(y + at)y′ + (ay + bt) = 0, y(0) = y0.

Determine values for the constants a, b and y0

Solution.
We have y0 = −0 −

√
4− 02 = −2. Since ∂N

∂t
(t, y) = ∂M

∂y
(t, y) = a, the

differential equation is exact. From this we have

∂H

∂y
(t, y) = y + at =⇒ H(t, y) =

y2

2
+ aty + h(t)

and

∂H

∂t
(t, y) = ay + bt = ay + h′(t) =⇒ h′(t) = bt =⇒ h(t) =

b

2
t2.

Hence,
y2

2
+ aty +

b

2
t2 = C.

Since y(0) = −2 we find C = 2. Therefore,

y2 + 2aty + bt2 = 4.

Solving this quadratic equation for y we find

y =
−2at±

√
4a2t2 − 4(bt2 − 4)

2
.
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Thus,
y(t) = −at±

√
4a2t2 − 4(bt2 − 4).

Since y(0) = −2 we find y(t) = −at−
√
t2a2 − bt2 + 4. Finally, a = 1, a2−b =

−1, b = 2

Problem 10.13
Let k be a positive constant. Use the exactness criterion to determine
whether or not the population equation dP

dt
= kP is exact. Do NOT try

to solve the equation or carry out any furhter calculation.

Solution.
Rewriting the equation in the form k − 1

P
dP
dt

= 0 we find that M(t, P ) = k
and N(t, P ) = − 1

P
. Since ∂M

∂P
(t, P ) = ∂N

∂t
(t, P ) = 0, the differential equation

is exact

Problem 10.14
Consider the differential equation (2t+3)+(2y−2)y′ = 0. Determine whether
this equation is exact or not. If it is, solve it.

Solution.
We have M(t, y) = 2t+3 and N(t, y) = 2y−2. Since ∂M

∂y
(t, y) = ∂N

∂t
(t, y) = 0,

the differential equation is exact. Now,

∂H

∂t
(t, y) = 2t+ 3 =⇒ H(t, y) =

∫
(2t+ 3)dt = t2 + 3t+ h(y).

Also

∂H

∂y
(t, y) = 2y − 2 = h′(y) =⇒ h′(y) = 2y − 2 =⇒ h(y) = y2 − 2y.

Hence,
t2 + 3t+ y2 − 2y = C

Problem 10.15
Consider the differential equation (ye2ty + t) + bte2tyy′ = 0. Determine for
which value of b this equation is exact, and then solve it with this value of b.
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Solution.
We have M(t, y) = ye2ty + t and N(t, y) = bte2ty. For the equation to be
exact we must have ∂M

∂y
(t, y) = ∂N

∂t
(t, y), that is,

e2ty + 2tye2ty = be2ty + 2ybte2ty.

Dividing through by e2ty to obtain

1 + 2ty = b+ 2byt = b(1 + 2ty).

This implies b = 1. Hence, the equation is

(ye2ty + t) + te2tyy′ = 0.

Now,

∂H

∂t
(t, y) = ye2ty + t =⇒ H(t, y) =

∫
(ye2ty + t)dt =

1

2
e2ty +

t2

2
+ h(y).

Also

∂H

∂y
(t, y) = te2ty = te2ty + h′(y) =⇒ h′(y) = 0 =⇒ h(y) = C.

Hence,
1

2
e2ty +

t2

2
= C

Problem 10.16
Consider the differential equation y + (2t − yey)y′ = 0. Check that this
equation is not exact. Now multiply the equation by y. Check that the new
equation is exact, and solve it.

Solution.
If we let M(t, y) = y and N(t, y) = 2t − yey we see that ∂M

∂y
(t, y) = 1 and

∂N
∂t

(t, y) = 2 so that the equation is not exact. If we multiply the given
equation by y then M(t, y) = y2 and N(t, y) = 2ty − y2ey. In this case,
∂M
∂y

(t, y) = ∂N
∂t

(t, y) = 2y so that the equation is exact.
Now,

∂H

∂t
(t, y) = y2 =⇒ H(t, y) =

∫
y2dt = ty2 + h(y).
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Also
∂H

∂y
(t, y) = 2ty − y2ey = 2ty + h′(y) =⇒ h′(y) = −y2ey.

Using integration by parts twice we find

h(y) = −y2ey + 2yey − 2ey.

Hence,
ty2 − y2ey + 2yey − 2ey = C

Problem 10.17
(a) Consider the differential equation

y′ + p(t)y = g(t)

with p(t) 6= 0. Show that this equation is not exact.
(b) Let µ(t) = e

∫
p(t)dt. Show that the equation

µ(t)(y′ + p(t)y) = µ(t)g(t)

is exact and solve it.

Solution.
(a) We have M(t, y) = p(t)y−g(t) and N(t, y) = 1. Since ∂M

∂y
(t, y) = p(t) 6= 0

and ∂N
∂t

(t, y) = 0, the differential equation is not exact.
(b) Here, we have M(t, y) = µ(t)p(t)y − µ(t)g(t) and N(t, y) = µ(t). Thus,
∂M
∂y

(t, y) = ∂N
∂t

(t, y) = p(t)e
∫
p(t)dt. That is, the new differential equation is

exact.
Now,

∂H

∂t
(t, y) =µ(t)p(t)y − µ(t)g(t)

H(t, y) =

∫
(µ(t)p(t)y − µ(t)g(t))dt

=µ(t)y −
∫
µ(t)g(t)dt+ h(y).

Also

∂H

∂y
(t, y) = µ(t) = µ(t) + h′(y) =⇒ h′(y) = 0 =⇒ h(y) = C.
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Hence,

µ(t)y −
∫
µ(t)g(t) = C

and so

y(t) = e−
∫
p(t)dt

∫
e
∫
p(t)dtg(t)dt+ Ce−

∫
p(t)dt

Problem 10.18
Use the method of the previous problem to solve the linear, first-order equa-
tion y′− y

t
= 1, with initial condition y(1) = 7. First, check that this equation

is not exact. Next, find µ(t). Multiply the equation by µ(t) and check that
the new equation is exact. Solve it, using the method of exact equations.

Solution.
For the given equation we have M(t, y) = 1 + y

t
and N(t, y) = −1. Since

∂M
∂y

(t, y) = 1
t

and ∂N
∂t

(t, y) = 0, the equation is not exact. Let µ(t) = e−
∫
dt
t =

1
t
. Multiply the given equation by µ(t) to obtain

(1 +
y

t
)(

1

t
)− 1

t
y′ = 0.

In this equation, M(t, y) = (1 + y
t
)(1
t
) and N(t, y) = −1

t
. Also, ∂M

∂y
(t, y) =

∂N
∂t

(t, y) = 1
t2

so that the new equation is exact. By the previous exercise the
solution is given by

y(t) = t

∫
1

t
dt+ Ct = t ln t+ Ct.

Since y(1) = 7 we find C = 7. Hence, y(t) = t ln t+ 7t

Problem 10.19
Put the following differential equation in the “Exact Differential Equation”
form and find the general solution

y′ =
y3 − 2ty

t2 − 3ty2

Solution.
Rewriting thid equation in the form

(y3 − 2ty) + (3ty2 − t2)y′ = 0
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we findM(t, y) = y3−2ty andN(t, y) = 3ty2−t2. Also, notice that ∂M
∂y

(t, y) =
∂N
∂t

(t, y) = 3y2 − 2t. Now,

∂H

∂t
(t, y) = y3 − 2ty =⇒ H(t, y) =

∫
(y3 − 2ty)dt = ty3 − t2y + h(y).

Also

∂H

∂y
(t, y) = 3ty2 − t2 = 3ty2 − t2 + h′(y) =⇒ h′(y) = 0 =⇒ h(y) = C.

Hence,
ty3 − t2y = C

Problem 10.20
The following differential equations are exact. Solve them by that method.
(a) (4t3y + 4t+ 4)y′ = 8− 4y − 6t2y2, y(−1) = 1.
(b) (6− 4y + 16t) + (10y − 4t+ 2)y′ = 0, y(1) = 2.

Solution.
(a) We have M(t, y) = 6t2y2 + 4y − 8 and N(t, y) = 4t3y + 4t + 4. Notice
that ∂M

∂y
(t, y) = ∂N

∂t
(t, y) = 12t2y + 4. Now,

∂H

∂t
(t, y) = 6t2y2+4y−8 =⇒ H(t, y) =

∫
(6t2y2+4y−8)dt = 2t3y2+4ty−8t+h(y).

Also

∂H

∂y
(t, y) = 4t3y + 4t+ 4 = 4t3y + 4t+ h′(y) =⇒ h′(y) = 4 =⇒ h(y) = 4y.

Hence,
2t3y2 + 4ty − 8t+ 4y = C.

Since y(−1) = 1 we find C = 6. Hence, 2t3y2 + 4ty − 8t+ 4y = 6.
(b) We have M(t, y) = 6− 4y + 16t and N(t, y) = 10y − 4t+ 2. Notice that
∂M
∂y

(t, y) = ∂N
∂t

(t, y) = −4. Now,

∂H

∂t
(t, y) = 6−4y+16t =⇒ H(t, y) =

∫
(6−4y+16t)dt = 6t−4ty+8t2+h(y).
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Also

∂H

∂y
(t, y) = 10y−4t+2 = −4t+h′(y) =⇒ h′(y) = 10y+2 =⇒ h(y) = 5y2+2y.

Hence,
6t− 4ty + 8t2 + 5y2 + 2y = C.

Since y(1) = 2 we find C = 30. Hence, 6t− 4ty + 8t2 + 5y2 + 2y = 30
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11 Substitution Techniques: Bernoulli and Ri-

catti Equations

Problem 11.1
Solve the Bernoulli equation

y′ =
t2 + 3y2

2ty
, t > 0.

Solution.
The given equation can be written in the form

y′ − 3

2t
y =

1

2
ty−1.

Divide through by y−1 to obtain

yy′ − 3

2t
y2 =

t

2
.

Let z = y2. Then the last equation becomes

z′ − 3

t
z = t

and this is a linear first order differential equation.
To solve this equation, we use the integrating factor method. Let µ(t) = t−3.
Then

z(t) = t3
∫
t−3tdt+ Ct3 = −t2 + Ct3.

The general solution to the initial problem is implicitly defined by

y2 = −t2 + Ct3

Problem 11.2
Find the general solution of y′ + ty = te−t

2
y−3.

Solution.
Divide the given equation by y−3 to obtain

y3y′ + ty4 = te−t
2

.
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Let z = y4 so that the previous equation becomes

z′ + 4tz = 4te−t
2

.

The integrating factor is µ(t) = e2t
2
. Thus,

z(t) = e−2t2
∫
e2t

2

4te−t
2

dt+ Ce−2t2 = 2e−t
2

+ Ce−2t2 .

Finally, the general solution to the original equation is defined implicitely by
the equation

y4 = 2e−t
2

+ Ce−2t2

Problem 11.3
Solve the IVP ty′ + y = t2y2, y(0.5) = 0.5.

Solution.
Divide through by y2 to obtain

ty−2y′ + y−1 = t2.

Let z = y−1 so that

z′ − 1

t
z = −t.

Solving this equation by the integrating factor method with µ(t) = 1
t

we find

z(t) = t

∫
1

t
· (−t)dt+ Ct = −t2 + Ct = t(C − t).

Hence, y(t) = 1
t(C−t) . But y(1

2
) = 1

2
so that C = 4.5. Thus,

y(t) =
1

t(4.5− t)

Problem 11.4
Solve the IVP y′ − 1

t
y = −y2, y(1) = 1, t > 0.

Solution.
Divide through by y2 to obtain

y−2y′ − 1

t
y−1 = −1.
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So let z = y−1. Thus,

z′ +
1

t
z = 1, z(1) = 1.

Solving this equation using the integrating factor method with µ(t) = t we
find

z(t) =
1

t

∫
tdt+ Ct−1 =

t

2
+ Ct−1.

Since z(1) = 1 we find C = 1
2
. Hence, z = 1

2
(t+ 1

t
) and y(t) = 2t

t2+1

Problem 11.5
Solve the IVP y′ = y(1− y), y(0) = 1

2
.

Solution.
Rewriting the given equation in the form y′ − y = −y2. Divide through by
y2 to obtain

y−2y′ − y−1 = −1.

Let z = y−1. Then
z′ + z = 1, z(0) = 2.

Solving this equation using the integrating factor method with µ(t) = et we
obtain

z(t) = e−t
∫
etdt+ Ce−t = 1 + Ce−t.

But z(0) = 2 so that C = 1 and thus z(t) = 1 + e−t. Finally, y(t) =
(1 + e−t)−1

Problem 11.6
Solve the Bernoulli equation y′ + 3y = e3ty2.

Solution.
Dividing by y2 to obtain

y2y′ + 3y−1 = e3t.

Let z = y−1. Then,
z′ − 3z = −e3t.

Solving this equation using the integrating factor method with µ(t) = e−3t

we find

z(t) = e3t
∫
e−3t(−e3t)dt+ Ce3t = −te3t + Ce3t = e3t(C − t).

Finally, y(t) = e−3t(C − t)−1
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Problem 11.7
Solve y′ + y = ty4.

Solution.
Divide through by y4 to obtain

y−4y′ + y−3 = t.

Let z = y−3 so that
z′ − 3z = −3t.

Solving this equation using the integrating factor method with µ(t) = e−3t

we find

z(t) = e3t
∫
e−3t(−3t)dt+ Ce3t = t+

1

3
+ Ce3t.

So y(t) = (t+ 1
3

+ Ce3t)−
1
3

Problem 11.8
Solve the equation y′ = sin (t+ y) using the substitution z = t + y and
separable method.

Solution.
If z = t + y then z′ = 1 + y′. Thus, z′ − 1 = sin z. Seperating the variables
we find

dz

1 + sin z
= dt.

But∫
dz

1 + sin z
=

∫
1− sin z

cos2 z
=

∫
(sec2 z − sec z tan z)dz = tan z − sec z + C.

Hence,
tan z − sec z = t+ C

so
tan (t+ y)− sec (t+ y) = t+ C

Problem 11.9
Solve the IVP: y′ = 2 + 2y+ y2, y(0) = 0 using the method of separation of
variables.
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Solution.
Notice first that 2 + 2y + y2 = 1 + (1 + y)2. Separating the variables we find

y′

1 + (1 + y)2
= 1.

Integrating both sides with respect to t to obtain

arctan (1 + y) = t+ C.

But y(0) = 0 so that C = π
4
. Thus,

y(t) = tan (t+
π

4
)− 1

Problem 11.10
Solve the differential equation y′ = 1 + t2 − y2 given that y1(t) = t is a
particular solution.

Solution.
Let 1

z
= y − t. Then − z′

z
= y′ − 1. Substituting we find

− z
′

z2
+ 1 = 1 + t2 −

(
1

z
+ t

)2

.

Simplifying this last equation to obtain

z′ − 2tz = 1.

Solving this equation by the method of integrating factor with µ(t) = e−t
2

we find

z(t) = et
2

∫ t

0

e−s
2

ds+ Cet
2

.

The general solution to the differential equation is

y(t) = (et
2

∫ t

0

e−s
2

ds+ Cet
2

)−1 + t

Problem 11.11
Solve the differential equation y′ = 5− t2 + 2ty − y2 given that y1(t) = t− 2
is a particular solution.
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Solution.
Let 1

z
= y − t+ 2. Then the given equation reduces to

z′ + 4z = 1.

Solving this equation by the method of integrating factor with µ(t) = e4t to
obtain

z(t) = e−4t

∫
e4tdt+ Ce−4t =

1

4
+ Ce−4t.

Thus,

y(t) = (
1

4
+ Ce−4t)−1 + t− 2

Problem 11.12
Perform a change of variable that changes the Bernoulli equation y′+y+y2 =
0 into a linear equation in the new variable. Do NOT try to solve the equation
or proceed further than with any calculations.

Solution.
Dividing through by y2 to obtain

y−2y′ + y−1 = −1.

Letting z = y−1 to obtain
z′ − z = 1

Problem 11.13
Consider the equation

y′ = εy − σy3, ε > 0, σ > 0

(a) Use the Bernoulli transformation to change this nonlinear equation into
a linear equation.
(b) Solve the resulting linear equation in part (a) and use the solution to find
the solution of the given differential equation above.

Solution.
(a) Dividing by y3 to obtain

y−3y′ − εy−2 = −σ.
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Letting z = y−2 to obtain
z′ + 2εz = 2σ.

(b) Using the method of integrating factor with µ(t) = e2εt we find

z(t) = e−2εt

∫
e2εt2σdt+ Ce−2εt =

σ

2ε
+ Ce−2εt.

Finally,

y(t) = (
σ

ε
+ Ce−2εt)−

1
2

Problem 11.14
Consider the differential equation

y′ = f
(y
t

)
.

(a) Show that the substitution z = y
t

leads to a separable differential equation
in z.
(b) Use the above method to solve the initial-value problem

y′ =
t+ y

t− y
, y(1) = 0.

Solution.
(a) Letting z = y

t
then y = tz. Thus, y′ = z + tz′. Hence,

tz′ + z = f(z)

or

z′ =
f(z)− z

t

which is a separable differential equation.
(b) Note first that

t+ y

t− y
=

1 + y
t

1− y
t

.
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Letting z = y
t

we obtain

tz′ + z =
1 + z

1− z

tz′ =
1 + z2

1− z
1− z
1 + z2

z′ =
1

t∫
z′

1 + z2
dt−

∫
zz′

1 + z2
dt =

∫
dt

t

arctan z − 1

2
ln (1 + z2) = ln |t|+ C

2 arctan z = ln t2(1 + z2) + C

2 arctan
(y
t

)
= ln t2

(
1 +

(y
t

)2
)

+ C.

Since y(1) = 0 we find C = 0

Problem 11.15
Solve: y′ + y

3
= ety4.

Solution.
Divide through by y4 to obtain y−4y′ + 1

3
y−3 = et. Letting z = y−3 to obtain

z′ − z = −3et.

Solving this equation by the method of integrating factor with µ(t) = e−t we
find

z(t) = et
∫
e−t(−3et)dt+ Cet = −3et + Cet.

Finally,
y(t) = (−3et + Cet)−

1
3

Problem 11.16
Solve: ty′ + y = ty3.

Solution.
Dividing through by y3 to obtain y−3y′ + y−2 = t. Letting z = y−2 to obtain

z′ − 2z = −2t.
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Solving this equation by the method of integrating factor with µ(t) = e−2t

we find

z(t) = e2t
∫
e−2t(−2t)dt+ Ce2t = −t− 1 + Ce2t.

Finally,
y(t) = (−t− 1 + Ce2t)−

1
2

Problem 11.17
Solve: y′ + 2

t
y = −t2y2 cos t.

Solution.
Dividing through by y2 to obtain y−2y′ + 2

t
y−1 = −t2 cos t. Letting z = y−1

to obtain

z′ − 2

t
z = t2 cos t.

Solving this equation by the method of integrating factor with µ(t) = 1
t2

we
find

z(t) = t2
∫

cos tdt+ Ct2 = t2 sin t+ Ct2.

Finally,
y(t) = (t2 sin t+ Ct2)−1

Problem 11.18
Solve: ty′ + y = t2y2 ln t.

Solution.
Dividing through by ty2 to obtain y−2y′ + 1

t
y−1 = t ln t. Letting z = y−1 to

obtain

z′ − 1

t
z = −t ln t.

Solving this equation by the method of integrating factor with µ(t) = 1
t

we
find

z(t) = t

∫
(− ln t)dt+ Ct = −t2 ln t+ t2 + Ct.

Finally,
y(t) = (−t2 ln t+ t2 + Ct)−1
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Problem 11.19
Verify that y1(t) = 2 is a particular solution to the Ricatti equation

y′ = −2− y + y2,

and then find the general solution.

Solution.
Since y′1 = 0 and −2− y1 + y2

1 = −2− 2 + 4 = 0 we find y′1 = −2− y1 + y2
1.

Now, to solve the equation we let 1
z

= y− 2. Substituting this into the above
equation to obtain

z′ + 3z = −1.

Solving this equation by the method of integrating factor with µ(t) = e3t we
find

z(t) = e−3t

∫
−e3tdt+ Ce−3t = −1

3
+ Ce−3t.

Finally,

y(t) = (−1

3
+ Ce−3t)−1 + 2

Problem 11.20
Verify that y1(t) = 2

t
is a particular solution to the Ricatti equation

y′ = − 4

t2
− 1

t
y + y2,

and then find the general solution.

Solution.
Since y′1 = − 2

t2
and − 4

t2
− 1

t
y1 + y2

1 = − 2
t2

we find y1 is a solution to the
differential equation. Next, let z−1 = y− 2

t
then substituting into the previous

equation we find

z′ +
3

t
z = −1.

Solving this equation by the method of integrating factor with µ(t) = t3 we
find

z(t) = t−3

∫
−t3dt+ Ct−3 = − t

4
+ Ct−3.

Finally,

y(t) = (− t
4

+ Ct−3)−1 +
2

t
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12 Applications of First Order Nonlinear Equa-

tions: The Logistic Population Model

Problem 12.1
Find

∫
dx

(x−2)(3−x) .

Solution.
First, we would like to have

1

(x− 2)(3− x)
=

A

x− 2
+

B

3− x
.

Multiplying both sides by x − 2 and then setting x = 2 we find A = 1.
Multiplying both sides by 3− x and setting x = 3 we obtain B = 1. Thus,∫

dx

(x− 2)(3− x)
=

∫
dx

x− 2
−
∫

dx

x− 3
= ln

∣∣∣∣x− 2

x− 3

∣∣∣∣+ C

Problem 12.2
Find A and B so that 2x+3

x2−9
= A

x+3
+ B

x−3
.

Solution.
Multiplying through by x + 3 and then setting x = −3 we find A = 1

2
.

Similarly, multiplying through by x− 3 and setting x = 3 we obtain B = 3
2
.

Hence,
2x+ 3

x2 − 9
=

1

2

(
1

x+ 3
+

3

x− 3

)
Problem 12.3
Write the partial fraction decomposition of x+7

x2+x−6
.

Solution.
Since x2 + x− 6) = (x− 2)(x+ 3), we would like to find A and B such that

x+ 7

(x− 2)(x+ 3)
=

A

x− 2
+

B

x+ 3
.

Multitplying through by x − 2 and setting x = 2 we find A = 9
5
. Next,

multiply through by x+ 3 and set x = −3 to obtain B = −4
5
. Hence,

x+ 7

(x− 2)(x+ 3)
=

1

5

(
9

x− 2
− 4

x+ 3

)
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Problem 12.4
An important feature of any logistic curve is related to its shape: every
logistic curve has a single inflection point which separates the curve into two
equal regions of opposite concavity. This inflection point is called the point
of diminishing returns. Find the Coordinates of the Point of Diminishing
Returns.

Solution.
Since

dP

dt
= r(1− P

K
)P

by the product rule we find

d2P

dt2
= r

dP

dt

(
1− 2P

K

)
.

Since dP
dt
> 0, we conclude that d2P

dt2
= 0 at P = K

2
.

To find t, we set P = K
2

and solve for t :

K

2
=

KP (0)

P (0) + (K − P (0))e−rt

1

2
=

P (0)

P (0) + (K − P (0))e−rt

(K − P (0))e−rt =P (0)

e−rt =
P (0)

K − P (0)

−rt = ln

(
P (0)

K − P (0)

)

t =−
ln
(

P (0)
K−P (0)

)
r

.

Thus, the coordinates of the diminishing point of returns are

(
ln (K−P (0)

P (0) )
r

, K
2

)
Problem 12.5
A population of roaches grows logistically in John’s kitchen cabinet, feeding
off 65 half-empty can of beef stew. There are 10 roaches initially, and the
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carrying capacity of the cabinet is K = 10000. The population reaches its
maximum growth rate in 4 days. Determine the logistic equation for the
growth of the population Find the number of roaches in the cabinet after 10
days.

Solution.
We have

P (t) =
KP (0)

P (0) + (K − P (0))e−rt
.

But P (0) = 10 and K = 10000 so that

P (t) =
10, 000

1 + 999e−rt
.

From the phase portrait of a logisitic model, we can see that the maximum
growth rate occurs at the point of diminishing return, i.e., when P = K

2
=

5000. Thus,

5000 =
10, 000

1 + 999e−4r
.

Solving for r we find r = 1
4

ln 999. Hence

P (t) =
10, 000

1 + 999e−
1
4

ln 999t

and
P (10) ≈ 9999.68

Problem 12.6
The number of people P (t) in a community who are exposed to a particular
advertisement is governed by the logistic equation. Initially P (0) = 500, and
it is observed that P (1) = 1000. If it is predicted that the limiting number of
people in the community who will see the advertisement is 50,000, determine
P (t) at any time.

Solution.
We have K = 50, 000 and P (0) = 500 so that

P (t) =
50, 000

1 + 99e−rt
.
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Since P (1) = 1000 we obtain 1 + 99e−r = 50 and solving for r we find
r = ln (99

49
). Thus,

P (t) =
50, 000

1 + 99eln ( 49
99

)t

Problem 12.7
The population P (t) at any time in a suburb of a large city is governed by
the inititial value problem

dP

dt
= (10−1 − 10−7P )P, P (0) = 5000

where t is measured in months. What is the limiting value of the population?
At what time will the population be one-half of this limiting value?

Solution.
Rewriting the given differential equation we get

dP

dt
= 10−1(1− 10−6P )P.

Thus, K = 1, 000, 000. The population will reach 500,000 when

t =
ln
(
K−P (0)
P (0)

)
r

= 10 ln 1999

Problem 12.8
Let P (t) represent the population of a colony, in millions of individuals.
Suppose the colony starts with 0.1 million individuals and evolves according
to the equation

dP

dt
= 0.1

(
1− P

3

)
P

with time being measured in years. How long will it take the population to
reach 90% of its equilibrium value?

