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Solutions to Section 1

Problem 1.1
Classify the following equations as either ODE or PDE.

2
(a) (5") + gty = 0.

(b) 2 4 y2u — vt

(c) y" —4y =0.

Solution.

(a) ODE with dependent variable y and independent variabe z.

(b) PDE with dependent variable u and independent variabes = and y.
(c) ODE with dependent variable y and independent variabe = ®

Problem 1.2
Write the equation
Ugg + 2Ugy + Uyy = 0

in the coordinates s =z, t =z — .

Solution.
We have

Uy =UgSy + Uly = Us + Ug

Ugy =UssSy + Ugily + Ugt Sz + Ugly = Ugs + 2ust + Uyt

Ugy =UssSy + ustty + Ust Sy + uttty = —Ust — Uyt
Uy =UsSy + Uty = —Uy
Uyy = — UstSy — uttty = Ugt.

Substituting these expressions into the given equation we find
Uss =0 N

Problem 1.3
Write the equation
Upy — 2Ugy + OUyy =0

in the coordinates s =z +y, t = 2x.
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Solution.
We have

Uy =UgSy + Uity = Ug + 2Uy
Upy =UgsSy + Usly + 2Ug Sy + 2Uyty = Uss + 4l + duy
Ugy =UgsSy + Ustly + 2Ug Sy + 2uply = Uss + 2Ug

Uy =UgSy + Uty = U

Uyy =UssSy + Usply = Usgs.
Substituting these expressions into the given equation we find
Ugs + U = Om

Problem 1.4

For each of the following PDEs, state its order and whether it is linear or
non-linear. If it is linear, also state whether it is homogeneous or nonhomo-
geneous:

(a) uuy + 2%uyy, +sinz = 0.

(b) uy + € uy, = 0.

(¢) u + (siny)uy, — €' cosy = 0.

Solution.

(a) Order 3, non-linear.

(b) Order 1, linear, homogeneous.

(c) Order 2, linear, non-homogeneous m

Problem 1.5

For each of the following PDEs, determine its order and whether it is linear
or not. For linear PDEs, state also whether the equation is homogeneous or
not; For nonlinear PDEs, circle all term(s) that are not linear.

(&) T Upy + €7U = TUyy,.

(b) eYuyyy + €*u = —siny + 10zu,,.

() YPuyy + € ut, = 22U, + u.

(d) Uptyey + €“uny, = Sx’u,.

(e) up = k*(ugy + uyy) + f(2,9,1).

Solution.
(a) Linear, homogeneous, order 3.
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(b) Linear, non-homogeneous, order 3. The inhomogeneity is — sin y.
(¢) Non-linear, order 2. The non-linear term is e*uu,.

(d) Non-linear, order 3. The non-linear terms are w, ., and e*uu,,.

(e) Linear, non-homogeneous, order 2. The inhomogeneity is f(x,y,t) m

Problem 1.6

Which of the following PDEs are linear?

(a) Laplace’s equation: u,, + u,, = 0.

b) Convection (transport) equation: u; + cu, = 0.

¢) Minimal surface equation: (1+ Z;)Zm —22, 2y Ly +(1+ 223 2, = 0.
d) Korteweg-Vries equation: u; + 6ut, = Uy,

Problem 1.7

Classify the following differential equations as ODEs or PDEs, linear or
non-linear, and determine their order. For the linear equations, determine
whether or not they are homogeneous.

(a) The diffusion equation for u(x,t) :

U = Klgy.
(b) The wave equation for w(z,t) :

Wyt = Wy
(¢) The thin film equation for h(zx,t) :

he = = (hhaga)a-
(d) The forced harmonic oscillator for y(¢) :
Y + wy = F cos (wt).

(e) The Poisson Equation for the electric potential ®(x,y, 2) :

(D:m: + q)yy + (I)zz = 47Tp($a Y, Z)
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where p(z,y, z) is a known charge density.
(f) Burger’s equation for h(z,t) :

hy + hh, = vhg,.

Solution.
(a) PDE, linear, second order, homogeneous.

(b) PDE, linear, second order, homogeneous.

(c) PDE, quasi-linear (non-linear), fourth order.

(d) ODE, linear, second order, non-homogeneous.

(e) PDE, linear, second order, non-homogeneous.

(f) PDE, quasilinear (non-linear), second order m

Problem 1.8

Write down the general form of a linear second order differential equation of
a function in three variables.

Solution.
A('T7 Y, Z)ua:x + B('Tv Y, Z)uxy + C(:Ea Y, Z)uyy + E(:Ev Y, Z)uxz + F(Z’, Y, Z)uyz +
G(x,y, 2)us+H(z,y, 2)u,+1(x,y, 2)uy+J (2, y, 2)u+K(z,y, 2)u = L(z,y,2) W

Problem 1.9

Give the orders of the following PDEs, and classify them as linear or non-
linear. If the PDE is linear, specify whether it is homogeneous or non-
homogeneous.

(&) T2 Ugpy + Y2uyy — log (14 y*)u =0

(b) up +u? =1

(c )um‘yy+e Uz =Y

(d) vty + tyy —u =0

(€) Uz + up = 3u.

Solution.

a) Order 3, linear, homogeneous.

b) Order 1, non-linear.

c¢) Order 4, linear, non-homogeneous
d) Order 2, non-linear.

e) Order 2, linear, homogeneous m

(
(
(
(
(
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Problem 1.10
Consider the second-order PDE

Ugg + 4Ugy + 4ty = 0.

Use the change of variables v(z,y) = y — 2z and w(z,y) = z to show that
U = 0.

Solution.
Using the chain rule we find

Uy = — 2Uy + Uy

Uz :4uvv - 4uvw + Uy

Uy =Uy
Uyy =Uypy
Uy = — 2Uyy + Upey-

Substituting these into the given PDE we find u,, =0 n

Problem 1.11
Write the one dimensional wave equation uy; = c?ug, in the coordinates
v=x+ct and w =z — ct.

Solution.
We have

Up =CUy — Clly
2 2 2

Upp =C Upy — 2C Uy + C“ Uy

Uy =Uy + Uy

Uge =Upy + 2uvw + U
Substituting we find u,, =0 ®

Problem 1.12
Write the PDE
Uggy + 2Uzy — Uy, =0

in the coordinates v(z,y) = y — 3z and w(z,y) = = + .
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Solution.
We have
Uy = — Uy + Uy
Upy = — 3(—3uv + uw)v + (—3Uv + Uw)w = Oy — 6Uyy + U
Ugy = — 3uvv + Uy — 3uvw + Uy = _3uvv - 2va + U

Uy =Uy + Uy

Uyy :(uv + uw)v + (uv + uw)w = Ugyy T 2uvw + Uy -
Substituting into the PDE we find u,, =0 n

Problem 1.13
Write the PDE
auy + bu, =0

in the coordinates s(z,y) = ax+by and t(x,y) = bx —ay. Assume a?+b* > 0.

Solution.
According to the chain rule for the derivative of a composite function, we
have

Uy —=UgSy + Uty = aug + buy

Uy =UsSy + Usty = bus — auy.
Substituting these into the given equation to obtain
a*us + abuy + b*ug, — abuy =0

or
(a®> +b*)us =0

and since a® + b > 0 we obtain
us,=0nm

Problem 1.14
Write the PDE

Uy + Uy =1

in the coordinates s = +y and t =z — .
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Solution.
Using the chain rule we find

Up = UgSy + Uty = Ug + Uy
Uy = UsSy + Ugly = Us — Uy.
Substituting these into the PDE to obtain ug, = % |

Problem 1.15
Write the PDE
au; + buy =u, a,b#0

in the coordinates v = ax — bt and w = %t.

Solution.
We have u; = —bu,, + %uw and u, = au,. Substituting we find u, = u ®
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Solutions to Section 2

Problem 2.1
Determine a and b so that u(z,y) = e®®*% is a solution to the equation

Ugrer + Uy + 2uzxyy =0.

Solution.
We have tgper = ae™ ™ vy, = b2 and uge, = a®b?e®*%. Thus,

substituting these into the equation we find
(a4 + 2@262 + b4)€ax+by =0.

Since e® ™ =£ 0, we must have a* + 2a%0? + b* = 0 or (a® + b*) = 0. This is
true only when a = b = 0. Thus, u(z,y) =1m

Problem 2.2
Consider the following differential equation

tug, —ug = 0.

Suppose u(t,z) = X(x)T(t). Show that there is a constant A such that
X" =AX and T" = MT.

Solution.
Substituting into the differential equation we find

tX"T — XT =0
or
X/I T/
X (T
The LHS is a function of x only whereas the RHS is a function of ¢ only.
This is true only when both sides are constant. That is, there is A such that

X// T/
X T
and this leads to the two ODEs X" = AX and 7" = \MT n
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Problem 2.3
Consider the initial value problem

ruy + (v + 1)yu, =0, z,y>1

u(l,1) =e.

ze®

Show that u(z,y) = #~ is the solution to this problem.

Solution.
We have zu, +(z+1)yu, = 7(e”+ze®)+(z+1)y <—wy%z> =0andu(l,1) =em

Problem 2.4
Show that u(x,y) = e ?sin (z — y) is the solution to the initial value prob-
lem

Uy + Uy +2u=0, z,y>1

u(z,0) = sinz.

Solution.
We have u, +u,+2u = e % cos (r — y)—2e ¥ sin (z — y)—e Y cos (x — y) +
2¢~ % sin (r — y) = 0 and u(z,0) = sinx W

Problem 2.5

Solve each of the following differential equations:

(a) %—g = 0 where u = u(zx).

(b) 5% = 0 where u = u(x,y).

Solution.

(a) The general solution to this equation is u(x) = C where C' is an arbitrary
constant.

(b) The general solution is u(z,y) = f(y) where f is an arbitrary function of

yn

Problem 2.6
Solve each of the following differential equations:

(a) % = 0 where u = u(z).

(b) gg‘y = 0 where u = u(z, y).
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Solution.

(a) The general solution to this equation is u(z) = Cix 4+ Cy where C and
Cy are arbitrary constants.

(b) We have uy = f(y) where f is an arbitrary differentiable function of y.
Hence, u(z,y) = [ f(y)dy + g(x) m

Problem 2.7
Show that u(x,y) = f(y+2x) +xg(y + 2x), where f and g are two arbitrary
twice differentiable functions, satisfy the equation

Ugg — gy + 4ty = 0.

Solution.
Let v(z,y) = y + 2. Then

uy =2f,(v) + g(v) + 229, (v)

Uge =4 foo(V) + 49,(V) + 4290 (V)
uy =fu(v) + 29, (v)

Uyy :fvv( ) + xgvv( )

Ugy =2 fou(V) + 9o (V) + 22940 (V).

Hence,
Uy — digy + Aty =4 0 (0) + 49y (V) + 4Gy (V)
—8fuu(v) — 4y (v) — 879y (v)
+4fou(v) + 42guu(v) =0 m
Problem 2.8

Find the differential equation whose general solution is given by wu(z,t) =
f(x—ct)+g(x+ct), where f and g are arbitrary twice differentiable functions
in one variable.

Solution.
Let v = x — ¢t and w = x + ¢t. We have

Uy =[foUz + GuWe = fo + u
Uz =fouVz + GuwWz = fov + Guw
up =four + guwy = —cfy + CGu
Uy = — LoVt + CGuwWi = € fou + Guw

Hence, u satisfies the wave equation uy = g, B
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Problem 2.9
Let p: R — R be a differentiable function in one variable. Prove that

up = p(u)u,
has a solution satisfying u(x,t) = f(x + p(u)t), where f is an arbitrary

differentiable function. Then find the general solution to u; = (sinu)u,.

Solution.
Let v = x + p(u)t. Using the chain rule we find

Uy = fv “Vp = fv ' (p(u) +puutt)'

Thus
(1 - tfvpu)ut - fvp'

If 1 —tfyp, =0 on any t—interval I then f,p = 0 on I which implies that
fo =0or p=0on I. But either condition will imply that ¢f,p, = 0 and
this will imply that 1 =1—1t¢f,p, = 0, a contradiction. Hence, we must have
1 —tfypu Z 0. In this case,

u = P
' 1 - tfvpu.
Likewise,
Uy = fv : (1 +puuxt)
or
R
; 1- tfvpu ‘

It follows that u; = p(u)u,.
If u; = (sinu)u, then p(u) = sinu so that the general solution is given by

u(z,t) = f(x +tsinu)
where f is an arbitrary differentiable function in one variable m

Problem 2.10
Find the general solution to the pde

Ugg + 2Uzy + Uy = 0.

Hint: See Problem 1.2.
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Solution.
Using Problem 1.2, we found uss = 0. Hence, u(s,t) = sf(t) + g(t) where
f and ¢ are arbitrary differentiable functions. In terms of x and y we find

u(z,y) =vf(r—y)+g(z—y)m

Problem 2.11
Let u(z,t) be a function such that wu,, exists and u(0,t) = u(L,t) = 0 for all
t € R. Prove that

L
/ Uz (z, t)u(z, t)dz < 0.
0

Solution.
Using integration by parts, we compute

/0 Uge (T, V) u(z, t)dx = ux(x,t)u(:v,tﬂﬁzo —/0 u?(z,t)dx
=, (L, t)u(L,t) — u. (0, t)u(0,t) — /0 u?(z,t)dw
= /LUZ(x,t)dx <0

Note that we have used the boundary conditions u(0,t) = u(L,t) = 0 and
the fact that v2(z,t) > 0forallz € [0,L] m

Problem 2.12
Consider the initial value problem

U+ U, =0, z€R, t>0

u(z,0) = 1.
(a) Show that u(x,t) =11is a Solutlon to this problem.

(b) Show that w,(z,t) =
problem

solution to the initial value

U+ U, =0, z€R, >0

sin nx

u(z,0) =1+

(c) Find sup{|u,(z,0) — 1| : z € R}.
(d) Find sup{|u,(z,t) — 1| : € R, ¢t > 0}.
(e) Show that the problem is ill-posed.
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Solution.
(a) This can be done by plugging in the equations.
(b) Plug in.

(¢) We have sup{|u,(z,0) — 1| : x € R} =
(

d) We have sup{|u,(z,t) — 1] : z € R} = <",

n

%QSup{| sinnz|:z € R} =1
en

'n2t

(e) We have lim; o sup{|u,(z,t) — 1| : x € R,z > 0} = lim;_,c &~ = o0.
Hence, the solution is unstable and thus the problem is ill-posed m

Problem 2.13

Find the general solution of each of the following PDEs by means of direct
integration.

(a) uy = 322 + y?, u=u(x,y).

(b) 11y = 2%y, u = u(a,y).

(€) Ugyr = €*T3 u = u(x,t).

Solution.

(a) u(x,y) = 2>+ zy* + f(y), where f is an arbitrary differentiable function.
(b) u(z,y) = z36y2 + F(z) + g(y), where F(z) = [ f(z)dx and g(y) is an
arbitrary differentiable function.

(c) u(w,t) = £ +t [ fi(x)de + [ fo(x)dz + g(t) m

Problem 2.14
Consider the second-order PDE

Ugg + 4Ugy + 4y, = 0.

(a) Use the change of variables v(x,y) = y — 22 and w(z,y) = = to show
that u,, = 0.
(b) Find the general solution to the given PDE.

Solution.
(a) Using the chain rule we find

Uy = — 2Uy + Uy

Ugy =AUy — AUy + Uy
Uy =Uy

Ugyyy =Uyy

Ugy = — 2Upy + Upy-
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Substituting these into the given PDE we find wu,,, = 0.

(b) Solving the equation ., = 0 we find u,, = f(v) and u(v,w) = wf(v) +
g(v). In terms of x and y the general solution is u(z,y) = zf(y — 2z) + g(y —
2z) m

Problem 2.15
Derive the general solution to the PDE

U = Cllgy
by using the change of variables v = x + ¢t and w = x — ct.

Solution.
We have

Up =ClUy — Clly
Uy =CP Uy — 262Uy + i
Uy =Uy + Uy
Ugr =Uypy + Zuvw + Uy
Substituting we find w,, = 0 and solving this equation we find u, = f(v)
and u(v,w) = F(v) + G(w) where F(v) = [ f(v)dv.
Finally, using the fact that v = z + ¢t and w = x — ct; we get d’Alembert’s
solution to the one-dimensional wave equation:

u(z,t) = F(x + ct) + G(x — ct)

where F' and G are arbitrary differentiable functions m
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Solutions to Section 3

Problem 3.1
Solve the IVP: ¢/ + 2ty =t, y(0) =0

Solution.
Since p(t) = 2t, we find p(t) = e/ 24 = ¢* Multiplying the given equation

by e’ to obtain
e y| =te

Integrating both sides with respect to ¢ and using substitution on the right-

hand integral to obtain

1
ey = §et2 +C

Dividing the last equation by " to obtain

> 1
y(t) = Ce™ + 5

Since y(0) = 0, we find C = —3. Thus, the unique solution to the IVP is
given by

1
y= 5(1 e ) m

Problem 3.2

Find the general solution: ¢/ + 3y =t + e

Solution.
Since p(t) = 3, the integrating factor is u(t) = €*. Thus, the general solution

is
yt) = e[ (t+e)dt+ Ce ™
= e [(te’ +el)dt + Ce ™

= e ¥ (%(St -1+ et> + Ce™¥
_ 3t—1 -2 -3
= 5 Te trCe 3t m

Problem 3.3
Find the general solution: y" + %y =3cost, t >0
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Solution.
Since p(t) = ¢, the integrating factor is u(t) = el T =
method of integrating factor we find

y(t) = 1 [3tcostdt +

= 3(tsint+ cost)
= 3sint+ 3t 4

=12+ ~q
W ~[Q

Problem 3.4
Find the general solution: y' 4+ 2y = cos (3t).

Solution.
We have p(t) = 2 so that u(t) = e*. Thus,

y(t) =e / e* cos (3t)dt + Ce

But
2t

2
/e% cos (3t)dt :% sin (3t) — g/ ! sin (3t)dt

2t 2t

2 2
= sin (3t) — —(—% cos (3t) + 3

3 3

2t

1
53 / e* cos (3t)dt :%(3 sin (3t) 4 2 cos (3t))

2t

/ e* cos (3t)dt :1—3(3 sin (3t) + 2 cos (3t))

Hence,

y(t) = %3(3 sin (3t) + 2 cos (3t)) + Ce™?

Problem 3.5
Find the general solution: y' + (cost)y = —3 cost.

Solution.
Since p(t) = cost we have u(t) = e*. Thus,

19

et = t. Using the

/ezt cos (3t)dt)

t
|

y(t) :eSi“t/eSi“t(—B cost)dt 4+ Ce™ 5!

_ —sint _sint —sgint
=—3e e 4+ Ce

:Ce—sint —3m
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Problem 3.6
Given that the solution to the IVP ¢y + 4y = at?, y(1) = —3 exists on the
interval —oo < t < oo. What is the value of the constant «?

Solution.
Solving this equation with the integrating factor method with p(t) = % we
find p(t) = ¢*. Thus,

Since the solution is assumed to be defined for all £, we must have C' = 0.
On the other hand, since y(1) = —% we find a = —2 m

Problem 3.7
Suppose that y(t) = Ce 2 +t + 1 is the general solution to the equation
y' + p(t)y = g(t). Determine the functions p(t) and g(t).

Solution.

The integrating factor is u(t) = e*. Thus, [ p(t)dt = 2t and this implies that
p(t) = 2. On the other hand, the function ¢ + 1 is the particular solution
to the nonhomogeneous equation so that (t + 1) + 2(t + 1) = g(t). Hence,
g(t)=2t+3m

Problem 3.8
Suppose that y(t) = —2e™' + €' + sint is the unique solution to the IVP
v +y=g(t), y(0) = yo. Determine the constant yo and the function g(t).

Solution.

First, we find yo : yo = y(0) = =24+ 1+ 0 = —1. Next, we find ¢(t) : g(t) =
v +y=(—2et+e +sint) + (—2e ! +e' +sint) =2e el +cost — 2 +
el +sint = 2¢e' + cost +sint m

Problem 3.9
Find the value (if any) of the unique solution to the IVP ¢/ 4+ (1 + cost)y =
1+ cost, y(0) =3 in the long run?
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Solution.
The integrating factor is pu(t) = e/ (I+eostdt — gt+sint Thyg the general solu-
tion is
y(t) :ef(tJrsint) /etJrsint(l + cos t)dt + C«ef(tJrsint)
=14+ Ce—(t—i—sint)

Since y(0) = 3, we find C' = 2 and therefore y(t) = 1 4 2~ (%) Finally,

lim y(t) = lim (1 +2e e ™) =1 m

t—o00 t—o00

Problem 3.10
Solve the initial value problem ty' =y + ¢, y(1)=7

Solution.
Rewriting the equation in the form

we find p(t) = —1 and p(t) = }. Thus, the general solution is given by
y(t) =tn|t| + Ct

But y(1) = 7 so that C' = 7. Hence,
y(t) =thn|t|+ 7t m

Problem 3.11
Show that if @ and A are positive constants, and b is any real number, then
every solution of the equation

Y + ay = be ™

has the property that y — 0 as t — oco. Hint: Consider the cases a = A and
a # )\ separately.

Solution.
Since p(t) = a we find pu(t) = e™. Suppose first that @ = X\. Then

Y +ay =be ™
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and the corresponding general solution is
y(t) = bte™ + Ce™

Thus,
lim Lo y(t) = limt_m(e% + e%)

= im0 2edt — 0

Now, suppose that a # A then

b
y(t) = PR )\e_’\t + Ce™
Thus,
Jim y(t) =0m

Problem 3.12

Solve the initial-value problem ¢’ +y = e'y? y(0) = 1 using the substitution
- L

u(t) = 15

Solution.

Substituting into the equation we find

Solving this equation by the method of integrating factor with u(t) = e™*

find

we

u(t) = —te' + Ce
Since u(0) = 1, C' =1 and therefore u(t) = —te' + €'. Finally, we have

y(t) = (—te' +e) ' m

Problem 3.13
Solve the initial-value problem ty' + 2y =t —t + 1, y(1) =3

Solution.
Rewriting the equation in the form

14l
S /
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2

Since p(t) = 2 we find u(t) = t2. The general solution is then given by

t

y(t)

2t 1 C

1 3737¢

Since y(1) = 1 we find C' = 5. Hence,

Problem 3.14

y(

t2
£ =
) 4

Solve 1y — %y = sint, y(l) = 3.

integral, Si(t) = fot

Solution.

sin s
s

ds.

Since p(t) = —1 we find p(t) =

Since y(1) = 3, C' =3 — Si(1). Hence, y(t) = tSi(t) + (3 — Si(1))t m

1
;-

t 1 1

373

* 12¢2 "

23

Express your answer in terms of the sine

Thus,

tsins/
= (k)
= Si(t)+C
— tSi(t) + Ct
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Solutions to Section 4

Problem 4.1
Solve the (separable) differential equation

Solution.
At first, this equation may not appear separable, so we must simplify the
right hand side until it is clear what to do.

yl :t€t2_ln y?
:tetz . eln (ﬁ)
1

g 12
=te 5

<

Separating the variables and solving the equation we find

y2y/ :t€t2
1 2
g/(y?’)'dwt:/tet dt

I 5 1,

3 == C

3y 26 +

3
y? :§et2 +Cn

Problem 4.2
Solve the (separable) differential equation

,_ty—4y
t+2
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Solution.
Separating the variables and solving we find

/ 2 _
U
y t+2
/mmwmfﬂpam
t2

In |y| :5—225—1-0

y(t) —Cez 2 g

Problem 4.3
Solve the (separable) differential equation

ty = 2(y —4).

Solution.
Separating the variables and solving we find

y—4

/ﬁMy_qﬁu:/%ﬁ

Inly — 4| =lnt*+C
Y

y 2
/

—4
| =¢
y(t) =Ct* +4 m

In |

Problem 4.4
Solve the (separable) differential equation

Y =2y(2—y).

Solution.
Separating the variables and solving (using partial fractions in the process)
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we find
/
y _
y(2—y)
Yy y
=+ :2
2y 2(2-vy)
1 1
5/(ln\yy)’dzf— 5/(1n|2—y\)’d1t:/2chf
In y':@+c
2—y
Yy 4t
— | =(Ce
2—y
(t) = 20"
y 14 Cet u
Problem 4.5
Solve the IVP Lsin (26)
S11
y = ———, y(0)=1.

Y

Solution.
Separating the variables and solving we find

yy' =4sin (2t)
(y?) =8sin (2t)
(

/ (y?)'dt = / 8 sin (2t)dt

y* = —4cos (2t) + C
y(t) =+ /C —4cos (2t).

Since y(0) = 1, we find C' =5 and hence

y(t) =+/b—4cos(2t) m

Problem 4.6
Solve the IVP:

yy = sint, y(g) = -2

CONTENTS
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Solution.
Separating the variables and solving we find
2 /
/(g)cﬁ:/Qth
2
2
% =—cost+C
y? = —2cost+ C.
Since y(3) = —2, we find C' = 4. Thus, y(t) = £+/(—2cost +4). From

™

y(5) = —2, we have

y(t) = —/(—2cost+4) m

Problem 4.7
Solve the IVP:

y+y+1=0, y(l)=0.

Solution.
Separating the variables and solving we find

(In(y+1))=-1
n(y+1)=—t+C
y+1=Ce?

y(t) = Ce' —1.

Since y(1) = 0, we find C' = e. Thus, y(t) =e'" —1m

Problem 4.8
Solve the IVP:

y —ty* =0, y(0)=2.
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Solution.
Separating the variables and solving we find

/ Yy dt = / tdt
-2\ '/ 2
Y t
gz dt =—
[(5)a5+e

1 ¢
- —_aC
2y2 2 +

9 1

24O

Since y(0) = 2, we find C' = ;. Thus, y(t) = £,/ =5 Since y(0) = 2, we

have y(t) = ﬁ |

Problem 4.9
Solve the IVP:

y =1+y", y(7)=-1

=] 3

Solution.
Separating the variables and solving we find

/

Y
=1
1+ 42
arctany =t + C
y(t) =tan (t + C).

Since y(§) = —1, we find C'= 7. Hence, y(t) = tan(t + 5) = —cott m

Problem 4.10
Solve the IVP:

y =t—ty*, y(0)=

N | —
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Solution.
Separating the variables and solving we find

Y
=—t
yP—1
Y Y
- -
y—1 y+1
lny_ =—t*+C
y+1
y—l 42
=~ =Ce
y+1
1+ Ce?
y() _ _t2
1—Ce
Since y(0) = 3, we find C' = —3. Thus,
3—et
y(t)_ —t2.

Problem 4.11
Solve the equation 3u, + u,, = 0 by using the substitution v = w,,.

Solution.
Letting v = u, we obtain 3v + v, = 0. Solving this ODE by the method of
separation of variables we find

Hence, u(z,y) = [ f(y)e **dy = F(y)e > + G(x) where F(y) = [ f(y)dy m

Problem 4.12
Solve the IVP

(2y —siny)y =sint — ¢, y(0) = 0.
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Solution.
Separating the variables and solving we find

fly)e™™ /(2y —siny)y'dt = /(sint — t)dt (4.1)
2
fy)e ™ y* +cosy = — cost — 3 +C. (4.2)
Since y(0) = 0, we find C' = 2. Thus,
2 t?
Y +cosy+cost+§ =2n

Problem 4.13
State an initial value problem, with initial condition imposed at t5 = 2,
having implicit solution 3% + t? +siny = 4.

Solution.
Differentiating both sides of the given equation we find

3y*y +cosy+2t=0, y(2)=0m

Problem 4.14
Can the differential equation

dy

2
dz 0

be solved by the method of separation of variables? Explain.

Solution.
If we try to factor the right side of the ODE, we get

d
d—z =z(z —y).

The second factor is a function of both  and y. The ODE is not separable m
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Solutions to Section 5

Problem 5.1

Classify each of the following PDE as linear, quasi-linear, semi-linear, or non-
linear.

(a) xuy, + yu, = sin (zry).

(b) us + uu, =0

(c) u2 + uluy = 0.

(d) (z + 3)uy + 2y?u, = u?

Solution.

(a) Linear (b) Quasi-linear, non-linear (¢) Non-linear (d) Semi-linear, non-
linear m

Problem 5.2
Show that u(x,y) = e*f(2x — y), where f is a differentiable function of one
variable, is a solution to the equation

Uy + 2uy —u = 0.

Solution.
Let w = 2x—y. Then u,+2u, —u = €* f(w)+2¢e” f,,(w) —2€” fo, (w) —e® f(w) =
Om

Problem 5.3
Show that u(x,y) = z,/xy satisfies the equation

LUy — YUy = U
subject to the constraint

u(y.y) =y*, y = 0.
Solution.
1 1 1
We have zu, —yu, = x (%xﬁyi) —y (%x%y‘i) = z\/Ty = u. Also, u(y,y) =
y' .
Problem 5.4
Show that u(x,y) = cos (2 + y?) satisfies the equation

—Yuy + xUy =0

subject to the constraint
u(0,7) = cosy?.
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Solution.
We have —yu, + azu, = —2zysin (z* + y*) + 2zy sin (2% + y*) = 0. Moreover,
u(0,y) = cosy’ m

Problem 5.5
Show that u(z,y) =y — 1(2? — y?) satisfies the equation

1 1 1
—Uy + —Uy = —
x Y Y

subject to u(z,1) = (3 — z?).

Solution.

We have Lu, + %uy =1(—2)+ i(l +y) = i Moreover, u(z,1) = (3 —2?)
Problem 5.6

Find a relationship between a and b if u(x,y) = f(ax+by) is a solution to the
equation 3u, — Tu, = 0 for any differentiable function f such that f’(z) # 0
for all z.

Solution.
Let v = ax + by. We have

d(azx + by)
dx

g =) ) b ),

Uy, :fv(v) = afv(v)

Hence, by substitution we find 3a — 76 =0m

Problem 5.7
Reduce the partial differential equation

aug + bu, +cu =0

to a first order ODE by introducing the change of variables s = ax + by and
t =bxr — ay.
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Solution.
By the chain rule we find

Uy = UgSy + Uty = aUs + by

Uy = UgSy + Usty = bus — auy.

Thus,
0 = au, + bu, + cu = (a® + b*)u, + cu
or
cu
us + ———7—= = 0.
* a® 4 b?

This is a first order linear ODE that can be solved using the method of
separation of variables B

Problem 5.8
Solve the partial differential equation

Uy + Uy =1
by introducing the change of variables s =z +y and t = x — y.

Solution.
Using the chain rule we find

Up = UgSy + Uty = Us + Uy

Uy = UsSy + Usly = Us — Uy

Substituting these into the PDE to obtain us = % Solving this ODE we
find u(s,t) = 35+ f(t) where f is an arbitrary differentiable function in one
variable. Now substituting for s and ¢ we find u(z,y) = 3(z+y)+ f(z—y) m

Problem 5.9
Show that u(z,y) = e % f(2z — 3y) is a solution to the first-order PDE

ug + 2uy + 12u = 0.
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Solution.

We have
U, = — 4e ¥ f (20 — 3y) + 24 (22 — 3y)
u, = — 3¢ (2 — 3y)

Thus,

3ug + 2u, + 12u = — 124 f(2x — 3y) + 6e ¥ f'(2z — 3y)
—6e f'(20 — 3y) + 12 f(22 —3y) =0 m

Problem 5.10
Derive the general solution of the PDE

auy + bu, =u, a,b#0
by using the change of variables v = ax — bt and w = it.

Solution.

We have v, = —bu, + %uw and u, = au,. Substituting we find u, = u
and solving this equation we find u(v,w) = f(v)e” where f is an arbitrary
differentiable function in one variable. Thus, u(x,t) = f(az — bt)es m

Problem 5.11
Derive the general solution of the PDE

auy +bu, =0, a,b#0

by using the change of variables s(z,y) = ax + by and t(z,y) = bxr — ay.
Assume a? + b? > 0.

Solution.
According to the chain rule for the derivative of a composite function, we
have

Uy =UgSy + Uty = alg + buy

Uy =UsSy + Usty = bug — auy
Substituting these into the given equation to obtain

a*uy + abuy + b*ugs — abuy = 0
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or
(a® +b*)us =0

and since a® + b* > 0 we obtain
ug = 0.
Solving this equation, we find
u(s,t) = f(t)

where f is an arbitrary differentiable function of one variable. Now, in terms
of x and y we find

u(z,y) = f(bx —ay) m

Problem 5.12
Write the equation

ur + cuy + Au = f(x,t)

in the coordinates v =z — ct, w =1t.

Solution.
Using the chain rule, we find

Ut =UypVt + Uy W = —ClUyy + Uy

Uy =UyVyp + Uy Wy = Uy
Substituting these into the original equation we obtain the equation
Uy +Au= f(v+ cw,w) m

Problem 5.13
Suppose that u(z,t) = w(z — ct) is a solution to the PDE

XU, + tu, = Au

where A and ¢ are constants. Let v = x — ct. Write the differential equation
with unknown function w(v).
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Solution.
Using the chain rule we find

Up = —CW,

and
Uy = Wy.

Substititution into the original PDE gives

vw,(v) = Aw(v) B
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Solutions to Section 7

Problem 7.1
Solve u, + yu, = y* with the initial condition u(0,y) = siny.

Solution.

We have a = 1, b=y, and f = 3%. Solving % =y we find y = k1e”. Solving
2~y = k3e™ we find u = Fe¥ 4 f(ki) = Sy + (k1) = 397 + flye ™).
Using the initial condition u(0,y) = siny we find siny — $y* = f(y). Hence,
u(z,y) = 39% — 3y’ > e* +sin(ye ) m

Problem 7.2
Solve u, + yu, = u? with the initial condition u(0,y) = siny.

Solution.

We have a = 1, b=y, and f = u? Solving % =y we find y = k;e®. Solving
du — o? we find z + 1 = ky. Thus, u(z,y) = W Using the initial
condition u(0,y) = siny we find f(y) = cscy. Hence, u(z,y) = m u

Problem 7.3
Find the general solution of yu, — zu, = 2zyu.

Solution.
The system of ODEs is

dy — x du
der vy dx

Solving the first equation, we find 2 + y? = k;. Solving the second equation,
we find u = kye” . Hence, u(x,y) = e f(2® 4+ y2) where f is an arbitrary
differentiable function in one variable m

Problem 7.4
Find the integral surface of the IVP: zu, + yu, = u, u(z,1) =2+ e~

Solution.

The system of ODEs is
dy 'y du w
de 2’ de
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Solving the first equation, we find y = kyx. Solving the second equation, we
find u = kox. Hence, u(z,y) = xf (%) where f is an arbitrary differentiable
function in one variable. From the initial condition u(z,1) = 2 4 e~1*! we

find f(z) =z(2+ e Rl Hence, the integral surface is
u(z,y) =y2+e 1)) m

Problem 7.5
Find the unique solution to 4u, +u, = u?, u(z,0) = 1.
Solution.
The system of ODEs can be written as
dv dy du

41w
Solving the equation C{% = Ty we find x — 4y = kq. Solving the equation
d u
Y = B we find u(z,y) = f(xT

we ﬁnd f(z) =1+ 22 Hence, u(z,y) =

Using the 1n1t1al condition u(x,0) =
|

1
1+z2
(z— 4y)2+1 -y

Problem 7.6
Find the unique solution to eu, + zu, = zu?, u(z,0) = €.

Solution.
The system of ODEs can be written as

dr dy  du
—.

ey T TU

Thus, zdx = e*dy which implies 22 — e?Y = k;. Solving the equation 3 du — qy

we find y + L = ky = f(a? — ). Hence,

1
o= ey

Using the initial condition u(x,0) = ¢** we find f(z) = e~ @*+1. Hence,

1

W@Z;mmff
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Problem 7.7
Find the unique solution to zu, + u, = 3z — u, u(x,0) = tan~'z.
Solution.
The system of ODEs can be written as
dr dy  du
r 1 3z—u
Solving the equation d?‘” = d—ly we find xe™¥ = k;. On the other hand, we have
d d d(3x —
@ _ (32 u):>(3x—u)d(3x—u):udu.
T 3r —u U
Thus, (3z — u)?* — u? = ky = f(ze™¥) which leads to
3 1
u(z,y) = 3% " &2 (xe™).

Using the initial condition, u(z,0) = tan~! z we find f(z) = 92* —6x tan~! z.
Hence,

3 9x%e™% — 6re Ytan ! (ze Y 3 3
u(x,y) = i re x€6x an” (ze”") = §x—§xe*29+e*y tan! (ze Y m
Problem 7.8

Solve: zu, — yu, =0, u(z,z) = a*.

Solution.

. . d
Solvmg the equation 3 = —
is 0, u(z,y) = ky = f(k1)
f(z) =2* x>0, Hence,

we find xy = ky. Since the right-hand side
f(xy). But u(z,z) = 2* = f(2?). Hence,

I| 8K

u(z,y) =2y’ zy >0 m

Problem 7.9

Find the general solution of yu, — 3zyu, = 3z2u.

Solution.

Solving the equation % = —322 we find y + 2° = ki. Solving the equation

%“ = —% we find uy = ko = f(k1) = f(y + 2) where f is a differentiable
function in one variable m



40 CONTENTS

Problem 7.10
Find u(z,y) that satisfies yu, + zu, = 4xy® subject to the boundary condi-
tions u(z,0) = —x* and u(0,y) = 0.

Solution.

Solving the equation % = % we find y?> — 22 = k;. On the other hand,
du = 4y3dy so that u( y) = vt + f(y? — 2?). Since u(z,0) = —a?, we
have f(—x ) = r) = —a? for z < 0. Since u(0,y) = 0 we find

I
f(y?) = —y* so that f(y) —y? for y > 0. Hence, f(z) = —a? for all z.
Finally,

u(z,y) =y — (y* —2?)? =22 — ' m
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Solutions to Section 8

Problem 8.1
Find the solution to u; + 3u, = 0, u(z,0) = sinzx.

Solution.

Solving j—; = § we find z — 3t = k;. Solving the equation —;‘ = 0 we find
u(z,t) = ke = f(x — 3t) where f is a differentiable function in one variable.
Since u(x,0) = sinx, we find sinx = f(x). Hence, u(x,t) = sin (z — 3t) m

Problem 8.2

Solve the equation au, + bu, + cu = 0.

Solution.

Solving the equation g—g =2 We find bx —ay = kl Solving the equatlon

—2u we find u(z,y) = kge™ S = f(bx — ay)e”«" where f is a dlfferentlable
function in one variable

Problem 8.3
Solve the equation wu,+2u, = cos (y — 2z) with the initial condition u(0,y) =
f(y) where f:R — R is a given function.

Solution.
Solving the equation % = 2 we find 2z — y = k;. Solving the equation

dx
& — cos (y — 2x) we find

u(z,y) = xcos(y — 2x) + kg = xcos (y — 22) + g(2x — y)

where ¢ is a differentiable function in one variable.
Since u(0,y) = f(y), we obtain f(y) = g(—y) or g(y) = f(~y). Thus,

u(x,y) =xcos(y —2x)+ fly—2z) m

Problem 8.4

Show that the initial value problem w; +u, = z, u(z,z) = 1 has no solution.
Solution.

Solving the equatlon -2 =1 we find x —y = k;. Solving the equatlon L=z
we find u(zx,y) = 332 + f(x —y) where f is a differentiable function of one

variable. Since u(x,x) =1 we find 1 = 22 + f(0) or f(0) =1 — %2 which
is impossible since f(0) is a constant. Hence, the given initial value problem
has no solution m
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Problem 8.5
Solve the transport equation u; + 2u, = —3u with initial condition u(z,0) =
1

1+x2 "
Solution.
Solving the equation j—; = % we find x — 2t = k;. Solving the equation
du — 3y we find u(z,t) = f(z — 2t)e~2%. Since u(z,0) = oz we find

e
f(x) = {572 Hence,

o3t
f)=—
uet) = e ™

Problem 8.6
Solve uy + u, — 3u = ¢ with initial condition u(z,0) = z*.
Solution.
Solving the equation j—; =1 we find x — t = k;. Solving the equation Z—z =

3u+t = 3u+ x+ ki by the method of integrating factor, we find

1 1
u(z,t) = _§t ~3 + fz —t)e*.

But u(x,0) = #* which leads to f(z) = e (2 + §) . Hence,
1 1 1
H=e"|(z—t)P+-| -zt —=
u(z,t) =e [(JZ )+ 9} 3 N
Problem 8.7
Show that the decay term Au in the transport equation with decay
U + cugy + Au =0

can be eliminated by the substitution w = ue.

Solution.
Using the chain rule we find w; = we* + e and w, = u,e. Substituting
these equations into the original equation we find

we™™ — A+ cwe M+ A =0

or
w+cw, =01
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Problem 8.8 (Well-Posed)
Let u be the unique solution to the IVP

us +cu, =0

u(x,0) = f(x)

and v be the unique solution to the IVP
us +cu, =0

u(z,0) = g(z)
where f and ¢ are continuously differentiable functions.
(a) Show that w(z,t) = u(z,t) — v(x,t) is the unique solution to the IVP

us +cuy, =0

u(z,0) = f(z) — g(z)
(b) Write an explicit formula for w in terms of f and g.

(c) Use (b) to conclude that the transport problem is well-posed. That is, a
small change in the initial data leads to a small change in the solution.

Solution.
(a) w(zx,t) is a solution to the equation follows from the principle of super-
position. Moreover, w(z,0) = u(x,0) —v(z,0) = f(x) — g(x).

(b) w(x,t) = f(x — ct) — g(x — ct).
(c) From (b) we see that

sup[u(z, 1) — v(z, 1)|} = sup{|f () — g(2)[}-

Thus, small changes in the initial data produces small changes in the solution.
Hence, the problem is a well-posed problem m

Problem 8.9
Solve the initial boundary value problem

U+ cuy = —Au, v >0, t>0

u(z,0) =0, u(0,t) = g(t), t >0.
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Solution.
Solving j—; = % we find z — ¢t = k;. Solving the equation Z—Z = —%u we find
u(z,t) = f(z — ct)e <®. From the condition u(0,t) = g(t) we find f(—ct) =

g(t) or f(t) =g (—%). Thus,

T A
=gt f)et
u(z,t) e
This is valid only for x < ¢t since g is defined on (0, 00). Also, this expression
will not satisfy u(z,0) = 0. So we define u(z,t) = 0 for x > ct. That is, the
solution to the initial boundary value problem is

A
o g(t—f)e_?c ifx<ct
t) = c
u(@,?) { 0 ifx>ctm

Problem 8.10
Solve the first-order equation 2u;+3u, = 0 with the initial condition u(z, 0) =
sin .

Solution.
Solving the equation j—; = % we find 2x — 3t = ky. Solving the equation

2 — 0 we find u(xz,t) = ko = f(2x —3t) where f is an arbitrary differentiable
function. Using the initial condition we find f(2z) = sinz or f(z) =sin (%).

2
The final answer is u(x,t) = sin (—%ggt) [ |

Problem 8.11
Solve the PDE u, 4+ u, = 1.

Solution.
Solving the equation % = 1 we find # — y = k;. Solving the equation % = 1
we find u(z,y) =z + f(x — y) where f is an arbirary differentiable function

in one variable m
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Solutions to Section 9

Problem 9.1
Find the general solution of the PDE In (y + w)u, + v, = —1.

Solution.

The characteristic equations are ;- (ijiu) = dy = %;. Using the second and
third fractions we find that y + u = k;. Now from the first and second
fractions we have fli = dly so that z + ko = yInky. Hence, y1In (y + u) —

ks. Hence, the general solution is given by u = —y+ f(yIn (y + u) —x) Where

f is an arbitrary differentiable function m

Problem 9.2
Find the general solution of the PDE z(y — u)u, + y(u — z)u, = u(x — y).

Solution.
The characteristic equations are given by x(jfu) = y(ﬁr) = u(fﬁy). We have
dz + dy + du _du
vy —u) +ylu—z)+ulz—y) uz-y)
or
dz+y+z)  du
0 Cu(r—y)

Hence. z 4+ y + z = k1. On the other hand we have

dz dy du
m+y u

u

—(x-y) z-y
This implies that

der dy  du
x Yy u
or
Inzxyu =k
that is xyu = ks. Hence, the general solution is given by u = fetvte) where

y
f is an arbitrary differentiable function m

Problem 9.3
Find the general solution of the PDE u(u® + zy)(zu, — yu,) = z*.



46 CONTENTS

Solution.
The characteristic equations are ux(u%ﬂxy) = —yu(u‘iixy) = i—?{. From the first
and second fractions we get df = —‘Z—y. Upon integration we find xy = k;.

From first and third fractions we get 23dz = (u® 4+ uzy)du or 23dr = (u® +
kiu)du. Integration leads to %4 = “f + %ug + ky or 2t — ut — 2ku? = k.
Substituting for k; we find 2* — u* — 2zyu® = ky. Hence, the general solution
is given by z* — u* — 2zyu? = f(xy) where f is an arbitrary differentiable

function m

Problem 9.4
Find the general solution of the PDE (y + au)u, — (z + yu)u, = 2* — 3.

Solution.

.. . d
The characteristic equations are de _ __dy _ _du_ e have
y+ru T+yu Te—y

xdx + ydy — udu du
= —— -

ry + 22u — ry — y2u —ux? +uy? 2
Thus, xdz + ydy — udu = 0 or x2 + y*> — u? = k;. On the other hand,

ydx + xdy + udu ~du
Y2 4+ wyu — 22 — ayu + 22—y 22 —y2’

That is, ydr + xdy + udu = 0. Hence, 22y + u? = ky. The general solution is
2zy + u? = f(x* + y* — u?) where f is an arbitrary differentiable function m

Problem 9.5
Find the general solution of the PDE (y? 4+ u?)u, — zyu, + zu = 0.

Solution.

The characteristic equations are —%2; = -4

y*4u? T —zy
fractions we find d—;’ = %“ which leads to £ = k;. On the other hand, we have

= fl—;‘u. Using the last two

rdr +ydy +udu  du
oy + zu? — xy? —zu? —zu

Thus, xdz + ydy + udu = 0 or 2% + y? + u? = ko. The general solution is
22 +y? 4+ u? = f (%) where f is an arbitrary differentiable function m
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Problem 9.6
Find the general solution of the PDE u; 4+ uu, = x.

Solution.
The characteristic equations are

dr dt  du
v 1 oz
Solving df d;“ we find u? — 22 = k;. Solving % = % we find x +u =

koet = €' f(u? — x?) where f is an arbitrary differentiable function m

Problem 9.7
Find the general solution of the PDE (y — u)u, + (u — 2)u, =z — y.

Solution.
The characteristic equations are

de dy  du
y—u u—c x—y
We have
dz + dy + du _dr+dy+du
y—utu—r+r—y 0

so that dz 4+ dy + du = 0. Hence, x + y + u = k;. Likewise,

rdr 4+ ydy + udu _ xdr + ydy + udu
2y —u) +ylu—z)+ulr—y) 0

so that zdx + ydy + udu = 0. Hence, 22 + y? + u? = ky. The general solution
is given by
Py rd’ = flrt+ytu)

where f is an arbitrary differentiable function m

Problem 9.8

Solve

z(y? + u)uy — y(@® + u)u, = (2* — y*)u.
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Solution.
The characteristic equations are

dx dy B du

w(y?+u)  —y@+u)  (22—y?u

We first note that

dzx dy du dz dy du
T _ Y o u s Ty T
v4+u  —(22+u) 22— y? 0
Thus,
dr d du
T Y U

which gives xyu = k;. Likewise, we have

xdxr 4+ ydy — du xdx + ydy — du

22(y2 +u) — y2(2? +u) — (22 —y2)u 0

Thus, xdz +ydy — du = 0 and this implies that 2% +y? —2u = ko. The general
solution is given by
22 2 —2u = flayu)

where f is an arbitrary differentiable function m

Problem 9.9
Solve

V1 —2%u, +u, = 0.
Solution.

The characteristic equations are

dx dy du

Vi—zz 1 0’

From the last fraction, we have u(z,y) = k;. From the first two fractions, we
have y = sin™' z + ky = sin" 'z + f(u) where f is a differentiable function m

Problem 9.10
Solve
u(z + y)u, +ulz — y)u, = 2* + >
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Solution.
The characteristic equations are

dx dy du

wety) uwe—y) 2ty

Each of these ratio is equivalent to

ydx + xdy —udu  xdr — ydy — udu

0 N 0
or u? 1/,.2 2 2
d(zy —5) _ 3@ —y" —u’)
0 0 )
Hence,
1 2
5 2—y2—u2)Zf(l“y—%)

where f is a differentiable function m
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Solutions to Section 10

Problem 10.1
Solve
(Y —wug + (u—2)uy =2 —y

with the condition u(z, 2) = 0.

Solution.
The characteristic equations are

dx dy du

We have
dx + dy + du _dr+dy+du

y—ut+u—xr+x—y 0
so that dz 4+ dy + du = 0. Hence, x + y + u = ¢;. Likewise,

xdx + ydy + udu _ xdr + ydy + udu
vy —u) +y(u—2) +ulz —y) 0

so that zdx + ydy + udu = 0. Hence, 22 + y? + u? = c,. The general solution
is given by

fle+y+u®+y*+u*) =0
where f is an arbitrary differentiable function. Now, using the Cauchy data
u =0 when 2y =1 we find ¢ = (z + y)? = 2* + y* + 22y = 2 + 2. Hence,
the integral surface is described by

(x4+y+u)?=2>4+19>+u*+2
and the unique solution is given by

1—ay
Tr+y

u(z,y) = , T+y#0m

Problem 10.2
Solve the linear equation
YUz + TUy = U,

with the Cauchy data u(z,0) = 3.
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Solution.