Solution.
We have 90%(3) = 2.7. We want to find t so that P (t) = 2.7 where

P (t) =
3

1 + 29e−0.1t
.

Solving the equation
3

1 + 29e−0.1t
= 2.7

we find t = 10 ln 261
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Problem 12.9
Consider a population whose dynamics are described by the logistic equation
with constant migration

dP

dt
= r

(
1− P

K

)
P +M,

where r,K, abd M are constants. Assume that K is a fixed positive con-
stant and that we want to understand how the equilibrium solutions of this
nonlinear autonomous equation depend upon the parameters r and M.
(a) Obtain the roots of the quadratic equation that define the equilibrium
solution(s) of this differential equation. Note that for M 6= 0, the constants
0 and K are no longer equilibrium solutions. Does this make sense?
(b) For definiteness, set K = 1. Plot the equilibrium solutions obtained in
(a) as functions of the ratio M

r
. How many equilibrium populations exist for

M
r
> 0? How many exist for −1

4
< M

r
≤ 0?

(c) What happens when M
r

= −1
4
? What happens when M

r
< −K

4
= −1

4
?

Are these mathematical results consistent with what one would expect if mi-
gration rate out of the colony were sufficiently large relative to the colony’s
ability to gain size through reproduction?

Solution.
(a) We have

r
(
1− P

K

)
P +M = 0

rP 2 −KrP −KM = 0

The solutions of this quadratic equation are

P =
Kr ±

√
K2r2 + 4rKM

2r
=
K ±

√
K2 + 4KM

r

2
6= 0, K.

This makes sense since migration would alter equilibrium state.
(b) If K = 1 then (

P − 1

2

)2

=
1

4
+
M

r
.

The graph is given below
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For M
r
> 0 there is one nonnegative equilibrium solution. For −1

4
< M

r
≤ 0

there are two equilibrium solutions.
(c) When M

r
= −1

4
the two nonnegative equilibrium solutions reduce to a

single equilibrium solution. When M
r
< −1

4
there are no equilibrium solu-

tions. This makes sense since if the migration out of the colony is too large
relative to reproduction equilibrium could not be achieved

Problem 12.10
Let P (t) represent the number of individuals who, at time t, are infected
with a certain disease. Let N denote the total number of individuals in the
population. Assume that the spread of the disease can be modeled by the
initial value problem

dP

dt
= k(N − P )P, P (0) = P0

At time t = 0, when 100,000 members of the population of 500,000 are known
to be infected, medical authorities intervene with medical treatment. As a
consequence of this intervenetion, the rate factor k is no longer constant but
varies with time as k(t) = 2e−t− 1, where time t is measured in months and
k(t) represents the rate of infection per month per 100,000 individuals.
Initially as the effects of medical intervention begin to take hold, k(t) re-
maind positive and the disease continues to spread. Eventually, however, the
effects of medical treatment cause k(t) to become negative and the number
of infected individuals then decreases.
(a) Solve the appropriate initial value problem for the number of infected
individuals, P (t), at time t and plot the solution.
(b) From your plot, estimate the maximum number of individuals that are
at any time infected with the disease.
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(c) How long does it take before the number of infected individuals is reduced
to 50,000?

Solution.
(a) We have

dP

dt
= (2e−t − 1)(5− P ), P (0) = 1.

We solve this equation as follows

P ′

P − 5
=1− 2e−t

P ′

P
− P ′

P − 5
=10e−t − 5∫

P ′

P
dt−

∫
P ′

P − 5
dt =

∫
(10e−t − 5)dt

ln

∣∣∣∣ P

P − 5

∣∣∣∣ =− 10e−t − 5t+ C

P

P − 5
=Ce−10e−t−5t.

Since P (0) = 1 we find C = − e10

4
. Thus,

P (t) =
5e−10e−t−5t+10

4 + e−10e−t−5t+10
.

(b) Using a calculator we find Pmax ≈ 2.7 or 270,000 infected people.
(c) From the plot, we see that t ≈ 1.8 months for P < 0.5 = 50, 000 infected
people

Problem 12.11
Consider a chemical reaction of the form A + B → C, in which the rates of
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change of the two chemical reactants, A and B, are described by the following
two differential equations

A′ = −kAB, B′ = −kAB

where k is a positive constant. Assume that 5 moles of reactant A and 2
moles of reactant B are present at the beginning of the reaction.
(a) Show that the difference A(t)−B(t) remains constant in time. What the
value of this constant?
(b) Use the observation made in (a) to derive an initial value problem for
reactant A.
(c) It was observed, after the reaction had progressed for 1 sec, that 4 moles
of reactant A remained. How much of reactants A and B will be left after 4
sec of reaction time?

Solution.
(a) Since

d

dt
[A(t)−B(t)] = A′(t)−B′(t) = −kAB − (−kAB) = 0

we obtain A(t)−B(t) = C. Also, C = A(0)−B(0) = 5−2 = 3 moles. Hence,
A(t)−B(t) = 3.
(b) From part (a), B(t) = 3 + A(t) so A′ = −kAB = −kA(3 + A). Thus, A
satisfies the initial-value problem

A′ = −kA− 3kA2, A(0) = 5.

(c) We solve the previous equation as follows

A′

A(A+ 3)
=− k

A′

A
− A′

A+ 3
=− 3k∫

A′

A
dt−

∫
A′

A+ 3
dt =

∫
−3kdt∣∣ A

A+3

∣∣
=
− 3kt+ C

A

A+ 3
=Ce−3kt.
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Since A(0) = 5 we find C = 5
8
. Now, solving for A we find

A(t) =
15

5− 2e−3kt
.

But A(1) = 4 so that k = 1
3

ln 8
5
. Finally,

A(4) =
15

5− 2
(

5
8

)4 ≈ 3.195 moles

and B(4) = A(4)− 3 = 0.195 moles

Problem 12.12
Suppose that a given population can be divided into two parts: those who
have a given disease and can infect others, and those who do not have it but
are susceptible. Let x be the proportion of susceptible individuals and y the
proportion of the infectious individuals; then x + y = 1. Assume that the
disease spreads by contact between sick and well members of the population,
and that the rate of spread dy

dt
is proportional to the number of such contacts.

Further, assume that members of both groups move about freely among each
other, so that the number of contacts is proportional to the product of x and
y. Since x = 1− y, we obtain the initial value problem

dy

dt
= αy(1− y), y(0) = y0, (-21)

where α is a positive proportionality factor, and y0 is the initial proportion
of infectious individuals.
(a) Find the equilibrium points for the given differential equation, and deter-
mine whether each is stable or unstable. That is, do a complete qualitative
analysis on the equation, complete with a graph of dy

dt
versus y, and a sketch

of possible solutions in the ty-plane.
(b) Solve the initial value problem and verify that the conclusion you reached
in part (a) are correct. Show that y(t) → 1 as t → ∞, which means that
ultimately the disease spreads through the entire population.

Solution.
(a) To find the equilibrium points, set the right hand side of equation (-21)
equal to zero and solve for y to find the two values y = 0 and y = 1. The
graph of dy

dt
is given next.
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The graph indicates that y′ > 0 for 0 < y < 1, which means that y is in-
creasing with time. This is indicated by an arrow on the phase line which
points to the right in the direction of increasing y. Similarly, y′ < 0 on
(−∞, 0) ∪ (1,∞), so y is decreasing and the flow is to the left on the phase
line on this set.
Thus, y = 0 is unstable, while y = 1 is a stable equilibrium point.
Turning the phase line vertical, then sketching the equilibrium solutions al-
lows us to easily sketch a “portrait of the solutions. We limit our attention
to the first quadrant,

where both y and t are positive. We conclude that regardless of initial con-
dition, the entire population is eventually infected.
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(b) The equation is separable.

y′

y(1− y)
= α.

Partial fraction decomposition reveals the following.

1

y(1− y)
=
A

y
+

B

1− y
.

1 = (B − A)y + A.

Thus, A = 1 and B = 1. We can then write

1

y(1− y)
=

1

y
+

1

1− y
.

Thus, ∫
y′

y
dt+

∫
y′

1− y
dt =

∫
αdt

ln

∣∣∣∣ y

1− y

∣∣∣∣ =αt+ C

y

1− y
=Ceαt

y(t) =
Ceαt

1 + Ceαt
.

Since y(0) = y0 we find C = y0
1−y0 . Hence,

y(t) =
y0e

αt

(1− y0) + y0eαt
.

Finally,

lim
t→∞

y(t) = lim
t→∞

y0

y0 + (1− y0)e−αt
= 1

as predicted by the qualitative analysis in part (a)

Problem 12.13
Suppose that a population can be modeled by the logistic equation

dP

dt
= 0.4P

(
1− P

3

)
Use qualitative techniques to describe the population over time.
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Solution.
We see from the direction field below that P = 0 is unstable whereas P = 3
is stable

Problem 12.14
Find the constants A and B so that

P (t) =
e0.2t

A+Be0.2t

is the solution to the logistic model

dP

dt
= 0.2P

(
1− P

200

)
, P (0) = 150.

Solution.
Since P (0) = 150 we obtain A+B = 1

150
. Also, K = 200 = limt→∞ P (t) = 1

B

so that B = 1
200
. Hence, A = 1

150
− 1

200
= 1

600

Problem 12.15
A restricted access lake is stocked with 400 fish. It is estimated that the
lake will be able to hold 10,000 fish. The number of fish tripled in the first
year. Assuming that the fish population follows a logistic model and that
10,000 is the limiting population, find the length of time needed for the fish
population to reach 5000.
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Solution.
We have P (0) = 400 and K = 10, 000 so that

P (t) =
10, 000

1 + 24e−rt
.

But P (1) = 1200 so that

10, 000

1 + 24e−r
= 1200.

Solving for r we find r = ln 72
22
≈ 1.186 Hence,

P (t) =
10, 000

1 + 24e−1.186t
.

The population reaches K
2

= 5000 when

t =
ln
(
K−P (0)
P (0)

)
r

=
ln 24

ln 7222
≈ 2.68.

Thus it takes 2.68 years for the fish population to reach 5000

Problem 12.16
Ten grizzly bears were introduced to a national park 10 years ago. There are
23 bears in the park at the present time. The park can support a maximum of
100 bears. Assuming a logistic growth model, when will the bear population
reach 50?

Solution.
We have P (0) = 10 and K = 100. Thus,

P (t) =
100

1 + 9e−rt
.

Since P (10) = 23 we obtain

100

1 + 9e−10r
= 23.

Solving for r we find r ≈ .098891. Thus,

P (t) =
100

1 + 9e−0.098891t
.
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Finally, we want to solve the equation

100

1 + 9e−0.098891t
= 50

Solving this equation for t we find t ≈ 22 years

Problem 12.17
Show that P (t) = 800

1+15e−1.6t satisfies the differential equation

dP

dt
= 0.002P (800− P ).

Solution.
We have

dP

dt
= 800(−1)(1 + 15e−1.6t)−2(15)(−1.6)e−1.6t =

19, 200e−1.6t

(1 + 15e−1.6t)2

and

0.002P (800−P ) = 0.002
800

1 + 15e−1.6t

(
800− 800

1 + 15e−1.6t

)
=

19, 200e−1.6t

(1 + 15e−1.6t)2
.

Thus, P (t) satisfies the given differential equation

Problem 12.18
A population is observed to obey the logistic equation with eventual popu-
lation 20,000. The initial population is 1000, and 8 hours later, the observed
population is 1200. Find the reproductive rate r and the time required for
the population to reach three quarters of its carrying capacity.

Solution.
We have K = 20, 000 and P (0) = 1000. Thus,

P (t) =
20, 000

1 + 19e−rt
.

Since P (8) = 1200 we obtain

20, 000

1 + 19e−8r
= 1200.
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Solving for r we find r ≈ .02411. Now, we want to find t so that P (t) =
3
4
(20, 000) = 15, 000. That is,

20, 000

1 + 19e−0.02411t
= 15, 000.

Solving for t we find t ≈ 167.69 hours

Problem 12.19
Let P (t) be the population size for a bacteria colony at time t. The logistic
model is that

dP

dt
= kP (t)(M − P (t)),

where k > 0 and M > 0 are constants. Solve this equation when k = 1 and
M = 1000 with P (0) = 100.

Solution.
We have

dP

dt
= 0.001(1− P

1000
)P.

Thus, r = 0.001 and K = 1000. The formula for P (t) is then

P (t) =
1000

1 + 9e−0.001t

Problem 12.20
For the population model

P ′(t) = 5P (t)(1000− P (t))

with P (0) = 100 find the asymptotic population size limt→∞ P (t).

Solution.
Rewriting the equation in the form

P ′ = 0.005P (1− P

1000
).

Since r = 0.005, K = 1000, and P (0) = 100 we find

P (t) =
1000

1 + 9e−.005t
.

Thus,
lim
t→∞

P (t) = 1000
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13 Applications of First Order Nonlinear Equa-

tions: One-Dimensional Motion with Air

Resistance

Problem 13.1
A parachutist whose mass is 75 kg drops from a helicopter hovering 2000 m
above ground, and falls towards the ground under the influence of gravity.
Assume that the force due to air resistance is proportional to the velocity of
the parachutist, with the proportionality constant k = 30N − s/m when the
chute is closed, and k′ = 90N − s/m when the chute is opened. If the chute
doesn’t open until the velocity of the parachutist reaches 20 m/s, after how
many seconds will she reach the ground?

Solution.
We consider the two phases of her flight: a) when the chute is closed and b)
when the chute is opened. In the first case, the velocity of the parachutist at
any time t is given by

v(t) = −mg
k

+ (v0 +
mg

k
)e−

k
m
t

with m = 75, g = 9.81, k = 30, v0 = 0 so that

v(t) = −(
75

30
)9.81 + (

75

30
)(9.81)e−

30
75
t = 24.525(e−

2
5
t − 1).

We need to find at what time the chute opens. Let this time be denoted as
T1. Then, T1 is obtained by solving

24.525(e−
2
5
T1 − 1) = −20

and we find that T1 = 4.22 sec. Also, when the chute opens, the parachutist
is at a height of 2000− y(T1) from the ground, where

y(T1) = −61.3125(e−
2
5
T1 − 1)− 24.525T1 ≈ −53.52.

In the next phase of the flight down, the initial conditions are v0 = −20m/s,
and y(0) = −53.52. In this phase we have

v(t) = −(
75

90
)9.81 + (−20 + (

75

90
9.81)e−

90
75
t.
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The equation of motion is

y(t) = −8.175t+ 9.854e−
90
75
t − 63.374.

Thus, the time T2 that the parachutist takes to reach the ground from the
moment the chute is opened can be obtained by solving

−2000 = −8.175T2 + 9.854e−
6
5
T2 − 63.374.

Solving this equation using a calculator we find T2 ≈ 238.14 sec. Thus the
total time taken by the parachutist to reach ground is T1 + T2 = 4.22 +
238.14 ≈ 242 seconds

Problem 13.2
An object of mass m is dropped from a high altitude. How long will it take
the object to achieve a velocity equal to one-half of its terminal velocity if
the drag force is assumed proportional to the velocity?

Solution.
Setting v0 = 0 in the formula

v(t) = −mg
k

+ (v0 +
mg

k
)e−

k
m
t

to obtain
v(t) = −mg

k
(1− e−

k
m
t).

The terminal velocity is v(t) = −mg
k

and we want to find t such that

−mg
2k

= −mg
k

(1− e−
k
m
t).

This can be done as follows

1− e−
k
m
t =

1

2

e−
k
m
t =

1

2

− k
m
t =− ln 2

t =
m

k
ln 2

129



Problem 13.3
An object of mass m is dropped from a high altitude. Assume the drag force
is proportional to the square of the velocity with drag constant k. Find a
formula for v(t).

Solution.
We have

mv′ =−mg + kv2

v′ =
k

m

(
v2 − mg

k

)
v′

v2 − mg
k

=
k

m√
k

mg

(
v′

v −
√

mg
k

− v′

v +
√

mg
k

)
=2

k

m

v′

v −
√

mg
k

− v′

v +
√

mg
k

=2

√
kg

m

ln

∣∣∣∣∣v −
√

mg
k

v +
√

mg
k

∣∣∣∣∣ =2

√
kg

m
+ C

v −
√

mg
k

v +
√

mg
k

=e2
√

kg
m

v(t) =−
√
mg

k

(
1− e−2

√
kg
m
t

1 + e2
√

kg
m
t

)
.

Note that C = 0 since v(0) = 0

Problem 13.4
Assume that the action of a parachute can be modeled as a drag force propor-
tional to the square of the velocity. What drag constant k of the parachute
is needed for a 200 lb person to achieve a teminal velocity of 10 mph?

Solution.
From the previous problem we find that the terminal velocity is

v(t) = −
√
mg

k
.

Now,
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10 mph = 10
(

5280
3600

)
= 14.67 ft/sec

Therefore, √
200

k
= 14.67 =⇒ k ≈ 0.929

lb · sec2

ft2

Problem 13.5
A drag chute must be designed to reduce the speed of 3000-lb dragster from
220 mph to 50 mph in 4 seconds. Assume that the drag force is proportional
to the velocity.
(a) What value of the drag coefficient k is needed to accomplish this?
(b) How far will the dragster travel in the 4-sec interval?

Solution.
(a) We have

220 mph = 220
(

5280
3600

)
≈ 322.67 ft/sec

50 mph = 50
(

5280
3600

)
≈ 73.33 ft/sec

Now,

mv′ =− kv
v′

v
=− k

m

v(t) =v0e
− k
m
t

v(t) =220e−
k
m
t

But

v(4) =50

220e−4 k
m =50

e−4 k
m =

73.33

322.67

−4
32k

3000
= ln

(
50

220

)
k =− 3000

128
ln

(
50

220

)
≈ 34.725 lb · sec/ft.
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(b) We have

y(t) =

∫ 4

0

v(t)dt = v0

[
−m
k
e−

k
m
t
]4

0

=
3000

32
322.67

1

34.725

(
1− e

− 4(34.725)
3000
32

)
≈673 ft

Problem 13.6
A projectile of massm is launched vertically upward from ground level at time
t = 0 with initial velocity v0 and is acted upon by gravity and air resistance.
Assume the drag force is proportional to velocity, with drag coefficient k.
(a) Derive an expression for the time tm when the projectile achieves its
maximum height.
(b) Derive an expression for the maximum height.

Solution.
(a) tm is the solution to

−mg
k

+
(
v0 +

mg

k

)
e−

k
m = 0.

Solving this equation we find(
v0 +

mg

k

)
e−

k
m =

mg

k
mg

k

(
k

mg
v0 + 1

)
e−

k
m =

mg

k

e
k
m
t =

k

mg
v0 + 1

k

m
t = ln (

k

mg
v0 + 1)

tm =
m

k
ln (

k

mg
v0 + 1)
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(b) We have

y(tm) =

∫ tm

0

v(t)dt =

∫ tm

0

(−mg
k

+
(
v0 +

mg

k

)
e−

k
m
t)dt

=
[
−mg

k
t− m

k

(
v0 +

mg

k

)
e−

k
m
t
]tm

0

=− mg

k
tm −

m

k

(
v0 +

mg

k

)
e−

k
m
tm +

m

k

(
v0 +

mg

k

)
=− mg

k
tm +

m

k

(
v0 +

mg

k

)(
1− e−

k
m
tm
)

=− m2

k2
g ln

(
k

mg
v0 + 1

)
+
m

k

(
v0 +

mg

k

)(
1− e

ln 1
k
mg v0+1

)
=− m2

k2
g ln

(
k

mg
v0 + 1

)
+
m

k

(
v0 +

mg

k

)(
1− 1

k
mg
v0 + 1

)

Problem 13.7
A projectile is launched vertically upward from ground level with initial ve-
locity v0. Neglect air resistance. Show that the time it takes the projectile
to reach its maximum height is equal to the time it takes to fall from this
maximum height to the ground.

Solution.
Since air resistance is negligible, we have mv′ = −mg. Solving for v we find
v(t) = −gt+ v0. Integrating to obtain y(t) = −1

2
gt2 + v0t+ y0 = −1

2
gt2 + v0t

since y(0) = 0. The time it takes the projectile to reach its maximum height
occurs when v(t) = 0 and is given by tm = v0

g
. Next, we find the impact time.

This is the time when y(t) = 0. Solving this equation for t we find

t = 2
v0

g
= 2tm

Problem 13.8
A 180-lb skydiver drops from a hot-air balloon. After 10 sec of free fall,
a parachute is opened. The parachute immediately introduces a drag force
proportional to the velocity. After an additional 4 sec, the parachutist reaches
the ground. Assume that air resistance is negligible during free fall and that
the parachute is designed so that a 200-lb person will reach a terminal velocity
of 10 mph.
(a) What is the speed of the skydiver immediately before the parachute is
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opened?
(b)What is the parachutist impact velocity?
(c) At what altitude was the parachute opened?
(d) What is the ballon altitude?

Solution.
(a) For 0 ≤ t ≤ 10, v′ = −g so that v(t) = −gt + v0 = −gt. Thus, v(10) =
−320 ft/sec.
(b) For 10 ≤ t ≤ 14 the motion is described by the initial-value problem

mv′ + kv = −mg, y(14) = 0.

Solving we find

v(t) = −mg
k

+
(
v0 +

mg

k

)
e−

k
m
t.

Since the terminal velocity is 10 mph, we have

200

k
= 10

(
5280

3600

)
=⇒ k ≈ 13.64.

Thus,

v(4) = − 180

13.64
+

(
−320 +

180

13.64

)
e−

(13.64)(32)(4)
180 ≈ −13.22 ft/sec.

(c) We have

y(t) =−
∫ 4

0

v(t)dt =
[mg
k
t+

m

k

(
v0 +

mg

k

)
e−

k
m
t
]4

0

=
180(4)

13.64
+

180/32

13.64

(
−320 +

180

13.64

)
e−

13.64(4)
180/32

≈179.35 ft.

(d) The balloon’s altitude is 1
2
32(10)2 + 179.35 = 1779.35 feet

Problem 13.9
A body of mass m is moving with velocity v in a gravity-free laboratory (i.e.
outer space). It is known that the body experiences resistance in its flight
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proportional to the square root of its velocity. Consequently the motion of
the body is governed by the initial-value problem

m
dv

dt
= −k

√
v, v(0) = v0

where k is a positive constant. Find v(t). Does the body ultimately come to
rest? If so, when does this happen?

Solution.
Solving for v we find

v′ =− k

m

√
v

v′√
v

=− k

m
√
v =− 2

k

m
t+ C

√
v =− 2

k

m
t+
√
v0

v(t) =

(
√
v0 − 2

k

m
t

)2

.

The body comes to rest when t = m
2k

√
v0

Problem 13.10
A mass m is thrown upward from ground level with initial velocity v0. Assume
that air resistance is proportional to velocity, the constant of proportionality
being k. Show that the maximum height attained is

−m
2g

k2
ln

(
1 +

kv0

mg

)
+
m

k

(
v0 +

mg

k

)(
1− 1

k
mg
v0 + 1

)
Solution.
This is just Problem 13.6(b)

Problem 13.11
A ball weighing 3/4 lb is thrown vertically upward from a point 6 ft above
ground level with an initial velocity of 20ft/sec. As it rises it is acted upon
by air resistance that is numerically equal to v/64 lbs where v is velocity (in
ft/sec). How high will it rise?
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Solution.
We have

v(t) =− mg

k
+
(
v0 +

mg

k

)
e−

k
m
t

=− 0.75(64) + (20 + 0.75(64))e−
1

64(0.75/32)

=− 48 + 68e−
2t
3 .

The maximum height occurs when v = 0. Solving this equation for t we find
t ≈ 0.522 sec. Now, the displacement function is

y(t) = −48t− 102e−
2t
3 + C.

But y(0) = 6 so that C = 108. Thus, The maximum height of the ball is

y(0.522) = −48(0.522)− 102e−
2(0.522)

3 + 108 ≈ 10.9 ft

Problem 13.12
A parachutist weighs 160 lbs (with chute). The chute is released immediately
after the jump from a height of 1000 ft. The force due to air resistence is
proportional to velocity and is given by FR = −8v. Find the time of impact.

Solution.
We have

v(t) =− mg

k
+
(
v0 +

mg

k

)
e−

k
m
t

=− 160

8
+

160

8
e−

8
5
t

=− 20 + 20e−
8t
5 .

The position function is then

y(t) = −20t− 12.5e−
8t
5 + 12.5.

The time of impact is the solution to the equation

−1000 = −20t− 12.5e−
8t
5 + 12.5.

Solving this equation using a calculator we find t ≈ 50.6 sec. That is, the
parachutist hits the ground 50.6 seconds after jumping
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Problem 13.13
A parachutist weighs 100 Kg (with chute). The chute is released 30 seconds
after the jump from a height of 2000 m. The force due to air resistance is
defined by FR = −kv where k = 15 when the chute was closed and k = 100
when the chute was open. Find
(a) the distance and velocity function during the time the chute was closed
(i.e., 0 ≤ t ≤ 30 seconds).
(b) the distance and velocity function during the time the chute was open
(i.e., t ≥ 30 seconds).
(c) the time of landing.
(d) the velocity of landing or the impact velocity.

Solution.
(a) For 0 ≤ t ≤ 30 , we have

v1(t) =− mg

k
+
(
v0 +

mg

k

)
e−

k
m
t

=− 100(9.81)

15
+

100(9.81)

15
e−0.15t

=− 65.4 + 65.4e−0.15t.

This the velocity with the time t starting the moment the parachutist jump.
After 30 seconds, this reaches v0 = v1(30) = −65.4 + 65.4e−4.5 ≈ −64.67.
The distance fallen is

y1(t) = −65.4t− 436e−0.15t + 436.

So after 30 seconds it has fallen

y1(30) = −65.4(30)− 436e−4.5 + 436 ≈ −1530 meters.

(b) For t ≥ 30 we have

v2(t) = −100(9.81)

100
+ (−64.67 +

100(9.81)

100
)e−t = −9.81− 54.86e−t.