The characteristic equations are
dr dy du
y o wu

Using the first two fractions we find 2% — y? = ¢; Now, since

du  dr+dy

U Tty

we can write u = ca(x + y). Hence, the general solution is given by
)=0

u

2 2
T — )
f( by

or
u=(z+y)g(a* —y°)
where f and g are arbitrary differentiable functions. Using the Cauchy data
we find g(z?) = 22, that is g(z) = x. Consequently, the unique solution is
given by
uz,y) = (z+y)(@* —y*) m

Problem 10.3
Solve
x(y2 + u)u, — y(2? + )y = (2% — yz)u

with the Cauchy data u(z, —x) = 1.

Solution.
The characteristic equations are

dx B dy B du
w(y? +u)  —y@+u) (22 —y?u

We first note that

dx dy du dx dy du
= _ Y _ u _ = Tyt
v +u  —(22+u) 22 —y? 0
Thus,
dr dy du 0
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which gives xyu = c;. Likewise, we have

xdxr + ydy — du _xdr +ydy — du
22(y? +u) — y2(2? +u) — (22 —yP)u 0 '

Thus, zdx +ydy — du = 0 and this implies that 2% +y? —2u = ¢y. The general
solution is given by

flryu, 2* +y* — 2u) = 0
where f is an arbitrary differentiable function. Using the Cauchy data we

see that f(—x?,22% —2) = 0 which implies that f(z,y) = 2z + y + 2. Hence,
the unique solution is given by

2eyu+ 2 +yP —2u+2=0m

Problem 10.4

Solve

Ty + YU, = xe "

with the Cauchy data u(z,z?) = 0.

Solution.
The characteristic equations are

dr dy  du

T y  xe

Using the first two fractions we find £ = ¢;. Using the first and the last
fractions we find dr = e“du or x — e* = ¢o. Hence, the general solution is
given by

f(%?x_eu)zo

where f is an arbitrary differentiable function. Using the Cauchy data we

find f(z,x —1) = 0 so that f(z,y) = —z + y + 1. Hence, the unique integral
surface is described by

et r1=0

x

or

u(z,y) = In <x+1—%> m
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Problem 10.5
Solve the initial value problem

ruy +u, =0, u(z,0)= f(z)

using the characteristic equations in parametric form.

Solution.
The initial curve in parametric form is

D ozolt) =t ywolt) =0, uo(t) = f(1).

Since

dl’o

@(l’o(t),yo(t),uo(t))%(t) - b(xo(t),yo(t),uo(t))ﬁ(t) =—-1+#0

the initial value problem has a unique solution. The characteristic equations
in parametric form are

dx_ @_1 du_

PP N R N

Solving we find

z(s,t) = a(t)e’, y(s,t) =s+ B(t), u(s,t)=~(t).

But
x(0,t) =t, y(0,t) =0,u(0,t) = f(t).

Hence,
x(s,t) =te®, y(s,t)=s, u(s,t)= f(t).

Now, s =y and t = ze™¥. Hence, u(z,y) = f(ze ™ ¥) m

Problem 10.6
Solve the initial value problem

ur +aug, =0, u(x,0) = f(x).
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Solution.
The initial curve parametrization is given by

I': zo(w) =w, to(w) =0, u(w) = f(w).

Since

dl’o

a<x0(w>’t0(w)7“0(w))%(w) - b(xo(w),to(w),uo(w))%(w) =—1#0

the initial value problem has a unique solution. The characteristic curves are
solutions to the system

dt_l dx_ du
ds 7 ds N

Solving this system we find
t(s,w) = s+ a(w), z(s,w) = as+ B(w), u(s,w)=y(w).
But z(0,w) = w, t(0,w) =0, and u(0,w) = f(w) so that we find
z(s,w) = as+w, t(s,w) =s, u(s,w) = f(w).

Using the first two equations we find s = ¢, w = x — at. Hence, the unique
solution is given by u(t,z) = f(z —at) m

Problem 10.7
Solve the initial value problem

au, +u, = u?, u(r,0) = cosx

Solution.
The initial curve parametrization is given by

I':xo(t) =t, yo(t) =0, ug(t) = cost.

Since

diL‘o

a(zo(t), yo(t), uo(t))—(t) — b(xo(t),yo(t%uo(t))%(t) — 140
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the initial value problem has a unique solution. The characteristic curves are
solutions to the system

dx dy du 9
ds n '
Solving this system we find
1
s +7(t)

But z(0,t) = ¢, y(0,¢) = 0, and u(0,¢) = cost so that we find

x(s,t) = as+ a(t), y(s,t) = s+ B(t), u(s,t) = —

1

x(s,t) =as+t, y(s,t) =s, u(s,t) = p—

The first two equations lead to s = y and t = x — ay. Substituting into the
third equation we find

1

ulw,y) = sec (z —ay) —y "

Problem 10.8
Solve the initial value problem

Solution.
The initial curve parametrization is given by

U:ozo(t) =1, yo(t) =t, up(t) = h(t).

Since

dx
a(xo(t), yo(t), uo(t))—=(t) — b(zo(t), yo(t), uO(t))d—;(t) =140

the initial value problem has a unique solution. The characteristic curves are
solutions to the system

de by

ds 7 ds
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Solving the first equation we find z(s,t) = s+ «(t). Since z(0,t) = 1 we find
x(s,t) = s+1. Hence, the second equation above becomes % d = s+1. Solving
we obtain y(s,t) = 74—3—1—6( ). Since y(0,t) = t we find y( t) = —+s++t.

Next, we have % = u so that u(s,t) = y(t)e®. Since u(0,t) = ( ) we find

u(s,t) = h(t)e

Now we need to solve for s and t in terms of  and y. In particular, x = s+ 1
2
implies that s = 2 — 1. Therefore, y = (JC_TI) + 2 — 1+t which implies that

t=y— &2 1) — (x —1). And as a result, we have found the solution

u(z,y) =h (y-— CE_;])Q —-(x-—-l)) e 'm

Problem 10.9
Solve the initial value problem

uuy +u, =0, u(z,0) = f(z).

Solution.
The initial curve parametrization is given by

I:oxo(t) =t, yo(t) =0, up(t) = f(1).

Since

dyo dxg
(1), 9o(t), o () (6) — blao(1), yo(t), o (1) (1) = =1 0
the initial value problem has a unique solution. The characteristic curves are
solutions to the system

dx dy du

%—Ih E_l7 — = 0.
Solving the second equation we find y(s,t) = s+(t). Since y(0,¢) = 0 we find
y(s,t) = s. Solving the last equation we find u(s,t) = y(t). But u(0,t) = f(t)
so that u(s,t) = f(t). Now, % = f(t) so that z(s,t) = f(t)s + a(t). Since
x(0,t) = t we conclude that z(s,t) = f(t)s + t. Solving s and ¢ in terms
of x and y we find s =y and t = x — f(t)s = v — f(t)y = v — uy. Thus,
u(z,y) = f(z — uy) so that u is defined implicitly m



SOLUTIONS TO SECTION 10 57

Problem 10.10
Solve the initial value problem

V1 —22u, +u, =0, u(0,y)=y.

Solution.
The initial curve parametrization is given by

I': l’g(t) = 0, yo(t) = t, Uo(t) =t.
Since

d[E()

dyo
aro(t), (1), (1)) 22 (1) — blao(t), yo(0), uo(6) T2(1) = 1 #0
the initial value problem has a unique solution. The characteristic curves are
solutions to the system

G 1y
ds /1—22 ds  ds

From the last equation, we have u(s,t) = ~(¢). Since u(0,t) = ¢, we find
u(s,t) = t. From the second equation, we have y(s,t) = s + (). Since
y(0,t) = t, we find y(s,t) = s + t. From the first equation, we find z(s,t) =
sin (s + «a(t)). Since z(0,t) = 0, we find z(s,t) = sins. Solving s and ¢ in
terms of x and y, we find s = arcsinx and t = y — arcsinz. Hence, the
solution to the problem is u(x,y) = y — arcsinz &

=0.

Problem 10.11
Consider

Tuy + 2yuy = 0.

(i) Find and sketch the characteristics.

(ii) Find the solution with u(1,y) = €Y.

(iii) What happens if you try to find the solution satisfying either «(0,y) =
g(y) or u(z,0) = h(x) for given functions g and h?

iv) Explain, using your picture of the characteristics, what goes wrong at

(
(z,9) = (0,0).



o8 CONTENTS

Solution.

(i) The characterisitcs are solutions to the ODE j—gyc = %y Solving we find
y = Cx%. Thus, the characteristics are parobolas in the plane centered at the
origin. See figure below.

(ii) The general solution is u(z,y) = f(yx~2), and so the solution satisfy-
ing the condition at u(1,y) = e¥ is

u(z,y) = e’ .

(iii) In the first case, we cannot substitute z = 0 into yz~2 (the argument
of the function f, above) because x=2 is not defined at 0. Similarly, in the
second case, we'd need to find a function f so that f(0) = h(x). If h is not
constant, it is not possible to satisfy this condition for all x € R.

(iv) All characteristics intersect at (0, 0). Since the solution is constant along
any characteristic, if the solution is not exactly constant for all (z,y), then
the limit of u(z,y) as (z,y) — (0,0) is different if we approach (0,0) along
different characteristics. Therefore, the method doesn’t work at that point m

Problem 10.12
Solve the equation u, + u, = u subject to the condition u(x,0) = cosz.

Solution.
The initial curve in R3 can be given parametrically as

[':ao(t) =t, yo(t) =0, up(t) = cost.
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We have

dZEQ

a(o(t), yo(t), uo(t))—= (1) = blzo(t), yo(t), uo(t)) —=(f) = =1 # 0
so by Theorem 11.1 the given Cauchy problem has a unique solution. To find

this solution, we solve the system of ODEs

dx
i
ds

dy

27
ds

du B
7 =u.

Solving this system we find

w(s,t) = s+ at), y(st)=s+p61), uls,t)=(t)e.
But x(0,t) = t so that a(t) = t. Similarly, y(0,¢) = 0 so that B(t) = 0
and u(0,t) = cost implies v(t) = cost. Hence, the unique solution is given
parametrically by the equations

x(s,t) =t+s, y(s,t)=s, u(s,t)=e’cost.

Solving the first two equations for s and ¢ we find

and substituting these into the third equation we find
u(z,y) =e’cos(z —y)m

Problem 10.13
(a) Find the general solution of the equation

Uy + YUy = U.

(b) Find the solution satisfying the Cauchy data u(z,3e”) = 2.
(c) Find the solution satisfying the Cauchy data u(z,e”) = e*.
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Solution.

(a) The characteristic equations in non-parametric form are
dv dy du
1y ou

Using the first two fractions we find y = C}e”. Using the first and the last
fractions we find u = Cse”. Thus, the general solution is given by

flye " ue ) =0

or
u=e"flye™)

where f is an arbitrary differentiable function.

(b) We want 2 = u(z, 3x) = e” f(3e"e™") = €” f(3). This equation is impossi-

ble so this Cauchy problem has no solutions.

(c) We want e” = e” f(e®e ") = f(1) = 1. In this case, there are infinitely

many solutions to this Cauchy problem, namely, u(z,y) = e f(ye ") where

f is an arbitrary function satisfying f(1) =1 m

Problem 10.14
Solve the Cauchy problem

Uy + 4duy, = x(u+1)
u(z,5z) = 1.

Solution.
The characteristic equations are <¢ d’” = d

4 x(u—i—l)

Solving we find 4z —y = C}

and u +1= C’ge% Thus, the general solution is given by f(4x — y, (u +
l)e )—Ooru——1+e2f(4x— ).

Using the condition u(z,5z) = 1 we obtain eéf(—x) =2or f(z) =2e"7.
Thus,

z2 (41—9)2

uz,y) =—1+2e2e 2 =

Problem 10.15
Solve the Cauchy problem
Uy — Uy = U

u(z, —x) = sinx.
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Solution.

The characteristic equations are de = i—yl = %“. Solving we find x+y = C} and
u = Cqe®. Thus, the general solution is f(z +y,ue ™) =0 or u = e* f(x +y).
Using the condition u(x, —x) = sinz we find f(0) = e *sinz which is an

impossible equation. Hence, the Cauchy problem has no solutions m

Problem 10.16
(a) Find the characteristics of the equation

YUz + Ty = 0.

(b) Sketch some of the characteristics.
(¢) Find the solution satisfying the boundary condition u(0,y) = e .
(d) In which region of the plane is the solution uniquely determined?

Solution.
(a) The characteristics satisfy the ODE g—g = - Solving this equation we find

22 — y? = C. Thus, the characteristics are hyperbolas.

|

[
S\

(c) The general solution to the PDE is u(z,y) = f(z? — y?) where f is
an arbitrary differentiable function. Since u(0,y) = e™¥* we find f(y) = ev.
Hence, u(z,y) = e* ¥,

(d) This solution is only defined in the region covered by characteristics that
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cross the y axis: y? — 22 > 0. The solution in the region y? — 2% < 0 can be
any function of the form u(z,y) = f(z* —y*) m

Problem 10.17

Consider the equation u, + yu, = 0. Is there a solution satisfying the extra
condition

(a) u(z,0) =1

(b) u(z,0) = 27

If yes, give a formula; if no, explain why.

Solution.

(a) Solving the ODE Z—Z = y we find the characteristics ye™ = C. Thus,
w(z,y) = flye ™). If u(x,0) = 1 then we choose f to be any arbitrary
differentiable function satisfying f(0) = 1.

(b) The line y = 0 is a characteristic so that u has to be constant there.
Hence, there is no solution satisfying the condition u(z,0) = = m
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Solutions to Section 11

Problem 11.1

Classify each of the following equation as hyperbolic, parabolic, or elliptic:
(a) Wave propagation: uy = *ug,, ¢ > 0.

(b) Heat conduction: w; = Cty,, ¢ > 0.

(c) Laplace’s equation: Au = ug, + uy, = 0.

Solution.

(a) We have A =1,B =0 and C = —¢? so that B> — 4AC = 4¢* > 0. Thus,
the given equation is of hyperbolic type.

(b) We have A =0, B =0 and C = ¢ so that B> —4AC = 0. Thus, the given
equation is of parabolic type.

(c) We have A = 1,B =0 and C' = 1 so that B> —4AC = —4 < 0. Thus,
the given equation is of elliptic type m

Problem 11.2

Classify the following linear scalar PDE with constant coefficents as hyper-
bolic, parabolic or elliptic.

(a) Upy + dUyy + DUy, + uy + 2u, = 0.

(b) Uy — dugy + 4uy, + 3u, + 4u = 0.

(€) Ugy + 2Ugy — 3ty + 2uy, + 6u, = 0.

Solution.

(a) We have A =1, B =4 and C' = 5 so that B> —4AC =16 —-20 = —4 < (.
Thus, the given equation is of elliptic type.

(b) We have A = 1, B = —4 and C = 4 so that B> — 4AC = 16 — 16 = 0.
Thus, the given equation is of parabolic type.

(c) We have A =1,B =2 and C = —3 so that B> —4AC =4+12 =16 > 0.
Thus, the given equation is of hyperbolic type m

Problem 11.3
Find the region(s) in the xy—plane where the equation

(14 ) Uy + 22Yuyy, — yQuyy =0

is elliptic, hyperbolic, or parabolic. Sketch these regions.
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Solution.

We have A = 1+ 2, B = 22y, and C = —y? so that B? — 4AC = 42%y® +
4o (1 + ) = 4y (2 + o + 1).

e The PDE is of hyperbolic type if 4y?(x* +x + 1) > 0. This is true for all
y # 0. Graphically, this is the xy—plane with the xr—axis removed.

e The PDE is of parabolic type if 4y*(z* +  + 1) = 0. Since 2> + x +1 > 0
for all z € R, we must have y = 0. Graphically, this is x—axis.

e The PDE is of elliptic type if 4y*(2* + x + 1) < 0 which can not happen m

Problem 11.4
Show that u(x,t) = cosxsint is a solution to the problem

Uyt Ugy
u(z,0) = 0
ug(z,0) = cosx
u(0,t) = 0
for all z,t > 0.
Solution.
We have
uz(x,t) = —sinzsint,
Uge (T, 1) = —cosxsint,
w(z,t) = cosxcost,
uy(r,t) = —coszsint.
Thus,
Ugz(T,t) = —cosxsint = uy(x,t),
u(x,0) = coszsin0 =0,
ui(x,0) = cosxcos( = cosz,
uz(0,t) = —sinOsint=0m

Problem 11.5

Classify each of the following PDE as linear, quasilinear, semi-linear, or non-

linear.
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a) Up + Ully = Ullgy
b)xutt—i-tuyy—i-u =t+1
C) Uy = gy

d) uZ +u, = 0.

(
(
(
(

Solution.
(a) Quasi-linear (b) Semi-linear (c¢) Linear (d) Nonlinear m

Problem 11.6
Show that, for all (x,y) # (0,0), u(x,y) = In (2* + y?) is a solution of

Ugg + Uyy = 0,

and that, for all (z,vy,2) # (0,0,0), u(x,y, 2) = ———— is a solution of

Ugg + Uyy + Uz, = 0.

Solution.
We have

2z
2y% — 222
__ %
Uy ey

B 202 — 2?

Plugging these expressions into the equation we find uz, + u,, = 0. Similar
argument holds for the second part of the problem m

Problem 11.7
Consider the eigenvalue problem

Uy =

Ugy =

Upe = M, 0< <L
uz(0) = kou(0)
uz (L) = —kpu(L)

with Robin boundary conditions, where ky and &y are given positive numbers
and v = u(x). Can this system have a nontrivial solution v # 0 for A > 07
Hint: Multiply the first equation by u and integrate over x € [0, L].
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Solution.
Multiplying the equation by u and integrating, we obtain

)\/OL u?(x)dx :/OL Uty (T)dx

() w0 0)] - [ ae)is
=— [kLu(L)2 + kou(0)? + /0 " ufc(x)dx]

For A > 0, because kg, k;, > 0, the right-hand side is nonpositive and the
left-hand side is nonnegative. Therefore, both sides must be zero, and there
can be no solution other than v = 0, which is the trivial solution m

Problem 11.8
Show that u(z,y) = f(z)g(x), where f and ¢ are arbitrary differentiable
functions, is a solution to the PDE

Ullgy = Uy lly.

Solution.
Substitute u(z,y) = f(z)g(y) into the left side of the equation to obtain
F@)g()(f(2)g9(y))ey = F(x)g(y) f'(x)g'(y). Now, substitute the same thing

into the right side to obtain (f(2)g(y))(f(2)g(y)), = f'(x)g(y)f(z)d (y) =
f(@)g(y)f (x)d' (y). So the sides are equal, which means f(z)g(y) is a solu-
tion W

Problem 11.9
Show that for any n € N, the function u,(x,y) = sin nx sinh ny is a solution
to the Laplace equation

Au = Uyy + Uy, = 0.

Solution.
We have

2

(tn)ze = —n? sinnz sinhny and (u,),, = n?

sin nx sinh ny

Hence, Au, =0m
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Problem 11.10
Solve

Ugy = TY.

Solution. ,
Integrate both sides with respect to y to obtain u,(z,y) = %~ + f(r). Next,

integrate both sides w.r.t. x to obtain u(x,y) = 124?’2 + F(z) + G(y), where

F(z) = [ f(z)dx can be any function of z, since f(x) itself is an arbitrary
function of z m

Problem 11.11

Classify each of the following second-oder PDEs according to whether they
are hyperbolic, parabolic, or elliptic:

(a) 2ugy — 4Uyy + Tuy, —u = 0.

(b) Uyy — 2 €OS Ty, — sin® zuy, = 0.

(€) Yuze + 2(x — Dtzy — (y + 2)uy, = 0.

Solution.

(a) We have A =2, B=—4, C =7 so B> —4AC =16 — 56 = —40 < 0. So
this equation is elliptic everywhere in R2.

(b) We have A =1, B = —2cosx, C = —sin’x so B2 — 4AC = 4cos®x +
4sin®z =4 > 0. So this equation is hyperbolic everywhere in R2.

(c) We have A =y, B =2(x — 1), C = —(y + 2) so B> — 4AC = 4(x —
1)? +4y(y + 2) = 4[(z — 1)? + (y + 1)* — 4]. The equation is parabolic if
(x —1)2+ (y+1)% = 4. It is hyperbolic if (x —1)*+ (y + 1)? > 4 and elliptic
if (z—1)P°+@wy+1)32<4m

Problem 11.12
Let ¢ > 0. By computing u,, Uz, u;, and uy; show that

() = %(f(a; Fet)+ flo—ct)) + % /_ : o(s)ds

is a solution to the PDE
Uy = gy

where f is twice differentiable function and ¢ is a differentiable function.
Then compute and simplify u(z,0) and u.(z,0).
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Solution.
Using the chain rule we find

1
2

(9(x + ct) + g(x — ct))

N | —

(cf'(x+ ct) — of (& — ct)) + o

=5 ([ +ct) = fl(x —ct)) +

u(w,t) > lg(z + ct)(¢) — g(z — ct)(=c))

|3 w|m
no
wlr—‘
o

(f"(w +ct) + f'(z —ct)) + S (g'(x + ct) — g'(c — xt))

(F'+ct) & £ = et) + 5_lglar +ct) — gl — cf)

8
~ £
o~
Il Il
— N0
N O

)

taal,1) =5 ("0 )+ (o = ct)) + o-[g' - ct) — g/ (z — e)]

U (

)

By substitutition we see that c?u,, = u;. Moreover,

uw,0) = 5(f0) + S@) + o [ a(s)ds = fo)
and
w(z,0) = g(z) m

Problem 11.13
Consider the second-order PDE

2
Ylhgg + Ugy — T Uyy — Uy — U = 0.

Determine the region D in R?, if such a region exists, that makes this PDE:
(a) hyperbolic, (b) parabolic, (c) elliptic.

Solution.
We have A =y, B =1, and C = —2%. Thus, B? —4AC = 1+ 4yx?. We have
then (a) 1+ 42y >0, (b) 1 +42%y =0, (c) 1 +42%y <0 m

Problem 11.14
Consider the second-order hyperbolic PDE

Ugg + 2Uzy — Uy, = 0.

Use the change of variables v(z,y) = y — 3z and w(zx,y) = = + y to solve the
given equation.
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Solution.
We have

Uy = — Uy + Uy
Uy :guvv - 6uvw + Uyw

Ugy = — 3uvv - 2uvw + U

Uy =Uy + Uy

uyy :(U’U + uw)’u + (uv + Uw)w = Upv + 2uvw + Uw

Substituting into the PDE we find w,, = 0. Solving this equation we find
u(v,w) = f(v) + g(w). In terms of x and y we have

u(r,y) = fly—3r)+g(zr+y)m

Problem 11.15
Solve the Cauchy problem

Ugg + 2Ugy — 3ty = 0.
u(z,2x) =1, u.(x,27) = .

Solution.
From the previous exercise we have

u(,y) = fly —32) + g(z +y).
From the Cauchy data u(z,2z) = 1 we find
1= f(—x)+ g(3z). (11.3)

Now from the Cauchy data wu,(z,2x) = z we find

r==-3f"(—x)+ ¢'(32). (11.4)
Differentiate (11.3) with respect to x we find

—f'(—x) +3¢'(3z) =0 (11.5)
Multiply (11.5) by —3 to obtain

3f'(—z) —9¢'(3xz) =0 (11.6)
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Add (11.4) and (11.6) to obtain # = —8¢'(3x) or ¢'(z) = —5;. Integrating,
we find g(z) = —i—; + C. Now, from (11.3) we have 1 = f(—z) + ¢g(3z) or
f(=2) =1+ %a? — C = f(z). Thus,

1022 + y? — Toy +6
u(z,y) = f(y —3z) +g(z +y) = 5 ]
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Solutions to Section 12

Problem 12.1
Show that if v(z,t) and w(x,t) satisfy equation 12.1 then av + fw is also a
solution to 12.1, where v and [ are constants.

Solution.
Let z(z,t) = av(x,t) + fw(zx,t). Then we have

2 2 2
C 2y =C"QUgy +C 6wzx
=auy + Py

=z

Problem 12.2
Show that any linear time independent function u(z,t) = ax +b is a solution
to equation 12.1.

Solution.
Indeed we have c®ug,(z,t) =0 = uy(z,t) m

Problem 12.3
Find a solution to 12.1 that satisfies the homogeneous conditions u(x,0) =
u(0,t) = u(L,t) = 0.

Solution.
Clearly the trivial solution w(z,t) = 0 for all z and ¢ is an answer to the
question W

Problem 12.4
Solve the initial value problem

Ugg =gy
u(z,0) =cosz

u(z,0) =0.

Solution.
According to Example 12.1, the unique solution is given by

u(z,t) = %(COS (x —3t) +cos(z+3t)) m
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Problem 12.5
Solve the initial value problem

Ut =Ugy
1
0) =——=
u(,0) 14 a2
u(z,0) =0.
Solution.
According to Example 12.1 with w(z) = 0, the unique solution is given by
1 1 1

u(z,t) ==

2 1+(£L‘+t)2+1—|—($—t)2 "

Problem 12.6
Solve the initial value problem

Upp =AUy
u(z,0) =1
u(z,0) = cos (2mz).
Solution.
We have v(z) =1 and w(z) = cos (27x). The unique solution is given by

42t

u(z,t) :%[2 + %/ cos (2ms)ds]

r—2t

1 1 T+2t
=1+ 1 [% sin (27r5)] .