This is the velocity starting with the time the chute was open. The distance
fallen is

y2(t) =

∫ t

0

v2(t)dt+y1(30) = −9.81t+54.8e−t−54.86−1530 = −9.81t+54.8e−t−1584.86.
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(c) The time of impact is the solution to the equation y2(t) = −2000. That
is,

−9.81t+ 54.8e−t − 1584.86 = −2000.

Solving this numerically we find t ≈ 42.44 sec.
(d) The impact velocity is v2(42.44) ≈ −9.81 m/sec

Problem 13.14
Solve the equation

m
dv

dt
= −kv(t)−mg

with initial condition v(0) = 0 when k = 0.1 and m = 1 kg.

Solution.
With the given values we have

v′ = −0.1v − 9.8

Solving for v and using the fact that v(0) = 0 we find

v′ =− 0.1v − 9.8

v′

v − 98
=− 0.1

ln |v − 98 =− 0.1t+ C

v(t) =Ce−0.1t + 98

v(t) =98(1− e−0.1t).

Problem 13.15
A rocket is launched at time t = 0 and its engine provides a constant thrust
for 10 seconds. During this time the burning of the rocket fuel constantly
decreases the mass of the rocket. The problem is to determine the velocity
v(t) of the rocket at time t during this initial 10 second interval. Denote by
m(t) the mass of the rocket at time t and by U the constant upward thrust
(force) provided by the engine. Applying Newton’s Law gives

d

dt
(m(t)v(t)) = U − kv(t)−m(t)g

where an air resistance term is included in addition to the gravitational and
thrust terms. Find a fomrula for v(t).
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Solution.
The given equation can be written in the form

v′ +

(
m′(t) + k

m(t)

)
v = U −m(t)g.

Solving this equation by the method of integrating factor we find

v(t) = e
−
∫ (m′(t)+k

m(t)

)
dt
∫
e
∫ (m′(t)+k

m(t)

)
(U −m(t)g)dt+ Ce

−
∫ (m′(t)+k

m(t)

)
dt

Problem 13.16
If m(t) = 11− t, U = 200, and k = 0 the equation of motion of the rocket is

d

dt
((11− t)v(t)) = 200− (11− t)g.

Find v(t) for 0 ≤ t ≤ 10. Assume v(0) = 0. Make a graph of the velocity as
a function of time.

Solution.
Since the right side does not depend on v(t), the equation can be solved by
simple integration giving

v(t) =
200t+ (g/2)(11− t)2 − 121(g/2)

11− t
, 0 ≤ t ≤ 10.

The graph of v is given below

139



Problem 13.17
If m(t) = 11− t, U = 200, and k = 2 the equation of motion of the rocket is

d

dt
((11− t)v(t)) = 200− 2v(t)− (11− t)g.

Find v(t) for 0 ≤ t ≤ 10. Assume v(0) = 0. Make a graph of the velocity as
a function of time.

Solution.
Expanding the derivative on the left hand side and rearranging terms gives

v′ +
v

11− t
=

200

11− t
− g.

The integrating factor is thus 1/(11−t). Multiplying by the integrating factor
gives (

v

11− t

)′
=

200

(11− t)2
− g

11− t
.

Integrating and solving we find

v(t) = 200 + (11− t)g ln (11− t)− (
200

11
+ g(ln 11)(11− t).

The graph of v is given below

Problem 13.18
Using

v(t) = −mg
k

+ (v0 +
mg

k
)e−

k
m
t

find the position function y(t).
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Solution.
By integrating v(t) we find

y(tm) =

∫ t

0

v(s)ds =

∫ t

0

(−mg
k

+
(
v0 +

mg

k

)
e−

k
m
s)ds

=
[
−mg

k
s− m

k

(
v0 +

mg

k

)
e−

k
m
s
]t

0

=− mg

k
t− m

k

(
v0 +

mg

k

)
e−

k
m
tm +

m

k

(
v0 +

mg

k

)
=− mg

k
t+

m

k

(
v0 +

mg

k

)(
1− e−

k
m
t
)
.

Problem 13.19
An arrow is shot upward from the origin with an initial velocity of 300 ft/sec.
Assume that there is no air resistance and use the model

m
dv

dt
= −mg

Find the velocity and position as a function of time. Find the ascent time,
the descent time, maximum height, and the impact velocity.

Solution.
The velocity at time t is found as follows

v′ =− g
v(t) =− gt+ v(0)

v(t) =− 32t+ 300.

The position function is

y(t) = −16t2 + 300t.

The maximum height occurs when v = 0. That is when t = 9.375 sec which
is the ascent time. The maximum height is y(9.375) = 1406.25 ft. The
impact time occurs when y(t) = 0 or t = 18.75 sec. The impact velocity
is v(18.75) = −300 ft/sec. Notice that the ascent time is equal to descent
time

Problem 13.20
An arrow is shot upward from the origin with an initial velocity of 300 ft/sec.

141



Assume that air resistance is proportional to the velocity, FR = 0.04mv and
use the model

m
dv

dt
= −mg − kv

Find the velocity and position as a function of time, and plot the position
function. Find the ascent time, the descent time, maximum height, and the
impact velocity.

Solution.
The velocity at time t is found as follows

v′ =− g − 0.04v

v′ + 0.04v =− 32(
e0.04tv

)′
=− 32e0.04t

v(t) =− 800 + Ce−0.04t.

But v(0) = 300 so that C = 1100. Thus, v(t) = 1100e−0.04t − 800.
The position function is

y(t) = −800t− 27500e−0.04t + 27500.

The graph of the position function is given below.

The ascent is the solution to v = 0. That is t ≈ 7.96 sec. The maximum
height is y(7.96) ≈ 1130.93 ft. The impact time occurs when y(t) = 0 or
t ≈ 16.87 sec. The impact velocity is v(16.87) ≈ −239.76 ft/sec. Finally the
descent time is 16.87 - 7.96 = 8.91 sec
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14 One-Dimensional Dynamics: Velocity as

Function of Position

In Problems 14.1 - 14.3, transform the equation into one having distance x
as the independent variable. Determine the position xf at which the object
comes to rest.(If the object does not come to rest set xf =∞) Assume that
v = v0 when x = 0.

Problem 14.1

mdv
dt

= −kx2v.

Solution.
By the chain rule dv

dt
= v dv

dx
. Thus,

mv
dv

dx
= −kx2v.

Solving this equation we find

dv

dx
=− kx2

v(x) =− k

3
x3 + C.

But v = v0 when x = 0 so that C = v0. Thus, v(x) = −k
3
x3 + v0. The object

comes to rest when v = 0. In this case, x3
f = 3m

k
v0 and therefore

xf =

(
3m

k
v0

) 1
2

Problem 14.2

mdv
dt

= −kxv2.
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Solution.
By the chain rule dv

dt
= v dv

dx
. Thus,

mv
dv

dx
= −kxv2.

Solving for v(x) we find

1

v

dv

dx
=− k

m
x

ln |v| =− k

2m
x2 + C

v(x) =Ce−
k

2m
x2

v(x) =v0e
− k

2m
x2

.

The object comes to rest when v = 0. This implies xf =∞

Problem 14.3

mdv
dt

= kv
1+x

.

Solution.
By the chain rule dv

dt
= v dv

dx
. Thus,

mv
dv

dx
=

kv

1 + x
.

Solving for v(x) we find

dv

dx
=− k

m

1

1 + x

v(x) =− k

m
ln (1 + x) + C

v(x) =− k

m
ln (1 + x) + v0.

The object comes to rest when v = 0. This implies that ln (1 + x) = mv0
k

so

that xf = e
mv0
k − 1
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Problem 14.4
A boat having mass m is launched vertically with an initial velocity v0.
Assume the water exerts a drag force that is proportional to the square of
the velocity. Determine the velocity of the boat when it is a distance d from
the dock.

Solution.
We have mdv

dt
= −kv2. By the chain rule

dv

dt
=
dv

dx

dx

dt
= v

dv

dx
.

Thus,

1

v

dv

dx
=− k

m

ln |v| =− k

m
x+ C

v(x) =Ce−
k
m
x

v(x) =v0e
− k
m
x.

At a distance d from the dock the velocity is v(d) = v0e
− k
m
d

Problem 14.5
We need to design a ballistics chamber to deccelerate test projectiles fired into
it. Assume the resistive force encountered by the projectile is proportional
to the square of its velocity and neglect gravity. The coefficient k is given
by k(x) = k0x, where x0 is a constant. If we use time as independent vari-
able then Newton’s second law of motion leads to the following differential
equation

m
dv

dt
+ k0xv

2 = 0.

(a) Adopt distance x as the indepndent variable and rewrite the above dif-
ferential equation as a first order equation in terms of the new independent
variable.
(b) Determine the value k0 needed if the chamber is to reduce projectile
velocity to 1% of its incoming value within d units of distance.
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Solution.
(a) mv dv

dx
+ k0xv

2 = 0, v = v0 when x = 0.
(b) Solving the initial value problem in part (a) we find

dv

dx
+
k0

m
xv =0

1

v

dv

dx
=− k0

m
x

ln |v| =− k0

2m
x2 + C

v(x) =Ce−
k0
2m

x2

v(x) =v0e
− k0

2m
x2

.

When, x = d, v = 0.01v0 so that v0e
− k0

2m
d2 = 0.01v0. Solving for k0 we find

k0 =
2m ln 100

d2

Problem 14.6
A block of mass m is pulled over a frictionless (smooth) surface by a cable
having a constant tension F (See Figure below). The block starts from rest
at a horizontal distance D from the base of the pulley. Apply Newton’s law
of motion in the horizontal direction. What is the (horizontal) velocity of
the block when x = D

3
? (Assume the vertical component of the tensile force

never exceeds the weight of the block.)

Solution.
By Newton’s second law of motion

m
dv

dt
= −F cos θ.

But
cos θ =

x√
x2 + h2
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so that

m
dv

dt
= − Fx√

x2 + h2
.

By the chain rule we obtain

mv
dv

dx
= − Fx√

x2 + h2
.

Integrating we find
1

2
mv2 = −F

√
x2 + h2 + C.

But v(D) = 0 so that C = F
√
D2 + h2. Hence,

v2(x) =
2

m
F (
√
D2 + h2 −

√
x2 + h2).

When x = D
3

we see that

v(x) =

[
2

m
F (
√
D2 + h2 −

√
x2 + h2)

] 1
2
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15 Second Order Linear Differential Equa-

tions: Existence and Uniqueness Results

In Problems 15.1 - 15.6, determine the largest t-interval on which the exis-
tence and uniqueness theorem guarantees the existence of a unique solution.

Problem 15.1

y′′ + y′ + 3ty = tan t, y(π) = 1, y′(π) = −1.

Solution.
In this equation p(t) = 1, q(t) = 3t and g(t) = tan t. All three functions are
continuous for all t 6= (2n + 1)π

2
, where n is an integer. With t0 = π then

the largest interval of existence guaranteed by the existence and uniqueness
theorem is π

2
< t < 3π

2

Problem 15.2

ety′′ + 1
t2−1

y = 4
t
, y(−2) = 1, y′(−2) = 2.

Solution.
In this equation p(t) = 0, q(t) = 1

et(t2−1)
, and g(t) = 4e−t. All three functions

are continuous for all t 6= −1, 0, 1. With t0 = −2 then the largest interval of
existence guaranteed by the existence and uniqueness theorem is −∞ < t <
−1

Problem 15.3

ty′′ + sin 2t
t2−9

y′ + 2y = 0, y(1) = 0, y′(1) = 1.

Solution.
In this equation p(t) = sin 2t

t(t2−9)
, q(t) = 2

t
, and g(t) = 0. All three functions

are continuous for all t 6= −3, 0, 3. With t0 = 1 then the largest interval of
existence guaranteed by the existence and uniqueness theorem is 0 < t < 3
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Problem 15.4

ty′′ − (1 + t)y′ + y = t2e2t, y(−1) = 0, y′(−1) = 1.

Solution.
In this equation p(t) = −1+t

t
, q(t) = 1

t
, and g(t) = te2t. All three functions are

continuous for all t 6= 0. With t0 = −1 then the largest interval of existence
guaranteed by the existence and uniqueness theorem is 0 < t <∞

Problem 15.5

(sin2 t)y′′ − (2 sin t cos t)y′ + (cos2 t+ 1)y = sin3 t, y(π
4
) = 0, y′(π

4
) =
√

2.

Solution.
In this equation p(t) = −2 cos t

sin t
, q(t) = cos2 t+1

sin2 t
, and g(t) = sin t. All three func-

tions are continuous for all t 6= nπ, where n is an integer. With t0 = π
4

then
the largest interval of existence guaranteed by the existence and uniqueness
theorem is 0 < t < π

Problem 15.6

t2y′′ + ty′ + y = sec (ln t), y(π
3
) = 0, y′(π

3
) = −1.

Solution.
In this equation p(t) = 1

t
, q(t) = 1

t2
, and g(t) = sec (ln t)

t2
. All three functions

are continuous for all t > 0 and t 6= e(2n+1)π
2 , where n is an integer. With

t0 = π
3

then the largest interval of existence guaranteed by the existence and
uniqueness theorem is 0 < t < e

π
2

In Problems 15.7 - 15.9, give an example of an initial value problem of the
form y′′ + p(t)y′ + q(t)y = 0, y(t0) = y0, y

′(t0) = y′0 for which the given
t-interval is the largest on which the existence and uniqueness theorem guar-
antees a unique solution.

Problem 15.7
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−∞ < t <∞.

Solution.
One such an answer is

y′′ + y′ + y = 0, y(0) = 0, y′(0) = 1

Problem 15.8

3 < t <∞.

Solution.
One such an answer is

y′′ + 1
t−3
y′ + y = 1, y(4) = 0, y′(4) = −1

Problem 15.9

−1 < t < 5.

Solution.
One such an answer is

y′′ + 1
t+1
y′ + y = 1

t−5
, y(0) = 1, y′(0) = 2

Problem 15.10
Consider the initial value problem t2y′′ − ty′ + y = 0, y(1) = 1, y′(1) = 1.
(a) What is the largest interval on which the existence and uniqueness theo-
rem guarantees the existence of a unique solution?
(b) Show by direct substitution that the function y(t) = t is the unique solu-
tion to this initial value problem. What is the interval on which this solution
actually exists?
(c) Does this example contradict the assertion of Theorem 15.1? Explain.

Solution.
(a) Writing the equation in standard form to obtain

y′′ − 1

t
y′ +

1

t2
y = 0
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we see that the functions p(t) = −1
t

and q(t) = 1
t2

are continuous for all
t 6= 0. Since t0 = 1 then the largest t-interval according to the existence and
uniqueness theorem is 0 < t <∞.
(b) If y(t) = t then y′(t) = 1 and y′′(t) = 0 so that y′′− 1

t
y′+ 1

t2
y = 0− 1

t
+ 1

t
=

0, y(1) = y′(1) = 1. So y(t) = t is a solution so that by the existence and
uniqueness theoren it is the only solution. The t-interval for this solution is
−∞ < t <∞.
(c) No because the theorem is local existence theorem and not a global one

Problem 15.11
Is there a solution y(t) to the initial value problem

y′′ + 2y′ +
1

t− 3
y = 0, y(1) = 1, y′(1) = 2

such that limt→0+ y(t) =∞?

Solution.
Since p(t) = 2, q(t) = 1

t−3
, and t0 = 1 we have according to the existence and

uniqueness theorem the largest interval for which the solution y(t) is defined
is −∞ < t < 3. Since 0 is in that interval then the limit cannot hold

Problem 15.12
Consider the graphs shown. Each graph displays a portion of the solution
of one of the four initial value problems given. Match each graph with the
appropriate initial value problem.
(a) y′′ + y = 2− sin t, y(0) = 1, y′(0) = −1.
(b) y′′ + y = −2t, y(0) = 1, y′(0) = −1.
(c) y′′ − y = t2, y(0) = y′(0) = 1.
(d) y′′ − y = −2 cos t, y(0) = y′(0) = 1.
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Solution.
(a) B since y′(0) < 0 and y′′(0) = 1 > 0.
(b) D since y′(0) < 0 and y′′(0) = −1 < 0.
(c) A since y′(0) > 0 and y′′(0) = 1 > 0.
(d) C since y′(0) > 0 and y′′(0) = −1 < 0

Problem 15.13
Determine the longest interval in which the initial-value problem

(t− 3)y′′ + ty′ + (ln |t|)y = 0, y(1) = 0, y′(1) = 1

is certain to have a unique solution.

Solution.
We have p(t) = t

t−3
and q(t) = ln |t|

t−3
. Both functions are continuous for all

t 6= 0, 3. Since t0 = 1 then the largest t-interval is 0 < t < 3

Problem 15.14
The existence and uniqueness theorem tells us that the initial-value problem

y′′ + t2y = 0, y(0) = y′(0) = 0
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define exactly one function y(t). Using only the existence and uniqueness
theorem, show that this function has the additional property y(−t) = y(t).

Solution.
Let Y (t) = y(−t). Then Y ′′ + t2Y = y′′ + t2y = 0, Y (0) = Y ′(0) = 0 so that
Y (t) is a solution to the given initial-value problem. By the existence and
uniqueness theorem we must have Y (t) = y(t), i.e., y(−t) = y(t) for all real
number t

Problem 15.15
By introducing a new variable z, write y′′ − 2y + 1 = 0 as a system of two
first order linear equations of the form x′ + Ax = b.

Solution.
By letting z = y′ we have

x =

[
y
z

]
, A =

[
0 −1
−2 0

]
, b =

[
0
−1

]
Problem 15.16
Write the differential equation y′′ + 4y′ + 4y = 0 as a first order system.

Solution.
By letting z = y′ we have

x =

[
y
z

]
, A =

[
0 −1
4 4

]
, b =

[
0
0

]
Problem 15.17
Using the substitutions x1 = y and x2 = y′ write the differential equation
y′′ + ky′ + (t− 1)y = 0 as a first order system.

Solution.
By letting x1 = y and x2 = y′ we have

x =

[
x1

x2

]
, A =

[
0 −1

t− 1 k

]
, b =

[
0
0

]
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Problem 15.18
Consider the 2-by-2 matrix

A =

[
0 −1
1 0

]
(a) Find −

∫
A(t)dt.

(b) Let B = −
∫

A(t)dt. Compute B2,B3,B4, and B5.
(c) Show that

eB =

[ ∑∞
n=0(−1)n t2n

(2n)!

∑∞
n=0(−1)n t2n+1

(2n+1)!

−
∑∞

n=0(−1)n t2n+1

(2n+1)!

∑∞
n=0(−1)n t2n

(2n)!

]
=

[
cos t sin t
− sin t cos t

]
Solution.
(a) We have

−
∫

A(t)dt =

[
0 t
−t 0

]
(b) We have

B =

[
0 t
−t 0

]
,B2 =

[
−t2 0
0 −t2

]
,B3 =

[
0 −t3
t3 0

]
,B4 =

[
t4 0
0 t4

]
,B5 =

[
0 t5

−t5 0

]
(c) Follows from part (b) and the definitiion

eB =
∞∑
n=0

Bn

n!

Problem 15.19
Use the previous problem to solve the initial value problem

y′′ + y = 0, y(0) = 1, y′(0) = 0.

Solution.
The given equation can be written as a first order system

x′ + Ax = 0

where A as defined in the previous problem. Solving this equation by the
method of integrating factor we find

x(t) =

[
cos t sin t
− sin t cos t

] [
c1
c2

]
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Thus,
y(t) = c1 cos t+ c2 sin t.

Since y(0) = 1 we find c1 = 1. Also, y′(0) = 0 implies that c2 = 0. Hence, the
unique solution to the given initial-value problem is y(t) = cos t

Problem 15.20
Repeat the process of the previous two problems for solving the initial value
problem

y′′ − 2y′ = 0, y(0) = 1, y′(0) = 2.

Solution.
The given equation can be written as a first order system

x′ + Ax = 0

where

A =

[
0 −1
0 −2

]
Thus,

−
∫

A(t)dt =

[
0 t
0 2t

]
Letting B = −

∫
A(t)dt we find

B =

[
0 t
0 2t

]
,B2 =

[
0 2t2

0 (2t)2

]
,B3 =

[
0 22t3

0 (2t)3

]
,B4 =

[
0 23t4

0 (2t)4

]
and for any positive integer n

Bn =

[
0 2n−1tn

0 (2t)n

]
From this we find

eB =
∞∑
n=0

B

n!
=

[
1
∑∞

n=0 2n−1tn

0
∑∞

n=0
(2t)n

n!

]
=

[
1 e2t

2
− 1

2

0 e2t

]
Hence,

x(t) =

[
1 e2t

2
− 1

2

0 e2t

] [
c1
c2

]
From this we obtain

y(t) = c1 + c2e
2t

Since y(0) = 1 then c1 + c2 = 1. Since y′(0) = 2 then c2 = 1. Hence, c1 = 0
and y(t) = e2t
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16 The General Solution of Homogeneous Equa-

tions

In Problems 16.1-16.7, the t−interval of solution is −∞ < t < ∞ unless
indicated otherwise.
(a) Determine whether the given functions are solutions to the differential
equation.
(b) If both functions are solutions, calculate the Wronskian. Does this cal-
culation show that the two functions form a fundamental set of solutions?
(c) If the two functions have been shown in (b) to form a fundamental set,
construct the general solution and determine the unique solution satisfying
the initial value problem.

Problem 16.1

y′′ − 4y = 0, y1(t) = e2t, y2(t) = 2e−2t, y(0) = 1, y′(0) = −2.

Solution.
(a)

y′′1 − 4y1 = 4e2t − 4e2t = 0

y′′2 − 4y2 = 8e−2t − 8e−2t = 0

So both functions are solutions.
(b)

W (y1(t), y2(t)) =

∣∣∣∣ e2t 2e−2t

2e2t −4e−2t

∣∣∣∣ = −8 6= 0.

So {y1, y2} is a fundamental set of solutions.
(c) We have y(t) = c1e

2t + 2c2e
−2t and y′(t) = 2c1e

2t − 4c2e
−2t. The initial

conditions imply c1 + 2c2 = 1 and 2c1 − 4c2 = −2. Solving we find c1 = 0
and c2 = 1

2
. Hence, y(t) = e−2t

Problem 16.2

y′′ + y = 0, y1(t) = sin t cos t, y2(t) = sin t, y(π
2
) = 1, y′(π

2
) = 1.
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Solution.
(a)

y′′1 + y1 = cos2 t− sin2 t+ sin t cos t 6= 0

so y1 is not a solution.

y′′2 + y2 = sin t+ sin t = 0

So y2 is a solution

Problem 16.3

y′′ − 4y′ + 4y = 0, y1(t) = e2t, y2(t) = te2t, y(0) = 2, y′(0) = 0.

Solution.
(a)

y′′1 − 4y′1 + 4y1 = 4e2t − 8e2t + 4e2t = 0

y′′2 − 4y′2 + 4y2 = 4e2t + 4te2t − 4e2t − 8te2t + 4te2t = 0.

So both functions are solutions.
(b)

W (y1(t), y2(t)) =

∣∣∣∣ e2t te2t

2e2t (2t+ 1)e2t

∣∣∣∣ = e4t 6= 0.

So {y1, y2} is a fundamental set of solutions.
(c) We have y(t) = c1e

2t+c2te
2t and y′(t) = 2c1e

2t+(c2 +2c2t)e
2t. The initial

conditions imply c1 = 2 and c2 = −4. Hence, y(t) = 2e2t − 4te2t

Problem 16.4

ty′′ + y′ = 0, y1(t) = ln t, y2(t) = ln 3t, y(3) = 0, y′(3) = 3, 0 < t <∞.

Solution.
(a)

ty′′1 + y′1 = − t
t2

+ 1
t

= 0

ty′′2 + y′2 = − t
t2

+ 1
t

= 0.
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So both functions are solutions.
(b)

W (y1(t), y2(t)) =

∣∣∣∣ ln t ln (3t)
1
t

1
t

∣∣∣∣ =
1

t
ln 3 6= 0.

So {y1, y2} is a fundamental set of solutions.
(c) We have y(t) = c1 ln t+c2 ln (3t) and y′(t) = c1

t
+ c2

t
. The initial conditions

imply c1 + 2c2 = 0 and c1 + c2 = 9. Solving we find c1 = 18 and c2 = −9.
Hence, y(t) = 18 ln t− 9 ln (3t), t > 0

Problem 16.5

t2y′′ − ty′ − 3y = 0, y1(t) = t3, y2(t) = −t−1, y(−1) = 0, y′(−1) =
−2, −∞ < t < 0.

Solution.
(a)

t2y′′1 − ty′1 − 3y1 = t2(6t)− t(3t2)− 3t3 = 0

t2y′′2 − ty′2 − 3y2 = t2(−2t−3)− t(t−2)− 3(−t−1) = 0.

So both functions are solutions.
(b)

W (y1(t), y2(t)) =

∣∣∣∣ t3 −t−1

3t2 t−2

∣∣∣∣ = 4t 6= 0, t < 0.

So {y1, y2} is a fundamental set of solutions.
(c) We have y(t) = c1t

3+c2t
−1 and y′(t) = 3c1t

2−c2t−2. The initial conditions
imply −c1 + c2 = 0 and 3c1 + c2 = −2. Solving we find c1 = c2 = −1

2
. Hence,

y(t) = 1
2
(t−1 − t3), t > 0

Problem 16.6

y′′ = 0, y1(t) = t+ 1, y2(t) = −t+ 2, y(1) = 4, y′(1) = −1.
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Solution.
(a) Since y′′1 = y′′2 = 0, both functions are solutions.
(b)

W (y1(t), y2(t)) =

∣∣∣∣ t+ 1 −t+ 2
1 −1

∣∣∣∣ = −3 6= 0.

So {y1, y2} is a fundamental set of solutions.
(c) We have y(t) = c1(t + 1) + c2(−t + 2) and y′(t) = c1 − c2. The initial
conditions imply 2c1 + c2 = 4 and c1 − c2 = 1. Solving we find c1 = 1 and
c2 = 2. Hence, y(t) = −t+ 5

Problem 16.7

4y′′ + 4y′ + y = 0, y1(t) = e
t
2 , y2(t) = te

t
2 , y(1) = 1, y′(1) = 0.

Solution.
(a)

4y′′1 + 4y′1 + y1 = 4e
t
2 6= 0

so y1 is not a solution.

4y′′2 + 4y′2 + y2 = 8e
t
2 + 4te

t
2 6= 0

so y2 is not a solution

Problem 16.8
The functions y1(t) = t and y2(t) = t ln t form a fundamental set of solutions
to the differential equation

t2y′′ − ty′ + y = 0, 0 < t <∞.

(a) Show that y(t) = 2t+ t ln 3t is a solution to the differential equation.
(b) Find c1 and c2 such that y(t) = c1y1(t) + c2y2(t)

Solution.
(a) t2y′′ − ty′ + y = t2t−1 − t(3 + ln (3t)) + 2t+ t ln (3t) = 0.
(b) We have {

c1t+ c2t ln t = 2t+ t ln (3t)
c1 + c2(1 + ln t) = 3 + ln (3t).

Using the elimination method we find c1 = 2 ln 3 and c2 = 1. Thus, y(t) =
(2 + ln 3)t+ t ln t
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Problem 16.9
The functions y1(t) = e3t and y2(t) = e−3t are known to be solutions of
y′′ + αy′ + βy = 0, where α and β are constants. Determine α and β.

Solution.
Since y′′1 + αy′1 + βy1 = 0 we find 3α+ β = −9. Since y′′2 + αy′2 + βy2 = 0 we
find −3α + β = −9. Hence, α = 0 and β = −9

Problem 16.10
The functions y1(t) = t and y2(t) = et are known to be solutions of y′′ +
p(t)y′ + q(t)y = 0.
(a) Determine the functions p(t) and q(t).
(b) On what t-intervals are the functions p(t) and q(t) continuous?
(c) Compute the Wronskian of these two functions. On what t-intervals is
the Wronskian nonzero?
(d) Are the observations in (b) and (c) consistent with Theorem 16.3?

Solution.
(a) Since y′′1 + p(t)y′1 + q(t)y1 = 0 we find p(t) + tq(t) = 0. Since y′′2 + p(t)y′2 +
q(t)y2 = 0 we find p(t)+q(t) = −1. Solving for p(t) and q(t) we find p(t) = −t

t−1

and q(t) = 1
t−1
.

(b) Both p(t) and q(t) are continuous on (−∞, 1) ∪ (1,∞).
(c)

W (y1(t), y2(t)) =

∣∣∣∣ t et

1 et

∣∣∣∣ = et(t− 1).

The Wronskian is nonzero for all t 6= 1.
(d) Yes. W 6= 0 on the two intervals on which p and q are both continuous

Problem 16.11
It is known that two solutions of y′′+ty′+2y = 0 has a WronskianW (y1(t), y2(t))
that satisfies W (y1(1), y2(1)) = 4. What is W (y1(2), y2(2))?

Solution.
From Abel’s Theorem we have

W (y1(t), y2(t)) = W (y1(1), y2(1))e−
∫ t
1 sds = 4e−

t2

2
+ 1

2 .

Hence, W (y1(2), y2(2)) = 4e1.5
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Problem 16.12
The pair of functions {y1, y2} is known to form a fundamental set of solutions
of y′′+αy′+βy = 0, where α and β are constants. One solution is y1(t) = e2t,
and the Wronskian formed by these two solutions is W (y1(t), y2(t)) = e−t.
Determine the constants α and β.

Solution.
Since y′′1 + αy′1 + βy1 = 0 we find 2α + β = −4. Since W (y1(t), y2(t)) = e−t

we find W ′(t) = −e−t. But W ′ + pW = 0 so that −e−t + pe−t = 0. Hence,
p(t) = 1 = α. Thus, β = −4− 2α = −6

Problem 16.13
The Wronskian of a pair of solutions of y′′ + p(t)y′ + 3y = 0 is W (t) = e−t

2
.

What is the coefficient function p(t)?

Solution.
Since W ′ = −pW we find −2te−t

2
= −p(t)e−t2 so that p(t) = 2t

Problem 16.14
Prove that if y1 and y2 have maxima or minima at the same point in an
interval I, then they cannot be a fundamental set of solutions on that interval.

Solution.
Suppose for example that both functions have a same maximum at t0. Then
y′1(t0) = y′2(t0) = 0. But

W (y1(t0), y2(t0)) = y1(t0)y
′
2(t0)− y′1(t0)y2(t0) = 0.

Thus, {y1, y2} is not a fundamental set

Problem 16.15
Without solving the equation, find the Wronskian of two solutions of Bessel’s
equation

t2y′′ + ty′ + (t2 − µ2)y = 0.

Solution.
By Abel’s Theorem

W (y1(t), y2(t)) = W (y1(t0), y2(t0))e
−
∫ t
t0

ds
s = t0

W (y1(t0), y2(t0))

t
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Problem 16.16
If W (y1, y2) = t2et and y1(t) = t then find y2(t).

Solution.
By the quotient rule (

y2

y1

)′
=
W

y2
1

= et.

Thus, one possible answer is

y2(t) = tet

Problem 16.17
The functions t2 and 1/t are solutions to a 2nd order, linear homogeneous
ODE on t > 0. Verify whether or not the two solutions form a fundamental
solution set.

Solution.
Finding the Wronskian

W (t2,
1

t
) =

∣∣∣∣ t2 t−1

2t −t−2

∣∣∣∣ = −3 6= 0

so that {y1, y2} is a fundamental set

Problem 16.18
Show that t3 and t4 can’t both be solutions to a differential equation of the
form y′′ + p(t)y′ + q(t)y = 0 where p and q are continuous functions defined
on the real numbers.

Solution.
Suppose that t3 and t4 are both solutions. Since W (t) = t6 we find W (1) = 1
and so {y1, y2} is a fundamental set. By Abel’s Theorem, W (t) 6= 0 for all
−∞ < t < ∞. But W (0) = 0, a contradiction. Hence, t3 and t4 can’t be
both solutions for the differential equation for −∞ < t <∞

Problem 16.19
Suppose that t2 + 1 is the Wronskian of two solutions to the differential
equation y′′ + p(t)y′ + q(t)y = 0. Find p(t).
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Solution.
Since W ′ = −p(t)W we have 2t = −p(t)(t2 + 1). Thus, p(t) = − 2t

t2+1

Problem 16.20
Suppose that y1(t) = t is a solution to the differential equation

t2y′′ − (t+ 2)ty′ + (t+ 2)y = 0.

Find a second solution y2

Solution.
Rewriting the given equation in the form

y′′ − (
2

t
+ 1)y′ + (

2

t2
+

1

t
)y = 0.

Thus, p(t) = −(2
t

+ 1). But W ′ + pW = 0 so that

W ′ − (
2

t
+ 1)W = 0.

Using the method of integrating factor we find

W (t) = Ct2et.

So we will look for a function y2(t) such that W (t) = t2et. That is, a function
satisfying the differential equation

ty′2 − y2 = t2et.

Solving this equation by the method of integrating factor we find y2(t) = tet
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17 Existence of Many Fundamental Sets

Problem 17.1
Do the given functions form a linearly independent set on the indicated
interval?
(a) y1(t) = 2, y2(t) = t2, −∞ < t <∞.
(b) y1(t) = ln t, y2(t) = ln t2, 0 < t <∞.
(c) y1(t) = 2, y2(t) = t, y3(t) = −t2, −∞ < t <∞.
(d) y1(t) = 2, y2(t) = sin2 t, y3(t) = 2 cos2 t, − 3 < t < 2.

Solution.
(a) Suppose that c1(2) + c2t

2 = 0 for all −∞ < t < ∞. Letting t = 0 we
find c1 = 0. Letting t = 1 we find c2 = 0. Hence, y1 and y2 are linearly
independent.
(b) Since y2 = 2 ln t = 2y1, the functions y1 and y2 are linearly dependent.
(c) Suppose that c1(2) + c2t− c3t2 = 0 for all −∞ < t <∞. Letting t = 0 we
find c1 = 0 so that c2t − c3t2 = 0. Letting t = 1 we see that c2 = c3. In this
case, c2(t

2 − t) = 0. Letting t = −1 we find c2 = c3 = 0. Thus, y1, y2, and y3

are linearly independent.
(d) Since (−2)(1) + 2 sin2 t + 2 cos2 t = −2 + 2 = 0, the functions y1, y2, y3

are linearly dependent

Problem 17.2
Consider the graphs of the linear functions shown. In each case, determine
if the functions form a linearly independent set of functions on the domain
shown.

Solution.
(a) We have f1(t) = t and f2(t) = 2t so that f2(t) = 2f1(t). Thus, {f1, f2} is
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linearly dependent.
(b) We have f1(t) = t and f2(t) = −t = −f1(t). Thus, {f1, f2} is linearly
dependent.
(c) We have f1(t) = t and f2(t) = t − 1. Suppose that c1(t) + c2(t − 1) = 0
for all 0 ≤ t ≤ 1. In particular if t = 1 then c1 = 0. If t = 0 then c2 = 0.
Thus, {f1, f2} is linearly independent

Problem 17.3
Consider the differential equation y′′ + 2ty′ + t2y = 0 on the interval −∞ <
t < ∞. Assuming that y1(t) and y2(t) are two solutions satisfying the given
initial conditions. Answer the following two questions.
(a) Do the solutions form a fundamental set?
(b) Do the two solutions form a linearly independent set of functions on
−∞ < t <∞?
(i) y1(1) = 2, y′1(1) = 2, y2(1) = −1, y′2(1) = −1.
(ii) y1(−2) = 1, y′1(−2) = 2, y2(−2) = 0, y′2(−2) = 1.
(iii) y1(3) = 0, y′1(3) = 0, y2(3) = 1, y′2(3) = 2.

Solution.
(i) (a) Since W (1) = 0, {y1, y2} is not a fundamental set. (b) Part (a) and
Theorem 17.2 assert that the set {y1, y2} is not linearly independent.
(ii) (a) Since W (−2) = 1 6= 0, {y1, y2} is a fundamental set. (b) Part (a) and
Theorem 17.2 assert that {y1, y2} is linearly independent set.
(iii) (a) Since W (3) = 0, {y1, y2} is not a fundamental set. (b) Part (a) and
Theorem 17.2 assert that the set {y1, y2} is not linearly independent

Problem 17.4
The property of linear dependence or independence depends not only upon
the rule defining the functions but also on the domain. To illustrate this fact,
show that the pair of functions, f1(t) = t, f2(t) = |t|, is linearly dependent
on the interval 0 < t <∞ but is linearly independent on the interval −∞ <
t <∞.

Solution.
For 0 < t < ∞ we have f1(t) = f2(t) so that {f1, f2} is linearly dependent.
Now, suppose that c1t + c2|t| = 0 for all −∞ < t < ∞. Letting t = −1 we
find c1 = c2. Letting t = 1 we find c1 + c2 = 0. Hence, c1 = c2 = 0 so that
{f1, f2} is linearly independent
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Problem 17.5
Suppose that {f1, f2} is a linearly indepedent set. Suppose that a function
f3(t) can be expressed as a linear combination of f1 and f2 in two different
ways,i.e., f3(t) = a1f1(t) + a2f2(t) and f3(t) = b1f1(t) + b2f2(t). Show that
a1 = b1 and a2 = b2.

Solution.
Since a1f1(t)+a2f2(t) = b1f1(t)+b2f2(t) for all t we find (a1−b1)f1(t)+(a2−
b2)f2(t) = 0 for all t. But {f1, f2} is linearly independent so that a1 − b1 = 0
and a2 − b2 = 0. That is, a1 = b1 and a2 = b2

Problem 17.6
Consider a set of functions containing the zero function. Can anything be
said about whether they form a linearly dependent or linearly independent
set? Explain.

Solution.
Consider a set like {0, f1, f2}. Then 1 · 0 + 0 · f1(t) + 0 · f2(t) = 0 for all t.
This shows that {0, f1, f2} is linearly dependent

In Problems 17.7 - 17.9, answer the following questions.
(a) Show that y1(t) and y2(t) are solutions to the given differential equation.
(b) Determine the initial conditions satisfied by each function at the specified
t0.
(c) Determine whether the functions form a fundamental set on −∞ < t <
∞.

Problem 17.7
y′′ − 4y = 0, y1(t) = e2t, y2(t) = e−2t, t0 = 1.

Solution.
(a) y′′1 − 4y1 = 4e2t − 4e2t = 0; y′′2 − 4y2 = 4e−2t − 4e−2t = 0.
(b) y1(1) = e2; y′1(1) = 2e2; y2(1) = e−2; y′2(1) = −2e−2.
(c)

W =

∣∣∣∣ 0 2
3 0

∣∣∣∣ = −6 6= 0

W (1) =

∣∣∣∣ e2 e−2

2e2 −2e−2

∣∣∣∣ = −4 6= 0

so that {y1, y2} is a fundamental set
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Problem 17.8
y′′ + 9y = 0, y1(t) = sin 3(t− 1), y2(t) = 2 cos 3(t− 1), t0 = 1.

Solution.
(a) y′′1+9y1 = −9 sin 3(t− 1)+9 sin 3(t− 1) = 0; y′′2+9y2 = −18 cos 3(t− 1)+
18 cos 3(t− 1) = 0.
(b) y1(1) = 0; y′1(1) = 3; y2(1) = 2; y′2(1) = 0.
(c)

W (1) =

∣∣∣∣ 0 2
3 0

∣∣∣∣ = −6 6= 0

so {y1, y2} is a fundamental set

Problem 17.9
y′′ + 2y′ − 3y = 0, y1(t) = e−3t, y2(t) = e−3(t−2), t0 = 2.

Solution.
(a) y′′1 + 2y′1 − 3y1 = 9e−3t − 6e−3t − 3e−3t = 0; y′′2 + 2y′2 − 3y2 = 9e−3(t−2) −
6e−3(t−2) − 3e−3(t−2) = 0.
(b) y1(2) = e−6; y′1(2) = −3e−6; y2(2) = 1; y′2(2) = −3.
(c)

W (2) =

∣∣∣∣ e−6 1
−3e−6 −3

∣∣∣∣ = 0

so {y1, y2} is not a fundamental set

In Problems 17.10 - 17.11, assume that y1(t) and y2(t) form a fundamen-
tal set of solutions of y′′ + p(t)y′ + q(t)y = 0 on the t-interval of interest.
Determine whether or not the functions y3(t) and y4(t), formed by the given
linear combinations, also form a fundamental set of solutions on the same
t-interval.

Problem 17.10
y3(t) = 2y1(t)− y2(t), y4(t) = y1(t) + y2(t).

Solution.
In matrix form we have [

y3

y4

]
=

[
2 −1
1 1

] [
y1

y2

]
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Since ∣∣∣∣ 2 −1
1 1

∣∣∣∣ = 3 6= 0

the coefficient matrix is invertible and so {y3, y4} is a fundamental set of
solutions

Problem 17.11
y4(t) = 2y1(t)− 2y2(t), y4(t) = y1(t)− y2(t).

Solution.
In matrix form we have [

y3

y4

]
=

[
2 −2
1 −1

] [
y1

y2

]
Since ∣∣∣∣ 2 −2

1 −1

∣∣∣∣ = 0

the coefficient matrix is not invertible and so {y3, y4} is not a fundamental
set of solutions

In Problems 17.12 - 17.13, the sets {y1, y2} and {y3, y4} are both funda-
mental sets of solutions for the given differential equation on the indicated
interval. Find a constant 2× 2 matrix[

a11 a12

a21 a22

]
such that [

y3(t)
y4(t)

]
=

[
a11 a12

a21 a22

] [
y1(t)
y2(t)

]
Problem 17.12
t2y′′−3ty′+3y = 0, 0 < t <∞, y1(t) = t, y2(t) = t3, y3(t) = 2t−t3, y4(t) =
t3 + t.

Solution. [
y3(t)
y4(t)

]
=

[
2 −1
1 1

] [
y1(t)
y2(t)

]
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Problem 17.13
y′′ − 4y′ + 4y = 0, − ∞ < t < ∞, y1(t) = e2t, y2(t) = te2t, y3(t) =
(2t− 1)e2t, y4(t) = (t− 3)e2t.

Solution. [
y3(t)
y4(t)

]
=

[
−1 2
−3 1

] [
y1(t)
y2(t)

]
Problem 17.14
Verify whether the functions f1(t) = t2, f2(t) = 2t2 − 3t, f3(t) = t, and
f4(t) = 1 are linearly independent. Do not use Wronskian to solve this
problem.

Solution.
Suppose c1t

2 + c2(2t
2 − 3t) + c3t + c4(1) = 0 for all t. Letting t = 0 we find

c4 = 0. Thus, c1t
2 + c2(2t

2 − 3t) + c3t = 0 for all t. Letting t = 1.5 we obtain
3c1 + 2c3 = 0. Letting t = 1 we obtain c1 − c2 + c3 = 0. Letting t = −1
we obtain c1 + 5c2 − c3 = 0. From these equalities we find c1 = −2

3
c3 and

c2 = 1
3
c3. So letting c3 = 1, c1 = −2

3
, c2 = 1

3
, and c4 = 0 we find

−2

3
t2 +

1

3
(2t2 − 3t) + t+ 0(1) = 0

so {f1, f2, f3, f4} is a linearly dependent set

Problem 17.15
(a) Compute the Wronskian of y1(t) = tet and y2(t) = t2et.
(a) Are they linearly independent on [0,1]? Explain your answer.

Solution.
(a)

W (t) =

∣∣∣∣ tet t2et

et + tet 2tet + t2et

∣∣∣∣ = t2e2t

(b) Since y2 is not a constant multiple of y1, {y1, y2} is linearly independent
set

Problem 17.16
Determine if the following set of functions are linearly independent or linearly
dependent,
(a) y1(t) = 9 cos 2t and y2(t) = 2 cos2 t− 2 sin2 t.
(b) y1(t) = 2t2 and y2(t) = t4.
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Solution.
(a) Since y1(t) = 9(cos2 t− sin2 t) = 9

2
y2, {y1, y2} is linearly dependent.

(b) Suppose that c1(2t
2)+c2t

4 = 0 for all t. Letting t = 1 we find 2c1+c2 = 0.
Letting t = 2 we find c1 +2c2 = 0. Solving we find c1 = c2 = 0 so that {y1, y2}
linearly independent

Problem 17.17
Without solving, determine the Wronskian of two solutions to the following
differential equation.

t4y′′ − 2t3y′ − t8y = 0.

Hint: Use Abel’s Theorem

Solution.
We have p(t) = −2

t
. Then W satisfies the differential equation W ′− 2

t
W = 0.

Solving for W using the method of integrating factor we find W (t) = t2

Problem 17.18
Without solving, determine the Wronskian of two solutions to the following
differential equation.

y′′ − 4ty′ + sin ty = 0.

Solution.
We have p(t) = −4t. Then W ′−4tW = 0. Solving for W we find W (t) = e4t

Problem 17.19
Let y1(t) and y2(t) be any two differentiable functions on a closed interval
a ≤ t ≤ b.
(a) Show that if W (y1(t), y2(t)) 6= 0 for some a ≤ t ≤ b then y1 and y2 are
linearly independent.
(b) Show that the two functions y1(t) = t2 and y2(t) = t|t| are linearly
independent with W (t) = 0 for all t. Thus, a set of functions could be linearly
independent on some interval and yet have a vanishing Wronskian.

Solution.
(a) Suppose that c1y1 + c2y2 = 0 for all a ≤ t ≤ b. Then c1y

′
1 + c2y

′
2 = 0

for all a ≤ t ≤ b. Solving this system of linear equation in the unknowns c1
and c2 using elimination we find c1W (t) = 0. Since W (t) 6= 0 then c1 = 0.
Similarly, c2 = 0. Thus, {y1, y2} is linearly independent.
(b) Suppose that c1t

2 + c2t
3 = 0 for all t. For t = 1 we get c1 + c2 = 0. for

t = −1 we find c1 − c2 = 0. Thus, c1 = c2 = 0 so that {y1, y2} are linearly
independent. Moreover W (0) = 0.
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Problem 17.20
Show that the two functions y1(t) = 1 − t and y2(t) = t3 cannot be both
solutions to the differential equation

y′′ + p(t)y′ + q(t)y = 0

if p(t) and q(t) are continuous in −1 ≤ t ≤ 5.

Solution.
Suppose that y1 and y2 are solutions. Since W (1) = 1, {y1, y2} is a fun-
damental set and therefore w(t) 6= 0 for −1 < t < 5 according to Abel’s
Theorem. But W (1.5) = 0 a contradiction. Thus, y1 and y2 can’t both be
solutions to the differential equation
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18 Second Order Linear Homogeneous Equa-

tions with Constant Coefficients

Problem 18.1
Solve the initial value problem

y′′ + y′ − 2y = 0, y(0) = 3, y′(0) = −3.

Describe the behavior of the solution y(t) as t→ −∞ and t→∞.

Solution.
The characteristic equation r2 + r − 2 = 0 has roots r = 1 and r = −2 so
that the general solution is given by

y(t) = c1e
t + c2e

−2t.

The initial conditions and y′(t) = c1e
t−2c2e

−t lead to the system c1 + c2 = 3
and c1 − 2c2 = −3. Solving this system we find c1 = 1 and c2 = 2. Hence,
the unique solution to the initial value problem is

y(t) = et + 2e−t.

limt→−∞ y(t) =∞ and limt→∞ y(t) =∞

Problem 18.2
Solve the initial value problem

y′′ − 4y′ + 3y = 0, y(0) = −1, y′(0) = 1.

Describe the behavior of the solution y(t) as t→ −∞ and t→∞.

Solution.
The characteristic equation r2−4r+ 3 = 0 has roots r = 1 and r = 3 so that
the general solution is given by

y(t) = c1e
t + c2e

3t.

The initial conditions and y′(t) = c1e
t+3c2e

3t lead to the system c1+c2 = −1
and c1 + 3c2 = 1. Solving this system we find c1 = 1 and c2 = −2. Hence,
the unique solution to the initial value problem is

y(t) = et − 2e3t.
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limt→−∞ y(t) = 0 and limt→∞ y(t) = limt→∞ e
3t
(
1− 2

e2t

)
=∞

Problem 18.3
Solve the initial value problem

y′′ − y = 0, y(0) = 1, y′(0) = −1.

Describe the behavior of the solution y(t) as t→ −∞ and t→∞.

Solution.
The characteristic equation r2 − 1 = 0 has roots r = −1 and r = 1 so that
the general solution is given by

y(t) = c1e
t + c2e

−t.

The initial conditions and y′(t) = c1e
t − c2e−t lead to the system c1 + c2 = 1

and c1 − c2 = −1. Solving this system we find c1 = 0 and c2 = 1. Hence, the
unique solution to the initial value problem is

y(t) = e−t.

limt→−∞ y(t) =∞ and limt→∞ y(t) = 0

Problem 18.4
Solve the initial value problem

y′′ + 5y′ + 6y = 0, y(0) = 1, y′(0) = −1.

Describe the behavior of the solution y(t) as t→ −∞ and t→∞.

Solution.
The characteristic equation r2 + 5r + 6 = 0 has roots r = −2 and r = −3 so
that the general solution is given by

y(t) = c1e
−2t + c2e

−3t.

The initial conditions and y′(t) = −2c1e
−2t − 3c2e

−3t lead to the system
c1 + c2 = 1 and 2c1 + 3c2 = 1. Solving this system we find c1 = 2 and
c2 = −1. Hence, the unique solution to the initial value problem is

y(t) = 2e−2t + e−3t.
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limt→−∞ y(t) = limt→−∞ e
−3t(2et − 1) = 0 and limt→∞ y(t) = 0

Problem 18.5
Solve the initial value problem

y′′ − 4y = 0, y(3) = 0, y′(3) = 0.

Describe the behavior of the solution y(t) as t→ −∞ and t→∞.

Solution.
The characteristic equation r2 − 4 = 0 has roots r = −2 and r = 2 so that
the general solution is given by

y(t) = c1e
2t + c2e

−2t.

The initial conditions and y′(t) = 2c1e
2t − 2c2e

−2t lead to the system c1e
6 +

c2e
−6 = 0 and 2c1e

6 − 2c2e
−6 = 0. Solving this system we find c1 = 0 and

c2 = 0. Hence, the unique solution to the initial value problem is y(t) ≡ 0.

limt→−∞ y(t) = 0 and limt→∞ y(t) = 0

Problem 18.6
Solve the initial value problem

2y′′ − 3y′ = 0, y(−2) = 3, y′(−2) = 0.

Describe the behavior of the solution y(t) as t→ −∞ and t→∞.

Solution.
The characteristic equation 2r2− 3r = 0 has roots r = 0 and r = 1.5 so that
the general solution is given by

y(t) = c1e
1.5t + c2.

The initial conditions and y′(t) = 1.5c1e
1.5t lead to the system c1e

−3 + c2 = 3
and c1 = 0. Solving this system we find c2 = 3. Hence, the unique solution
to the initial value probem y(t) ≡ 3.

limt→−∞ y(t) = 3 and limt→∞ y(t) = 3
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Problem 18.7
Solve the initial value problem

y′′ + 4y′ + 2y = 0, y(0) = 0, y′(0) = 4.

Describe the behavior of the solution y(t) as t→ −∞ and t→∞.

Solution.
The characteristic equation r2 + 4r + 2 = 0 has roots r = −2 −

√
2 and

r = −2 +
√

2 so that the general solution is given by

y(t) = c1e
(−2−

√
2)t + c2e

(−2+
√

2)t.