1
=14+ 8—[sin (2mx 4 4nt) — sin (27 — 4nt)| m
7

Problem 12.7
Solve the initial value problem

Ut =2DUyy
u(z,0) =v(z)
u(x,0) =0

where
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Solution.
The general solution is given by

(1) = %(v(as +58) + v(z — 51)).

Thus,

ifx—>5t<0and z+5t<0
ife —5t<0and x+ 5t >0
ife—5t>0and x+5t <0
ifx—5t>0andx+5t>0m

u(z,t) =

O NN = =

Problem 12.8
Solve the initial value problem

Uy =C Uy
u(z,0) ==
uy (2, 0) = cos® .
Solution.
We have

1 2 n2, Lo [T
u(x,t) 25[67(“8) + =@t 4 %/ cos” sds

T—ct

1 t 1
:§[e’(w+0t)2 e @ 4 5t 12 08 (2x)sin (2ct) m

Problem 12.9

Prove that the wave equation, uy = c*u,, satisfies the following properties,
which are known as invariance properties. If u(x,t) is a solution, then

(i) Any translate, u(z — y,t) where y is a fixed constant, is also a solution.
(ii) Any derivative, say u,(z,t), is also a solution.

(iii) Any dilation, u(az, at), is a solution, for any fixed constant a.

Solution.
Just plug the translated/differentiated /dialated solution into the wave equa-
tion and check that it is a solution m

Problem 12.10
Find v(r) if u(r,t) = @ cosnt is a solution to the PDE

2
Upp + ;ur = Utt.
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Solution.
We have

v'(r) v(r)

» =——=cosnt — —= cosnt
r2

T

" /

Upp _— (r) cos nt — 22 (;) cosnt + 2@ cosnt
r r r

U = — n@ sinnt

r
Uy = — nzm cosnt
r

Avoiding the trivial solution u = 0, we cancel cos nt and find from w,..+ %ur =
Ut the ODE

or
0" (1) + n*v(r) = 0.

Solving this equation we find
v(r) = Acos (nr) + Bsin (nr) m
Problem 12.11
Find the solution of the wave equation on the real line (—oo < & < +00)
with the initial conditions

u(z,0) =€, w(z,0) =sinz.

Solution.
The general solution is given by

1 T—ct x+ct 1 vt :
u(z,t) = e + e 4 - sin sds]
2 CJr—ct
Thus,

1 1
u(z,t) = §[ex_d + et + E(COS (x —ct) —cos(z+ct))| m
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Problem 12.12
The total energy of the string (the sum of the kinetic and potential energies)
is defined as

1 L
E(t) = 5/ (u? + *u?)dx.
0
(a) Using the wave equation derive the equation of conservation of energy
dE(t
PO — (L), (£.8) — 10, ,0.1))

(b) Assuming fixed ends boundary conditions, that is the ends of the string
are fixed so that u(0,t) = u(L,t) = 0, for all ¢ > 0, show that the energy is
constant.

(c) Assuming free ends boundary conditions for both x = 0 and = = L, that
is both w(0,¢) and u(L,t) vary with ¢, show that the energy is constant.

Solution.

(a) We have

dE L L
d_ (t) = / ututtdx + / Cquuxtdx
t 0 0

L L
:/ i dr + g (L, t)ug (L, 1) — 2uy (0, 1)uy(0,1) — 02/ UpUyy AT
0 0

=c*uy (L, t)u (L, t) — uy (0, 1)u,(0,1) + /0 U (Ugy — gy )d
=c*(uy(L, t)ug (L, t) — 1y (0, 1)u,(0,1))

since uy — gy = 0.
(b) Since the ends are fixed, we have u(0,t) = us(L,t) = 0. From (a) we
have

dE

dt
(c) Assuming free ends boundary conditions, that is u,(0,t) = u,(L,t) =0,
we find 22 (t) =0 m

(t) = A (us (L, t)ug (L, t) — uy(0,)u,(0,1)) = 0.

Problem 12.13
For a wave equation with damping

Ut — CUgy +duy =0, d>0, 0<z <L

with the fixed ends boundary conditions show that the total energy decreases.
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Solution.
Using the previous exercise, we find

dE Lo
E(t) = _d/o (ug)*dx.

The right-hand side is nonpositive, so the energy either decreases or is con-
stant. The latter case can occur only if u,(x,t) is identically zero, which
means that the string is at rest m

Problem 12.14
(a) Verify that for any twice differentiable R(z) the function

u(z,t) = R(z — ct)

is a solution of the wave equation uy = c*u,,. Such solutions are called
traveling waves.

(b) Show that the potential and kinetic energies (see Exercise 12.12) are
equal for the traveling wave solution in (a).

Solution.

(a) By the chain rule we have u(z,t) = —cR'(z —ct) and uy (2, t) = R (v —
ct). Likewise, uy(z,t) = R'(x — ct) and u,, = R"(x — ct). Thus, uy = 2tzy.
(b) We have

1 L<ut)2d$ = ’ C—2[R/(1’ - Ct)]2dx - ) C_Q(Um)%m u
9 /0 /0 2 /0 2

Problem 12.15
Find the solution of the Cauchy wave equation

Uy = 4uxz

u(z,0) = 2, u;(w,0) = sin 2.

Simplify your answer as much as possible.

Solution.
The solution is

x+ct

u(w,t) = Sf @~ ct) + fla +ct) + - / o(s)ds].

r—ct
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Here, f(z) = 2%, g(x) = sin 2z, and ¢ = 2. Thus,

1 1 x+2t
u(z,t) 25[@ —2t)* + (z +2t)°] + —/ ) sin 2sds
r—2t

W

x+2t
= 4+ 4% — 3 Ccos 28

r—2t

1 1
=z% + 4t° — g cos (2z + 4t) + g o8 (2x — 4t)

1
=22 + 442 + 1 sin 2z sin4t m

7
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Solutions to Section 13

Problem 13.1
Show that if u(z,t) and v(x,t) satisfy equation (13.1) then au + fv is also a
solution to (13.1), where o and [ are constants.

Solution.
Let z(z,t) = au(z,t) + pv(z,t). Then we have

kax :kauxm + kﬂvzx
=au; + Puy

:Zt .

Problem 13.2
Show that any linear time independent function u(z,t) = ax + b is a solution
to equation (13.1).

Solution.
Indeed we have ku,,(x,t) =0 = u(z,t) B

Problem 13.3
Find a linear time independent solution u to (13.1) that satisfies u(0,t) = Ty
and u(L,T) =T}.

Solution.
Letg u(z,t) = ax + b. From the assumptions of the problem we must have
b=T, and a = =10 Thus, u(z,t) = Ty + -0z m

Problem 13.4

Show that to solve (13.1) with the boundary conditions u(0,t) = T, and
u(L,t) = Ty, it suffices to solve (13.1) with the homogeneous boundary
conditions u(0,t) = u(L,t) = 0.

Solution.

Let @ be the solution to (13.1) that satisfies u(0,t) = @(L,t) = 0. Let w(x,t)
be the time independent solution to (13.1) that satisfies w(0,t) = Ty and
w(L,t) = Ty. That is, w(z,t) = Ty+2 2. From Exercise 13.1, the function
u(z,t) = u(z,t)+w(x,t) is a solution to (13.1) that satisfies u(0,t) = Ty and
'LL(L, t) =T, n
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Problem 13.5
Find a solution to (13.1) that satisfies the conditions u(z,0) = w(0,t) =
u(L,t) = 0.

Solution.
Clearly the trivial solution w(z,t) = 0 for all z and ¢ is an answer to the
question W

Problem 13.6
Let (I) denote equation (13.1) together with intial condition u(zx,0) = f(z),
where f is not the zero function, and the homogeneous boundary conditions

u(0,t) = u(L,t) = 0. Suppose a nontrivial solution to (I) can be written in
the form u(z,t) = X (x)T(t). Show that X and T satisfy the ODE

X'—2X=0andT' - AT =0

for some constant \.

Solution.
Substituting u(x,t) = X (z)7T'(t) into (13.1) we obtain
X// T/
k— = —=.
X T

Since X only depends on x and T only depends on ¢, we must have that
there is a constant A\ such that

X/I T/
]{57 = X\ and T = A
This gives the two ordinary differential equations
X"—32X=0and T —AT=0mn

Problem 13.7

Consider again the solution u(z,t) = X (x)T(t). Clearly, T(t) = T(0)e .
Suppose that A > 0.

(a) Show that X(z) = Ae"™V® 4+ Be™*V®, where o = # and A and B are
arbitrary constants.

(b) Show that A and B satisfy the two equations A + B = 0 and A(e!V® —
e Ve) = 0.

(c) Show that A = 0 leads to a contradiction.

(d) Using (b) and (c) show that e/vV® = ¢~ 5ve Show that this equality leads
to a contradiction. We conclude that A < 0.
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Solution.

(a) Letting &« = 2 > 0 we obtain the ODE X" — aX = 0 whose general
solution is given by X (z) = Ae”V® + Be™*V® for some constants A and 5.
(b) The condition u(0,¢) = 0 implies that X (0) = 0 which in turn implies
A+ B = 0. Likewise, the condition u(L,t) = 0 implies AeVIo 4 Be~IVa —
Hence, A(elVe — e 1Ve) = 0,

(c¢) If A =0 then B =0 and u(z,t) is the trivial solution which contradicts
the assumption that u is non-trivial. Hence, we must have A # 0.

(d) Using (b) and (c) we obtain e"V® = e=LV@ or ¢2lV® = 1. This equation
is impossible since 2Ly/a > 0. Hence, we must have A < 0 so that X (z) =
Acos (zy/—a) + Bsin (zv/—an

Problem 13.8
Consider the results of the previous exercise.

(a) Show that X (z) = ¢1 cos Sz + ¢y sin Sz where 3 = /2.

(b) Show that A = \,, = —k’ff, where n is an integer.

Solution.
(a)Now, write 8 = @/—%. Then we obtain the equation X” + 32X = 0 whose
general solution is given by

X(x) = ¢ cos fx + ¢y sin Sz

(b) Using X (0) = 0 we obtain ¢; = 0. Since ¢z # 0 we must have sin L = 0.

2.2 . .
Thus, A = —I“”LQ’T , where n is an integer m

Problem 13.9 ),

kn‘m
Show that u(z,t) = Y ,_, u(z,t), where u,(z,t) = c,e 22 'sin (%) x sat-
isfies (13.1) and the homogeneous boundary conditions.

Solution. )

kn“m
For cach integer n > 0 we have uy(z,t) = 7%5T(0)e 22 "sin (%) z is a
solution to (13.1). By superposition, u(z,t) is also a solution to (13.1).

Moreover, u(0,t) = u(L,t) = 0 since u,(0,t) = u,(L,t) =0 W

Problem 13.10
Suppose that a wire is stretched between 0 and a. Describe the boundary



SOLUTIONS TO SECTION 13 81

conditions for the temperature u(z,t) when

(i) the left end is kept at 0 degrees and the right end is kept at 100 degrees;
and

(ii) when both ends are insulated.

Solution.
(i) u(0,t) = 0 and wu(a,t) = 100 for ¢ > 0.
(ii) u.(0,t) = uz(a,t) =0fort >0m

Problem 13.11
Let uy = g, for 0 < z < m and t > 0 with boundary conditions u(0,t) =

0 = u(m,t) and initial condition u(x,0) = f(z). Let E(t) = [ (uf 4+ u2)dx.
Show that E'(t) < 0.

Solution.
Solving this problem we find u(z,t) = e *sinx. We have

E(t) = / [e™* sin®x + e~ cos® x]dx = / e 2tdr = me ™.
0 0
Thus, £'(t) = —2me ? <0 forallt >0 m

Problem 13.12
Suppose

Up = Uge + 4, up(0,8) =5, ug(L,t) =6, u(z,0) = f(x).

Calculate the total thermal energy of the one-dimensional rod (as a function
of time).

Solution.

We have
d [*F I
— u(x,t)dr = u,|y +4L =1+ 4L.
dt J,

Thus,

E(t) = /OL f(@)dz + (1 +AL)t m
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Problem 13.13
Consider the heat equation
Uy = kuxm

for z € (0,1) and ¢ > 0, with boundary conditions u(0,¢) = 2 and u(1,t) =3
for ¢ > 0 and initial conditions u(z,0) = z for z € (0,1). A function v(x)
that satisfies the equation v”(z) = 0, with conditions v(0) = 2 and v(1) =3
is called a steady-state solution. Find v(z).

Solution.
Solving the equation v”(x) = 0 we find v(z) = ax + b. Using the conditions
v(0)=2and v(1) =3 we find v(z) =2z +2m

Problem 13.14
Consider the equation for the one-dimensional rod of length L with given
heat energy source:

Up = Ugy + q(T).
Assume that the initial temperature distribution is given by w(z,0) = f(z).

Find the equilibrium (steady state) temperature distribution in the following
cases.

(a) q(z) = 0,u(0, ): L,t)=T.

(b) g(z) = 0, ua( t) (LJ) =T.

(¢) q(x) = 0,u(0,1) = T, uy(L, t) = .

Solution.

Recall that a steady-state solution is a solution that does not depend on time
(i.e. uy =0.).

(a) We have v"(z) = 0 = v(x) = 12 + ¢o. But v(0) = 0 and v(L) = T so
that ¢; = T and ¢; = 0. Thus, the steady-state solution is v(z) = L.

(b) We have v(z) = ¢y + ¢ with v/(0) = 0 and v(L) = T Thus, ¢; = 0 and
= T so that v(z) =T.

(¢) We have v(z) = c;x + ¢ with v(0) =T and v'(L) = a. Thus, ¢; = o and
=T sothat v(z) =ar+Tn

Problem 13.15
Consider the equation for the one-dimensional rod of length L with insulated
ends:

cpuy = Kugy, u,(0,t) =u,(L,t) =0.
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(a) Give the expression for the total thermal energy of the rod.
(b) Show using the equation and the boundary conditions that the total
thermal energy is constant.

Solution.
(a) E(t) = fOL cpu(z,t)dz.
(b) We integrate the equation in x from 0 to L :

L L
/ cpuy(, t)dr = / Kugpdr = Kug(z,t)|g =0,
0 0

since u,(0,t) = u,(L,t) = 0. The left-hand side can also be written as

d L
i, cou(z,t)dz = E'(t).

Thus, we have shown that E'(t) = 0 so that E(t) is constant m

Problem 13.16
Suppose

Ut = Uge + 2, u(z,0) = f(2), u(0,8) =B, u,(L,t)=T7.

(a) Calculate the total thermal energy of the one-dimensional rod (as a func-
tion of time).

(b) From part (a) find the value of 8 for which a steady-state solution exist.
(c) For the above value of 8 find the steady state solution.

Solution.
(a) The total thermal energy is

We have

dE L L L2
—:/ u(x, t)de = ux|§+/ zde = (77— ) + —.

(b) The steady solution (equilibrium) is possible if the right-hand side van-

ishes:
2

(-8 + % =0
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Solving this equation for g we find g =7+ %2
(c) By integrating the equation u,, + z = 0 we find the steady solution

x3

u(x) = -5t Crr + Cy

From the condition wu,(0) = # we find C) = . The steady solution should
also have the same value of the total energy as the initial condition. This

means I x3 L
/ (—E By 02) dr= [ f(x)dz = B(0).
0 0

Performing the integration and then solving for Cy we find

/ f(z d:v+——ﬂ§.

Therefore, the steady-state solution is

3
/ fla da:+——ﬁL+5x—”%l
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Solutions to Section 14

Problem 14.1
Define f,, : [0,1] — R by f.(x) = ™. Define f: [0,1] = R by

0 ifo<z<1
f(x)_{ 1 ifr=1

(a) Show that the sequence {f,}>2, converges pointwise to f.

(b) Show that the sequence {f,,}°°; does not converge uniformly to f. Hint:
Suppose otherwise. Let e = 0.5 and get a contradiction by using a point
(05)~ <z < 1.

Solution.

(a) For all 0 < z < 1 we have lim,,_,o, fu(z) = lim, 2" = 0. Also,
lim,, o frn(1) = 1. Hence, the sequence { f,,}22, converges pointwise to f.
(b) Suppose the contrary. Let e = % Then there exists a positive integer N
such that for all n > N we have

Fule) — F(@)] <

for all z € [0,1]. In particular, we have
1
Fnle) — f)] < &

for all z € [0,1]. Choose (0.5)~ < x < 1. Then |fx(z) — f(z)| = 2V > 0.5 =
¢ which is a contradiction. Hence, the given sequence does not converge
uniformly m

Problem 14.2
Consider the sequence of functions

nx + 2

fn<x) =

n2

defined for all x in R. Show that this sequence converges pointwise to a
function f to be determined.
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Solution.
For every real number z, we have

2 2
lim f,(z) = lim w = lim © + lim — =0

n—o00 n—o0 n n—oo N n—00 ’n,2

Thus, {f,}>2, converges pointwise to the zero function on R m

Problem 14.3
Consider the sequence of functions

__sin(nz + 3)

defined for all x in R. Show that this sequence converges pointwise to a
function f to be determined.

Solution.
For every real number z, we have

Moreover,

1
lim =0.

n—o00 n -+ 1
Applying the squeeze rule for sequences, we obtain

lim f,(x) =0

n—oo

for all x in R. Thus, {f,}>°, converges pointwise to the zero function on R m

Problem 14.4
Consider the sequence of functions defined by f,,(z) = n?z" for all 0 < = < 1.
Show that this sequence does not converge pointwise to any function.

Solution.

First of all, observe that f,(0) = 0 for every n in N. So the sequence
{fn(0)}>2, is constant and converges to zero. Now suppose 0 < z < 1
then n22™ = n2e""* But Inz < 0 when 0 < x < 1, it follows that
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limy, o0 fr(z) =0for 0 <z <1

Finally, f,(1) = n? for all n. So,

Therefore, {f,}>2, is not pointwise convergent on [0, 1] m

Problem 14.5

Consider the sequence of functions defined by f,,(z) = (cos )" for all —5 <
r < 7. Show that this sequence converges pointwise to a noncontinuous
function to be determined.

Solution.
For—§§x<0and()<:cggwehave

nh_g)lo(cos z)" = 0.
For z = 0 we have f,(0) = 1 for all n in N. Therefore, {f,}>°, converges
pointwise to

0 if Z<z<0andO<zxz<ZI
_ 7 = =3
f(x)_{1 ifz=0m

Problem 14.6

Consider the sequence of functions f,(z) = z — £ defined on [0, 1).

(a) Does {f,}>°, converge to some limit function? If so, find the limit func-
tion and show whether the convergence is pointwise or uniform.

(b) Does {f}}2, converge to some limit function? If so, find the limit func-
tion and show whether the convergence is pointwise or uniform.

Solution.
(a) Let € > 0 be given. Let N be a positive integer such that N > 1. Then

forn >N
" |x]”<1<1<
r———x=—< —-—<—<e.
- N

n n n

Thus, the given sequence converges uniformly (and pointwise) to the function

flx) ==z

(b) Since lim,,_, f!(z) = 1 for all z € [0, 1), the sequence { !}, converges
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pointwise to f’(z) = 1. However, the convergence is not uniform. To see
this, let € = % and suppose that the convergence is uniform. Then there is a
positive integer N such that for n > N we have

1
l—az" =1 =zt < =
1—am =1 = fa" < 5

In particular, if we let n = N + 1 we must have 2V < % for all z € [0,1).

1
But z = (1) € [0,1) and z" = 1 which contradicts "V < 1. Hence, the

convergence is not uniform m

Problem 14.7
Let fu(z) = &= for z € [0,2].
(a) Find the pointwise limit f(z) = lim, o fn(x) on [0, 2].

(b) Does f,, — f uniformly on [0, 2]7

Solution.
(a) The pointwise limit is

0 ifo<z<1
fly=4¢ 1 ifz=1
1 ifl<z<?2

(b) The convergence cannot be uniform because if it were f would have to
be continuous m

Problem 14.8

For each n € N define f, : R — R by f,(z) = 520
(a) Show that f, — % uniformly.

(b) Find limy, e [, fu(z)da.

Solution.

(a) Let € > 0 be given. Note that

2cosx — sin’x

2(2n + sin? x)

1

‘fn(aj) - 5’ =

3
~ 4n’

Since lim,,_, % = 0 we can find a positive integer N such that if n > N
then % < €. Thus, for n > N and all z € R we have

1

3
B S )
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This shows that f,, — 3 uniformly on R and also on [2, 7).
(b) We have

7 7 71 5
lim fonxdr = / lim f,zdx = / —dr=—-n
9 9 2 2

n—o0 2 n—o0

Problem 14.9
Show that the sequence defined by f,(z) = (cosz)™ does not converge uni-

formly on [-7, Z].

Solution.
We have proved earlier that this sequence converges pointwise to the discon-
tinuous function

B Oif—%§x<0and0<x§%
f(x)_{l if =0

Therefore, uniform convergence cannot occur for this given sequence m

Problem 14.10
Let {f.}52, be a sequence of functions such that

n

n 2<x<hlt < .
sup{[ful@)] 2 < <5} <
(a) Show that this sequence converges uniformly to a function f to be found.
(b) What is the value of the limit lim,, f; fo(x)dx?

Solution.
(a) Using the squeeze rule we find

lim sup{|fn(z)]:2 <z <5} =0.
n—oo

Thus, {f.}>2, converges uniformly to the zero function.

(b) We have
5

5
lim fo(z)de = / Ode =0m
2 2

n—oo
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Solutions to Section 15

Problem 15.1

Let f and g be two functions with common domain D and common period
T. Show that

(a) fg is periodic of period T.

(b) ¢1.f + a9 is periodic of period T, where ¢; and ¢y are real numbers.

Solution.

(a) We have (fg)(z +T) = f(x+T)g(x +T) = f(z)9(x) = (fg)(x).

(b) We have (¢1f+c29)(x+T) = c1 f(e4+T) +cog(x+T) = 1 f(x) +cag(x) =
(e1f + c29)(z) m

Problem 15.2
Show that for m # n we have

(a) ffL sin (2%2) sin (%Zz)dz = 0 and

(b) f_LL cos (™2 z) sin (% z)dz = 0.

Solution.
(a) For n # m we have

L . mm . nm 1
/_L sin (Ta:> sin (T:c> dr = — 3
1

2

v ()

where we used the trigonometric identiy

1
sinasinb = 5[— cos (a + b) + cos (a — b)].
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(b) For n # m we have

[oom (e n (i [ on (250) (252
1
2

where we used the trigonometric identiy
. I, .
cosasinb = 5[8111 (a+0b)—sin(a—0)| m

Problem 15.3

Compute the following integrals:
(a) f_LL cos? (%) dx.

(b) LLL sin® (22 z)da.

(c) ffL cos (%z) sin (22 z)dz.

Solution.
(a) Using the trigonometric identity cos*a =

L 1 [ 2
/_L cos? (%x)dw :§ /_L (1 + cos (%) x) dx
(I (2 b,
=3 x T sin 7 T _L— )

1—cos2a
2

% we can write

we can write

L 1 [F 2
/ sin? <Ex) dx :—/ <1 — COS (ﬂx)) dx
L L 2 —L L
(Ve (27N
=3 x T sin 7 x 7L_

(b) Using the trigonometric identity sin®a =

91
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0820 we can write

(c) Using the trigonometric identity cosasina =

L nmw . o/nm 1 [ 2nm
cos | —z ) sin | —z |dzx == cos | —x |dx
_L L L 2 ). L
L . 2nm L
= — | |sin| —= =0m
dnm L .

Problem 15.4
Find the Fourier coefficients of

on the interval [—m, 7].

Solution.
We have

Problem 15.5
Find the Fourier series of f(z) = 2% — 4 on the interval [—1,1].
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Solution.
We have

x__ —

1
/ 22— = ) cos nmxdr

,_\

1 1

1
2% cosnradr — 3 cosnmxdr
-1

1 1 . . 1
_ sin (TL?TZL')} B / o, S (nmx) dr 1 [sm (mrx)}
-1 J- ~1

_ (ni)Q (—1)"

1
1
by, :/ (2% — 5) sinnxdzr = 0.

-1

Note that b, = 0 because the integrand is odd. Hence,

—_
8
N

"cos (nmx) W

OA

n=1

Problem 15.6
Find the Fourier series of the function

-1, 2r<x<—7
f(z) = 0, —7m<z<m
1, T <x<2m.

Solution.
From the graph of f(x) we see that f is an odd function on (—2m, 27). Thus,
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f(x)cos (%) is odd so that a, = 0 for

all n € N. Now,

1 2w

a =5~ . f(z)dz =0
1 2m

bn, =5 . f(z)sin (%)dm
1 nw

™ Jo

2
= — — CoS
nm

Hence,

Problem 15.7
Find the Fourier series of the function

{

14z,
11—z,

()

Solution.

" f(z)sin <7)d1:
%/ﬁ ﬂsin (%)dm
()],

o oo () - 0]

—2<z<0
O<z <2

CONTENTS

From the graph of f(z) we see that f is an even function on [—2,2]. Thus,
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f(z)sin (%x) is odd so that b, = 0 for all n € N. Now,

f() ;{/0( +$)dw+/02(1—g;)dg;]—()
/f cos %x)dx
:/o (1 —z)cos <%x>dm
= 02 oS <n§x) dr — /02 X COS <n§x> dx

-~ e (o),

4
= 1—(=1)"
szl = (1)
Hence,
= 4 nm
fla) = ; el D) Jcos ( , ) m
Problem 15.8
Show that f(x) = = is not piecewise continuous on [—1, 1].

Solution.
Since the sided limits at the point of discontinuity £ = 0 do not exist, the
function is not piecewise continuous in [—1,1] m

Problem 15.9
Assume that f(z) is continuous and has period 2L. Prove that

[ s

is independent of a € R. In particular, it does not matter over which interval
the Fourier coefficients are computed as long as the interval length is 2L.
[Remark: This result is also true for piecewise continuous functions].

Solution.
Define the function
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Using the fundamental theorem of calculus, we have

dg d L+a
- d
da da ) ., f(x)de

=f(L+a)— f(-L+a)=f(-L+a+2L)— f(—L+a)
=f(-L+a)— f(-L+a)=0

Hence, ¢ is a constant function, and in particular we can write g(a) = g(0)
for all @ € R which gives the desired result m

Problem 15.10
Consider the function f(z) defined by

1 0<zx<«1
f(”“")_{z 1<z<3

and extended periodically with period 3 to R so that f(z +3) = f(z) for all
x.

(i) Find the Fourier series of f(x).

(ii) Discuss its limit: In particular, does the Fourier series converge pointwise
or uniformly to its limit, and what is this limit?

(iii) Plot the graph of f(z) and the limit of the Fourier series.

Solution.

(i) The Fourier series is computed for functions of period 2L. Since this
function has period 3, L = 3/2. By the previous problem, we can compute
the coefficients over any interval of length 3, so we might as well use [0, 3].
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Using the formulas for the coefficients, we obtain:

—1/L f(z)da::Q[/ldH/lgzdx] :9
/ flx cos )d 2[/1c08<2mm)d9: /132cos(2"m)d4
Ksm () o) 2 e - (22)

1 . (2n7r>
=— — sm —_
3
nmc 2nmx 3 2nmx
f sm sin dx + 2 sin 3 dx
1
( (5))]

cos 2nm — cos =

1
|
Wl N
[\
S|t
)
| — |
A~
O
3/?
3 S
:q
v
\/w\w

Thus, the Fourier series is

-2 () () (7)) ()

n=1

(ii) Using the theorem discussed in class, because this function and its derivative
are piecewise continuous, the Fourier series will converge to the function at each
point of continuity. At any point of discontinuity, the Fourier series will converge
to the average of the left and right limits.
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0 1 r 3 U] i 2 3

fix) lirmit oof Founer ranes,

Problem 15.11
For the following functions f(z) on the interval —L < x < L, determine the
coefficients a,, n =10,1,2,--- and b,,n € N of the Fourier series expansion.

(b) () =2 + sin (%)
@@=y 23
(@ fla) =4,

Solution.

(a) ap =2, ap, =by, =0 for n € N.

(b) ap =4, a, =0, by =1, and b, = 0.
(c)ap=1, a, =0, b, = L[1—(-1)"], n€N.
(

™

d) ap=a, =0, b, = 2£(-1)"* neNm

™

Problem 15.12
Let f(t) be the function with period 27 defined as

{2 if0<z<Z
f(t)—{O if § <z <2rm

f(t) has a Fourier series and that series is equal to
a oo

50 + Z:l(an cosnt + by, sinnt).
n=

Find ‘;—3.
3
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Solution.
We have B
1 (2 2
ag = — 2cos3xdr = ——
T Jo 3T
and

us

1 2
by = /2 2sin 3xdr = —.
T Jo 3T

Thus, Z—s =—1n

Problem 15.13
Let f(z) = 2% on [~7, 7], extended periodically to all of R. Find the Fourier
coefficients a,, n =1,2,3,--- .

Solution.
Since the extension is an odd function, we must have a,, =0 for alln € N R

Problem 15.14
Let f(z) be the square wave function
-7 —nr<x<0
flz) = { ™ 0<z<m

extended periodically to all of R. To what value does the Fourier series of f(x)
converge when x = 07

Solution.
f(z) is piecewise smooth function with discontinuity at = 0. Thus, the Fourier
series of f(z) at x = 0 converges to

fOO)+f(07)  —m+m

2 =5 —onm

Problem 15.15
(a) Find the Fourier series of

1 —7<x<0

f(x)_{ 2 0<az<nm

extended periodically to all of R. Simplify your coeflicients as much as possible.

(b) Use (a) to evaluate the series y ~ -yt

@n=1) Hint: Evaluate the Fourier series
at v = 3.
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Solution.
(a) We have
™ 0 s
aozl/ f(z :1[/ dﬂ:+/ dm]zB
L — T —T 0
1 ™
an :/ f(x) cosnaxdx =0
™ —T
by, :1/ f(z)sinnxdx = 1 [1 — b)) ]
T ) . T |n n
Thus,
3 2 sin (2n — 1)z
R ; 2n — 1

(b) By the convergence theorem we have

1 T T 3 20081n2n—1§
2[f<2>+f<2> SR D i e

This implies

and this reduces to
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Solutions to Section 16

Problem 16.1
Give an example of a function that is both even and odd.

Solution.

Let f(x) be such a function. Since f is both even and odd, we must have f(x) =
—f(x). This implies that 2f(xz) = 0 and therefore f(x) =0 for all z in the domain
of f

Problem 16.2
Graph the odd and even extensions of the function f(z) =1, 0 <z < 1.

Solution.
We have
1 O0<ax <1
fodd(x) = -1 -1<z<0
0 z=20

and fepen(z) =1 for —1 <z < 1. The odd extension of f is shown in (a) while the
even extension is shown in (b) B

(@) ®)

Problem 16.3
Graph the odd and even extensions of the function f(x) = L —z for 0 <z < L.

Solution.
‘We have
L—=x O<x<L
fodd(x): —L—x —-L<z<0
0 z=0
and

f () = L—x 0<zxz<L
cver ) =Y Lig —L<z<0
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The odd extension is shown in (a) while the even extension is shown in (b) B

Graph of Odd Extension of § (x:l Graph of Even Extension of [x:l
I
RS " : Lr'
N R .'I \\
N . . \
5 !
RS " \\
» ‘«
_r I !
\
, \
; \
4 \
-2 "3 X
-L L

Problem 16.4
Graph the odd and even extensions of the function f(z) =1+ 2% for 0 <z < L.

Solution.
We have fepen(z) =1+ 22 for —L < 2 < L while

1+2?2 O0<a2<L
fodd(x): —1 — a2 —-L<z<0
0, z=0

The odd extension is shown in (a) while the even extension is shown in (b) B

Graph of Odd Extension of f (x) Graph of evenExtension of f ()
.-/f
L— "
-I ® b —I}_ :
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Problem 16.5
Find the Fourier cosine series of the function

T—x, 5
Solution.
‘We have _
2 Y vy
apg = — [/Qxd:v—i—/ (Tr—x)da:] —_
™ 0 % 2
and for n € N

2| [2 i
ap = — [/2 xcosnwd$+/ (Tr—x)cosnmd:n] .
7T 0 ™

2

Using integration by parts we find

3 T . ] (2 )
T cosnxdr = [— sin n:r} - — sin nxdx
0 n 0 nJo

i 2 1 z
_TSImART/2) (n7/2) + 3 [cos nx]g

2n
mwsin (nw/2)  cos(nm/2) 1
= + - —
2n n? n?

while

U _ ™ 1 s
/ (m — x) cosnadr = [(W z) sin n:c] + / sin nxdz
2

jus mn ™ n jus
2 2
i 2
__ WSHQWH — L feosnaly
n n
_ mwsin(nm/2)  cos(nm/2) 1
=- o + 3 — 5 Cos (nm).

I IILIS7 when n € N
2 2) 1 1)?
an = 7712 [2 COS (nﬂ/ ) ( ) ]a

and the Fourier cosine series of f(x) is

o0
2
_Z+;7T7”L22COS (nm/2) =1 —(=1)"] cosnx B

103
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Problem 16.6
Find the Fourier cosine series of f(z) = z on the interval [0, 7].

Solution.
We have

2 ™
aoz/ zdr =
T Jo

and

2 ™
an :/  cos nrdx
0

T
2 [ T . O Y

=— [— smnw} - — sin nxdx
7T |Lln 0o nJy
2 2

=3 [cos na]y = ol (Dl

Hence, the Fourier cosine of f is

+ Z %[(—1)” — 1] cosnz m

fz) =

N

n=1

Problem 16.7
Find the Fourier sine series of f(x) =1 on the interval [0, 7].

Solution.
We have
2 [T 2
by, = / sinnxdr = —[1 — (—1)"].
0

T nm
Hence, the Fourier sine series of f is
>N 2

f(z) = Z —[1 = (-1)"]sinnz N

nm
n=1

Problem 16.8
Find the Fourier sine series of f(x) = cosz on the interval [0, 7].
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Solution.
We have
2 iy
by, =— / cos x sin nxdx
™ Jo
1 v
=— / [sin (n + 1)z — sin (1 — n)z]dx
T Jo
L[ cos(n+Dz  cos(l—n)z]”
G n+1 1—n 0
o (1—(—1)"
o n? —1

Hence, the Fourier sine series is

flx) = iin <1n_2(:11)n> sinnz W

n=1

Problem 16.9
Find the Fourier cosine series of f(z) = ¢** on the interval [0, 1].

Solution.
We have

1
a0—2/ e?rdr =e? — 1
0
and using integration by parts twice one finds

A[(=1)"e? — 1

1
2z
ap = 2 e“* cosnmrdr =
" /0 4 + n2n?

Hence, the Fourier cosine series is given by

oo _ n62_
Fz) = %(62 VL S (G i A

Problem 16.10

For the following functions on the interval [0, L], find the coefficients b, of the
Fourier sine expansion.

(a) f(z) = sin ().

(b) fx) =1

(¢) f(xz) = cos (%1‘)
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Solution.
The coefficients b,, are given by the formula

9 L
bn:L/O f(x)sin(%x), n € N.

(a) If f(z) =sin (322) then b, = 0 if n # 2 and by = 1.
(b) If f(x) =1 then

by = E/OL sin (" ) = 2 11— (1),
(c) If f(z) = cos (Fx) then
by = E/OL cos (%x) sin (%x) dr =0
and for n # 1 we have
by, :% /OL cos (%1‘) sin (n%m) dx
:%% /OL [sin (%) (14 n) —sin (%) (1- n)} dx
L

:% [_(1+Ln)7r oS (%) (1+n)+ A—nr cos (L;) (1-— n)]
2n

0

Problem 16.11

For the following functions on the interval [0, L], find the coefficients a, of the
Fourier cosine expansion.

(a) f(x) =5+ cos (Tx).

(b) f(z) ==

()

Solution.

(a) ap =10 and a; = 1, and a,, = 0 for n # 1.
(b) ap = L and a,, = 2L;[(-1)" — 1], n€N.
(

(wn)?

¢)ap=1and a, = 2sin (), neNm
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Problem 16.12

Consider a function f(x), defined on 0 < z < L, which is even (symmetric) around
T = % Show that the even coefficients (n even) of the Fourier sine series are zero.
Solution.

By definition of Fourier sine coefficients,

= ZQL/OL f(x)sin <nf7rm>dx

L can be written as

2

((5)-1(5-)

for all x € R. To use this symmetry it is convenient to make the change of variable

T — % = u in the above integral to obtain

an/_Lf<§+u>sin ["L” <§+u>}du.

2

The symmetry around =z =

Nl

Since f (% + u) is even in u and for n even sin [ ( + u)] = sin ("zu) is odd in
u, the integrand of the above integral is odd in u for n even. Since the intergral is
from —% to % we must have by, =0 forn=20,1,2,--- &

Problem 16.13
Consider a function f(z), defined on 0 < x < L, which is odd around = = % Show
that the even coefficients (n even) of the Fourier cosine series are zero.

Solution.
By definition of Fourier cosine coefficients,

f(zx) cos —33 dx
il )

The anti-symmetry around z = 2 can be written as

f(a) =l

for all y € R. To use this symmetry it is convenient to make the change of variable
T = % + y in the above integral to obtain

an:/_§f<§+y> cos [ng <§+y>}dy

SISl



108 CONTENTS

Since f (% + y) is odd in y and for n even cos [% (% + y)] = +cos (%) is even

in y, the integrand of the above integral is odd in y for n even. Since the intergral
is from —% to % we must have as, =0 foralln=0,1,2,--- R

Problem 16.14
The Fourier sine series of f(x) = cos (%’”) for 0 < x < L is given by

cos (%) znzz:lbnsin (?), n €N

where
2n

by=0, bp=——
e (n2 — )

1 - (—1)".
Using term-by-term integration, find the Fourier cosine series of sin (%)

Solution.
Integrate both sides from 0 to « we find

L nmTx <. Lb nwx
an(750) - 532 1o ()
7rsm<L> Zlﬂn( cos L

n—

Thus,

where -
ap b,
2 Z n’

n=1

It is more convenient to calculate ag using the definition rather than trying to sum

the series;
2 (L 7z 4
apg = L/o sin (T>d:1: = .
Hence,
. /nmx 2 21— (=)™ nmwE
SIH(T>:%_% n? — 1 COS(L)'

Problem 16.15
Consider the function
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a) Sketch the even extension of f.

b) Find ag in the Fourier series for the even extension of f.

¢) Find a,, (n =1,2,--+) in the Fourier series for the even extension of f.
d) Find b, in the Fourier series for the even extension of f.

e) Write the Fourier series for the even extension of f.

(
(
(
(
(

Solution.

(a

=l
x; = v 1 2

(b) ap = 2 [ f(x)dz = 3.
(c) We have

(d) by, = 0 since f(z)sin (23%) is odd in—2 < z < 2.
(e)

=3+ () o ('5)

n=1
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Solutions to Section 17

Problem 17.1
Solve using the separation of variables method

Au+ du=0.

Solution.
We look for a solution of the form wu(z,y) = X (2)Y (y). Substituting in the given
equation, we obtain

X"Y + XY" 4+ AXY =0.

Assuming X ()Y (y) is nonzero, dividing for X (z)Y (y) and subtract both sides for
X// (1.)
X(z)

, we find:
X"x) _Y"(y)
X)) Y(y)
The left hand side is a function of x while the right hand side is a function of y.
This says that they must equal to a constant. That is,

+ A

X)) _Y'(y)

X(@) ~ Y 0

where 0 is a constant. This results in the following two ODEs
X"+6X =0and Y+ (A =9)Y =0.
elf§>0and A—§ >0 then

X(z) =Acosdz + Bsindx
Y (y) =Ccos (A —d)y + Dsin (A — )y

oeIf§>0and A — 9 <0 then

X(x) =Acosdx + Bsindz
Y (y) =Ce V==Y 4 peV—-(A=d)y

o If 6 = A > 0 then

X(z) =Acosdz + Bsindz
Y(y) =Cy+ D
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e If § = )\ <0 then

X(z) =A™V 4 BeVO®
Y(y) =Cy+ D

eIf§ <0and A\ — 4§ > 0 then

X(x) —Ae VT | gevie
Y (y) =Ccos (A —6)y+ Dsin(A—0)y

oIfd<0and A — 4§ <0 then
X(x) =Ae V7 4 BeV e
Y (y) =Ce VA=W 4 DeVA—0y g

Problem 17.2
Solve using the separation of variables method

g = Kgy.

Solution.
Let’s assume that the solution can be written in the form u(z,t) = X (z)T(t).
Substituting into the heat equation we obtain

Xl/ T/
X kT
Since X only depends on z and T only depends on ¢, we must have that there is

a constant A such that

X _ T
T—AandkT—)\.

This gives the two ordinary differential equations
X" —AX =0and T' — kAT = 0.

Next, we consider the three cases of the sign of .

Case 1: A=0

In this case, X’ = 0 and 7" = 0. Solving these equations we find X (z) = ax + b
and T'(t) = c.

Case 2: A >0
In this case, X (z) = Ae¥V A + Be=V2® and T(t) = CekM,

Case 3: A <0
In this case, X (z) = Acosyv/—Mz + Bsiny/—Az and and T(t) = Ce*N' m
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Problem 17.3
Derive the system of ordinary differential equations for R(r) and ©(6) that is
satisfied by solutions to

1 1
Upr + —Up + —Uoe = 0.
r T

Solution.
Suppose that a solution u(r,d) of the given equation can be written in the form
u(r,0) = R(r)©(#). Substituting in the given equation we obtain

R/(r)6(6) + -R'(r)6(6) + 5 R(r)e"(6) = 0

Dividing by RO (under the assumption that RO # 0) we obtian

O0) _ R0 R()
o0 R R

The left-hand side is independent of » whereas the right-hand side is independent
of 6 so that there is a constant A such that

00 _ oR'0) | R()
o) ~ "’ RN

This results in the following ODEs

=\

0"(0) + A0() = 0

and

r?R"(r) + rR'(r) — AR(r) = 0.
The second equation is known as Euler’s equation B
Problem 17.4

Derive the system of ordinary differential equations and boundary conditions for
X (x) and T'(t) that is satisfied by solutions to

Upt = Uge — 2u, 0<z <1, t>0
u(0,t) =0 =wuy(1,t) t>0
of the form u(z,t) = X (x)T(t). (Note: you do not need to solve for X and T'.)

Solution.
First, plug u(z,t) = X (z)T(t) into the equation for the boundary conditions to
obtain
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X(0)T(t) =0 and X'(1)T(t) = 0.

Since this must hold for all ¢ > 0, we either have T'(t) = 0 for all ¢ > 0, which
leads to the trivial solution, so we throw this possibility out, or

X(0)=0and X(1)=0

which we keep. Plug u(z,t) = X (z)T(t) into the equation and rearrange terms to

obtain
T// X// _ 2X

T X
Since one side depends only on ¢ and the other only on x, they must both be

constant:
T// X// _ 2X

T X
Writing this as two separate equations, we obtain

A

X"=2+NX
T" = \T.
Thus, the final set of ODEs and boundary conditions is:

X — (2 + /\)X, T — /\T7X(()) =0, X(l) =0m

Problem 17.5
Derive the system of ordinary differential equations and boundary conditions for
X (x) and T'(t) that is satisfied by solutions to

up = kg, 0<z<L,t>0

u(z,0) = f(x), w(0,t) =0=uz(L,t) t>0
of the form u(z,t) = X (z)T'(t). (Note: you do not need to solve for X and T.)

Solution.
Plug u(x,t) = X (2)T'(t) into the equation and rearrange terms to obtain
T/ X/l
KT~ X
Since one side depends only on ¢ and the other only on z, they must both be
constant:
T/ X//
KT~ X
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Writing this as two separate equations, we obtain
X"-AX =0

T' = k)T.

Next, plug u(z,t) = X (2)T'(t) into the equation for the boundary conditions to
obtain

X'(0)T(t) = 0 and X'(L)T(t) = 0.

Since this must hold for all ¢ > 0, we either have T'(t) = 0 for all ¢ > 0, which
leads to the trivial solution, so we throw this possibility out, or

X'(0)=0= X'(L)

which we keep. Using the initial value condition u(z,0) = f(x) we find X (2)T'(0) =

f ().
Thus, the final set of ODEs and boundary conditions is:

X" -AX =0, T'=kAT,X'(0)=0=X'(L) m

Problem 17.6
Find all product solutions of the PDE u, + u; = 0.

Solution.
Substitute u(x,t) = X (z)T'(t) into the given equation we find

X'(x)T(t) + X(x)T'(t) = 0.
Divide through by X (z)T'(t) we obtain
X' T’
X7

The left hand side is a function of z while the right hand side is a function of t.
This says that they must equal to a constant. That is,

X' T
T =

X(x) T

where A is a constant. This results in the following two ODEs

X'=XX and T" = —\T.
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Solving this system of ODEs we find X (z) = C1e* and T(t) = Cye . The
product solutions are given by

u(z,t) = CeMNo) g

Problem 17.7
Derive the system of ordinary differential equations for X (x) and Y (y) that is
satisfied by solutions to

3Uyy — DUzgry + TUzzy = 0.

of the form u(z,y) = X (2)Y (y).

Solution.
Substitute u(z,t) = X (z)Y (y) into the given equation we find

3XY" —5X"Y' +7X"Y' = 0.
Divide through by XY’ we obtain

Y// 5X/// _ 7X//

Yo x

The left hand side is a function of y while the right hand side is a function of x.
This says that they must equal to a constant. That is,

3

Yl/ 5X/l/ _ 7Xl/
R e

A
Y’ X

where A is a constant. This results in the following two ODEs
5X" —7X" —AX =0and 3Y" - A\Y' =0n

Problem 17.8
Find the general solution by the method of separation of variables.

Ugy +u = 0.

Solution.
Substitute u(z,t) = X (z)Y (y) into the given equation we find

XY +XY =0

which can be separated as
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The left hand side is a function of x while the right hand side is a function of y.
This says that they must equal to a constant. That is,

X Y

X Y

where A is a constant. This results in the following two ODEs

X' =AX=0and Y+ 1Y =0.

Solving these equations using the method of separation of variable for ODEs we
find X (z) = Ae™ and Y (y) = Be~x. Thus, the general solution is given by

w(z,y) =CeM 3 m

Problem 17.9
Find the general solution by the method of separation of variables.

Uy — YUy = 0.

Solution.
Substitute u(z,t) = X (z)Y (y) into the given equation we find

XY -yXy' =0
which can be separated as
X'y
X Y’
The left hand side is a function of x while the right hand side is a function of y.
This says that they must equal to a constant. That is,
X' gyt
X Yy

where A is a constant. This results in the following two ODEs

A

X' —AX =0and yY' —\Y =0

Solving these equations using the method of separation of variable for ODEs we
find X () = Ae* and Y (y) = By*. Thus, the general solution is given by

u(x,y) = Ce’\xy’\ [ ]

Problem 17.10
Find the general solution by the method of separation of variables.

Utt — Ugpy = 0.
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Solution.
We look for a solution of the form wu(z,y) = X (x)T(t). Substituting in the wave

equation, we obtain
X"(x)T(t) — X (2)T"(t) = 0.
Assuming X (z)7T'(t) is nonzero, dividing for X (z)T'(t) we find:
X”(I‘) B T/l(t)
X(z) — T(t)
The left hand side is a function of x while the right hand side is a function of .
This says that they must equal to a constant. That is,
X”(‘T) B T”(t)
X(z) T
where A is a constant. This results in the following two ODEs

X" AX =0and T" — \T =0.

=A

The solutions of these equations depend on the sign of .
e If A > 0 then the solutions are given

X () =AeVA" 4 Bem VA
T(t) =CeVM 4 De VM
where A, B,C, and D are constants. In this case,
u(z,t) = kle‘r)‘(ﬂt) + kgeﬁ(xft) + kge*ﬁ(xﬂ) + k4e*ﬁ(‘”7t).
o If A =0 then

X(z) =Az+ B
T(t) =Ct+ D
where A, B, and C are arbitrary constants. In this case,
u(x,t) = kot + kox + kst + ky.
o If A <0 then
X (x) =AcosvV—Ax + Bsinv -z
T(t) =Acosv—\t + Bsinv/—\t
where A, B, C, and D are arbitrary constants. In this case,

u(x,t) = ki cos vV —Ax cos V. —At+ky cos vV — Az sin vV —At+ks3 sin vV —Ax cos vV —At+ky sin vV —Az sin vV -\t R
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Problem 17.11
For the following PDEs find the ODEs implied by the method of separation of
variables.

Solution.

Details can be verified easily and therefore are omitted.
(a) u(r,t) = R(r)T(t), T'(t) = kAT, r(rR') = AR.

(b) u(z,t) = X(2)T'(t), T' =T, kX" —(a+N)X =0.
( ( X(x)T(t), T' =T, kX" —aX' = NX.
(d) u(z,t) = X(2)Y(y), X" =XX, Y"'=-)\Y.

( X(x)T(t), T =kXT, X" =2X n

Problem 17.12
Find all solutions to the following partial differential equation that can be obtained
via the separation of variables.

Uy — Uy = 0.

Solution.
Assume u(z,y) = X(2)Y (y). Then by substitution into the given PDE we find
XY —-XY' =0or

X Y

X Y
Since the left-hand side is independent of ¢ and the right-hand side is independent
from z, there must be a constant A\ such that

X Y
X Y
This leads to the system of ODEs

A

X' =X, Y =)\Y
whose solution is X (z) = Ae* and Y (y) = BeM. Thus, u(z,y) = Ce**+v) g

Problem 17.13
Separate the PDE gz, — uy + uyy = v into two ODEs with a parameter. You do
not need to solve the ODEs.
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Solution.
Assume u(z,y) = X(x)Y(y). Then by substitution into the given PDE we find
X"Y - XY’ '+ XYY" = XY or

Xl/ Y/ Yl/

S Y

X Y Y +
Since the left-hand side is independent of y and the right-hand side is independent
from x, there must be a constant A such that

X/l Y/ Y/l

- 41=A
X v v©

This leads to the system of ODEs

X'"=)X, YV -Y'+Y =)V~
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Solutions to Section 18

Problem 18.1
Find the temperature in a bar of length 2 whose ends are kept at zero and lateral
surface insulated if the initial temperature is f(z) = sin (%) + 3sin (2% z).