The initial conditions and y′(t) = c1(−2−
√

2)e(−2−
√

2)t+c2(−2+
√

2)e(−2+
√

2)t

lead to the system c1 + c2 = 0 and (−2−
√

2)c1 + (−2 +
√

2)c2 = 4. Solving
this system we find c1 = −2

√
2 and c2 = 2

√
2. Hence, the unique solution to

the initial value problem is

y(t) = −2
√

2e(−2−
√

2)t + 2
√

2e(−2+
√

2)t.

limt→−∞ y(t) = limt→−∞ e
(−2−

√
2)t[−2

√
2 + 2

√
2e2
√

2t = −∞ and
limt→∞ y(t) = 0

Problem 18.8
Solve the initial value problem

2y′′ − y = 0, y(0) = −2, y′(0) =
√

2.

Describe the behavior of the solution y(t) as t→ −∞ and t→∞.

Solution.
The characteristic equation 2r2 − 1 = 0 has roots r = −

√
2

2
and r =

√
2

2
so

that the general solution is given by

y(t) = c1e
√

2
2
t + c2e

−
√

2
2
t.

The initial conditions and y′(t) =
√

2
2
c1e

√
2

2
t −

√
2

2
c2e
−
√

2
2
t lead to the system

c1 +c2 = −2 and c1−c2 = 2. Solving this system we find c1 = 0 and c2 = −2.
Hence, the unique solution to the initial value problem is

y(t) = −2e−
√

2
2
t.
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limt→−∞ y(t) = −∞ and limt→∞ y(t) = 0

Problem 18.9
Consider the initial value problem y′′ + αy′ + βy = 0, y(0) = 1, y′(0) =
y′0, where α, β, and y′0 are constants. It is known that one solution of the
differential equation is y1(t) = e−3t and that the solution of the initial value
problem satisfies limt→∞ y(t) = 2. Determine the constants α, β, and y′0.

Solution.
Since r = −3 is a solution to the characteristic equation, we obtain (−3)2 +
α(−3) +β = 0 or −3α+β = −9. Also, since limt→∞ = 2, the second root for
the characteristic equation must be r = 0. In this case, β = 0 and solving for
α we find α = 3. Hence, y(t) = c1e

−3t+c2. Since limt→−∞ = 2 we find c2 = 2.
Since y(0) = 1 we find c1 + 2 = 1 so that c1 = −1. Thus, y(t) = −e−3t + 2
and y′(t) = 3e−3t. Therefore, y′0 = y′(0) = 3

Problem 18.10
Consider the initial value problem y′′ + αy′ + βy = 0, y(0) = 3, y′(0) = 5.
The differential equation has a fundamental set of solutions {y1, y2}. It is
known that y1(t) = e−t and that the Wronskian formed by the two members
of the fundamental set is W (t) = 4e2t.
(a) Determine y2(t).
(b) Determine the constants α and β.
(c) Solve the initial value problem.

Solution.
(a) The second solution is of the form y2(t) = ert. In this case,

W (t) =

∣∣∣∣ e−t ert

−e−t rert

∣∣∣∣ = (r + 1)e(r−1)t

But W (t) = 4e2t and this leads to r = 3. Hence, y2(t) = e3t.
(b) Since r = −1 and r = 3 are the roots for the characteristic equation, we
have (r+ 1)(r−3) = 0 or r2−2r−3 = 0. This implies that y′′−2y′−3y = 0
so that α = −2 and β = −3
(c) The initial conditions and y′(t) = −c1e−t + 3c2e

3t lead to the system
c1 + c2 = 3 and −c1 + 3c2 = 5. Solving this system we find c1 = 1 and c2 = 2.
Thus,

y(t) = e−t + 2e3t
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Problem 18.11
Obtain the general solution to the differential equation y′′′ − 5y′′ + 6y′ = 0.

Solution.
Let u = y′. Then u′ = y′′ and u′′ = y′′′ so that the given equation becomes

u′′ − 5u′ + 6u = 0.

The characteristic equation r2−5r+ 6 = 0 has roots r = 2 and r = 3 so that
the general solution is given by

u(t) = c1e
2t + c2e

3t.

But y′(t) = u(t) so that

y(t) =
c1
2
e2t +

c2
3
e3t + c3 = c1e

2t + c2e
3t + c3

Problem 18.12
A particle of mass m moves along the x-axis and is acted upon by a drag
force proportional to its velocity. The drag constant is denoted by k. If x(t)
represents the particle position at time t, Newton’s law of motion leads to
the differential equation mx′′(t) = −kx′(t).
(a) Obtain the general solution to this second order linear differential equa-
tion.
(b) Solve the initial value problem if x(0) = x0 and x′(0) = v0.
(c) What is limt→∞ x(t)?

Solution.
(a) The characteristic equation is mr2+kr = 0 with roots r = 0 and r = − k

m
.

Thus, the general solution is

x(t) = c1 + c2e
− k
m
t.

(b) The initial conditions and x′(t) = − k
m
c2e
− k
m
t lead c1 = x0 + m

k
v0 and

c2 = −m
k
v0. Hence,

x(t) =
(
x0 +

m

k
v0

)
− m

k
v0e
− k
m
t.

(c) limt→∞ x(t) = x0 + m
k
v0
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Problem 18.13
Solve the initial-value problem 4y′′ − y = 0, y(0) = 2, y′(0) = β. Then find β
so that the solution approaches zero as t→∞.

Solution.
The characteristic equation 4r2 − 1 = 0 has roots r = −1

2
and r = 1

2
. Thus,

y(t) = c1e
− t

2 + c2e
t
2 .

The initial conditions and y′(t) = − c1
2
e−

t
2 + c2

2
e
t
2 lead to the system c1+c2 = 2

and c1 − c2 = −2β. Solving this system we find c1 = 1 − β and c2 = 1 + β.
Thus,

y(t) = (1− β)e−
t
2 + (1 + β)e

t
2 .

Since limt→∞ y(t) = 0 we find β = −1

Problem 18.14
Find a homogeneous second-order linear ordinary differential equation whose
general solution is y(t) = c1e

2t + c2e
−t.

Solution.
The roots for the characteristic equation are r = 2 and r = −1 so that
(r − 2)(r + 1) = 0 and hence r2 − r − 2 = 0. The homogeneous equation is
then y′′ − y′ − 2y = 0

Problem 18.15
Find the general solution of the differential equation y′′ − 3y′ − 4y = 0.

Solution.
The characteristic equation r2 − 3r − 4 = 0 has roots r = −1 and r = 4.
Thus,

y(t) = c1e
−t + c2e

4t

Problem 18.16
Find the general solution of the differential equation y′′ + 4y′ − 5y = 0.

Solution.
The characteristic equation r2 + 4r − 5 = 0 has roots r = 1 and r = −5.
Thus,

y(t) = c1e
t + c2e

−5t
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Problem 18.17
Find the general solution of the differential equation −3y′′ + 2y′ + y = 0.

Solution.
The characteristic equation −3r2 + 2r + 1 = 0 has roots r = 1 and r = −1

3
.

Thus,
y(t) = c1e

t + c2e
t
3

Problem 18.18
Solve the initial-value problem: y′′ + 3y′ − 4y = 0, y(0) = −1, y′(0) = 1.

Solution.
The characteristic equation r2 + 3r − 4 = 0 has roots r = 1 and r = −4.
Thus,

y(t) = c1e
t + c2e

−4t.

The initial conditions and y′(t) = c1e
t−4c2e

−4t lead to the system c1+c2 = −1
and c1 − 4c2 = 1. Solving this system we find c1 = −1

2
and c2 = −1

2
. Thus,

y(t) = −1

2
(et + e−4t)

Problem 18.19
Solve the initial-value problem: 2y′′ + 5y′ − 3y = 0, y(0) = 2, y′(0) = 1.

Solution.
The characteristic equation 2r2 + 5r − 3 = 0 has roots r = −3 and r = 1

2
.

Thus,
y(t) = c1e

−3t + c2e
t
2 .

The initial conditions and y′(t) = −3c1e
−3t+ c2

2
e
t
2 lead to the system c1+c2 =

2 and −3c1 + c2
2

= 1. Solving this system we find c1 = 0 and c2 = 2. Thus,

y(t) = 2e
t
2

Problem 18.20
Show that if λ is a root of aλ3 + bλ2 + cλ + d = 0, then eλt is a solution of
ay′′′ + by′′ + cy′ + dy = 0.

Solution.
We have

ay′′′ + by′′ + cy′ + dy =aλ3eλt + bλ2eλt + cλeλt + deλt

=(aλ3 + bλ2 + cλ+ d)eλt = 0
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19 Repeated Roots and the Method of Re-

duction of Order

In Problems 19.1 - 19.5 answer the following questions.

(a) Obtain the general solution of the differential equation.
(b) Impose the initial conditions to obtain the unique solution of the initial
value problem.
(c) Describe the behavior of the solution as t→ −∞ and t→∞.

Problem 19.1

9y′′ − 6y′ + y = 0, y(3) = −2, y′(3) = −5

3
.

Solution.
(a) The characteristic equation 9r2 − 6r + 1 = 0 has the roots r1 = r2 = 1

3
.

The general solution is then

y(t) = c1e
t
3 + c2te

t
3 .

(b) The initial conditions and y′(t) = c1
3
e
t
3 + c2e

t
3 + c2

3
e
t
3 lead to the system

c1 + 3c2 = −2e−1 and c1 + 6c2 = −5e−1. Solving this system we find c1 = e−1

and c2 = −e−1. Thus, the unique solution is

y(t) = e
t
3
−1(1− t).

(c)

limt→−∞ y(t) = limt→−∞
1−t
e1−

t
3

= limt→−∞
−1

−1/3e1−
t
3

= 0.

Now, for large t we have t−1 ≥ 1 so that e
t
3
−1(t−1) ≥ e

t
3
−1. Since e

t
3
−1 →∞

as t→∞ we have e
t
3
−1(t− 1)→∞ as t→∞. Hence,

limt→∞ y(t) = − limt→∞ e
t
3
−1(t− 1) = −∞

Problem 19.2

25y′′ + 20y′ + 4y = 0, y(5) = 4e−2, y′(5) = −3

5
e−2.
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Solution.
(a) The characteristic equation 25r2+20r+4 = 0 has the roots r1 = r2 = −2

5
.

The general solution is then

y(t) = c1e
− 2t

5 + c2te
− 2t

5 .

(b) The initial conditions and y′(t) = −2c1
5
e−

2t
5 + c2e

− 2t
4 − 2c2

5
e−

2t
5 lead to the

system c1 + 5c2 = 4 and 2c1 + 5c2 = 3. Solving this system we find c1 = −1
and c2 = 1. Thus, the unique solution is

y(t) = e−
2t
5 (t− 1).

(c)

limt→−∞ y(t) = − limt→−∞ e
−2t
5 (1− t) = −∞

and

limt→∞ y(t) = limt→∞ e
−2t
5 (t− 1) = limt→∞

1
2
5
e

2t
5

= 0

Problem 19.3

y′′ − 4y′ + 4y = 0, y(1) = −4, y′(1) = 0.

Solution.
(a) The characteristic equation r2 − 4r + 4 = 0 has the roots r1 = r2 = 2.
The general solution is then

y(t) = c1e
2t + c2te

2t.

(b) The initial conditions and y′(t) = 2c1e
2t+c2e

2t+2c2te
2t lead to the system

c1 − c2 = 2e2 and 2c1 − c2 = e2. Solving this system we find c1 = −e2 and
c2 = −3e2. Thus, the unique solution is

y(t) = −e2t+2(1 + 3t)

(c)

limt→−∞ y(t) = − limt→−∞− 1+3t
e−2t−2 = − limt→−∞

3
−2e−2t−2 = 0

and
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limt→∞ y(t) = − limt→∞(1 + 3t)e2t+2 = −∞

Problem 19.4

y′′ + 2
√

2y′ + y = 0, y(0) = 1, y′(0) = 0.

Solution.
(a) The characteristic equation r2 + 2

√
2r + 1 = 0 has the roots r1 = r2 =

−
√

2. The general solution is then

y(t) = c1e
−
√

2t + c2te
−
√

2t.

(b) The initial conditions and y′(t) = −
√

2c1e
−
√

2t + c2e
−
√

2t −
√

2c2te
−
√

2t

lead to c1 = 0 and c2 =
√

2. Thus, the unique solution is

y(t) = e−
√

2(1 +
√

2t).

(c)

limt→−∞ y(t) = − limt→−∞ e
−
√

2t(−1− 3t) = −∞

and

limt→∞ y(t) = limt→∞
1+
√

2t

e
√

2t
= limt→∞

√
2√

2e
√

2t
= 0

Problem 19.5

3y′′ + 2
√

3y′ + y = 0, y(0) = 2
√

3, y′(0) = 3.

Solution.
(a) The characteristic equation 3r2 + 2

√
3r + 1 = 0 has the roots r = r1 =

r2 = − 1√
3
. The general solution is then

y(t) = c1e
rt + c2te

rt.

(b) The initial conditions and y′(t) = rc1e
rt+ c2e

rt+ rc2te
rt lead to c1 = 2

√
3

and c2 = 5. Thus, the unique solution is

y(t) = e
− t√

3 (5t+ 2
√

3).

(c)
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limt→−∞ y(t) = − limt→−∞ e
− t√

3 (−5t− 2
√

3) = −∞

and

limt→∞ y(t) = limt→∞
2
√

3+5t

e
t√
3

= limt→∞
5

(1/
√

3)e
t√
3

= 0

In Problems 19.6 - 19.9, one solution, y1(t), of the differential equation is
given.
(a) Find a second solution of the form y2(t) = u(t)y1(t).
(b) Compute the Wronskian formed by the solutions y1(t) and y2(t). On
what intervals is the Wronskian continuous and nonzero?
(c) Rewrite the differential equation in the form y′′ + p(t)y′ + q(t)y = 0. On
what interval(s) are both p(t) and q(t) continuous? How does this observation
compare with the interval(s) determined in part (b)?

Problem 19.6

ty′′ − (2t+ 1)y′ + (t+ 1)y = 0, y1(t) = et.

Solution.
(a) Let y2(t) = uet. Then y′2 = u′et + uet and y′′2 = u′′et + 2u′et + uet.
Substituting into the equation and simplifying we find

tu′′ − u′ = 0.

Let w = u′ so that w′ − 1
t
w = 0. Solving this last equation by the method

of integrating factor we find w(t) = ct. Now find u(t) =
∫
ctdt = ct2 + c′.

Choose c = 1 and c′ = 0 we obtain u(t) = t2. Thus, y2(t) = t2et.
(b)

W (t) =

∣∣∣∣ et t2et

et (2tet + t2et)

∣∣∣∣ = 2te2t

W(t) is continuous and nonzero on (−∞, 0) ∪ (0,∞).
(c)

y′′ −
(

2 +
1

t

)
y′ +

(
1 +

1

t

)
y = 0, p(t) = −

(
2 +

1

t

)
, q(t) = 1 +

1

t
.

The functions p(t) and q(t) are continuous on (−∞, 0) ∪ (0,∞)
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Problem 19.7

y′′ − (2 cot t)y′ + (1 + 2 cot2 t)y = 0, y1(t) = sin t.

Solution.
(a) Let y2(t) = u sin t. Then y′2 = u cos t+u′ sin t and y′′2 = −u sin t+2 cos tu′+
sin tu′′. Substituting into the equation and simplifying we find

u′′ = 0

Thus, u(t) = ct + c′. Choose c = 1 and c′ = 0 to otbain u(t) = t. Thus,
y2(t) = t sin t.
(b)

W (t) =

∣∣∣∣ sin t t sin t
cos t (sin t+ t cos t)

∣∣∣∣ = sin2 t.

W(t) is continuous and nonzero on for all t 6= nπ where n is an integer.
(c)

y′′ − 2 cot ty′ +
(
1 + 2 cot2 t

)
y = 0, p(t) = −2 cot t, q(t) = 1 + 2 cot2 t.

The functions p(t) and q(t) are continuous for all t 6= nπ where n is an
integer

Problem 19.8

y′′ + 4ty′ + (2 + 4t2)y = 0, y1(t) = e−t
2

.

Solution.
(a) Let y2(t) = ue−t

2
. Then y′2 = u′e−t

2−2tue−t
2

and y′′2 = u′′e−t
2−4u′te−t

2
+

4t2ue−t
2
. Substituting into the equation and simplifying we find

u′′ = 0.

Thus, u(t) = ct + c′. Choose c = 1 and c′ = 0 to otbain u(t) = t. Thus,
y2(t) = te−t

2
.

(b)

W (t) =

∣∣∣∣ e−t
2

te−t
2

−2te−t
2

(e−t
2 − 2t2e−t

2
)

∣∣∣∣ = e−2t2 .

W(t) is continuous and nonzero on (−∞,∞).
(c) p(t) = 4t, q(t) = 2 + 4t2. The functions p(t) and q(t) are continuous in
(−∞,∞)
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Problem 19.9

y′′ −
(

2 +
n− 1

t

)
y′ +

(
1 +

n− 1

t

)
y = 0,

where n is a positive integer, y1(t) = et.

Solution.
(a) Let y2(t) = uet. Then y′2 = u′et + uet and y′′2 = u′′et + 2u′et + uet.
Substituting into the equation and simplifying we find

tu′′ − (n− 1)u′ = 0.

Let w = u′ so that w′− n−1
t
w = 0. Solving this last equation by the method of

integrating factor we find w(t) = ctn−1. Now find u(t) =
∫
ctn−1dt = ctn + c′.

Choose c = 1 and c′ = 0 we obtain u(t) = tn. Thus, y2(t) = tnet.
(b)

W (t) =

∣∣∣∣ et tnet

et (ntn−1et + tnet)

∣∣∣∣ = ntn−1e2t.

W(t) is continuous and nonzero on (−∞,∞) for n = 1 and on (−∞, 0) ∪
(0,∞) for n ≥ 2.
(c) p(t) = −

(
2 + n−1

t

)
and q(t) =

(
1 + n−1

t

)
. The functions p(t) and q(t) are

continuous on (−∞, 0) ∪ (0,∞)

Problem 19.10
The graph of a solution y(t) of the differential equation 4y′′ + 4y′ + y = 0

passes through the points (1, e−
1
2 ) and (2, 0). Determine y(0) and y′(0).

Solution.
The characteristic equation 4r2 + 4r + 1 = 0 has the roots r1 = r2 = −1

2
so

that the general solution is

y(t) = c1e
− t

2 + c2te
− t

2 .

Since y(2) = 0 we find c1 + 2c2 = 0. Since y(1) = e−
1
2 we find c1 + c2 = 1.

Solving the system of two equations we find c1 = 2 and c2 = −1. Hence,

y(t) = 2e−
t
2 − te−

t
2 .

Now, y(0) = 2. Also, replacing t = 0 in y′(t) = −2e−
t
2 + t

2
e−

t
2 to obtain

y′(0) = −2
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Problem 19.11
Find a homogeneous second order linear differential equation whose general
solution is given by y(t) = c1e

−3t + c2te
−3t.

Solution.
The characteristic equation has the double roots r1 = r2 = −3 so that
r2 + 6r + 9 = 0. Hence, the differential equation is

y′′ + 6y′ + 9y = 0

Problem 19.12
The graph shown below is the solution of y′′ − 2αy′ + α2y = 0, y(0) =
y0, y

′(0) = y0. Determine the constants α, y0, and y′0 as well as the solu-
tion y(t).

Solution.
Since the solution is a straight line, y′′ = 0. Hence, α = 0. On the other
hand, the general solution has the form y(t) = mt + b. From the graph we
see that b = 2 and m = −1

2
. Thus, y(t) = − t

2
+ 2. Finally, y(0) = y0 = 2 and

y′0 = y′(0) = −1
2

Problem 19.13
Show that if λ is a double root of at3 + bt2 + ct + d = 0, then teλt is also a
solution of ay′′′ + by′′ + cy′ + dy = 0.

Solution.
Since λ is a double root we find aλ3 +bλ2 +cλ+d = 0 and 3aλ2 +2dλ+c = 0.
Let y(t) = teλt. Then y′ = eλt + λteλt, y′′ = 2λeλt + λ2teλt, y′′′ = 3λ2eλt +
λ3teλt. Substituting into the equation we find

ay′′′ + by′′ + cy′ + dy = [(aλ+ bλ2 + cλ+ d)t+ (3aλ2 + 2bλ+ c)]eλt

= 0
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Problem 19.14
Find the general solution of y′′ − 6y′ + 9y = 0.

Solution.
The characteristic equation r2 − 6r + 9 = 0 has double roots r1 = r2 = 3 so
the general solution is

y(t) = c1e
3t + c2te

3t

Problem 19.15
Find the general solution of 4y′′ − 4y′ + y = 0.

Solution.
The characteristic equation 4r2− 4r+ 1 = 0 has double roots r1 = r2 = 1

2
so

the general solution is
y(t) = c1e

t
2 + c2te

t
2

Problem 19.16
Solve the initial-value problem: y′′ + y′ + y

4
= 0, y(0) = 2, y′(0) = 0.

Solution.
The characteristic equation r2 + r+ 1

4
= 0 has double roots r1 = r2 = −1

2
so

the general solution is
y(t) = c1e

− t
2 + c2te

− t
2 .

Since y(0) = 2 we find c1 + c2 = 2. Since y′(0) = 0 we find c1 − 2c2 = 0.
Solving this system we find c1 = 2

3
and c2 = 1

3
. Hence, the unique solution is

y(t)
2

3
e−

t
2 +

1

3
te−

t
2

Problem 19.17
The method of reduction of order can also be used for the nonhomogeneous
equation

y′′ + p(t)y′ + q(t)y = g(t)

provided one solution y1 of the corresponding homogeneous equation is known.
Let y = uy1 and show that y is a solution of the nonhomogeneous if u is a
solution of

y1u
′′ + [2y′1 + py1]u

′ = g.

The latter equation is a first-order linear equation for u′.
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Solution.
Inser tingy(t) = uy1 and its first and second order derivatives into the given
equation we obtain

g(t) =y′′ + p(t)y′ + q(t)y

=u′′y1 + 2u′y′1 + uy′′1 + p(t)u′y1 + p(t)uy′1 + q(t)uy1

=u(t)(y′′1 + p(t)y′1 + q(t)y1) + u′′y1 + (2y′1 + p(t)y1)u
′

=u′′y1 + (2y′1 + p(t)y1)u
′.

It follows that if u is a solution to

y1u
′′ + (p(t)y1 + 2y′1)u

′ = g(t)

then y = uy1 is a solution to the given differential equation

Problem 19.18
Given that y1(t) = t2 is a solution of

t2y′′ − 3ty′ + 4y = 0, t > 0

find the general solution.

Solution.
We will use the method of reduction of order to find the second solution. Let
y2(t) = ut2. Then y′2 = u′t2 + 2tu and y′′2 = u′′t2 + 4tu′ + 2u. Substituting
into the differential equation and simplifying we find

u′′ +
1

t
u′ = 0.

Letting w = u′ we find w′ + 1
t
w = 0. Solving this differential equation using

the method of integrating factor we find w(t) = c
t
. Now, find u by integration

to obtain u(t) = c ln t+ c′. Let c = 1 and c′ = 0 to obtain u(t) = ln t. Finally,
y2(t) = t2 ln t

Problem 19.19
Let y1(t) be a nonzero solution of the third-order homogeneous linear ODE

y′′′ + p(t)y′′ + q(t)y′ + r(t)y = 0.

Use the substitution y = uy1 to reduce the problem to a second-order linear
equation.
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Solution.
We have y′ = u′y1 + uy′1, y

′′ = 2u′y1 + u′′y1 + uy′′1 , y
′′′ = 3u′′y1 + 2u′y′1 +

u′y′′1 +u′′′y1 +uy′′′1 . Susbtituting these into the differential equation to obtain

y′′′ + p(t)y′′ + q(t)y′ + r(t)y =y1u
′′′ + (y′′′1 + p(t)y′′1 + q(t)y′1 + r(t)y1)u

+(3y1 + p(t)y′1)u
′′ + (2y′1 + y′′1 + 2py′1 + q(t)y1)u

′

=y1u
′′′ + (3y1 + p(t)y′1)u

′′ + (2y′1 + y′′1 + 2py′1 + q(t)y1)u
′.

Letting z = u′ we obtain the second order linear differential equation

y1z
′′ + (3y1 + p(t)y′1)z

′ + (2y′1 + y′′1 + 2py′1 + q(t)y1)z = 0

Problem 19.20
The following problem indicates a second way for finding the second root. It
is known as the method of reduction of order. Consider the differential
equation y′′ + p(t)y′ + q(t)y = 0 having one solution y1(t).
(a) If y2(t) = u(t)y1(t) is a solution then show that the differential equation
satisfied by u(t) is given by

y1u
′′ + (2y′1 + py1)u

′ = 0.

(b) Use the substitution v = u′ to reduce the equation in part(a) into a first
order linear differential equation in v.
(c) Solve the equation in part(b) for v.
(d) Find u(t) and then y2(t).

Solution.
(a) Inserting y2, y

′
2, and y′′2 into the equation we find

0 =(u′′y1 + 2u′y′1 + uy′′1) + p(u′y1 + uy′1) + quy1

=u(y′′1 + py′1 + qy1) + y1u
′′ + (2y′1 + py1)u

′

=y1u
′′ + (2y′1 + py1)u

′.

(b) Letting v = u′ then v satisfies the differential equation

v′ +

(
2y′1
y1

+ p

)
v = 0.

(c) Solving the differential equation in part(b) using the method of integrat-
ing factor we find

v(t) = Ce
−
∫ ( 2y′1

y1
+p

)
dt

= C
e−

∫
p(t)dt

y2
1(t)

.
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(d) Since u′ = v we have

u(t) = C

∫
e−

∫
p(t)dt

y2
1(t)

.

Choose C = 1 so that

y2(t) =

(∫
e−

∫
p(t)dt

y2
1(t)

)
y1(t)
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20 Characteristic Equations with Complex Roots

Problem 20.1
For any z = α + iβ we define the conjugate of z to be the complex number
z = α− iβ. show that α = 1

2
(z + z) and β = 1

2i
(z − z).

Solution.
Adding z and z we find 2α = z + z. Hence, α = 1

2
(z + z). Next, subtracting

z from z we find 2iβ = zz. Therefore, β = 1
2i

(z − z

Problem 20.2
Write each of the complex numbers in the form α + iβ, where α and β are
real numbers.

1. 2ei
π
3 .

2. (2− i)ei 3π2 .
3. (
√

2ei
π
6 )4.

Solution.
Recall Euler’s function: eα+iβ = eα(cos β + i sin β).

1. 2ei
π
3 = 2 cos (π

3
) + 2i sin (π

3
) = 1 + i

√
3.

2. (2− i)ei 3π2 = 2iei
3π
2 + ei

3π
2 = −2i+−1.

3. (
√

2ei
π
6 )4 = (

√
2)4ei

2π
3 = 4(−1

2
+ i

√
3

2
) = −2 + 2i

√
3

Problem 20.3
Write each functions in the form Aeαt cos βt + iB sin βt, where α, β,A, and
B are real numbers.

1. 2ei
√

2t.
2. −1

2
e2t+i(t+π).

3. (
√

3e(1+i)t)3.

Solution.
1. 2ei

√
2t = 2 cos

√
2t+ 2i sin

√
2t.

2. −1
2
e2t+i(t+π) = −1

2
e2t cos (t+ π)− 1

2
e2t sin (t+ π) = 1

2
e2t cos t+ 1

2
ie2t sin t.

3. (
√

3e(1+i)t)3 = 3
√

3e3(1+i)t = e3t cos (3t) + ie3t sin (3t)
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In Problems 20.4 - 20.8
(a) Determine the roots of the characteristic equation.
(b) Obtain the general solution as a linear combination of real-valued solu-
tions.
(c) Impose the initial conditions and solve the initial value problem.

Problem 20.4

y′′ + 2y′ + 2y = 0, y(0) = 3, y′(0) = −1.

Solution.
(a) The characteristic equation r2 + 2r + 2 = 0 has roots r1 = −1 − i and
r2 = −1 + i.
(b) y(t) = e−t(c1 cos t+ c2 sin t).
(c) The initial conditions and y′(t) = e−t cos t(c2− c1)− e−t sin t(c1 + c2) lead
to the equations c1 = 3 and −c1+c2 = −1. Solving we find c1 = 3 and c2 = 2.
Hence, the unique solution to the initial value problem is

y(t) = 3e−t cos t+ 2e−t sin t

Problem 20.5

2y′′ − 2y′ + y = 0, y(−π) = 1, y′(−π) = −1.

Solution.
(a) The characteristic equation 2r2 − 2r + 1 = 0 has roots r1 = 1

2
(1− i) and

r2 = 1
2
(1 + i).

(b) y(t) = e
t
2 (c1 cos t

2
+ c2 sin t

2
).

(c) The initial conditions and y′(t) = 1
2
e
t
2 cos t

2
(c1 + c2) + 1

2
e
t
2 sin t

2
(−c1 + c2)

lead to the equations −e−π2 c2 = 1 and c2−c1 = e
π
2 . Solving we find c1 = −eπ2

and c2 = 3e
π
2 . Hence, the unique solution to the initial value problem is

y(t) = −e
1
2
(t+π)(3 cos

t

2
+ sin

t

2
)

Problem 20.6

y′′ + 4y′ + 5y = 0, y(
π

2
) =

1

2
, y′(

π

2
) = −2.
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Solution.
(a) The characteristic equation r2 + 4r + 5 = 0 has roots r1 = −2 − i and
r2 = −2 + i.
(b) y(t) = e−2t(c1 cos t+ c2 sin t).
(c) The initial conditions and y′(t) = e−2t cos t(c2 − 2c1)− e−2t sin t(c1 + 2c2)
lead to the equations e−πc2 = 1

2
and c1 + 2c2 = eπ. Solving we find c1 = eπ

and c2 = 1
2
eπ. Hence, the unique solution to the initial value problem is

y(t) = eπ−2t(cos t+
1

2
sin t)

Problem 20.7

y′′ + 4π2y = 0, y(1) = 2, y′(1) = 1.

Solution.
(a) The characteristic equation r2 + 4π2 = 0 has roots r1 = −2πi and r2 =
2πi.
(b) y(t) = c1 cos 2πt+ c2 sin 2πt.
(c) The initial conditions and y′(t) = 2πc2 cos 2πt − 2πc1 sin 2πt lead to the
equations c1 = 2 and 2πc2 = 1. Solving we find c1 = 2 and c2 = (2π)−1.
Hence, the unique solution to the initial value problem is

y(t) = 2 cos 2πt+ (2π)−1 sin 2πt

Problem 20.8

9y′′ + π2y = 0, y(3) = 2, y′(3) = −π.

Solution.
(a) The characteristic equation 9r2 +π2 = 0 has roots r1 = −π

3
i and r2 = π

3
i.

(b) y(t) = c1 cos π
3
t+ c2 sin π

3
t.

(c) The initial conditions and y′(t) = π
3
c2 cos π

3
t− π

3
c1 sin π

3
t lead to the equa-

tions −c1 = 2 and −π
3
c2 = −π. Solving we find c1 = −2 and c2 = 3. Hence,

the unique solution to the initial value problem is

y(t) = −2 cos
π

3
t+ 3 sin

π

3
t

In Problems 20.9 - 20.10, the function y(t) is a solution of the initial value
problem y′′ + ay′ + by = 0, y(t0) = y0, y

′(t0) = y′0, where the point t0 is
specified. Determine the constants a, b, y0, and y′0.
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Problem 20.9

y(t) = 2 sin 2t+ cos 2t, t0 =
π

4
.

Solution.
The roots of the characteristic equation are r1,2 = ±2i so that the character-
istic equation is r2 + 4 = 0. Hence, the corresponding differential equation
is y′′ + 4y = 0. From this we find a = 0 and b = 4. Now, y0 = y(π

4
) =

2 sin π
2

+ cos π
2

= 2. Finally, y′0 = y′(π
4
) = 4 cos π

2
− 2 sin π

2
= −2

Problem 20.10

y(t) = et−
π
6 cos 2t− et−

π
6 sin 2t, t0 =

π

6
.

Solution.
The roots of the characteristic equation are r1,2 = 1 ± 2i so that the char-
acteristic equation is r2 − 2r + 5 = 0. Hence, the corresponding differential
equation is y′′ − 2y′ + 5y = 0. From this we find a = −2 and b = 5. Now,
y0 = y(π

6
) = cos π

3
− sin π

3
= 1

2
−
√

3
2
. Finally, y′0 = y′(π

6
) = cos π

3
− sin π

3
−

2 cos π
3
− 2 sin π

3
= −1

2
− 3

√
3

2

In Problems 20.11 - 20.13, rewrite the function y(t) in the form y(t) =
Keαt cos βt− δ), where 0 ≤ δ < 2π. Use this representation to sketch a
graph of the given function, on a domain sufficiently large to display its
main features.

Problem 20.11

y(t) = sin t+ cos t.

Solution.
We have c1 = 1 and c2 = 1 so that K =

√
12 + 12 =

√
2. Moreover, cos δ =

c1
K

=
√

2
2

and sin δ =
√

2
2
. Thus, δ = π

4
and

y(t) =
√

2 cos
(
t− π

4

)
.
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The graph of y(t) is given below

Problem 20.12

y(t) = et cos t+
√

3et sin t.

Solution.
We have c1 = 1 and c2 =

√
3 so that K =

√
1 + 3 = 2. Moreover, cos δ =

c1
K

= 1
2

and sin δ =
√

3
2
. Thus, δ = π

3
and

y(t) = 2et
(

cos
(
t− π

3

))
.

The graph of y(t) is given below
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Problem 20.13

y(t) = e−2t cos 2t− e−2t sin 2t.

Solution.
We have c1 = 1 and c2 = − so that K =

√
1 + 1 =

√
2. Moreover, cos δ =

c1
K

= 1√
2

and sin δ = − 1√
2
. Thus, δ = 7π

4
and

y(t) =
√

2e−2t

(
cos

(
2t− 7π

4

))
.

The graph of y(t) is given below

Problem 20.14
Consider the differential equation y′′+ay′+9y = 0, where a is a real number.
Suppose that we know the Wronskian of a fundamental set of solutions of
this differential equation is constant: W (t) = 1 for all real numbers t. Find
the general solution of this differential equation.

Solution.
First we need to find a. Since W ′(t) = −aW (t) we obtain a = 0 so that
y′′+ 9y = 0. The characteristic equation is r2 + 9 = 0 and has complex roots
r1,2 = ±3i. Thus, the general solution is given by

y(t)c1 cos 3t+ c2 sin 3t

Problem 20.15
Rewrite 2 cos 7t− 11 sin 7t in phase-angle form. Give the exact function (so
your answer will involve the inverse tangent function).
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Solution.
We have c1 = 2 and c2 = −11 so that K =

√
4 + 121 =

√
125 = 5

√
5.

Furthermore, tan δ = −11
2

so that δ = − arctan
(

11
2

)
. Hence,

y(t) = 5
√

5 cos

(
t+ arctan

(
11

2

))
Problem 20.16
Find a homogeneous linear ordinary differential equation whose general so-
lution is y(t) = c1e

2t cos (3t) + c2e
2t sin (3t).

Solution.
The roots to the characteristic equation are r1,2 = 2 ± 3i so that the char-
acteristic equation is r2 − 4r + 13 = 0 and the corresponding differential
equation is

y′′ − 4y′ + 13 = 0

Problem 20.17
Rewrite y(t) = 5e(5−2i)t − 3e(5+2i)t, without complex exponents, using sines
and cosines. What ODE of the form ay′′ + by′ + cy = 0, has y as a solution?

Solution.
Using Euler’s formula we have e(5−2i)t = e5t(cos 2t − i sin 2t) and e(5+2i)t =
e5t(cos 2t + i sin 2t). Thus, y(t) = 2e5t cos 2t − 8ie5t sin 2t. The characteristic
roots are r1,2 = 5±2i so that the characteristic equation is y′′−10r+ 29 and
the corresponding differential equation is

y′′ − 10y′ + 29y = 0

Problem 20.18
Consider the function y(t) = 3 cos 2t − 4 sin 2t. Find a second order linear
IVP that y satisfies.

Solution.
The roots to the characteristic equation are r1,2 = ±2i so that the charac-
teristic equation is r2 + 4 = 0 and the corresponding differential equation
is

y′′ + 4y = 0
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Problem 20.19
An equation of the form

t2y′′ + αty′ + βy = 0, t > 0

where α and β are real constants is called an Euler equation. Show that
the substitution u(t) = ln t transforms Euler equation into an equation with
constant coefficients.

Solution.
Since x = ln t we have dx

dt
= 1

t
. But dy

dt
= dy

dx
dx
dt

= 1
t
dy
dx
. Moreover, d2y

dt2
=

− 1
t2
dy
dx

+ 1
t2
d2y
dx2 = 1

t2

(
( d

2y
dx2 − dy

dx

)
. Hence,

0 =t2y′′ + αty′ + βy

=t2
(

1

t2

(
d2y

dx2
− dy

dx

))
+ αt

(
1

t

dy

dx

)
+ βy

=
d2y

dx2
+ (α− 1)

dy

dx
+ βy

Problem 20.20
Use the result of the previous problem to solve the differential equation t2y′′+
ty′ + y = 0.

Solution.
Here we have α = β = 1 so that

d2y

dx2
+ y = 0.

The characteristic equation is r2 + 1 = 0 with complex roots r1,2 = − ± i.
The general solution is

y(x) = c1 cosx+ c2 sinx

or
y(t) = c1 cos (ln t) + c2 sin (ln t)
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21 Applications of Homogeneous Second Or-

der Linear Differential Equations: Unforced

Mechanical Vibrations

Problem 21.1
A 10-kg mass, when attached to the end of a spring hanging vertically,
stretches the spring 30 mm. Assume the mass is then pulled down another
70 mm and released (with no initial velocity).
(a) Determine the spring constant k.
(b) State the initial value problem (giving numerical values for all the con-
stants) for y(t), where y(t) denotes the displacement (in meters) of the mass
from its equilibrium rest position. Assuming that y is measured positive in
the downward direction.
(c) Solve the initial value problem formulated in part (b).

Solution.
(a) k = mg

Y
= 10(9.8)

0.03
= 3266.7 N/m.

(b) my′′+ky = 0, y(0) = 0.07, y′(0) = 0 or y′′+326.67, y(0) = 0.07, y′(0) =
0.
(c) The characteristic equation r2 + 326.67 = 0 has the complex roots r1,2 =
±18.074i. Thus, the general solution is

y(t) = c1 cos 18.074t+ c2 sin 18.074t.

Since y(0) = 0.07 we find c1 = 0.07. Since y′(0) = 0 we find c2 = 0. Thus,

y(t) = 0.07 cos (18.074t)

Problem 21.2
A 20-kg mass was initially at rest, attached to the end of a vertically hanging
spring. When given an initial velocity of 2 m/s from its equilibrium rest
position, the mass was observed to attain a maximum displacement of 0.2 m
from its equilibrium position. What is the value of the spring constant k?

Solution.
The initial-value problem is given by

20y′′ + ky = 0, y(0) = 0, y′(0) = 2.
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The general solution to the differential equation is given by

y(t) = c1 cos (

√
k

m
) + c2 sin (

√
k

m
).

Since y(0) = 0 we have c1 = 0. Since y′(0) = 0.2 we find c2 = 2
√

m
k
. Thus,

y(t) = 2

√
m

k
sin (

√
k

m
).

Since y is maximum when y = 2
√

m
k

we obtain 2
√

m
k

= 0.2 or k = 10
0.01

= 2000
N/m

Problem 21.3
A spring-mass-dashpot system consists of a 10-kg mass attached to a spring
with spring constant k = 100 N/m; the dashpot has damping constant γ =
7 kg/s. At time t = 0, the system is set into motion by pulling the mass
down 0.5 m from its equilibrium rest position while simultaneously giving it
an initial downward velocity of 1 m/s.
(a) State the initial value problem to be solved for y(t), the displacement
from equilibrium (in meters) measured positive in the downward direction.
Give numerical values to all constants involved.
(b) Solve the initial value problem. What is limt→∞ y(t)? Explain why your
answer for this limit makes sense from a physical perspective.

Solution.
(a) y′′ + 0.7y′ + 10y = 0, y(0) = 0.5, y′(0) = 1.
(b) The characteristic equation r2 + 0.7r + 10 = 0 has complex roots r1,2 =
−0.35± 3.143. Thus, the general solution to the differential equation is

y(t) = e−0.35t(c1 cos (3.143t) + c2 sin (3.143t).

Since y(0) = 0.5 we find c1 = 0.5. Since y′(0) = 1 we find c2 = 0.374. Hence,

y(t)e−0.35t(0.5 cos (3.143t) + 0.374 sin (3.143t).

Clearly, y(t) → 0 as t → ∞. Physically, the damping force dissipates the
energy of the system, causing the motion to decrease
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Problem 21.4
A spring and dashpot system is to be designed for a 32-lb weight so that the
overall system is critically damped.
(a) How must the damping constant γ and spring constant k be related?
(b) Assume the system is to be designed so that the mass, when given an
initial velocity of 4 ft/sec from its rest position, will have a maximum dis-
placement of 6 in. What values of damping constant γ and constant k are
required?

Solution.
(a) For a critically damped system γ2 − 4mk = 0 but m = 32

32
= 1 kg so that

γ2 = 4k.
(b) In a critically damped case the general solution has the form

y(t) = c1e
− γ

2
t + c2te

− γ
2
t.

Since y(0) = 0 we find c1 = 0. Also, since y′(0) = 4 we find c2 = 4. Thus,

y(t) = 4te−
γ
2
t.

The function y(t) achieves its maximum height of 6 in = (0.0254)(6) = 0.1524
m at time tmax such that y′(tmax) = 0. That is, when 1− γ

2
tmax = 0. Solving

we find tmax = 2
γ
. But

y(
2

γ
) =

8

γ
e−1 = 0.1524.

Solving for γ we find γ ≈ 19.311 kg/s. Finally, k = γ2

2
≈ 93.2311 N/m

Problem 21.5
A mass-spring-dashpot system can be modeled by the second order equation

my′′ + ky′ + γy = 0

where m is the mass, k is the spring constant and γ is the damping coefficient.
A certain system of this type with m = 1 can also be modeled by the first
order system [

y
y′

]′
=

[
0 1
−5 −4

] [
y
y′

]
What is the spring constant in this system? What is the damping coefficient?
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Solution.
Performing the matrix algebra on the system to find

y′′ + 4y′ + 5y = 0.

Thus k = 4 and γ = 5

Problem 21.6
Consider the mass-spring-dashpot system satisfying the differential equation

y′′ + 2y′ + 5y = 0.

Is this system overdamped, critically damped, or underdamped?

Solution.
Since γ2 − 4mk = 25− 4(1)(2) = 17 > 0, the system is overdamped

Problem 21.7
Consider a mass-spring-dashpot system for which m = 1, γ = 6, and k = 13.
(a) Find the general solution of the corresponding second order differential
equation that describes the displacement function.
(b) Is the system over-damped, under-damped, or critically damped?

Solution.
(a) The displacement function y(t) satisfies the differential equation

y′′ + 13y′ + 6y = 0.

(b) Since γ2 − 4mk = 36− 52 = −16 < 0, the system is underdamped

Problem 21.8
A mass of 100 g stretches a spring 5 cm. If the mass is set in motion from
equilibrium with a downward velocity of 10 cm/sec and there is no air resis-
tance, then when does the mass return to equilibrium position for the first
time?

Solution.
The differential equation describing the motion is given by

my′′ + ky = 0
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where m = 0.1 kg and k = 0.1(9.8)
0.05

= 19.6. Thus, y′′ + 196y = 0. The general
solution to this equation is

y(t) = c1 cos 14t+ c2 sin 14t.

Since y(0) = 0 we find c1 = 0. Since y′(0) = 0.1 we find c2 = 5
7
. Hence,

y(t) =
5

7
sin 14t.

The mass first returns to equilibrium when 14t = π or t = 1
π

seconds

Problem 21.9
A mass weighing 8 lb stretches a spring 1.5 in. The mass is attached to a
damper with coefficient γ. Determine γ so the system is critically damped.

Solution.
This occurs when γ2 = 4km. Now k = 8 lb

1.5 in
= 64 lb

ft
and m = 8

32
lb sec2

ft
Thus

γ2 = 4 · 64 · 1
4
lb2 sec2

ft2
⇒ γ = 8 lb-sec/ft
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22 The Structure of the General Solution of

Linear Nonhomogeneous Equations

In Problems 22.1- 22.7, answer the following three questions.
(a) Verify that the given function, yp(t), is a particular solution of the differ-
ential equations.
(b) Determine the general solution,yh, of the homogeneous equation.
(c) Find the general solution to the differential equation and impose the
initial conditions to obtain the unique solution of the initial value problem.

Problem 22.1

y′′ − y′ − 2y = 4e−t, y(0) = 0, y′(0) = 0, yp(t) = −4

3
te−t.

Solutions
(a) y′p = −4

3
e−t + 4

3
te−t, y′′p = 8

3
e−t − 4

3
te−t.

y′′p − y′p − 2yp =
8

3
e−t − 4

3
te−t +

4

3
e−t − 4

3
te−t +

8

3
te−t

=4e−t.

(b) The associated characteristic equation r2−r−2 = 0 has roots r1 = −1 and
r2 = 2. Hence, the general solution to the homogeneous differential equation
is

yh(t) = c1e
−t + c2e

2t.

(c) The general solution to the differential equation is y(t) = c1e
−t + c2e

2t −
4
3
te−t. The derivative of this function is given by y′(t) = −c1e−t + 2c2e

2t −
4
3
e−t + 4

3
te−t. The condition y(0) = 0 leads to c1 + c2 = 0. The condition

y′(0) = 0 leads to −c1 + 2c2 = 4
3
. Solving for c1 and c2 we find c1 = −4

9
and

c2 = 4
9
. The unique solution is given by

y(t) =
4

9
(e2t − e−t + 3te−t)

Problem 22.2

y′′ − 2y′ − 3y = e2t, y(0) = 1, y′(0) = 0, yp(t) = −1

3
e2t.
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Solutions
(a) y′p = −2

3
e2t, y′′p = −4

3
e2t.

y′′p − y′p − 3yp =− 4

3
e2t +

4

3
e2t + e2t

=e2t.

(b) The associated characteristic equation r2− 2r− 3 = 0 has roots r1 = −1
and r2 = 3. Hence, the general solution to the homogeneous differential
equation is

yh(t) = c1e
−t + c2e

3t.

(c) The general solution to the differential equation is y(t) = c1e
−t + c2e

3t −
1
3
e2t. The derivative of this function is given by y′(t) = −c1e−t+3c2e

3t− 2
3
e2t.

The condition y(0) = 1 leads to c1 + c2 = 4
3
. The condition y′(0) = 0 leads to

−c1 + 3c2 = 2
3
. Solving for c1 and c2 we find c1 = 3

2
and c2 = 1

2
. The unique

solution is given by

y(t) =
3

2
e−t +

1

2
e3t − 1

3
e2t

Problem 22.3

y′′ − y′ − 2y = 10, y(−1) = 0, y′(−1) = 1, yp(t) = −5.

Solutions
(a) y′p = y′′p = 0.

y′′p − y′p − 2yp = 0− 0− 2(−5) = 10.

(b) The associated characteristic equation r2−r−2 = 0 has roots r1 = −1 and
r2 = 2. Hence, the general solution to the homogeneous differential equation
is

yh(t) = c1e
−t + c2e

2t.

(c) The general solution to the differential equation is y(t) = c1e
−t + c2e

2t −
5. The derivative of this function is given by y′(t) = −c1e−t + 2c2e

2t. The
condition y(−1) = 0 leads to c1e+c2e

−2 = 5. The condition y′(−1) = 1 leads
to −c1e+ 2c2e

−2 = 1. Solving for c1 and c2 we find c1 = 3
e

and c2 = 2e2. The
unique solution is given by

y(t) =
3

e
e−t + 2e2t+2 − 5
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Problem 22.4

y′′ + y′ = 2e−t, y(0) = 2, y′(0) = 2, yp(t) = −2te−t.

Solutions
(a) y′p = −2te−t + 2te−t, y′′p = 4e−t − 2te−t.

y′′p + y′p =4e−t − 2te−t − 2e−t + 2te−t

=2e−t.

(b) The associated characteristic equation r2 + r = 0 has roots r1 = 0 and
r2 = −1. Hence, the general solution to the homogeneous differential equation
is

yh(t) = c1 + c2e
−t.

(c) The general solution to the differential equation is y(t) = c1+c2e
−t−2te−t.

The derivative of this function is given by y′(t) = −c2e−t− 2e−t + 2te−t. The
condition y(0) = 2 leads to c1 + c2 = 2. The condition y′(0) = 2 leads to
−c2 − 2 = 2. Solving for c1 and c2 we find c1 = 6 and c2 = −4. The unique
solution is given by

y(t) = 6− 4e−t − 2te−t

Problem 22.5

y′′ + 4y = 10et−π, y(π) = 2, y′(π) = 0, yp(t) = 2et−π.

Solutions
(a) y′p = y′′p = 2et−π.

y′′p + 4y′p =2et−π + 8et−π

=10et−π.

(b) The associated characteristic equation r2 + 4 = 0 has roots r1 = −2i and
r2 = 2i. Hence, the general solution to the homogeneous differential equation
is

yh(t) = c1 cos 2t+ c2 sin 2t.

(c) The general solution to the differential equation is y(t) = c1 cos 2t +
c2 sin 2t+2et−π. The derivative of this function is given by y′(t) = −2c2 sin 2t+
2 cos 2t + 2et−π. The condition y(π) = 2 leads to c1 + 2 = 2. The condition
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y′(π) = 0 leads to 2c2 + 2 = 0. Solving for c1 and c2 we find c1 = 0 and
c2 = −1. The unique solution is given by

y(t) = − sin 2t+ 2et−π

Problem 22.6

y′′ − 2y′ + 2y = 5 sin t, y(
π

2
) = 1, y′(

π

2
) = 0, yp(t) = 2 cos t+ sin t.

Solutions
(a) y′p = −2 sin t+ cos t, y′′p = −2 cos t− sin t.

y′′p − 2y′p + 2yp =− 2 cos t− sin t+ 4 sin t− 2 cos t+ 4 cos t+ 2 sin t

=5 sin t.

(b) The associated characteristic equation r2−2r+2 = 0 has roots r1 = 1− i
and r2 = 1 + i. Hence, the general solution to the homogeneous differential
equation is

yh(t) = et(c1 cos t+ c2 sin t).

(c) The general solution to the differential equation is y(t) = et(c1 cos t +
c2 sin t) + 2 cos t + sin t. The derivative of this function is given by y′(t) =
et cos t(c1 + c2) + et sin t(−c1 + c2) − 2 sin t + cos t. The condition y(π

2
) = 1

leads to e
π
2 + 1 = 1. The condition y′(π

2
) = 0 leads to −eπ2 c1− 2 = 0. Solving

for c1 and c2 we find c1 = −2e−
π
2 and c2 = 0. The unique solution is given by

y(t) = −2et−
π
2 cos t+ 2 cos t+ sin t

Problem 22.7

y′′−2y′+y = t2 + 4 + 2 sin t, y(0) = 1, y′(0) = 3, yp(t) = t2 + 4t+ 10 + cos t.

Solutions
(a) y′p = 2t+ 4− sin t, y′′p = 2− cos t.

y′′p − 2y′p + yp =2− cos t− 4t− 8 + 2 sin t+ t2 + 4t+ 10 + cos t

=t2 + 4 + 2 sin t.
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(b) The associated characteristic equation r2 − 2r + 1 = 0 has roots r1 =
r2 = 1. Hence, the general solution to the homogeneous differential equation
is

yh(t) = c1e
t + c2te

t.