Solution.

Let u(z,t) be the temperature of the bar. The boundary conditions are u(0,t) =
u(2,t) = 0 for any ¢ > 0. The initial condition is u(z,0) = sin (3z) + 3sin (2 z).
The solution is

> nm n271'2kt
u(z,t) = Z C, sin (?x) e 4
n=1

where
C, = /02 <sin (g.’ﬂ) + 3sin <527T:c>> sin (%x) dzx.

Simple algebra shows that C7 =1, C5 = 3, and C,, = 0 otherwise. Hence,

7r2 5 71_2
u(z,t) = sin <%9€) e~ "1 + 3sin (;x) el

Problem 18.2
Find the temperature in a homogeneous bar of heat conducting material of length
L with its end points kept at zero and initial temperature distribution given by

f(x):%(L—a:), 0<z<L.

Solution.
The solution is

2.2

[e.@]
En‘m
u(z,t) = Z Cp sin (%m) e 2 !
n=1
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where

2d 213 N
8d
373

if n is odd and 0 otherwise. Therefore the temperature distribution in the bar is

8d 1 ((@n—1Dr \ _krea-nie?,
ue) =5 1 <L“f o« r e

Problem 18.3
Find the temperature in a thin metal rod of length L, with both ends insulated

(so that there is no passage of heat through the ends) and with initial temperature
in the rod f(z) = sin (¥z).

Solution.
The solution is given by

G T\ _pan?n?,
u(x,t) = 5> + Z C, cos (fx>e L
n=1
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where

=~ 0 1]

-~ w(n?—1)

if n > 2 is even and 0 otherwise. Thus, the temperature u(z,t) in the rod is given
by

© 2 2

2 4 1 2nm *k4nﬂ-t
u(a:,t):W—W;(Zle)cos( T x)e 2 'm

Problem 18.4
Solve the following heat equation with Dirichlet boundary conditions

up = kg,
u(0,t) =u(L,t) =0
1 0<z<i
M%m_{z L<z<.

Solution.
The solution is given by
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where
L
2 [z 4 [F
Ch =7 /02 sin <T:c)dx + L/é sin (%Tw)d:c
L L
2 L ( T ) 2 n 4 L <mr )
=— |——cos | —x — |——cos|—=z
L nmw L 0 L T L L
2
2 2 nm 4
=— + —cos (—) — — cos (nm)
nmw o nmw 2 nmw
Thus,
4 _
- n=2,6,10,---
Ch={ 0 n=4,812,
% nis odd ®
Problem 18.5
Solve
up = kg,
u(0,t) =u(L,t) =0
9
u(x,0) = 6sin <I7jx>
Solution.

The solution is given by

e ) nr 7”2"2t
u(z,t) = E C, sin (—x)e L2
n=1

where
2 [ 9
Ch :L/o 6 sin <£Tm> sin (n%x) dx
=6
if n =9 and 0 otherwise. Hence, the solution is given by

2
=817 t

9
u(z,t) = 6sin <£rm>e A
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Problem 18.6

Solve
U = KUgy
subject to
Uz (0,t) = ugy(L,t) =0
_f0 0<z<i
u(az,O)—{ 1 %gng
Solution.

The solution is given by

(z,1) CO+§:C (”” ) -5t
u(x,t) = — cos | —
, 5 n Lx e
n=1
where
9 L
C() _L/L dr =

2 _
T n=1509,---
Cn = = n=3711,--
0 n is even
So the solution is given by
- _n%s?
u(z,t) = 3 + Z Cy, cos (%x)e !
n=1
with the C), defined as above R
Problem 18.7
Solve
U = kg,
subject to

Uy (0,t) = uy(L,t) =0

=~

u(x,0) = 6+4cos<
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Solution.
The solution is given by

Co  — nmw o\ _n’z%,
u(z,t) = 5 + Z C, cos (Tx)e L
n=1

where

if n = 3 and 0 otherwise. Thus, the solution is given by

_ 972

3 9n?
u(x,t) = 6 + 4 cos (21‘)6 7' m

Problem 18.8

Solve
U = kugy
subject to
uz(0,t) = ugy(L,t) =0
8
u(x,0) = —3 cos <£Tx>
Solution.

The solution is given by

CO ad n _n271'2t
u(z,t) = 5 + Z C', cos (—x)e L2
n=1

where

=-3
if n = 8 and 0 otherwise. Thus, the solution is given by

_64r2,

8
u(z,t) = —3cos (£m>e 2
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Problem 18.9
Find the general solution u(z,t) of

Up = Uge — U, 0<z <L, t>0
uz(0,t) =0 = uyx(L,t), t>0.

Briefly describe its behavior as ¢t — oco.

Solution.
Using separation of variables and taking care to note of the boundary conditions,
we see that the general solution is

t) = i a cos (%x) e_<1+n252)t.
n=0

’VL2 71'2

Ast — oo, e_(H L2 )t — 0 for each n € N. Hence, u(x,t) - 0 W

Problem 18.10 (Energy method)
Let u; and ug be two solutions to the Robin boundary value problem

Ut = Uge — U, 0< <1, t>0

U (0,8) = ug(1,6) =0, t>0
u(z,0) =g(z), 0<z<l1

Define w(z,t) = ui(x,t) — ua(z,t).
(a) Show that w satisfies the initial value problem

W = Wee —w, 0< <L, t>0

w(z,0) =0, 0<z<1

(b) Define E(t) = fol w?(z,t)dx > 0 for all £ > 0. Show that E’(t) < 0. Hence,
0< E(t) < E(0) for all t > 0.
(¢) Show that E(t) =0, w(x,t) = 0. Hence, conclude that u; = us.

Solution.
(a) Easy calculation.
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(b) We have
1
E'(t) :2/ w(z, t)wy(z,t)dx
0
1
=2 [l ) s (,1) — i, )
0
1 1
= 2w(z, t)wy ()] — 2 [/ w2 (x, t)dx +/ wQ(x,t)dx]
0 0
1 1
=2 {/ w2 (x, t)da +/ w2(:z,t)dx] <0
0 0

Hence, F is decreasing, and 0 < E(t) < E(0) for all ¢t > 0.

(c) Since w(x,0) = 0, we must have E(0) = 0. Hence, E(t) = 0 for all ¢ > 0. This
implies that w(z,t) = 0 forallt > 0 and all 0 < = < 1. Therefore u;(x,t) = ua(z,t).
This means that the given problem has a unique solution B

Problem 18.11

Consider the heat induction in a bar where the left end temperature is maintained
at 0, and the right end is perfectly insulated. We assume k =1 and L = 1.

(a) Derive the boundary conditions of the temperature at the endpoints.

(b) Following the separation of variables approach, derive the ODEs for X and T
(c) Consider the equation in X (z). What are the values of X (0) and X (1)? Show
that solutions of the form X (z) = sinv/—Az, A < 0 satisfy the ODE and one of
the boundary conditions. Can you choose a value of A so that the other boundary
condition is also satisfied?

Solution.

(a) u(0,t) = 0 and u,(1,t) = 0.

(b) Let’s assume that the solution can be written in the form wu(z,t) = X (x)T'(t).
Substituting into the heat equation we obtain

Xl/ T/
X kT

Since X only depends on z and T only depends on ¢, we must have that there is
a constant A\ such that

X// _ Tl _
X = A and T = A
This gives the two ordinary differential equations

X" - AX =0and T/ — kEXT = 0.
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As far as the boundary conditions, we have
u(0,t) =0=X(0)T(t) = X(0) =0
and
u,(1,t) =0=X'(1)T(t) = X'(1) = 0.

Note that 7T is not the zero function for otherwise v = 0 and this contradicts our
assumption that v is the non-trivial solution.

(c) We have X' = /—=AcosvV—Az and X" = Asinv/—Az. Thus, X" — AX = 0.
Moreover X (0) = 0. Now, X’(1) = 0 implies cosv/—=A =0or V=X = (n—3) 7, ne€
N. Hence, A = — (n - %)ZWQ [ ]

Problem 18.12
Using the method of separation of variables find the solution of the heat equation

U = Kgy

satisfying the following boundary and initial conditions:
(a) u(0,t) = u(L,t) = 0, u(z,0) = 6sin ()
(b) u(0,t) = u(L,t) =0, u(z,0) = 3sin (Z£) — sin (22)

Solution.
(a) Let’s assume that the solution can be written in the form u(z,t) = X (z)T'(¢).
Substituting into the heat equation we obtain

X// T/

X kT
Since the LHS only depends on x and the RHS only depends on t, there must be
a constant A\ such that

X =Xand I =\
This gives the two ordinary differential equations

X"—=AX =0and T' — kAT = 0.
As far as the boundary conditions, we have

u(0,t) = 0 = X(0)T'(t) = X(0) =0

and
u(L,t)=0=X(L)T(t) = X(L) =0.
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Note that T is not the zero function for otherwise v = 0 and this contradicts our
assumption that u is the non-trivial solution.
Next, we consider the three cases of the sign of A.

Case 1: A =0

In this case, X" = 0. Solving this equation we find X (x) = ax 4 b. Since X (0) =0
we find b = 0. Since X (L) = 0 we find a = 0. Hence, X =0 and u(z,t) = 0. That
is, w is the trivial solution.

Case 2: A >0
In this case, X(z) = AeV @ 4 Be=V . Again, the conditions X(0)=X(L)=0
imply A = B = 0 and hence the solution is the trivial solution.

Case 3: A <0

In this case, X (z) = Acosv/—Az + Bsiny/—\z. The condition X (0) = 0 implies
A = 0. The condition X (L) = 0 implies Bsiny/~AL = 0. We must have B # 0
otherwise X (x) = 0 and this leads to the trivial solution. Since B # 0, we obtain
sinyv/—=AL = 0 or /=ML = nxw where n € N. Solving for A we find A\ = —"zgz.
Thus, we obtain infinitely many solutions given by

Xp(x) = Ay sin %x, n € N.
Now, solving the equation
T — \kT =0
by the method of separation of variables we obtain

22

T.(t) = Bpe 22" peN.

Hence, the functions

22

up(z,t) = Cyp sin (%az) e 2 M oneN

satisfy us = kuz, and the boundary conditions u(0,t) = u(L,t) = 0.

Now, in order for these solutions to satisfy the initial value condition u(z,0) =

6 sin (Q’TTI), we invoke the superposition principle of linear PDE to write

u(x,t) = i Cp sin (%x) e_nigz M (18.7)
n=1
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To determine the unknown constants C,, we use the initial condition u(x,0) =
6sin (272) in (18.7) to obtain

6 sin <92x> iC’n sin (n%x)

n=1

By equating coefficients we find C9 = 6 and C,, = 0 if n # 9. Hence, the solution
to the problem is given by

7r2
u(z,t) = 6sin (97”6) g
L
(b) Similar to (a), we find

" 3 s _72515 . 3T _9w22kt
e j— L — L
u(x,t) sin (Lﬂn)e sin | — Je [ ]

Problem 18.13
Using the method of separation of variables find the solution of the heat equation

U = kg,
satisfying the following boundary and initial conditions:
(a) uz(0,t) = ug(L,t) =0, u(z,0) = cos (%) + 4 cos (23).
(b) ug(0,t) = uy(L,t) =0, u(x,0) =5.

Solution.
(a) See the Neumann boundary case of Section 18. The answer is

Tx\ _pilkt 5rx\ _ 25pi2kt
u(x,t)zcos(f>e L2 +4cos< 7 >e (A

(b) The answer is
u(z,t) =51

Problem 18.14
Find the solution of the following heat conduction partial differential equation

Ut = 8Uyy, 0<z<4m, t>0

u(0,t) = u(dm,t) =0, t>0

u(z,0) =6sinz, 0<z <A4r.
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Solution.
The solution is given by the Fourier sine series

oo
n?
u(x,t) = Z ¢p Sin (%)e_Tt.
n=1

Using the condition u(z,0) = 6sinx we find

oo
. . /nT
6sinx = E 1cnsm (Z)
n=

Thus, ¢4 = 6 and ¢, = 0 for n # 4. Finally,

8t

u(x,t) = 6sinxze > A

131
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Solutions to Section 19

Problem 19.1

Solve
Ugz + Uyy = 0
u(a,y) = f2(y),
u(0,y) = u(z,0) = u(x,b) = 0.
Solution.

Assume that the solution can be written in the form u(z,y) = X (z)Y (y). Substi-
tuting in (19.1), we obtain

X"(2)Y (y) + X ()Y (y) = 0.

Yll
v (S/)) from

Assuming X (z)Y (y) is nonzero, dividing for X (z)Y (y) and subtracting

both sides, we find:

X'(z) __Y'"(y)

X(x) Y(y)
The left hand side is a function of x while the right hand side is a function of y.
This says that they must equal to a constant. That is,

X'z) _ Y'(y)

X@) Y

where A is a constant. This results in the following two ODEs
X"—AX =0and Y+ Y =0.
As far as the boundary conditions, we have forall 0 <z <aand 0 <y <b
u(0,y) =0=X(0)Y(y) = X(0)=0

u(a,y) = fa(y) = X(a)Y(y)
u(z,0) = 0 = X (2)Y(0) = Y (0) = 0
u(z,b) =0=X(2)Y(b) =Y (b) =0

Note that X and Y are not the zero functions for otherwise v = 0 and this
contradicts our assumption that u is the non-trivial solution.

Consider the second equation: since Y” 4+ AY = 0 the solution depends on the
sign of A\. If A = 0 then Y (y) = Ay + B. Now, the conditions Y (0) = Y(b) = 0
imply A = B = 0 and so u = 0. So assume that A # 0. If A < 0 then Y(y) =
AeV= 4 Be=V=2_ Now, the condition Y (0) = Y (b) = 0 imply A = B = 0 and
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hence the solution is the trivial solution. Hence, in order to have a nontrivial
solution we must have A > 0. In this case,

Y (y) = Acos VAy + BsinVy.

The condition Y (0) = 0 implies A = 0. The condition Y (b) = 0 implies B sin v/ Ab =
0. We must have B # 0 otherwise Y (y) = 0 and this leads to the trivial solution.
Since B # 0, we obtain sin Vb = 0 or Vb = nm where n € N. Solving for A we
find A\, = %. Thus, we obtain infinitely many solutions given by

Y, (y) = sin (%y), n € N.
Now, solving the equation
X"=AX=0,2>0
we obtain
Xp(x) = ape A 4 o eTVAE — A cosh (%x) + B,, sinh (%x), n € N.

The boundary condition X (0) = 0 implies A,, = 0. Hence, the functions

up(z,y) = By sin (n—bﬂy) sinh <n—b7rx), neN

satisfy (19.1) and the boundary conditions u(0,y) = u(x,0) = u(z,b) = 0.
Now, in order for these solutions to satisfy the boundary value condition u(a,y) =
f2(y), we invoke the superposition principle of linear PDE to write

u(x,y) = i B, sin (%y) sinh (%x) (19.8)
n=1

To determine the unknown constants B,, we use the boundary condition u(a,y) =
f2(y) in (19.8) to obtain

faly) = g <Bn sinh (n%a)) sin (%y)

Since the right-hand side is the Fourier sine series of f, on the interval [0, b], the
coefficients B,, are given by

B, = [12) /Ob f2(y) sin (n—bﬂ-y) dy] [sinh (n—bﬂ-a)} _1. (19.9)

Thus, the solution to the Laplace’s equation is given by (19.8) with the Bl s cal-
culated from (19.9) m



134 CONTENTS

Problem 19.2

Solve
Ugz + Uyy = 0
u(z,0) = g1(x),
u(0,y) = u(a,y) = u(x,b) = 0.
Solution.

Assume that the solution can be written in the form u(z,y) = X (z)Y (y). Substi-
tuting in (19.1), we obtain

X"(2)Y (y) + X (2)Y"(y) = 0.
Assuming X (z)Y (y) is nonzero, dividing for X (z)Y (y) and subtracting Y//((yy)) from
both sides, we find:

X(@) Yy
The left hand side is a function of x while the right hand side is a function of y.
This says that they must equal to a constant. That is,

X'(x) _ Y'(y)
X))~ Yy

X'z) _ Y"(y)

=A

where A is a constant. This results in the following two ODEs
X"—AX =0and Y+ )Y =0.
As far as the boundary conditions, we have for all 0 <z <aand 0 <y <b
u(0,y) =0=X(0)Y(y) = X(0)=0
u(a,y) =0=X(a)Y(y) = X(a) =0
u(z,0) = g1(z) = X ()Y (0)
u(z,b) =0=X(2)Y(b) =Y (b) =0

Note that X and Y are not the zero functions for otherwise u = 0 and this
contradicts our assumption that v is the non-trivial solution.

Consider the first equation: since X’ —AX = 0 the solution depends on the sign of
A If A =0 then X (z) = Az + B. Now, the conditions X (0) = X (a) = 0 imply A =
B =0 and so u = 0. So assume that A # 0. If A > 0 then X (z) = AeVAe 4 Be—VAT,
Now, the conditions X (0) = X(a) =0, A # 0 imply A = B = 0 and hence the
solution is the trivial solution. Hence, in order to have a nontrivial solution we
must have A < 0. In this case,

X(z) = AcosV—Ax + Bsin vV —A\z.
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The condition X (0) = 0 implies A = 0. The condition X (a) = 0 implies B sin v/—\a =
0. We must have B # 0 otherwise X (z) = 0 and this leads to the trivial solution.
Since B # 0, we obtain sinv/—Xa = 0 or v/—Xa = n7 where n € Z. Solving for \
we find A\, = —”a§2. Thus, we obtain infinitely many solutions given by

n
Xp(x) = sin —ﬂx, n € N.
a

Now, solving the equation
Y"+AY =0

we obtain
Yo(y) = ape” —AnY 4 eV AY — A cosh / —Any + Bpsinh /=Xy, n € N.

However, this is not really suited for dealing with the boundary condition Y (b) = 0.
So, let’s also notice that the following is also a solution.

Yi(y) = Ay cosh (%(y - b)) + B, sinh (%(y - b)), neN.

Using the boundary condition Y (b) = 0 we obtain A,, = 0 for all n € N. Hence,
the functions

Un(z,y) = By sin %xsinh (%(y - b)), neN

satisfy (19.1) and the boundary conditions u(0,y) = u(a,y) = u(z,b) = 0.
Now, in order for these solutions to satisfy the boundary value condition u(z,0) =
g1(x), we invoke the superposition principle of linear PDE to write

u(z,y) = Z B, sin %x sinh (%(y — b)) (19.10)
n=1

To determine the unknown constants B,, we use the boundary condition u(z,0) =
g1(z) in (19.10) to obtain

g1(x) = i (Bn sinh — (%b)) sin %x.
n=1

Since the right-hand side is the Fourier sine series of f on the interval [0, a], the
coefficients B,, are given by

B, = [Z /Oa 1) sin (T:p)dw} [sinh (—%Tb)]—l. (19.11)

Thus, the solution to the Laplace’s equation is given by (19.10) with the B]s
calculated from (19.11) m
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Problem 19.3
Solve
Ugg + Uyy = 0
u(z,0) = u(0,y) =0,
u(l,y) = 2y,u(x,1) = 3sinmzx + 2z

where 0 <z <1 and 0 <y < 1. Hint: Define U(z,y) = u(z,y) — 2zy.

Solution.
With the suggested hint we are supposed to solve the problem

Upe + Uy =0
U(Ovy) = U(17y) =0,
U(z,0)=0,U(z,1) = 3sinnzx

The solution is given by
(o.0]
U(z,y) = Z B, sinnwx sinh nmy
n=1

where

1
B, = {2 / 3sin 7z sin nwxd:r] [sinh na] L.
0

Simple integration shows that Ay = ﬁ and A, = 0 otherwise. Hence,
U(z,y) 5 sin wx sinh
= T s
Y= S 4

and finally

u(z,y) = 2zy + sin 7z sinh Ty W

sinh
Problem 19.4
Show that u(z,y) = 22 — 3? and u(x,y) = 22y are harmonic functions.

Solution.
If u(z,y) = 22 — y? then uy, = 2 and uy, = —2 so that Au = 0. If u(z,y) = 2zy
then 1z, = uyy = 0 so that Au=0m

Problem 19.5

Solve
H H
uxx+uyy:07 OELE’SL, _Egyég
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subject to
H H
U(an):u(Lay):()? _5<y<5
H H
u(m,—;) = fi(x), ul(zx, 5) = fao(z), 0 <2z <L
Solution.

Assume that the solution can be written in the form w(z,y) = X (2)Y (y). Substi-
tuting in (19.1), we obtain

X"(2)Y (y) + X (2)Y"(y) = 0.

Assuming X (2)Y (y) is nonzero, dividing for X (2)Y (y) and subtracting Y“é%) from

both sides, we find:

X"x) _ Y'(y)

X () Y(y)
The left hand side is a function of x while the right hand side is a function of y.
This says that they must equal to a constant. That is,

X'(z) __Y"(y)

X)) Y

where )\ is a constant. This results in the following two ODEs
X"—AX =0and Y+ XY = 0.
As far as the boundary conditions, we have for all 0 <z <aand 0 <y <b
u(0,y) =0=X(0)Y(y) = X(0)=0

w(L,y)=0=X(L)Y(y) = X(L) =0

ule, ) = filx) = X (@)Y (0
u(e, o) = fole) = X(@)Y (1)

Note that X and Y are not the zero functions for otherwise v = 0 and this
contradicts our assumption that u is the non-trivial solution.

Consider the first equation: since X” —AX = 0 the solution depends on the sign of
A If A =0 then X (2) = Az+ B. Now, the conditions X (0) = X (L) = 0 imply A =
B =0 and so u = 0. So assume that A # 0. If A > 0 then X (z) = AeV @ 4 Be=Vaz,
Now, the conditions X (0) = X(L) =0, A # 0 imply A = B = 0 and hence the
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solution is the trivial solution. Hence, in order to have a nontrivial solution we
must have A < 0. In this case,

X(x) = AcosV—Ax + BsinvV—\x.

The condition X (0) = 0 implies A = 0. The condition X (L) = 0 implies Bsinv/—AL =
0. We must have B # 0 otherwise X (z) = 0 and this leads to the trivial solution.
Since B # 0, we obtain siny/—AL = 0 or v/—AL = nm where n € Z. Solving for A

we find A\, = —”27;2. Thus, we obtain infinitely many solutions given by

Xn(z) =sin n%x, n € N.

Now, solving the equation
Y'+AY =0

we obtain
Yo (y) = aneY MY 4 pe VMY = A coshv/—Apy + Bpsinhy/—Ay, n € N.

Thus, the solution is given by
u(z,y) = ;[An cosh (%y) + By, sinh (%y)] sin n—;x
Now using the boundary condition u(z, —Z) = fi(z) we find
G H H
filz) = Z[An cosh <_mr> + B, sinh <_mr>] sin L g
n=1 L

where

H H 2 [k
A,, cosh (nzwL) — B,, sinh (_71;}/) = L/o fi(x)sin n%xdx.
H
2

Likewise, using the boundary condition u(z,

where
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Solving the above two equations in A, and B,, we find

ro L onm 1T

A, = _L/o (fi(z) + fa(x))sin fxdar_ _cosh <
and Y L o -
B, = _L/o (fa(x) — f1(x)) sin n%:ndm_ _sinh <2L>_

which completes the solution W

Problem 19.6

Consider a complex valued function f(z) = u(z,y) + iv(z,y) where i = v/—1. We
say that f is holomorphic or analytic if and only if f can be expressed as a
power series in z, i.e.

oo [ee]
u(z,y) + vz, y) = Z anz" = Z an(z +iy)"
n=0 n=0

(a) By differentiating with respect to  and y show that
Uy = vy and uy = —v,

These are known as the Cauchy-Riemann equations.
(b) Show that Au =0 and Av = 0.

Solution.
(a) Differentiating term by term with respect to x we find

o
Uy + 10, = Z nan(x + iy)"_l.
n=0

Likewise, differentiating term by term with respect to y we find

o0
Uy + vy = Z nayi(z + iy)" '

n=0

Multiply this equation by ¢ we find

oo
— iUy + vy = Z nan(z + iy)" L.

n=0
Hence, u; + iv; = vy — tu, which implies u, = vy and v, = —u,,.
(b) We have uyy = (vy)z = (Vz)y = —Uyy so that Au = 0. Similar argument for

Av=0n
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Problem 19.7
Show that Laplace’s equation in polar coordinates is given by

1 1
Upy + —Up + —ZUgg = 0.
T T

Solution.
Polar and Cartesian Coordinatgs are related by the expressions x = rcosf and
y = rsinf where r = (2% + ?)2 and tanf = £. Using the chain rule we obtain

sin

Uy =UpTz + UgOr = cosOu, — Ug

Ugpy =UgrTz + Ugply

sin sin
= | cosOuyp + —5-up — ——uyg | cos
r r

i cos sin 0 sin @
+ ( —sin Ou, + cos Ou,g — Uy — Ugg —
r r

r
) cosf
Uy =UpTy + uply = sin Ou, + Ug
Uyy =UyrTy + Uysly
i cos 6 cos 6 i
= (sinOuyp — —5—up + U9 | sinf
r

r

. sin 6 cos 0 cos @
+ | cos Bu,. + sin Qu,.g — ug + Ugy
r T

Substituting these equations into (19.1) we obtain the dersired equation B

Problem 19.8

Solve
uxm+uyy:07 O§x§27 0§y§3
subject to
u(z,0) =0, wu(z,3)= g
4
u(0,y) = sin <;y) u(2,y) =T1.

Solution.

We have

u(@,y) = wr(z,y) +ua(,y) + u(, y) + ua(z, y).
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The solution u; to the problem
Ugr +Uyy =0, 0<2<2, 0<y<3

subject to
u(a:, O) = u($7 3) = U(O, y) = u(27 y) =0

is the trivial solution, i.e. u; = 0. The solution uy to the problem

Ups +ttyy =0, 0<2<2, 0<y<3

subject to
u(@,0) =0, u(e,3) =2
u(0,y) = u(2,y) =0
is given by
(o]
ug(z,y) = Z an sin T;lx sinh (%y)
n=1
where
/Qx (nTr )d [ L ™ ] 1
Gn = —sin | —)ax| [SIn -
n ) 5 5
_ 2 (="
o sinb ()
Thus,

us(z,y) = i [ 2 . (_12;)] sin %xsinh (%y)

= Cnrw smh(

The solution u3 to the problem
Uggy +Uyy =0, 0<2 <2, 0<y<3

subject to
u(z,0) = u(x,3) =0

4
wawzan<§@,wzw=0
is given by

us(z,y) = i ap sin (%y) sinh (%(az - 2))
n=1
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where

a —z/gsin<4ﬂ->sin<m >d
"7 3sinh (227 Jy 37 3 7)Y

Simple calculation shows that a,, = 0 if n # 4 and

_
sinh (55

us(w,y) = smhl(gg) sinh (W) sin <4;y>

Now, the solution us to the problem

aqg = —

Thus,

Uy +Uyy =0, 0<2<2, 0<5y<3

subject to
u(z,0) = u(x,3) =0
u(0,y) =0, u(2,y) =2
is given by
ug(z,y) = nzzzl ap sin (%y) sinh (%x)
where
2 3 nmw
n= 7sin (“5y)d
¢ 3smh(2”T7r) 0 S\
_ 140 - (=1)")
 nmsinh (2”7”)
Hence,

ug(z,y) = 3 14(1——(—17)") sin (n—ﬂy> sinh (n%x) [ ]

Problem 19.9
Solve
Upe T Uyy =0, 0<ax <L, 0<y<H
subject to
Uy(2,0) =0, wu(zx,H)=0
Y

u(0,y) = u(L,y) = 4cos (ﬁ)
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Solution.
Let’s assume that the solution can be written in the form u(z,y) = X(x)Y (y).
Substituting in (21.1), we obtain

X"(2)Y (y) + X (@)Y (y) = 0.

Assuming X (z)Y (y) is nonzero, dividing for X (x)Y (y) and subtracting 1;“(2}’))

both sides, we find:

from

X"x) _ Y'(y)

X () Y(y)
The left hand side is a function of x while the right hand side is a function of y.
This says that they must equal to a constant. That is,

X'(@) _ Y'()
X~ Yy

=

where A is a constant. This results in the following two ODEs
X" AX =0and Y+ XY =0.
As far as the boundary conditions, we have for all 0 <z < Land 0 <y < H
u(z,H)=0=X(x)Y(H) = Y(H)=0
uy(z,0) =0 = X(2)Y'(0) = Y'(0) =0

u(0,y) = 4 cos <ﬂ> = X(0)Y(y)

2H
u(L,y) = 4cos (ﬂ) =X(L)Y(y)
Note that X and Y are not the zero functions for otherwise v = 0 and this

contradicts our assumption that u is the non-trivial solution.

Consider the second equation: since Y” 4+ AY = 0 the solution depends on the
sign of \. If A = 0 then Y (y) = Ay + B. Now, the conditions Y (H) = Y'(0) = 0
imply A = B = 0 and so u = 0. So assume that A # 0. If A < 0 then Y(y) =
Acosh v Ay + Bsinh v Ay. Now, the condition Y’(0) =0, A # 0 imply B = 0. The
condition Y (H) = 0 implies AcoshvAy = 0. Since coshz > 0 for all 2 then we
must have A = 0 and therefore u = 0.

Hence, in order to have a nontrivial solution we must have A > 0. In this case,

Y (y) = Acos V Ay + Bsin vV Ay.

The condition Y’(0) = 0 implies B = 0. The condition Y (H) = 0 implies A cos VAH =
0. We must have A # 0 otherwise Y (y) = 0 and this leads to the trivial solution.
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Since A # 0, we obtain cos VAH = 0 or VAH = (n— %) m where n € N. Solving

for A we find A\, = (n — %)2 ;}—22 Thus, we obtain infinitely many solutions given

by
1
Y, (z) = Acos [(n - 2) Zy], n € N.
Now, solving the equation
X" XX =0,2>0

we obtain
X, (z) = ap sinh \/Apz + by, sinh /A, (x — L), n € N.

Hence, the general solution is given by

u(x,t) = Z[A” sinh \/An@ + By sinh /A, (2 — L)] cos v/ Any.
n=1

Using the boundary conditions u(0,y) = u(L,y) = 4 cos (5% ) we obtain

ni; By, sinh v/ An(—L) cos \/Any = 4 cos (%)

2H

oo
Z A, sinh /A, L cos+/ Ay = 4cos (Ly)
n=1
Comparing coefficients we find
— By sinh % =4 and A; sinh % =4

and zero for n # 1. Hence,

B 4 . T . m(x — L) Y
u(x, y) = @ {Slnh (ﬁ) — sinh (2[{> } COS ﬁ [ ]

Problem 19.10
Solve
Ugy +Uyy =0, >0, 0<y<H

subject to
u(0,y) = f(y), lu(z,0)] < oo

Uy (,0) = uy(x, H) = 0.
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Solution.
Let’s assume that the solution can be written in the form u(z,y) = X(x)Y (y).
Substituting in (19.1), we obtain

X"(@)Y (y) + X (2)Y"(y) = 0.

Assuming X ()Y (y) is nonzero, dividing for X ()Y (y) and subtracting S;I(Ly)) from

both sides, we find:

X"(x) __Y"(y)

X(z) Yy

The left hand side is a function of x while the right hand side is a function of y.
This says that they must equal to a constant. That is,

X'(x) _ Y'(y)
X@) ~ Y

=A

where A is a constant. This results in the following two ODEs
X" AX =0and Y’ + XY =0.

As far as the boundary conditions, we have for all z > 0and 0 <y < H

u(0,y) = f(y) = X(0)Y (y)
uy(z,0) = 0 = X (2)Y'(0) = Y'(0) = 0
uy(z,H) =0=X(2)Y'(H) = Y'(H) = 0.

Note that X and Y are not the zero functions for otherwise v = 0 and this
contradicts our assumption that u is the non-trivial solution.

Consider the second equation: since Y” 4+ \Y = 0 the solution depends on the sign
of \. If A =0 then Y (y) = Ay + B. Now, the condition Y'(H) = 0 implies A = 0.
Hence, u = C. But clearly we are looking for a non-constant solution. So assume
that A # 0. If A < 0 then Y (y) = Acoshv/\y + Bsinh+/\y. Now, the condition
Y’(0) =0, X\ # 0 imply B = 0. The condition Y’(H) = 0 implies Asinh vVAH =0
which implies that A = 0.

Hence, in order to have a nontrivial solution we must have A > 0. In this case,

Y (y) = Acos VAy + Bsin Vy.

The condition Y’(0) = 0 implies B = 0. The condition Y'(H) = 0 implies
AsinvVAH = 0. We must have A # 0 otherwise Y (y) = 0 and this leads to
the trivial solution. Since A # 0, we obtain sin VAH = 0 or VAH = nx where
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n € Z. Solving for A we find A\, = % Thus, we obtain infinitely many solutions
given by
Y, (xz) = Acos %ry, n € N.

Now, solving the equation

X" - AX =0, A>0

we obtain

X, () = aneV?® 4+ bpe VAT p e N.
Since the solution must be bounded, we must have a, = 0. Hence, X,(z) =
bpe~VAn®,

Hence, the general solution is given by
oo
u(z,t) = Ag+ Y Ape” VA" cos \/Any.
n=1
Using the boundary conditions u(0,y) = f(y) we obtain

S Ancos Ay = £(3)
n=0

This is the Fourier cosine series of f. Hence,

1 H
A ——
o=37 [ fay
2 H nmw
A, _H/o f(y)cos Fydy [ ]

Problem 19.11
Consider Laplace’s equation inside a rectangle

uxgc—i—uyy:0,0SxSL, 0<y<H

subject to the boundary conditions
3
uw(0,y) =0, u(L,y) =0, u(z,0)—uy(z,0) =0, u(z, H) = 20sin (%) —5sin <Zx>

Find the solution u(z,y).
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Solution.
Look for solutions of the form u(z,y) = X ()Y (y). Separation of variables gives

X" 42X =0, X(0)=X(L)=0

and
—AY =0, Y(0)-Y'(0)=0.

From the first set of equations find eigenvalues and eigenfunctions:

An = (%)2, Xp(x) = sin (n%x), n € N.

Solving the problem for Y (y) we find

Y. (y) = A, cosh(L)y+Bn31nh<L)y, n € N.

Using the condition Y (0) — Y”(0) = 0 we find A,, = B, (“F) and

nx
Y,(y) = B, (T cosh (nL ) y +sinh ( ) )

Using the superposition principle we find

ZB ( cosh (nL )y—i—smh (T)y) sin <%x>

Using the boundary condition

u(z, H) = 20sin (%) ~ 5sin (37;”)

o) = 0 () o ()

Problem 19.12
Solve Laplace’e equation g, + uy, = 0 in the rectangle 0 < x,y < 1 subject to
the conditions

we find

u(0,y) = u(l,y) =0
u(z,0) =sin (27z), ugz(x,0) = —27sin (27x).

Solution.
The answer is u(x,y) = sin (27z)e~2™ (detail left to the reader) m
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Problem 19.13
Find the solution to Laplace’s equation on the rectangle 0 < z < 1,0 < y < 1 with
boundary conditions

u(z,0) =0, u(z,1)=1

uz(0,y) = uzx(1,y) = 0.

Solution.
The answer is u(z,y) = y (detail left to the reader) m

Problem 19.14
Solve Laplace’s equation on the rectangle 0 < x < a, 0 < y < b with the boundary
conditions

uz(0,y) = —a, ug(a,y) =0

Uy (z,0) = b, uy(z,b) =0.

Solution.
The answer is u(z,y) = %CL‘Q — %yQ — axpy + C where C' is an arbitrary constant
(detail left to the reader) m

Problem 19.15
Solve Laplace’s equation on the rectangle 0 < x < 7, 0 < y < 2 with the boundary
conditions

u(0,y) = u(m,y) =0
uy(x,0) =0, uy(x,2) =2sin3z — 5sin 10z.
Solution.
The answer is

2cosh3ysin3z 5 cosh 10y sin 10z
cosh 6 cosh 20

The details are left to the reader B

u(x7y) =
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Solutions to Section 20

Problem 20.1
Solve the Laplace’s equation in the unit disk with u(1,6) = 3sin 56.

Solution.
We have -
u(r,80) = Co + Z r"(Ay, cosnf + B, sinnf)
n=1
so that

u(1,0) = Co + Z(An cosnb + By, sinnf) = 3sin 56.

n=1
Comparing coefficients we find Cop = A, =0 foralln € Nand B, =0 foralln #5
and Bs = 3. Thus, the solution to the problem is

u(r,0) = 3r’sin 50 m

Problem 20.2
Solve the Laplace’s equation in the upper half of the unit disk with u(1,0) = 7 —0.

Solution.
We have -
u(r,0) = Co + Z " (Ay, cosnf + B, sinnf)
n=1
where
1 7 T
Co _27T/0 (Tr—H)dH—Z
1" 1—(=1)"
A, :/ (m —0) cosnbdh = #
™ Jo nem
1 /7 . 1
B, :/ (m —0)sinnfdh = —
™ Jo n

Thus, the solution to the problem is

o

1—(—1)" in nf

u(r,0) = % + Zr" [n(27r ) cosnf + Slr;n
n=1

Problem 20.3

Solve the Laplace’s equation in the unit disk with u,(1,6) = 2 cos 26.
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Solution.
We have -
u(r,0) = Co + Z r" (A, cosnf + B, sinnf)
n=1
with -
ur(1,0) = Z n(A;, cosnf + B, sinnf) = 2 cos 26.
n=1

Expanding this series and equating coefficients of like terms in both sides we find
A, =0 for n # 2 and Ay = 2. Moreocer, B,, = 0 for all n € N. Hence, the solution
to the problem is

u(r,0) = Co +r* cos 20 W

Problem 20.4

Consider 0o
u(r,6) = Co+ Y r"(Ay cosnd + By sinnf)
n=1
with
=20 = L [7 f(s)as
079 T or
an 1 27'('
A, == f(@)cosnodp, n=1,2,---
a” anm o
by 1 .
Bu=tt = L7 pg)sinngds, n=1,2,-
a” am Jy

Using the trigonometric identity
cosacosb + sinasinb = cos (a — b)

show that
27r

u(r,0) = o

1+2Z( ) cosn(f — ¢)] do.

Solution.
Substituting Cp, A,,, and B,, into the right-hand side of u(r,#) we find

2w & n 2w
u(r, ) :% ; f(p)do + Z # /0 f(@) [cosng cosnb + sin neg sin nh] de

1+2Z( ) cosn(f — qb)]dgbl

1

27T f
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Problem 20.5

(a) Using Euler’s formula from complex analysis e

= cost + isint show that
L, i —it
cost = 5(6 +e ),

where i = /—1.
(b) Show that

o0

1—1—22( > cosn(0 — ¢) —1—1-2( ) n(6- ¢)+i(2)ne—m(6—¢).

(c) Let g1 = Ze'®=®) = Z[cos (§ — ¢)+isin (0 — ¢)] and g2 = Le " =9) = Z[cos (6 — ¢)—
isin (6 — ¢)]. It is defined in complex analysis that the absolute value of a complex
number z = z + iy is given by |z| = (2% + yQ)% Using these concepts, show that
lg1] < 1 and |ga] < 1.

Solution.

(a) We have e = cost + isint and e = cost — isint. The result follows by
adding these two equalities and dividing by 2.

(b) This follows from the fact that

it

cosn(f — ¢) = %(ei"(9—¢) + e—in(9—¢))_

(c) We have |¢1| = 5\/cos(0—¢)2+sin(c9—¢>)2 =2 <lsince0<r<a A
similar argument shows that |¢g2| < 1 W

Problem 20.6
(a)Show that

> r\n in(6—6) _ ret(0—9)
712—:1 (5> 09 = a — ret(0=9¢)
and - 0-5)
N\ _in(0— (R
nzjl <E> e 070 = a — re~40-9)

Hint: Each sum is a geoemtric series with a ratio less than 1 in absolute value so
that these series converges.
(b) Show that

o 2 2

T\ “
14232 (7) eonn0—0) = gt

n=1
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Solution.
(a) The first sum is a convergent geometric series with ratio ¢; and sum

oo n roi(0—¢
3 (i) in(0—9) :L
n=1 a 1- an
fr‘ei(g_d’)
" — rei0=9)

Similar argument for the second sum.

(b) We have
r@i(9_¢)

reii(gf(zﬁ)
+a — re=i(0-9)
=1+ : + :
T qemi0-9) —p  ge—i0-¢) —

T

=1

+ acos (0 —¢) —r —aisin (6 — ¢)

r

+acos(9—¢) —r+aisin (0 — ¢)
rlacos (6 — ¢) — r + aisin (0 — ¢)]
a? + 2ar cos (6 — ¢) + r2
+r[acos (0 —¢) —r —aisin (0 — ¢)]
a? — 2ar cos (6 — ¢) + r?
a? —r?

~aZ — 2ar cos (0 — @)+ r? u

=1+

Problem 20.7

Show that
2ot £6)
u(r,9) = 27 /0 a? — 2ar cos (6 — ¢) + r? a9

This is known as the Poisson formula in polar coordinates.
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Solution.
We have
1
u(r,0) = by 1—|—ZZ< ) cosn(f — QS)] d¢
1 a2 —r?
d
" or f( ) a? — 2ar cos (6 — ¢) + r? ¢
2 _ 2 2
2r  Jo a?® —2arcos (0 — @)+ r?
Problem 20.8
Solve
uxx"—u:yy:o, :B2+y2<1
subject to
u(l,0) =0, —7<6<m.
Solution.
We have _
Co=— 0do =0
2 J_,
1 s
A, = / 0 cosnbdf =0
™ —T
1 " : n+1
B, =— 0 sinnfdh = 2(—1)
™ —T
Hence,

Problem 20.9

The vibrations of a symmetric circular membrane where the displacement w(r,t)
depends on r and ¢ only can be describe by the one-dimensional wave equation in
polar coordinates

2 1
up = ¢ (Upr + —up), 0<r<a, t>0
r

with initial condition
u(a,t) =0, t>0
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and boundary conditions
u(r,0) = f(r), w(r,0)=g(r), 0<r<a.

(a) Show that the assumption u(r,t) = R(r)T'(t) leads to the equation

(b) Show that A < 0.

Solution.
(a) Differentiating u(r,t) = R(r)T'(t) with respect to r and ¢ we find

uy = RT" and u, = R'T and u,, = R"T.

Substituting these into the given PDE we find
" 2 /" 1 /
RT" =c¢ (R T—i—RT)
r

Dividing both sides by ¢2RT we find
1 T// R/l 1 R/
2T "R T R
cc T R rR
Since the RHS of the above equation depends on 7 only, and the LHS depends on

t only, they must equal to a constant A.
(b) The given boundary conditions imply

u(a,t) =0= R(a)T(t) = R(a) =0
u(r,0) = f(r) = R(r)T(0)
u(r,0) = g(r) = R(r)T"(0).

If A =0 then R” 4+ 1R’ = 0 and this implies R(r) = C'Inr. Using the condition
R(a) = 0 we find C = 0 so that R(r) = 0 and hence v = 0. If A > 0 then
T" — X\*T = 0. This equation has the solution

T(t) = Acos (eV'At) + Bsin (eVAt).

The condition u(r,0) = f(r) implies that A = f(r) which is not possible. Hence,
A<0Om
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Problem 20.10
Cartesian coordinates and cylindrical coordinates are shown in Figure 22.1 below.

z
[x,;_u,z:l = [r,é?,z:l
*
2
g et |
7 et

Figure 20.1

(a) Show that © = rcosf, y =rsinf, z=z.
(b) Show that

1
Uzy + Uyy + Uzz = Upr + ;ur + ﬁuee + Uzz-

Solution.

(a) Follows from the figure and the definitions of trigonometric functions in a right
triangle.

(b) The result follows from Equation (20.1) B

Problem 20.11

An important result about harmonic functions is the so-called the maximum
principle which states: Any harmonic function u(x,y) defined in a domain
satisfies the inequality

in < u(r,y) < , V(z,y) €Q
(xgl)le%a < u(z,y) < (x%)%)ég (@,y)
where 02 denotes the boundary of €.

Let u be harmonic in Q = {(z,y) : 22 +3? < 1} and satisfies u(z,y) = 2 — x for
all (z,y) € 9. Show that u(z,y) > 0 for all (z,y) € Q.
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Solution.
By the maximum principle we have

i ’ < ; < ,Y), v s =Y/
(xgl)lerlmu{w y) < ulz,y) (xgl)ae%QU(w y), V(z,y)

But ming a0 u(7,y) = u(1,0) = 1 and max(, yecon u(r,y) = u(-1,0) = 3.
Hence,
1 <u(x,y) <3

and this implies that u(x,y) > 0 for all (z,y) € 2 m

Problem 20.12

Let u be harmonic in Q = {(z,y) : 2% + y? < 1} and satisfies u(z,y) = 1 + 3z for
all (z,y) € 9§). Determine

(i) maX(z,y)en u(x, y)

(11) min(:p,y)EQ U(.T, y)

without solving Au = 0.

Solution.

(i) The solution is not constant because it is not constant on the boundary. There-
fore, the maximum is achieved on the boundary. The maximum value of the
boundary data is u(1,0) = 4, which is therefore also the maximum value of the
solution.

(ii) Similar to above, the minimum is achieved on the boundary, and is u(—1,0) =
-2

Problem 20.13
Let u1(z,y) and uz(x,y) be harmonic functions on a smooth domain 2 such that

utlpn = g1(x, y) and ug|sq = gs(z,y)
where g1 and g are continuous functions satisfying

max T <  min T,Y).
(x,y)eaﬂgl( \Y) (w)emgl( Y)

Prove that ui(z,y) < ua(z,y) for all (z,y) € QU IN.

Solution.
Using the maximum principle and the hypothesis on g1 and go, for all (z,y) €
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QU 02 we have
" }genm ur(z,y) = " gl)le%gl(x,y)

<ui(x < max uj(x
>~ 1( 7y)_(x,y)€89 1( 73/)

= < ,
s 91(z,y) (hax 92(z, y)

< min = min us(x
(,y)eanl( ,Y) ()20 2(z,9)

<us(z,y) < max wus(x,y) = max z,y) il
<us(z,y) (hax 2(2,y) (w)eaﬂw( y)

Problem 20.14
Show that 7" cos (nf) and r"sin (nf) satisfy Laplace’s equation in polar coordi-
nates.

Solution.
We have
A" cos (n6)) =2 (17 cos (n6)) + - (17 cos (n0)) + 2 (" cos (nf))
T CcOos(n 827“COS7”L TaTTCOSTL ’r2802rCOSTL

~2cos (nf) — r"2n? cos (nh) =

=n(n — 1)r""2 cos (nf) + nr"
Likewise, A(r"sin (nf)) =01

Problem 20.15
Solve the Dirichlet problem

Au=0, 0<r<a, —n7<6<m~w
u(a, f) = sin? 6.

Solution.
A solution has the form

o0
= ?0 Z (anr™ cosnf + b,r" sinnf)
where

1 ™
ag :/ sin® 0df = 1
™ —T
1 s

an = — sin? 0 cosnhdf = 0
Ta -
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ifn#2 If n =2 we find ay = —ﬁ. On the other hand, since sin? §sinnf is odd
we have b, = 0 for all n € N. Thus, solution to the Dirichlet problem is

1 2
u(r,0) = 5 ;—aQCOSZGI

Problem 20.16
Solve Laplace’s equation
Uz + Uyy = 0

outside a circular disk (r > a) subject to the boundary condition
u(a,0) =1In2+ 4cos 30.
You may assume that the solution remains bounded as r — oo.

Solution.
Solving the problem the way we did for the inside the circle we find

©,(0) = A, cosnf + B,sinnf, n=0,1,2,---

and
Ry =Cyolnr+ Dy, R, =Cpr"+D,r ", neN.

We use the condition that the solution remains bounded as r — oo (that is C), = 0)
we find

3
u(r,0) =In2+4 (2) cos30 W
r
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Solutions to Section 21

Problem 21.1
Determine whether the integral fooo
give its value.

1

H—tzdt converges. If the integral converges,

Solution.
‘We have

00 1 ) A 1 ) 4
——dt = lim ——dt = lim [arctant]
0 1+¢ 142

A—o0 Jo A—oco

T
= lim arctan A = —
A—o00 2

So the integral is convergent B
Problem 21.2

Determine whether the integral fooo 1+%alt converges. If the integral converges,
give its value.

Solution.
We have

< ¢ 1 Aot 1 A
——dt == 1i ——dt == 1i In (1 + ¢
/0 e 2330/ T e® =g fm I+,

:% lim In(1+ A%) = oo

A—o00

Hence, the integral is divergent W

Problem 21.3
Determine whether the integral fooo e~tcos (et)dt converges. If the integral con-
verges, give its value.

Solution.
Using substitution we find

—A

oo e
/ e tcos (e V)dt = lim — cos udu
0 A—o00 1
— 1 o e _ 1. . 1_ . —A
Al—{%o[ sinu|} AI_IHH)O[SID sin (e )]
=sinl

Hence, the integral is convergent B
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Problem 21.4
Using the definition, find £[e®], if it exists. If the Laplace transform exists then

find the domain of F(s).

Solution.
We have

Problem 21.5
Using the definition, find L[t — 5], if it exists. If the Laplace transform exists then

find the domain of F(s).

Solution.
Using integration by parts we find

A _(+— —st71A A
Llt—5]= lim [ (t—>5)e*'dt = lim {[@5)6] +i/ e—stdt}
0

A—oo Jo A—o00 S 0
. {—(A—5)€SA+5 [eSt]A}
= lim — 5
A—o0 S S 0
1 9
:*2 - S > O .
S S

Problem 21.6
Using the definition, find E[e(t_l)Z], if it exists. If the Laplace transform exists
then find the domain of F(s).