(c) The general solution to the differential equation is y(t) = c1e
t + c2te

t +
t2 + 4t+ 10 + cos t. The derivative of this function is given by y′(t) = c1e

t +
c2e

t + c2te
t + 2t+ 4− sin t. The condition y(0) = 1 leads to c1 + 10 + 1 = 1.

The condition y′(0) = 3 leads to c1 + c2 + 4 = 3. Solving for c1 and c2 we find
c1 = −10 and c2 = 9. The unique solution is given by

y(t) = −10et + 9tet + t2 + 4t+ 10 + cos t

The functions u1(t), u2(t), and u3(t) are solutions to the following differential
equations

u′′1 + p(t)u′1 + q(t)u1 =2e−t − t− 1

u′′2 + p(t)u′2 + q(t)u2 =3t

u′′3 + p(t)u′3 + q(t)u3 =2et + 1.

In Problems 22.8 - 22.9, use the functions u1, u2(t) and u3 to construct a
particular solution of the differential equation.

Problem 22.8

u′′ + p(t)u′ + q(t)u = et + 2t+
1

2
.

Solution.
The left-hand side of the given equation can be written as et + 2t + 1

2
=

1
2
(2et+1)+ 2

3
(3t) so that by Theorem 22.2, the function u(t) = 1

2
u1(t)+ 2

3
u2(t)

is the required particular solution

Problem 22.9

u′′ + p(t)u′ + q(t)u =
et + e−t

2
.

Solution.
The left-hand side of the given equation can be written as et+e−t

2
= 1

4
(2et +

1) + 1
4
(2e−t − t − 1) + 1

12
(3t) so that by Theorem 22.2, the function u(t) =
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1
4
u1(t) + 1

4
u2(t)

1
12
u2(t) is the required particular solution

In Problems 22.10 - 22.13, determine the function g(t).

Problem 22.10

y′′ − 2y′ − 3y = g(t), yp(t) = 3e5t.

Solution.
We have y′p = 15e5t and y′′p = 45e5t. Thus,

g(t) =y′′p − 2y′p − 3yp

=45e5t − 30e5t − 9e5t

=6e5t

Problem 22.11

y′′ − 2y′ = g(t), yp(t) = 3t+
√
t, t > 0.

Solution.
We have y′p = 3 + 1

2
√
t

and y′′p = − 1

4t
3
2
. Thus,

g(t) =y′′p − 2y′p

=− 1

4
t−

3
2 − 6− t−

1
2

Problem 22.12

y′′ + y′ = g(t), yp(t) = ln (1 + t), t > −1.

Solution.
We have y′p = 1

1+t
and y′′p = −(1 + t)−2. Thus,

g(t) =y′′p + y′p

=− 1

(1 + t)2
+ ln (1 + t)

Problem 22.13

y′′ + 2y′ + y = g(t), yp(t) = t− 2.
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Solution.
We have y′p = 1 and y′′p = 0. Thus,

g(t) =y′′p − 2y′p + yp

=0− 2 + t− 2

=t

In Problems 22.14 - 22.16, the general solution of the nonhomogeneous dif-
ferential equation y′′+αy′+βy = g(t) is given, where c1 and c2 are arbitrary
constants. Determine the constants α and β and the function g(t).

Problem 22.14

y(t) = c1e
t + c2e

2t + 2t−2t.

Solution.
From the given general solution we see that the roots of the characteristic
equation are r1 = 1 and r2 = 2. Thus, the characteristic equation is (r−1)(r−
2) = r2−3r+2 = 0. The associated differential equation is y′′−3y′+2y = 0.
Hence, α = −3 and β = 2. Now,

g(t) =y′′p − 3y′p + 2yp

=8e−2t + 12e−2t + 4e−2t = 24e−2t

Problem 22.15

y(t) = c1e
t + c2te

t + t2et.

Solution.
From the given general solution we see that the roots of the characteristic
equation are r1 = r2 = 1. Thus, the characteristic equation is (r−1)(r−1) =
r2 +2r+1 = 0. The associated differential equation is y′′+2y′+y = 0. Hence,
α = −2 and β = 1. Now,

g(t) =y′′p + 2y′p + yp

=2et + 4tet + t2et − 4tet − 2t2et + t2et

=2et
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Problem 22.16

y(t) = c1 sin 2t+ c2 cos 2t− 1 + sin t.

Solution.
From the given general solution we see that the roots of the characteristic
equation are r1 = −2i and r2 = 2i. Thus, the characteristic equation is
(r−2i)(r+2i) = r2+4 = 0. The associated differential equation is y′′+4y = 0.
Hence, α = 0 and β = 4. Now,

g(t) =y′′p + 4yp

=− sin t+ 4 sin t− 4

=3 sin t− 4

Problem 22.17
Given that the function et

5
satisfies the differential equation y′′ + 4y = et,

write a general solution of the differential equation y′′ + 4y = et.

Solution.
First, we find yh. The characteristic equation r2 + 4 = 0 has the roots
r1,2 = ±2i. Thus, yh(t) = c1 cos 2t + c2 sin 2t. The general solution to the
nonhomogeneous equation is

y(t) = c1 cos 2t+ c2 sin 2t+
et

5

Problem 22.18
Find the general solution to the differential equation

y(4) + 9y′′ = 24 + 108t2

given a particular solution yp(t) = cos 3t+ sin 3t+ t4.

Solution.
Let u = y′′. Then the given equation reduces to a second order differential
equation

z′′ + 9z = 24 + 108t2.

The characteristic equation is r2 + 9 = 0 so that the roots are r1,2 = ±3i.
Thus, zh(t) = c1 cos 3t + c2 sin 3t. Integrating this function twice we find
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yh(t) = c1 cos 3t+ c2 sin 3t+ c3t+ c4. Hence, the general solution to the given
differential equation is

y(t) = c1 cos 3t+ c2 sin 3t+ c3t+ c4 + t4

Problem 22.19
Show that the general solution of the third-order linear ODE y′′′ + p(t)y′′ +
q(t)y′ + r(t)y = g(t) is of the form y = yp + yh, where yp is a particular
solution, and yh is the general solution of the corresponding homogeneous
equation.

Solution.
All we have to do is verify that y if is any solution of y′′′ + p(t)y′′ + q(t)y′ +
r(t)y = g(t) , then y − yp is a solution of the homogeneous equation. Indeed

(y − yp)′′′ + p(t)(y − yp)′′ + q(t)(y − yp)′ + r(t)(y − yp) =

y′′′ − y′′′p + p(t)y′′ − p(t)y′′p + q(t)y′ − q(t)y′p + r(t)y − r(t)yp =

(y′′′ + p(t)y′′ + q(t)y′ + r(t)y)− (y′′′p + p(t)y′′p + q(t)y′p + r(t)yp) =

g(t)− g(t) = 0
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23 The Method of Undetermined Coefficients

Problem 23.1
List an appropriate form for a particular solution of
(a) y′′ + 4y = t2e3t.
(b) y′′ + 4y = te2t cos t.
(c) y′′ + 4y = 2t2 + 5 sin 2t+ e3t.
(d) y′′ + 4y = t2 cos 2t.

Solution.
The general solution to the homogeneous equation is yh(t) = c1 cos 2t +
c2 sin 2t.
(a) yp(t) = (A2t

2 + A1t+ A0)e
3t.

(b) yp(t) = (A1t+ A0)e
2t cos t+ (B1t+B0)e

2t sin t
(c) yp(t) = A2t

2 + A1t+ A0 +B0t cos 2t+ C0t sin 2t+D0e
3t

(d) yp(t) = t(A2t
2 + A1t+ A0) cos 2t+ t(B2t

2 +B1t+B0) sin 2t

For each of the differential equations in Problems 23.2 - 23.8
(a) Determine the general solution yh(t) to the homogeneous equation.
(b) Use the method of undetermined coefficients to find a particular solution
yp(t).
(c) Form the general solution.

Problem 23.2

y′′ − y′ = 5et − sin 2t.

Solution.
(a) The characteristic equation is r2 − r = 0, with roots r1 = 0 and r2 = 1.
Thus,

yh(t) = c1 + c2e
t

(b) Since et is a particular solution to the homogeneous equation, we put the
term Ctet into yp. Thus,

yp(t) = A cos (2t) +B sin (2t) + Ctet

Then y′p(t) = −2A sin (2t)+2B cos (2t)+Cet+Ctet, and y′′p(t) = −4A cos (2t)−
4B sin (2t) + 2Cet + Ctet. Putting these into the equation we get

−4A cos (2t)−4B sin (2t)+2Cet+Ctet+2A sin (2t)−2B cos (2t)−Cet−Ctet = 5et−sin (2t).
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We collect together the terms from both sides with cos (2t) and get −4A −
2B = 0. From the sin (2t) terms we get −4B+2A = −1. The tet terms cancel
out and the et terms give C = 5. Solving we get A = − 1

10
and B = 1

5
. Hence

our particular solution is

yp(t) = − 1

10
cos (2t) +

1

5
sin (2t) + 5tet.

(c) The general solution to the nonhomogeneous is

y(t) = c1 + c2e
t − 1

10
cos (2t) +

1

5
sin (2t) + 5tet

Problem 23.3

y′′ + 6y′ + 8y = −3e−t.

Solution.
(a) The characteristic equation is r2 + 6r + 8 = 0, with roots r1 = −2 and
r2 = −4. Thus,

yh(t) = c1e
−2t + c2e

−4t

(b) We look for a solution of the form yp(t) = Ae−t. After plugging in

yp(t) = Ae−t, y′p(t) = −Ae−t, y′′p(t) = Ae−t,

into the equation, we obtain

Ae−t − 6Ae−t + 8Ae−t = −3e−t =⇒ 3Ae−t = −3e−t =⇒ A = −1.

Thus, a particular solution of the ODE is

yp(t) = −e−t

(c) The general solution of the ODE is

y(t) = c1e
−2t + c2e

−4t − e−t

Problem 23.4

y′′ + 9y = sin 2t.
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Solution.
(a) The characteristic equation is r2+9 = 0, with roots r1 = −3i and r2 = 3i.
Thus,

yh(t) = c1 cos 3t+ c2 sin 3t

(b) Let yp(t) = a cos 2t+ b sin 2t. After plugging in

yp(t) = a cos 2t+b sin 2t, y′p(t) = −2a sin 2t+2b cos 2t, y′′p(t) = −4a cos 2t−4b sin 2t,

into the equation, we obtain

−4a cos 2t− 4b sin 2t+ 9a cos 2t+ 9b sin 2t = sin 2t =⇒ 5a cos 2t+ 5b sin 2t =
sin 2t =⇒ a = 0, b = 1

5

A particular solution is

yp(t) =
1

5
sin 2t

(c) The general solution is

y(t) = c1 cos 3t+ c2 sin 3t+
1

5
sin 2t

Problem 23.5

y′′ + 5y′ + 6y = 4− t2.

Solution.
(a) The characteristic equation is r2 + 5r + 6 = 0, with roots r1 = −2 and
r2 = −3. Thus,

yh(t) = c1e
−2t + c2e

−3t

(b) The nonhomogeneous term is a quadratic polynomial, so we look for a
particular solution of the form

yp(t) = at2 + bt+ c =⇒ y′p(t) = 2at+ b =⇒ y′′p(t) = 2a.

The equation becomes:

y′′p + 5y′p + 6yp =4− t2 =⇒
2a+ 5(2at+ b) + 6(at2 + bt+ c) =4− t2 =⇒

6at2 + (10a+ 6b)t+ (2a+ 5b+ 6c) =− t2 + 4.
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Thus, a, b, c must satisfy:

6a = −1, 10a+ 6b = 0, 2a+ 5b+ 6c = 4 =⇒ a = −1

6
, b =

5

18
, c =

53

108
.

So, a particular solution is

yp(t) = −1

6
t2 +

5

18
t+

53

108

(c) The general solution is

y(t) = c1e
−2t + c2e

−3t − 1

6
t2 +

5

18
t+

53

108

Problem 23.6

y′′ + 5y′ + 4y = te−t.

Solution.
(a) The characteristic equation is r2 + 5r + 4 = 0, with roots r1 = −1 and
r2 = −4. Thus,

yh(t) = c1e
−t + c2e

−4t

(b) Note that e−t is a solution to the homogeneous equation so our trial
function will take the form yp(t) = t(at+ b)e−t. In this case,

yp(t) = t(at+ b)e−t =⇒y′p(t) = (−at2 + (2a− b)t+ b)e−t

=⇒y′′p(t) = (at2 + (−4a+ b)t+ (2a− 2b))e−t

Substituting, we get:

te−t = y′′p + 5y′p + 4yp = (6at+ (2a+ 3b))e−t =⇒ 6a = 1, 2a+ 3b = 0 =⇒
a = 1

6
, b = −1

9
.

Thus, a particular solution is

yp(t) =
1

6
t2e−t − 1

9
te−t

(c) The general solution is

y(t) = c1e
−t + c2e

−4t +
1

6
t2e−t − 1

9
te−t
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Problem 23.7

y′′ + y = t cos t.

Solution.
(a) The characteristic equation is r2 + 1 = 0, with roots r1 = −i and r2 = i.
Thus,

yh(t) = c1 cos t+ c2 sin t

(b) The right side t cos t has the form Pn(t)eαt cos βt, with n = 1, α = 0, β =
1. Since cos t is a solution to the characteristic equation we should try a
particular solution of the form

yp(t) = t[(A0t+A1) cos t+(B0t+B1) sin t] = (A0t
2+A1t) cos t+(B0t

2+B1t) sin t

where A0, A1, B0, B1 are constant coefficients to be determined.
Substituting yp into the differential equation, we have the identity

t cos t =y′′p + yp

=[(A0t
2 + A1t) cos t+ (B0t

2 +B1t) sin t]′′

+[(A0t
2 + A1t) cos t+ (B0t

2 +B1t) sin t]

={[2A0 cos t+ 2(2A0t+ A1)(− sin t) + (A0t
2 + A1t)(− cos t)]

+[2B0 sin t+ 2(2B0t+B1) cos t+ (B0t
2 +B1t)(− sin t)]}

+[(A0t
2 + A1t) cos t+ (B0t

2 +B1t) sin t]

=[4B0t+ (2A0 + 2B1)] cos t+ [−4A0t+ (−2A1 + 2B0)] sin t

Comparing both sides we find

4B0 = 1, 2A0 + 2B1 = 0, − 4A0 = 0, − 2A1 + 2B0 = 0

which give

A0 = 0, A1 =
1

4
, B0 =

1

4
, B1 = 0

Thus, a particular solution is

yp(t) =
1

4
t cos t+

1

4
t2 sin t

(c) The general solution is

y(t) = c1 cos t+ c2 sin t+
1

4
t cos t+

1

4
t2 sin t
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Problem 23.8

y′′ + 4y′ + 4y = e−2t.

Solution.
(a) The characteristic equation is (r + 2)2 = 0, with roots r1 = r2 = −2.
Thus,

yh(t) = c1e
−2t + c2te

−2t

(b) Since e−2t and te−2t are solutions to the homogeneous equation, a trial
function would be yp(t) = At2e−2t. where A is a constant coefficient to be
determined.
Substituting yp into the differential equation, we have the identity

e−2t =y′′p + 4y′p + 4yp

=(At2e−2t)′′ + 4(At2e−2t)′ + 4At2e−2t

=[2Ae−2t − 8Ate−2t + 4At2e−2t]

+4[2Ate−2t − 2At2e−2t] + 4[At2e−2t]

=2Ae−2t

Comparing the both sides, we have A = 1
2
. Thus, the particular solution is

yp(t) =
1

2
t2e−2t

(c) The general solution is

y(t) = c1e
−2t + c2te

−2t +
1

2
t2e−2t

Problem 23.9
Find a second-order linear ordinary differential equation whose general solu-
tion is y(t) = c1e

2t + c2e
−t + 7t.

Solution.
From the general solution yh(t) = c1e

2t+c2e
−t to the homogeneous equation,

we see that the corresponding homogeneous equation is associated with the
characteristic equation whose roots are r = 2,−1. Hence, (r− 2)(r+ 1) = 0,
or r2−r−2 = 0. Thus, the differential equation is given by y′′−y′−2y = g(t),
where g(t) is to be determined by using the particular solution yp(t) = 7t.
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Using yp(t) = 7t in y′′p − y′p − 2yp = g(t), we get 0 − 7 − 2(7t) = g(t), or
equivalently, g(t) = −14t − 7. Thus, our differential equation is given by
y′′ − y′ − 2y = −14t− 7.

Problem 23.10
For the equation y′′+ 6y′+ 8y = 5t+ 6t2e−4t + 7 sin (4t), determine the form
of the simplest particular solution if the method of undetermined coefficients
is to be used. You do not need to evaluate the coefficients.

Solution.
The homogeneous equation has constant coefficients. The characteristic
equation is r2 + 6r + 8 = 0, or (r + 2)(r + 4) = 0. Hence, r = −2,−4.
Since e−4t is a solution of the homogeneous equation, a trial guess for the
particular solution is

yp(t) = A1 + A2t+ t(B1t
2 +B2t+B3)e

−4t + E1 cos (4t) + E2 sin (4t),

where the coefficients are to be determined

Problem 23.11
Find a linear ordinary differential equation whose general solution is y(t) =
c1e

2t cos (3t) + c2e
2t sin (3t) + 3e3t.

Solution.
From the general solution yh(t) = c1e

2t cos (3t) + c2e
2t sin (3t) of the homo-

geneous equation, we see that the corresponding characteristic equation has
roots are r = 2± 3i. Hence, (r − 2)2 + 9 = 0, or r2 − 4r + 4 + 9 = 0, which
simplifies to r2 − 4r + 13 = 0. Thus, the differential equation is given by
y′′− 4y′+ 13y = g(t), where g(t) is to be determined by using the particular
solution yp(t) = 3e3t. We have yp(t) = 3e3t, y′p(t) = 9e3t, y′′p(t) = 27e3t. Using
these in y′′p − 4y′p + 13yp = g(t), we get 27e3t − 4(9e3t) + 13(3e3t) = g(t), or
equivalently, g(t) = (27− 36 + 39)e3t = 30e3t. Thus, our differential equation
is given by y′′ − 4y′ + 13y = 30e3t

Problem 23.12
Write down the form of a particular solution of

y′′ − 4y′ + 4y = t3 + 1 + 2te2t − sin 2t.
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Solution.
By linear property, if yp1 , yp2 and yp3 are respectively particular solutions of
the equations

y′′ − 4y′ + 4y =t3 + 1

y′′ − 4y′ + 4y =2te2t

y′′ − 4y′ + 4y =− sin 2t

then yp = yp1 + yp2 + yp3 is a particular solution of the differential equation.
The characteristic equation to the homogeneous equation is r2 − 4r + 4 = 0
with repeated roots r1,2 = 2. Thus, yh = c1e

2t + c2te
2t. By the method of

undetermined coefficients, we have

yp1 =A0t
3 + A1t

2 + A2t+ A3

yp2 =t2(B0t+B1)e
2t

yp3 =C0 cos 2t+ C1 sin 2t

Therefore we have the form

yp = A0t
3 + A1t

2 + A2t+ A3 + t2(B0t+B1)e
2t + C0 cos 2t+ C1 sin 2t

Problem 23.13
Set up the appropriate form of a particular solution (don’t find the constants)
for the equation

y′′ − 4y′ + 5y = 3e2t cos t+ e−t + (4t5 + t2)et sin (2t).

Solution.
The characteristic equation is r2−4r+5 = 0 with complex roots r1,2 = 2± i.
Thus, yh(t) = c1e

2t cos t+c2e
2t sin t. Hence the form of the particular solution

is

yp(t) =t(A cos t+B sin t)e2t + Ce−t

+(Dt5 + Et4 + Ft3 +Gt2 +Ht+ I)et sin (2t)

+(Kt5 + Lt4 +Mt3 +Nt2 +Ot+ P )et cos (2t)

Problem 23.14
Find the general solution to the differential equation

y′′ − 4y′ + 3y = e3t + t2.
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Solution.
The associated homogeneous differential equation is y′′ − 4y′ + 3y = 0, and
its characteristic equation is r2 − 4r + 3 = 0 with roots r1 = 1 and r2 = 3.
Therefore the general solution to the homogeneous equation is yh(t) = c1e

t+
c2e

3t.
We get a particular solution yp to the given DE by using the method of
undetermined coefficients. Because e3t is a solution of the homogeneous DE,
we know there exists a solution yp1 with the form yp1(t) = Ate3t, for some
constant A. Plugging this into the DE, we find A = 1/2. We know when the
right side is t2 that there is a solution of the form yp2(t) = Bt2 + Ct + D.
Plugging this form into the DE and solving, we get yp2(t) = 1

3
t2 + 8

9
t + 26

27
.

Putting it all together, our general solution to the given DE is

y(t) = c1e
t + c2e

3t +
1

2
te3t +

1

3
t2 +

8

9
t+

26

27

Problem 23.15
For each of the following nonhomogeneous 2nd order linear differential equa-
tions, propose a particular solution, with undetermined coefficients. Do not
proceed to solve for the undetermined coefficients.
(a) 2y′′ − 5y′ − 3y = 7t+ t2e−

t
2 .

(b) 2y′′ − 2y′ + 5y = 7t+ t2e−
t
2 .

Solution.
The proposed particular solution for the method of undetermined coefficients
depends almost exclusively on the RHS of the nonhomogeneous DE, but
has to be modified slightly if the RHS involves a solution to the associated
homogenous equation.
(a) The general solution to the homogeneous equation is yh(t) = c1e

3t+c2e
− t

2 .
Since e−

t
2 is a solution to the homogenous equation, the proposed solution

has the form:

yp(t) = (A+Bt) + t(C +Dt+ Et2)e−
t
2 .

(b) The general solution to the homogeneous equation is yh(t) = e
t
2

(
c1 cos

(
3t
2

)
+ c2 sin

(
3t
2

))
.

The RHS of the differential equation does not involve a solution to the asso-
ciated homogenous equation, so the proposed solution has the form:

yp(t) = (A+Bt) + (C +Dt+ Et2)e−
t
2
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Problem 23.16
Solve the following initial value problem:

y′′ − 5y′ − 14y = −14t2 − 10t− 26, y(0) = 0, y′(0) = 0.

Solution.
The associated homogeneous differential equation

y′′ − 5y′ − 14y = 0

has characteristic equation r2 − 5r − 14 = 0 with roots r1 = −2 and r2 = 7.
Therefore, the general solution to the homogeneous equation is

y(t) = c1e
−2t + c2e

7t

Our trial function is
yp(t) = At2 +Bt+ C

Plugging this expression into our equation, we obtain:

(2A)− 5(2At+B)− 14(At2 +Bt+ C) =− 14At2 + (−10A− 14B)t+ (2A− 5B − 14C)

=− 14t2 − 10t− 26

Equating coefficients of like powers of t we find

−14A = −14, − 10A− 14B = −10, 2A− 5B − 14C = −26

Solving these equations we find A = 1, B = 0, and C = 2. Hence,

yp(t) = t2 + 2

and
y(t) = c1e

−2t + c2e
7t + t2 + 2

Now, c1 and c2 satisfy the equations

y(0) =c1 + c2 + 2 = 0

y′(0) =− 2c1 + 7c2 = 0

Solving these algebraic equations for c1 and c2, we find c1 = −14
9

and c2 = −4
9
.

Hence, the unique solution to the initial-value problem is

y(t) = −4

9
e7t − 14

9
e−2t + t2 + 2
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In Problems 17.17 - 17.18, we consider the differential equation y′′+αy′+βy =
g(t). The nonhomogeneous term g(t) and the form of the particular solution
prescribed by the method of undetermined coefficients are given. Determine
α and β.

Problem 23.17

g(t) = t+ e3t, yp(t) = A1t
2 + A0t+B0te

3t.

Solution.
Since yp(t) = t(A0 +A1t) +B0te

3t we know that 0 and 3 are solutions to the
characteristic equation. That is, r2−3r = 0 so that the associated differential
equation is y′′ − 3y′ = 0. Hence, α = −3 and β = 0

Problem 23.18

g(t) = −et+sin 2t+et sin 2t, yp(t) = A0e
t+B0t cos 2t+C0t sin 2t+D0e

t cos 2t+E0e
t sin 2t.

Solution.
From the expression of yp(t) we know that the roots of the characteristic
equation are r = ±2i so that the characteristic equation is r2 + 4 = 0. The
associated differential equation is then y′′+ 4y = 0 and so α = 0 and β = 4

Problem 23.19
Solve using undetermined coefficients:

y′′ + y′ − 2y = t+ sin 2t, y(0) = 1, y′(0) = 0.

Solution.
The characteristic equation is r2+r−2 = 0, which has roots r1 = −2 and r2 =
1. The homogeneous solution is thus yh(t) = c1e

t + c2e
−2t. A trial function

for the particular solution has the form yp(t) = At+B +C sin 2t+D cos 2t.
Plugging into the differential equation, we get:

−4C sin 2t−4D cos 2t+A+2C cos 2t−2D sin 2t−2At−2B−2C sin 2t−2D cos 2t = t+sin 2t

Matching coefficients, we see

−6C − 2D = 1, − 6D + 2C = 0, − 2A = 1, A− 2B = 0,
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whence we get the particular solution

yp(t) = −1

2
t− 1

4
− 3

20
sin 2t− 1

20
cos 2t,

and so the general solution is

y(t) = c1e
t + c2e

−2t − 1

2
t− 1

4
− 3

20
sin 2t− 1

20
cos 2t

Now, we must match initial conditions. Since

y′(t) = c1e
t − 2c2e

−2t − 1

2
− 3

10
cos 2t+

1

10
sin 2t,

plugging in conditions at t = 0 gives:

y(0) =c1 + c2 −
1

4
− 1

20
= 1

y′(0) =c1 − 2c2 −
1

2
− 3

10
= 0

or

c1 + c2 =
13

10

c1 − 2c2 =
4

5

So c2 = 1
6
, c1 = 17

15
, and we have our solution, y(t) = 17

15
et + 1

6
e−2t − 1

2
t− 1

4
−

3
20

sin 2t− 1
20

cos 2t

224



24 The Method of Variation of Parameters

Problem 24.1
Solve y′′ + y = sec t by variation of parameters.

Solution.
The characteristic equation r2 + 1 = 0 has roots r = ±i and

yh(t) = c1 cos t+ c2 sin t

Also, y1(t) = cos t and y2(t) = sin t so that W (t) = cos2 t+ sin2 t = 1. Now,

u1 = −
∫

sin t sec tdt =

∫
d(cos t)

cos t
= ln | cos t|

and

u2 =

∫
cos t sec tdt =

∫
dt = t

Hence, the particular solution is given by

yp(t) = ln | cos t| cos t+ t sin t

and the general solution is

y(t) = c1 cos t+ c2 sin t+ ln | cos t| cos t+ t sin t

Problem 24.2
Solve y′′−y = et by undetermined coefficients and by variation of parameters.
Explain any differences in the answers.

Solution.
The characteristic equation r2 − 1 = 0 for y′′ − y = 0 has roots r = ±1. The
homogeneous solution is

yh(t) = c1e
t + c2e

−t.

Undetermined Coefficients Summary. The basic trial solution method
gives initial trial solution yp(t) = d1te

t since 1 is a root of the characteristic
equation. Substitution into y′′−y = et gives 2d1e

t+d1te
t−d1te

t = et. Cancel
et and equate coefficients of like powers of t to find d1 = 1/2. Then yp = tet

2
.

Variation of Parameters Summary. The homogeneous solution yh(t) =
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c1e
t + c2e

−t found above implies y1 = et, y2 = e−t is a suitable independent
pair of solutions. Their Wronskian is W = −2. The variation of parameters
formula applies:

yp(t) = et
∫
e−t

2
etdt− e−t

∫
et

2
etdt

Integration, followed by setting all constants of integration to zero, gives
yp(t) = tet

2
− et

4
.

Differences. The two methods give respectively yp(t) = tet

2
and yp(t) = tet

2
−

et

4
. The solutions yp(t) = tet

2
and yp(t) = tet

2
− et

4
differ by the homogeneous

solution − et

4
. In both cases, the general solution is

y(t) = c1e
t + c2e

−t +
1

2
tet

because terms of the homogeneous solution can be absorbed into the arbitrary
constants c1, c2

Problem 24.3
Solve the following 2nd order equation using the variation of parameters
method:

y′′ + 4y = t2 + 8 cos 2t.

Solution.
The characterisitc equation r2 + 4 = 0 has roots r = ±2i so that yh(t) =
c1 cos 2t+ c2 sin 2t. Hence, y1(t) = cos 2t, y2(t) = sin 2t, and W (t) = 2. Thus,

yp =− cos 2t

∫
sin 2t(t2 + 8 cos 2t)

2
dt+ sin 2t

∫
cos 2t(t2 + 8 cos 2t)

2
dt

=− cos 2t(
1

4
t sin 2t+

1

8
cos 2t− 1

4
t2 cos 2t− cos2 2t)

+ sin 2t(
1

4
t cos 2t− 1

8
sin 2t+

1

4
t2 sin 2t+ 2t+

1

2
sin 4t)

=− 1

8
+

1

4
t2 + cos2 2t cos 2t+ 2t sin 2t+

1

2
sin 4t sin 2t

The general solution is

y(t) = c1 cos 2t+ c2 sin 2t− 1

8
+

1

4
t2 + 2t sin 2t
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Problem 24.4
Find a particular solution by the variation of parameters to the equation

y′′ + 2y′ + y = e−t ln t.

Solution.
The characteristic equation

r2 + 2r + 1 = 0

has roots r1 = r2 = −1, so the fundamental solutions of the reduced equation
are

y1(t) = e−t, y2(t) = te−t

Compute the Wronskian.

W (t) =

∣∣∣∣ e−t te−t

−e−t e−t − te−t
∣∣∣∣

=e−t(e−t − te−t) + e−t · te−t

=e−2t − te−2t + te−2t

=e−2t

Compute u1(t).

u1(t) =−
∫
y2(t)g(t)

W (t)
dt

=−
∫
te−t · e−t ln t

e−2t
dt

=−
∫
t ln tdt = −t

2

2
ln t+

∫
t2

2
· 1

t
dt

=− t2

2
ln t+

t2

4

Compute u2(t).

u2(t) =

∫
y1(t)g(t)

W (t)
dt

=

∫
e−t · e−t ln t

e−2t
dt

=

∫
ln tdt = t ln t−

∫
t · 1

t
dt

=t ln t− t
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Note. We used integration by parts to compute the integrals
∫
t ln tdt and∫

ln tdt.
The particular solution to our complete equation is

yp(t) =u1(t)y1(t) + u2(t)y2(t)

=

(
−t

2

2
ln t+

t2

4

)
e−t + (t ln t− t)te−t

=
t2

2
ln te−t − 3t2

4
e−t

=(
t2

2
ln t− 3t2

4
)e−t

Problem 24.5
Solve the following initial value problem by using variation of parameters:

y′′ + 2y′ − 3y = tet, y(0) = − 1

64
, y′(0) =

59

64
.

Solution.
From the characteristic equation, we obtain y1(t) = et, y2(t) = e−3t and
W (t) = −4e−2t. Integration then yields

u1(t) =−
∫

e−3ttet

−4e−2t
dt =

t2

8

u2(t) =

∫
ettet

−4e−2t
dt = − 1

16
te4t +

e4t

64

Thus. yp(t) = et

64
(8t2 − 4t+ 1) and the general solution is

y(t) = c1e
t + c2e

−3t +
t2

8
et − 1

16
tet

Initial conditions:

y(0) =c1 + c2 = − 1

64

y′(0) =c1 − 3c2 −
4

64
=

59

64

These are satisfied by c1 = 15
64

and c2 = −1
4
. Finally the solution to the initial

value problem is

y =
et

64
(8t2 − 4t+ 15)− 1

4
e−3t
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Problem 24.6
(a) Verify that {e

√
t, e−

√
t} is a fundamental set for the equation

4ty′′ + 2y′ − y = 0

on the interval (0,∞). You may assume that the given functions are solutions
to the equation.
(b) Use the method of variation of parameters to find one solution to the
equation

4ty′′ + 2y′ − y = 4
√
te
√
t.

Solution.
(a) Usually the first thing to do would be to check that y1(t) = e

√
t and

y2(t) = e−
√
t really are solutions to the equation. However, the question says

that this can be assumed and so we move on to the next step, which is to
check that the Wronskian of the two solutions is non-zero on (0,∞). We have

y′1 = 1
2
√
t
e
√
t and y′2 = − 1

2
√
t
e−
√
t

and so

W (t) = y1y
′
2 − y′1y2 = − 1

2
√
t
− 1

2
√
t

= − 1√
t

This is indeed non-zero and so {e
√
t, e−

√
t} is a fundamental set for the ho-

mogeneous equation.
(b) The variation of parameters formula says that

y = −y1

∫
y2g

W (t)
dt+ y2

∫
y1g

W (t)
dt

is a solution to the nonhomogeneous equation in the form y′′ + py′ + qy = g.
To get the right g, we have to divide the equation through by 4t and so
g = 1√

t
e
√
t. Thus

y =− e
√
t

∫ e−
√
t( 1√

t
)e
√
t

−1/
√
t

dt+ e−
√
t

∫ e
√
t( 1√

t
)e
√
t

−1/
√
t
dt

=e
√
t

∫
dt− e−

√
t

∫
e2
√
tdt

=te
√
t − e−

√
t

∫
e2
√
tdt
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To evaluate the integral, we substitute u = 2
√
t so that dt = 1

2
udu. We get∫

e2
√
tdt =

1

2

∫
ueudu =

1

2
(u− 1)eu = (

√
t− 1/2)e2

√
t.

Thus
y = (t−

√
t+ 1/2)e

√
t

is one solution to the equation. You might notice that the 1/2 can be dropped

(because (1/2)e
√
t is a solution to the homogeneous equation) so that

y = (t−
√
t)e
√
t

would also work

Problem 24.7
Use the method of variation of parameters to find the general solution to the
equation

y′′ + y = sin t.

Solution.
The characteristic equation r2 + 1 = 0 has roots r = ±i so that the solu-
tion to the homogeneous equation is yh(t) = c1 cos t + c2 sin t. The Wron-

skian is W (cos t, sin t) = 1. Now u′1(t) = − sin2 t = cos (2t)−1
2

. Hence u1(t) =
1
2
(1

2
sin(2t) − t). Similarly, u′2(t) = sin t cos t. Hence u2(t) = 1

2
sin2 t. So

yp(t) = −1
2
t cos t+ 1

2
sin t. The general solution is given by

y(t) = c1 cos t+ c2 sin t− 1

2
t cos t

Problem 24.8
Consider the differential equation

t2y′′ + 3ty′ − 3y = 0, t > 0.

(a) Determine r so that y = tr is a solution.
(b) Use (a) to find a fundamental set of solutions.
(c) Use the method of variation of parameters for finding a particular solution
to

t2y′′ + 3ty′ − 3y =
1

t3
, t > 0.
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Solution.
(a) Inserting y, y′, and y′′ into the equation we find r2 + 2r − 3 = 0. Solving
for r to obtain r1 = 1 and r2 = −3.
(b) Let y1(t) = t and y2(t) = t−3. Since

W (t) =

∣∣∣∣ t t−3

1 −3t−4

∣∣∣∣ = −4t−3

{y1, y2} is a fundamental set of solutions for t > 0.
(c) Recall that the variation of parameters formula states that if y1 and y2

form a fundamental solution set for y′′ + p(t)y′ + q(t)y = 0, then yp(t) =
u1(t)y1(t) + u2(t)y2(t) is a particular solution to the equation y′′ + p(t)y′ +
q(t)y = g(t), where

u1(t) =−
∫
t−3t−5

−4t−3
dt = − 1

16
t−4

u2(t) =

∫
t · t−5

−4t−3
dt = −1

4
ln t

Thus,

yp(t) = − 1

16
t−3 − 1

4
t−3 ln t

Problem 24.9
Use the method of variation of parameters to find the general solution to the
differential equations

y′′ + y = sin2 t.

Solution.
The characterisitc equation r2 + 1 = 0 has roots r = ±i so that y1(t) =
cos t, y2(t) = sin t, and W (t) = 1. Hence,

u1(t) =−
∫

sin t sin2 tdt =

∫
(1− cos2 t)d(cos t) = cos t− 1

3
cos3 t

u2(t) =

∫
cos t sin2 tdt =

1

3
sin3 t

Thus,

yp(t) = cos2 t− 1

3
cos4 t+

1

3
sin4 t

and

y(t) = c1 cos t+ c2 sin t+ cos2 t− 1

3
cos4 t+

1

3
sin4 t
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25 Applications of Nonhomogeneous Second

Order Linear Differential Equations: Forced

Mechanical Vibrations

Problem 25.1
Find the charge and current at time t in the circuit below if R = 40Ω, L =
1 H,C = 16 × 10−4 F, and E(t) = 100 cos 10t and the initial charge and
current are both zero.

Solution.
With the given values of L,R,C, and E(t), the equation

L
d2Q

dt2
+R

dQ

dt
+

1

C
Q = E(t)

becomes
d2Q

dt2
+ 40

dQ

dt
+ 625Q = 100 cos (10t).

The characteristic equation is

r2 + 40r + 625 = 0

with roots

r1,2 =
−40±

√
402 − 4× 625

2
= −20± 15i

so the general solution to the homogeneous equation is

Qh(t) = e−20t(c1 cos (15t) + c2 sin (15t)).

For the method of undetermined coefficients we try the particular solution

Qp(t) = A cos (10t) +B sin (10t).
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Then

Q′p(t) =− 10A sin (10t) + 10B cos (10t)

Q′′p(t) =− 100A cos (10t)− 100B sin (10t)

Substituting into the nonhomogeneous equation and factoring we obtain

(525A+ 400B) cos (10t) + (−400A+ 525B) sin (10t) = 100 cos (10t).

Equating coefficients we find

525A+ 400B =100

−400A+ 525B =0

Solving this system by the method of elimination we find A = 84
607

and B =
64
697
, so a particular solution is

Qp(t) =
1

697
(84 cos (10t) + 64 sin (10t))

and the general solution is

Q(t) = e−20t(c1 cos (15t) + c2 sin (15t)) +
1

697
(84 cos (10t) + 64 sin (10t)).

Imposing the condition Q(0) = 0 we get

Q(0) = c1 +
84

697
= 0 =⇒ c1 = − 84

697
.

To impose the other initial condition we first differentiate to find the current:

I =
dQ

dt
=e−20t[(−20c1 + 15c2) cos (15t) + (−15c1 − 20c2) sin (10t)]

+
40

697
(16 cos (10t)− 21 sin (10t))

Thus,

I(0) = −20c1 + 15c2 +
640

697
= 0 =⇒ c2 = − 464

2091
.

Thus, the formula for the charge is

Q(t) =
4

697

[
e−20t

3
(−63 cos (15t)− 116 sin (15t)) + (21 cos (10t) + 16 sin (10t))

]
and the expression for the current is

I(t) =
1

2091

[
e−20t(−1920 cos (15t) + 13060 sin (15t)) + 120(−21 sin (10t) + 16 cos (10t))

]
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Problem 25.2
A series circuit consists of a resistor with R = 20Ω, an inductor with L = 1 H,
a capacitor with C = 0.005 F, and a 12-V battery. If the initial charge and
current are both 0, find the charge and current at time t.

Solution.
Here the initial-value problem for the charge is

Q′′ + 20Q′ + 500Q = 12, Q(0) = Q′(0) = 0.

The characteristic equation is

r2 + 20r + 500 = 0

with roots
r1,2 = −10± 20i

so that the general solution to the homogeneous equation is

Qh(t) = e−10t(c1 cos 20t+ c2 sin 20t).

Using the undetermined coefficients method we try the solution Qp(t) = A
which by substitution we find A = 3

125
. Hence, the general solution is

Q(t) = e−10t(c1 cos 20t+ c2 sin 20t) +
3

125
.

Using the initial condition Q(0) = 0 we find c1 + 3
125

= 0 which implies that
c1 = − 3

125
. Using the condition Q′(0) = 0 where

I(t) = Q′(t) = e−10t[(−10c1 + 20c2) cos 20t+ (−10c1 − 20c2) sin 20t]

we find −10c1 + 20c2 = 0. Solving for c2 we find c2 = 3
250
. Thus, the formula

for the charge is

Q(t) = −e
−10t

250
((6 cos (20t) + 3 sin (20t)) +

3

125

and the expression for the current is

I(t) =
3

5
e−10t sin (20t)
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Problem 25.3
The battery in previous problem is replaced by a generator producing a
voltage of E(t) = 12 sin 10t. Find the charge at time t.

Solution.
As in the previous exercise, Qh(t) = e−10t(c1 cos 20t + c2 sin 20t) but E(t) =
12 sin 10t. Using the undetermined coefficients method we try the solution
Qp(t) = A cos 10t+B sin 10t which by substitution we find

(−100A+200B+500A) cos 10t+(−100B−200A+500B) sin 10t = 12 sin 10t.

Hence, we obtain the system

−100A+ 200B + 500A =0

−100B − 200A+ 500B =12

Solving this system by elimination we find A = − 3
250

and B = 3
125
. Hence,

the general solution is

Q(t) = e−10t(c1 cos 20t+ c2 sin 20t)− 3

250
cos 10t+ frac3125 sin 10t.

Using the initial condition Q(0) = 0 we find

c1 −
3

250
= 0 =⇒ c1 =

3

250
.

Using the condition Q′(0) = 0 where

I(t) = Q′(t) = e−10t[(−10c1+20c2) cos 20t+(−10c1−20c2) sin 20t]+
3

25
sin 10t+

6

25
cos 10t

we find 6
25
− 10c1 + 20c2 = 0. Solving for c2 we find c2 = − 3

500
. Thus, the

formula for the charge is

Q(t) = e−10t

[
3

250
cos 20t− 3

500
sin 20t

]
− 3

250
cos 10t+

3

125
sin 10t

Problem 25.4
A series circuit contains a resistor with R = 24 Ω, an inductor with L = 2 H,
a capacitor with C = 0.005 F, and a 12-V battery. The initial charge is
Q = 0.001 C and the initial current is 0.
(a) Find the charge and current at time t.
(b) Graph the charge and current functions.
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Solution.
(a) With the given values of L,R,C, and E(t), the equation

L
d2Q

dt2
+R

dQ

dt
+

1

C
Q = E(t)

becomes

2
d2Q

dt2
+ 24

dQ

dt
+ 200Q = 12.

The characteristic equation is

r2 + 12r + 100 = 0

with roots

r1,2 =
−12±

√
122 − 4× 100

2
= −6± 8i

so the general solution to the homogeneous equation is

Qh(t) = e−6t(c1 cos (8t) + c2 sin (8t)).

For the method of undetermined coefficients we try the particular solution
Qp(t) = A which by substitution leads to A = 3

50
. Hence, the general solution

is

Q(t) = e−6t(c1 cos (8t) + c2 sin (8t)) +
3

50
.

Imposing the condition Q(0) = 0.001 we get

Q(0) = c1 +
3

50
= 0 =⇒ c1 = − 3

50
.

To impose the other initial condition we first differentiate to find the current:

I =
dQ

dt
= e−6t[(−6c1 + 8c2) cos (8t) + (−8c1 − 6c2) sin (8t).

Thus,

I(0) = −6c1 + 8c2 = 0 =⇒ c2 = − 9

200
.

Thus, the formula for the charge is

Q(t) = − 3

50
e−6t(cos (8t) +

1

4
sin (8t)) +

3

50
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and the expression for the current is

I(t) =
3

4
e−6t sin 8t.

(b) Use a graphing calculator

Problem 25.5
A vibrating spring with damping is modeled by the differential equation

y′′ + 2y′ + 4y = 0.

(a) Find the general solution to the equation. Show each step of the process.
(b) Is the solution under damped, over damped or critically damped?
(c) Suppose that the damping were changed, keeping the mass and the spring
the same, until the system became critically damped. Write the differential
equation which models this critically damped system. Do not solve.
(d) What is the steady state (long time) solution to

y′′ + 2y′ + 4y = cos (2t)?

Solution.
(a) The characteristic equation is r2 + 2r+ 4 = 0 with roots r1,2 = −1± i

√
3.

Thus, the general solution is yh(t) = e−t(c1 cos
√

3t+ c2 sin
√

3t).
(b) Since the discriminant of the DE is negative, the solution is under
damped. See Chapter 30.
(c) The differential equation is y′′ + 4y′ + 4y = 0.
(d) The general solution to the homogeneous equation tends to zero in
the long time. Thus, the steady-state solution is the particular solution
to the nonhomogeneous equation which can be found by the method of
undetermined coefficients. We try yp = A cos 2t + B sin 2t. In this case,
y′p = −2A sin 2t + 2B cos 2t and y′′p = −4A cos 2t − 4B sin 2t. Substituting
into the differential equation we find

4B cos 2t− 2A sin 2t = cos 2t.

Thus, A = 0 and B = 1
4
. In this case, the steady-state solution is y(t) =

1
4

sin 2t
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Problem 25.6
A vertical spring with a spring constant equal to 108 lb/ft has a 96 lb weight
attached to it. A dashpot (or a shock absorber) with a damping coefficient c
= 36 lb-sec/ft is attached to the weight. Suppose that a downward force of
f(t) = 72 cos 6t is applied to the weight. If the weight is released from rest
at the equilibrium position at time t = 0
(a) show that the differential equation governing the displacement y(t) is

y′′ + 12y′ + 36y = 24 cos 6t

where g = 32 ft/sec is used .
(b) Find the solution satisfying the equation established in Part (a) and the
given initial conditions.

Solution.
(a) We are given 32m = 96, k = 36, γ = 108, and E(t) = 72 cos 6t. Thus,
that the differential equation governing the displacement y(t) is

y′′ + 12y′ + 36y = 24 cos 6t.

(b) The characteristic equation is r2 + 12r + 36 = 0 with repeated roots
r1,2 = −6. Thus, yh(t) = e−6t(c1 + c2t). For a particular solution we try
yp = A cos 6t + B sin 6t. We have y′p = −6A sin 6t + 6B cos 6t and y′′p =
−36A cos 6t− 36B sin 6t. Substituting into the differential equation we find

36B cos 6t− 36A sin 6t = 24 cos 6t.

Hence, A = 0 and B = 2
3

and yp = 2
3

sin 6t. The general solution is y =
e−6t(c1 + c2t) + 2

3
sin 6t. Using the conditions y(0) = y′(0) = 0 we find c1 = 0

andd c2 = −4. Hence, y(t) = −4te−6t + 2
3

sin 6t

Problem 25.7
A six Newton weight is attached to the lower end of a coil spring suspended
from the ceiling, the spring constant of the spring being 27 Newtons per
meter. The weight comes to rest in its equilibrium position, and beginning
at t = 0 an external force given by F (t) = 12 cos (20t) is applied to the
system. Determine the resulting displacement as a function of time, assuming
damping is negligible.
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Solution.
We have the differential equation

6y′′ + 27y = 12 cos 20t.

We also have F = 12, ω0 = 3√
2
, ω = 20. Thus, the displacement function is

y(t) =
24

400− 9
4

sin
20− 3/

√
2

2
t sin

20 + 3/
√

3

2
t

Problem 25.8
An inductor of 5 henries is connected in series with a capacitor of 1/180
farads, a resistor of 60 ohms and a voltage-supply given by E(t) = 120 cos 6t
in volts. Suppose that both the charge Q and the current I are zero initially.
(a) Show that the differential equation governing the charge Q(t) is

Q′′ + 12Q′ + 36Q = 24 cos 6t

(b) Find the charge Q(t) satisfying the equation of Part (a) and the given
initial conditions.

Solution.
(a) We are given that L = 5, C = 1

180
, R = 60, and E(t) = 12 cos 6t. Substi-

tuting in the equation

L
d2Q

dt2
+R

dQ

dt
+

1

C
Q = E(t)

we obtain
Q′′ + 12Q′ + 36Q = 24 cos 6t

(b) The characteristic equation is

r2 + 12r + 36 = 0

with roots

r1,2 =
−12±

√
122 − 4× 36

2
= −6

so the general solution to the homogeneous equation is

Qh(t) = e−6t(c1 + c2t).
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For the method of undetermined coefficients we try the particular solution

Qp(t) = A cos (6t) +B sin (6t).

Then

Q′p(t) =− 6A sin (6t) + 6B cos (6t)

Q′′p(t) =− 36A cos (6t)− 36B sin (6t)

Substituting into the nonhomogeneous equation and factoring we obtain

72B cos (6t)− 72A sin (6t) = 24 cos (6t).

Equating coefficients we find A = 0 and B = 1
3

and so a particular solution
is

Qp(t) =
1

3
sin (6t)

and the general solution is

Q(t) = e−6t(c1 + c2t) +
1

3
sin (6t).

Imposing the condition Q(0) = 0 we get

Q(0) = c1 = 0.

To impose the other initial condition we first differentiate to find the current:

I =
dQ

dt
= e−6tc2(1− t) + 2 cos 6t.

Thus,
I(0) = c2 + 2 = 0 =⇒ c2 = −2.

Thus, the formula for the charge is

Q(t) = −2te−6t +
1

3
sin (6t)

Problem 25.9
An inductor of 4 H is connected in series with a capacitor of 0.25 F and a
resistor of 10 , without supplied voltage. Suppose that at t = 0, there is a
charge of 1/3 coulomb on the capacitor but no current.
(a) Write down the differential equation for the charge, Q(t), and the initial
conditions.
(b) Find the charge as a function of time t.
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Solution.
(a) We are given that L = 4, C = 0.25, R = 10, and E(t) = 0. Substituting
in the equation

L
d2Q

dt2
+R

dQ

dt
+

1

C
Q = E(t)

we obtain
4Q′′ + 10Q′ + 4Q = 0.

(b) The characteristic equation is

2r2 + 5r + 2 = 0

with roots

r1,2 =
−5±

√
25− 16

4
= −5

4
± 3

4
.

Thus, the charge is given by

Q(t) = c1e
− 1

2
t + c2e

−2t

Problem 25.10
Consider the IVP, y′′ + by′ + 9y = sinωt, y(0) = 0, y′(0) = 0. For what
values of b and ω is the solution periodic? For what values are there frequency
beats? Solve the system in the resonant case and sketch the solution.

Solution.
The solution to the IVP is periodic when b = 0 and ω 6= ω0 where ω0 = 3.
For frequency beats, we must have b = 0 and ω 6= 3. In the resonant case,
we have the IVP

y′′ + 9y = sin 3t, y(0) = y′(0) = 0.

The characteristic equation is r2 +9 = 0 with roots r1,2 = ±3i. Thus, yh(t) =
c1 cos 3t+c2 sin 3t. For a particular solution, we try yp = t(A cos 3t+B sin 3t).
In this case, y′p = A cos 3t + B sin 3t + t(−3A sin 3t + 3B cos 3t) and y′′p =
−6A sin 3t + 6B cos 3t + t(−9A cos 3t− 9B sin 3t). Substituting into the dif-
ferential equation we find

−6A sin 3t+ 6B cos 3t = sin 3t.

Thus, A = −1
6

and B = 0 so that yp = −1
6
t cos 3t. The general solution to the

differential equation is then y(t) = c1 cos 3t+ c2 sin 3t− 1
6
t cos 3t. Now using
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the initial conditions y(0) = y′(0) = 0 we find c1 = 0 and c2 = 1
9
. Finally, the

solution to the IVP is

y(t) =
1

9
sin 3t− 1

6
t cos 3t
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