Solution.
We have

o0 2 0 2
/ 1) st gy :/ =12 —st gy
0 0
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Since limy o0 (t — 1) — st = limy_, oo 12 (1 — @ + t%) = oo, for any fixed s we

can choose a positive C' such that (t —1)? — st > 0. In this case, et=1)*=st > 1 and
this implies that fooo elt=D?=stqy > fcoo dt. The integral on the right is divergent
so that the integral on the left is also divergent by the comparison theorem of
improper integrals. Hence, f(t) = e=1? does not have a Laplace transform W

Problem 21.7
Using the definition, find L£[(t — 2)?], if it exists. If the Laplace transform exists
then find the domain of F'(s).

Solution.
We have
L[(t—2)% = lim (t —2)%e *at.

T—o00

Using integration by parts with ' = e~% and v = (t — 2)? we find

T _ 9)2p—st T 9 (T
/ (t—2)2e stdt = — [W] += / (t—2)e"dt
0 $ 0 0

S

4 (T-2)%T 2 (T
== — T -2y + / (t —2)e*tdt.
0

S S S

Thus,
T 4 2 T
lim (t —2)%e %dt = — + = lim (t—2)e *tat
T—o00 0 S S T—oo 0

Using by parts with «/ = e™* and v = t — 2 we find

tAT@__Qkﬁdt: ﬂ—“_*”eﬂ%+—le“}

s 52

T

0

Letting T' — oo in the above expression we find

T . 2 1
lim (t—=2)e %dt =—=+—, s>0.
T—oo Jg S S
Hence,
4 2/ 2 1 4 4 2
Fs)=—-4-(—"4+=5)=—-—-=+—=, s>0
(5) s+s<s+s2> s 2t s "

Problem 21.8
Using the definition, find L[f(t)], if it exists. If the Laplace transform exists then

find the domain of F(s).
0, 0<t<l
o= {

t—1, t>1
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Solution.

We have
T

LIf(H)] = lim [ (t—1)e *at.

T—o00 1

Using integration by parts with v’ = e™*! and v = ¢t — 1 we find

T {_ (t—1)e st 1 st:| T e

lim (t —1)e tdt = lim - e =—, s>0m
T—oo J1 T—o0 S S 1 S

Problem 21.9
Using the definition, find L[f(t)], if it exists. If the Laplace transform exists then
find the domain of F(s).

0, 0<t<1

f)=< t—1, 1<t<?2
0, t>2.
Solution.
We have
2 —st 2
t—1)e 1
cift] = [t —yestar = |- L
ORGSR e
6_25 1 —8 —2s
== +?(e —e ), s#0n

Problem 21.10
Let n be a positive integer. Using integration by parts establish the reduction

formula .
the”? n
/t"estdt = — + = /t”lestdt, s> 0.
s s
Solution.
Let ' = e™%" and v = #". Then u = —e;St and v’ = nt" . Hence,

" —st
/t"e—stdt -t 4 n/ nlemstgt s>0m
S S

Problem 21.11
For s > 0 and n a positive integer evaluate the limits

(a) limy_,o t"e™5! (b) limy_yoo t"e ™5
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Solution.
(a) limg_ot"e™5t = limy_,q g—?t =9%=0.
(b) Using L’Hopital’s rule repeatedly we find
n!

lim t"e ' = ... = lim ;=0m
t—00 t—oo s"es

Problem 21.12
Use the linearity property of Laplace transform to find £[5e~" + t + 2¢%]. Find
the domain of F(s).

Solution.

We have L[e™™] = ==, s > =7, L[t] = &%, s > 0, and L[e*"] = -L5, s > 2. Hence,

1

—Tt 92t — —Tt oWlet] = — = 4 — 4 =
L[5e™ "+t +2e”] =5L[e” "] + L[t] + 2L][e”] s+7+82+5_2’

s>21
Problem 21.13

. - 3
Flnd £ 1 (E
Solution.

: 1 _ 1
Slnce E s—al =

s—a’

ﬁ_l <532> == 3[:_1 (S_l2> = 3€2t, t Z 0 .

Problem 21.14
. -1 2 1
Flnd E <—sﬁ + m) .

s > a then

Solution.
Since L[t] = S%, s>0and L <ﬁ) =L s5>a, wefind

s—a’
-1 2 1 _ —1(1 —1(_ 1
(=24 5) = 2 (&) e ()
= 2t +e L t>0m
Problem 21.15
. —1( 2 2
Fmd £ (m -+ E)

Solution.
We have

2 2 |
1 1 1 2t 2t
= = >
L ( 2—1— 2> 2L ( )—I—Qﬁ ( ) 2(e +e¥),t>0m
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Problem 21.16
Use Table £ to find £[2¢! + 5].

Solution.

L[2e! + 5] = 2L[e'] + 5L[1] = il - g s>1m

Problem 21.17
Use Table £ to find L[e33H(t — 1)].

Solution.

LIE3H(E - 1)) = L[SCVH(E - 1)] = e L[e¥] = Lg s>3m
S —_—
Problem 21.18
Use Table £ to find £[sin®wt].
Solution.
1 — cos2wt 1 1/1 s
in2 = _ | = — — = — - —_—
L[sin” wt] = L] 5 ] 2(5[1] L][cos 2wt)]) 5 (5 2 +4w2> , s>0m

Problem 21.19
Use Table £ to find L[sin 3¢ cos 3t].

Solution.
in6t 1
L[sin 3t cos 3] = 5[511“2 = L6l = 5T oe s> o0m

Problem 21.20

Use Table £ to find L[e? cos 3t].

Solution.

% - s—3
E[e COS3t] = m, S > 3 [ |

Problem 21.21
Use Table £ to find L[e* (t? + 3t + 5)].
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Solution.

2 3 )

>4
(5—4p (s—ap s—a °7 N

L[ (t2+3t45)] = L[] +3L[e ] +5L[1] =

Problem 21.22
Use Table £ to find L7122 + —45].

52425
Solution.
10 4 5
£ =27 ] +4c7? = 2sin5t +4€*, t>0
b | [ogs H46 G5l = 2sindt 4™, 120

Problem 21.23

Use Table £ to find E*I[(S_‘r’3)4}.

Solution.

5 5 3! 5
£ =-r! =M >0
Goaal = 6f lgogual=go ! tz0m

Problem 21.24 ‘
Use Table £ to find L’*l[%}.

Solution.

6—25

s—9

_9(t—2 _ 0, 0<t<?2

L7
Problem 21.25

Using the partial fraction decomposition find £7! [%} .

Solution.

Write
12 A B

G-3)(s+1) s5-3 s+1

Multiply both sides of this equation by s — 3 and cancel common factors to obtain

12 B(s —
s+1 s+1



166 CONTENTS

Now, find A by setting s = 3 to obtain A = 3. Similarly, by multiplying both sides
by s+ 1 and then setting s = —1 in the resulting equation leads to B = —3. Hence,

12 NN
(s—3)(s+1) “\s—-3 s+1
Finally,

o] = e

Problem 21.26

Using the partial fraction decomposition find £~ {Zj{;s]
Solution.
Write

24 A B

(5-3)(s+3) s5-3 543

Multiply both sides of this equation by s — 3 and cancel common factors to obtain

24 :A+B(S_3).
s+ 3 s+ 3

Now, find A by setting s = 3 to obtain A = 4. Similarly, by multiplying both sides
by s+ 3 and then setting s = —3 in the resulting equation leads to B = —4. Hence,

24 (L
(s—3)(s+3) \s—3 s+3
Finally,

e~ s
s+3
4e3t5) — e 3UDH(t —-5), t>0m

o] - e[

Problem 21.27
Use Laplace transform technique to solve the initial value problem

Y +4y=g(t), y(0)=2

where
0, 0<tx1

gt)y=4{ 12, 1<t<3
0, t>3
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Solution.
Note first that g(t) = 12[H(t — 1) — H(t — 3)] so that

12(e™% — e3¢
Llg(0)] = 12L[H(t — 1)] - 12L[H(t = 3)] = ——————, 5> 0.

Now taking the Laplace transform of the DE and using linearity we find
LIy +A4L[y] = L{g(t)].

But L[y'] = sLly] — y(0) = sL[y] — 2. Letting L]y] = Y (s) we obtain

eSS — 6_38
sY(s) —2+4Y(s) =12
s
Solving for Y (s) we find
2 e~ —e738
= 12
(s) s+4+ s(s+4)
But )
-1 —4t
=2
[s + 4} ‘
and

e e )

—5 —3s —5 —3s
—307! [e ] _ 327! [e ] Yo { ¢ ] 4307 {e }
S s s+4 s+ 4

=3H(t—1) —3H(t —3) —3e " VH{t — 1)+ 3 H(t - 3)

Hence,
y(t) = 2e P4 3[H(t—1)—H(t—3)] =3[ 2 VH(t-1)—e 3 HE-3)], t >0m

Problem 21.28
Use Laplace transform technique to solve the initial value problem

y' —dy =e*, y(0)=0, y'(0)=0.

Solution.
Taking the Laplace transform of the DE and using linearity we find

L[y"] - AL[y) = L[e*].
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But L[y"] = s?L[y] — sy(0) — 3/ (0) = s2L]y]. Letting L[y] = Y (s) we obtain

Solving for Y'(s) we find

1
(s —3)(s—2)(s+2)

Using partial fraction decomposition

Y(s) =

1 A n B . C
s=3)(s—2)(s+2) s—3 s+2 s—2
(s=3)(s—2)(s+2)
we find A = % 20,andC——f Thus,
_p-1 1 _ Lt Ry N RS
y(t) =L [(3—3)(8—2)(8+2)_5£ s—3 +20£ s+ 2 4£ s—2

Lge b oop 1 o
_56 —|—%e —Ze,tZOl
Problem 21.29
Consider the functions f(t) = e’ and g(t) = e~2/, t > 0. Compute f * g in two
different ways.
(a) By directly evaluating the integral.
(b) By computing £~ [F(s)G(s)] where F(s) = L[f(t)] and G(s) = L[g(t)].

Solution.
(a) We have
t
(f *g)( / f(t—ys) / e(t=5)e=25(s
0
(t—35) 1"
et/ 3Sds — [C ]
0 =3 ],
ot o2t
E
(b) Since F(s) = L[e'] = -5 and G(s) = L[e7] = Sj%Q we find (f * g)(t) =

L7YF(s)G(s)] = £*1[m]. Using partial fractions decomposition we find

1 1,01 1
oG+ 351 si2”
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Thus,

1 et —e 2t

s+2]: 3

(fx9)(t) = LT F(s)G(s)] = (L7 [—=] = L7 u

Problem 21.30

Consider the functions f(t) = sint and g(t) = cost, t > 0. Compute f * g in two
different ways.

(a) By directly evaluating the integral.

(b) By computing L71[F(s)G(s)] where F(s) = L[f(t)] and G(s) = L[g(t)].

Solution.
(a) Using the trigonometric identity 2sinpcosq = sin (p + q) + sin (p — ¢) we find
that 2sin (¢ — s) cos s = sint + sin (¢t — 2s). Hence,
t t
(f*9g)(t) :/ f(t—s)g(s)ds = / sin (t — s) cos sds
0 0
1 t t
—[/ sin tds +/ sin (t — 2s)ds]
2°Jo 0

tsint 1 [t .
= + sin udu

2 "1/,
_tsint
2
(b) Since F(s) = L[sint] = ﬁ and G(s) = Lcost] = %5 we find
- _ S t .
(f*g)t) =L F(s)G(s)] = L I[W] = 5sintm

Problem 21.31
Compute t * t % t.

Solution.

By the convolution theorem we have L[t  t « t] = (L[t])® = (8%)3 = L. Hence,
_ 1717 8 _ 45

trtxt =L [G] =5 =15 ®

Problem 21.32

Compute H(t) et x e 2.
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Solution.
By the convolution theorem we have L[H (t) * et x et = L[H (t)|L[e ! L[e ] =
L. L. _L Using the partial fractions decomposition we can write

5 51 s+2¢
1 1 1 1

1
s(s+1)(s+2) 2$_$+1+§'3+2'

Hence,
1

1
Ht)yselxe ™ =_—e 4 _e?n
2 2
Problem 21.33

Compute t * et x et

* e,

Solution.
By the convolution theorem we have L[txe ' xe!] = L[t]Lle ! L[e!] = &+ 25 2.
Using the partial fractions decomposition we can write

1 1 1 1

s2(s+ 1)(s—1) 2 2 s—1

N
[V

+

—_

Hence,
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Solutions to Section 22

Problem 22.1
Solve by Laplace transform

u+u, =0 , >0 t>0
u(z,0) = sinz,
u(0,t) =0

Hint: Method of integrating factor of ODEs.

Solution.
Applying Laplace transform to both sides of the equation we obtain

sU(z,s) —u(z,0) + Ugy(z,s) =0
or
Uz(z,s)+ sU(x,s) =sinz

with boundary condition U(0,¢) = 0. Solving this initial value ODE by the method
of integrating (details omitted) we find the unique solution

1

Ule,s) = 547

[ssinz — cosx + e ).

Taking inverse Laplace transform we find
u(xz,t) =sin(x —t) — H(t —z)sin(z —t) A

Problem 22.2
Solve by Laplace transform

U+ Uy =—u , x>0 1t>0
u(x,0) =sinz,
u(0,t) =0

Solution.
Applying Laplace transform to both sides of the equation we obtain

sU(z,s) —u(z,0) + Ugy(z,s) = —U(z,s)

or
Uy(z,8)+ (s+1)U(x,s) =sinz
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with boundary condition U(0,¢) = 0. Solving this initial value ODE by the method
of integrating factor we find the unique solution

U(z,s) = [(s+ 1)sinz — cosx + e~ 1],

52425+ 2

Taking inverse Laplace transform we find
u(z,t) = [sin(z —t) — H(t —x)sin(z —t)]e” ' m

Problem 22.3
Solve
U = dUgy

u(0,t) =u(l,t) =0
u(z,0) = 2sin wx + 3sin 27z,
Hint: A particular solution of a second order ODE must be found using the method

of variation of parameters.

Solution.
Applying Laplace transform to both sides of the equation we obtain

sU(z,s) —u(x,0) — 4Uyyz(x,8) =0
or
AUyp(x,8) — sU(x, 8) = —2sinax — 3sin 2.

This is a second order linear ODE in the variable x and positive parameter s. Its
general solution is

2sinmx n 6sin27x
s+4n? s+ 1672

Next, we apply Laplace transform to the boundary condition obtaining U(0, s) =

S

U(1,s) = £(0) = 0. These lead to A(s) + B(s) = 0 and A(s)e™> + B(s)e~ % = 0.
Solving these equations we find A(s) = B(s) = 0 and the transformed solution

becomes ) )
2sintx  6sin2mwx

s + 472 +s—|—1671'2'

Now, taking inverse Laplace transform we find

U(z,s) =

_ A2t . _ 24 .
u(z,t) = 24 U sin o 4 67157 Fsin 27
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Problem 22.4
Solve by Laplace transform

U +uz=u ,xz>0,1>0
u(z,0) = sinz,
u(0,t) =0
Solution.
Applying Laplace transform to both sides of the equation we obtain

sU(x,s) —u(z,0) + Uy(x,s) = Uz, s)
Ug(z,8)+ (s —1)U(x,s) = —sinz

with boundary condition U(0,¢) = 0. Solving this initial value ODE by the method
of integrating factor we find the unique solution

s—l)x]'

U(zx,s) = [(s —1)sinz — cosx + e~

§2 —2s5 42

Taking inverse Laplace transform we find
u(z,t) = [sin (z —t) — H(t — z)sin (z — t)]e' m

Problem 22.5
Solve by Laplace transform

u+u, =t , x>0, ¢t>0
u(z,0) =0,
u(0,t) =t

Solution.
Applying Laplace transform to both sides of the equation we obtain

1
sU(z,8) — u(z,0) + Uyp(z,8) = —
s

or
1

Uy(z,s) + sU(x,s) = 2

with boundary condition U(0,t) = t% Solving this initial value ODE by the method
of integrating factor we find the unique solution

2 1 _ 1
Ulz,s) = (33_32)6 $+8—2.

Taking inverse Laplace transform we find

u(z,t) =t?e ™ —te "+t W



174 CONTENTS

Problem 22.6
Solve by Laplace transform

zU+Uuz =0 , 2>0,t>0
u(z,0) =0,
u(0,t) =t

Solution.
Applying Laplace transform to both sides of the equation we obtain

xsU(z,s) — zu(x,0) + Uy(z,s) =0

or
Uz(z,s) +xzsU(x,s) =0
1
2

with boundary condition U (0,t) =
tion of variables we find

;2. Solving this ODE by the method of separa-

S$2
U(z,s) = A(s)e” 2.
Using the boundary condition we find A(s) = S% Hence

_ sz?
e 2

U(z,s) =

52

Taking inverse Laplace transform we find

1 1
u(x,t) = <t — 2x2> H <t - 2m2> ]
Problem 22.7

Solve by Laplace transform

Ut — gy =0 ,x>0,t>0
u(x,0) = ug(xz,0) =0,
u(0,t) = sinz,
lu(z,t)] < o0

Solution.
Applying Laplace transform to both sides of the equation we obtain

s2U(z,s) — su(z,0) — u(x,0) — Ups(z,5) =0

or

AUps(z,8) — 82U (z,5) = 0.
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This is a second order linear ODE in the variable x and positive parameter s. Its
general solution is ‘ ‘
Uz, s) = A(s)e”<® 4+ B(s)ec®.

Since U(z, s) is bounded, we must have B(s) = 0 and in this case we obtain

s

U(z,s) = A(s)e” <".

Next, we apply Laplace transform to the boundary condition obtaining

1

U(O, S) = E(Sln%) = m

This leads to A(s) = and the transformed solution becomes

_1
s2+1

_sg
c

U(IE,S) - m

w(z,t) = L7 (;:i) —H (t - %) sin (t - %) n

Problem 22.8
Solve by Laplace transform

Thus,

Ut — My =0, 0< <7, £t >0

Solution.
Applying Laplace transform to both sides of the equation we obtain

s2U(x, 8) — su(z,0) — ug(x,0) — W,y (z,8) = 0
or
W,o(,5) — 82U (x,8) = —2ssin .

This is a second order linear ODE in the variable x and positive parameter s. Its
general solution is

2ssinx

U = A(s)e3” 4+ B(s)e 5% + ———
(z,s) (s)e3” + B(s)e 3" + 10
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Next, we apply Laplace transform to the boundary condition u(0,t) = u(w,t) =0
obtaining
U(0,s) =U(m,s) = L(0)=0.

This leads to A(s) + B(s) =0 and A(s)e® + B(s)e™® = 0. Solving these equations
we find A(s) = B(s) = 0 and the transformed solution becomes

2ssinx
U($,S) = m

Using the inverse Laplace transform we find
u(x,t) = 2sinx cos 3t M

Problem 22.9
Solve by Laplace transform

uxyzl , x>0, y>0
u(x,0) =1,
u(0,y) =y + 1.

Solution.
First we note that u(z,0) = 1 implies ug(z,0) = 0. Using Laplace transform in y
we obtain

1
sUz(z,8) — uz(x,0) = B

or

Solving this equation we find
x
U(z,s) = 2 + C(s).

Now we can apply the BC to obtain

1 1

Hence,
Ulz,s) = = (24 1) + 2
z,8) = —(x -,
’ 52 S

Taking the inverse Lapalce transform we find

uw(z,y) =ylz+1)+1m



SOLUTIONS TO SECTION 22 177

Problem 22.10
Solve by Laplace transform

U = gy ,x>0,t>0
u(z,0) = ug(x,0) =0,
U:E(Oat) = f(t)’

lu(z,t)| < oo.

Solution.
Applying Laplace transform to both sides of the equation we obtain

s2U(x, s) — su(z,0) — ug(x,0) — AUps(z,5) = 0

or

AUps(z,5) — 82U (z, s) = 0.

This is a second order linear ODE in the variable x and positive parameter s. Its
general solution is

Uz, s) = A(s)e” =™ 4+ B(s)e:".
Since U(x, s) is bounded, we must have B(s) = 0 and in this case we obtain

S

U(z,s) = A(s)e” <".
Next, we apply Laplace transform to the boundary condition obtaining

Uz(0,8) = L(f(t)) = F(t).

This leads to A(s) = —%(S) and the transformed solution becomes
U(zx,s) = fCF(S)e_%x
) s N

Using the integration property and the translation property, we find that,

w(z,t) = £71 [—CF(S)eix] - —c/oti f(r)dr.

S

Thus,
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Problem 22.11
Solve by Laplace transform

Ut — Uy = U ,x>0,t>0
U(.Z‘,O) :e—5x’
lu(z, )] < oo

Solution.
Applying Laplace transform to both sides of the equation we obtain

sU(z,s) —u(z,0) — Ugy(z,s) =Ul(z,s)

or
Ug(z,8) — (s — 1)U(x,s) = —e—bx
Solving this ODE by the method of integrating factor we find general solution

—bz

Ulz, s) = 8‘3+ 1+ Cls)els — e

Since s is arbitrary and U is bounded we must have C(s) = 0. Hence, we obtain
the transformed solution
6—533

U(z,s) = e

Taking inverse Laplace transform we find
u(z,t) = e e H(t) m

Problem 22.12
Solve by Laplace transform

U — gy =0 , >0, t>0

u(x,0) =T,
u(0,t) =0,
|u(z,t)| < oo

Solution.
Applying Laplace transform to both sides of the equation we obtain

sU(z,5) — u(z,0) — EUpp(z,5) =0

or

AU (z,8) — sU(z,5) = —T.
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This is a second order linear ODE in the variable x and positive parameter s. Its
general solution is

T

U(zx,s) = A(s)e_§x + B(s)eéiE + "

Since U (z, s) is bounded in both variables, we must have B(s) = 0 and in this case
we obtain

Uz, s) = A(s)e V*® 4 Z

S

Next, we apply Laplace transform to the boundary condition obtaining U(0, s) =
L(0) = 0. This leads to A(s) = —% and the transformed solution becomes

T _s T
U(z,s) = —;e_Tx + .

Thus,

S S

u(z,t) = L7} <—T6\§x + T> .

. Vs
One can use a software package to find the expression for £7! (%6_ c m) [ |

Problem 22.13
Solve by Laplace transform

Up — Uz =0, 0< <2, >0

u(0,t) = u(2,t) =0,

u(z,0) = 5sin (7wx).

Solution.

Applying Laplace transform to both sides of the equation we obtain

sU(x,s) — u(z,0) — 3Uypz(z,5) =0

or
3Uys(x,8) — sU(x,s) = —5Hsin (7x).

This is a second order linear ODE in the variable x and positive parameter s. Its
general solution is

s Vs 5 si
U(zx,s) = A(s)e_%m + B(s)e s+ ;fg:;)
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Next, we apply Laplace transform to the boundary condition obtaining U(0, s) =
U(2,s) = L(0) = 0. These lead to A(s)+ B(s) = 0 and A(s)e_Qé +B(8)62§ = 0.
Solving these equations we find A(s) = B(s) = 0 and the transformed solution

becomes
5sin (7z)

s+ 3n2

Now, taking inverse Laplace transform we find

U(zx,s) =

u(z,t) = 5e 73" sin (mz) |

Problem 22.14
Solve by Laplace transform

Ut — Uy =0, 0< <7, £t >0
ug(0,t) = u(m, t) =0,
u(z,0) :406083

Solution.
Applying Laplace transform to both sides of the equation we obtain

sU(x, s) —u(z,0) — 4Uyz(z,5) =0

or

AUy (x,8) — sU(x,s) = —40 cos g

This is a second order linear ODE in the variable x and positive parameter s. Its
general solution is
40 cos 5

s+1 -

s Vs
e + B(s)ez”

U(z,s) = A(s)e” +

Next, we apply Laplace transform to the boundary condition obtaining U, (0, s) =

U(m,s) = L(0) = 0. These lead to —A(s)+ B(s) = 0 and A(s)e_wé +B(s)e’r§ =
0. Solving these equations we find A(s) = B(s) = 0 and the transformed solution

becomes
40 cos 3

s+1°

Now, taking inverse Laplace transform we find

U(zx,s) =

u(x,t) = 40e~" cosg |
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Problem 22.15
Solve by Laplace transform

Ut — Qg =0, 0< <2, t>0
u(0,t) = u(2,t) =0,
ur(x,0) =0, wu(z,0)=3sinnx.

Solution.
Applying Laplace transform to both sides of the equation we obtain

s2U(x, s) — su(z,0) — ug(x,0) — 4Uzy(z,5) = 0
or
AUy (, 5) — 82U (z,8) = —3ssin .

This is a second order linear ODE in the variable x and positive parameter s. Its
general solution is

g s, Jdssinmz
U(z,s) = A(s)e” 2¥ + B(s)ez —i—m.

Next, we apply Laplace transform to the boundary condition w(0,¢) = u(2,t) =0
obtaining
U(0,s) =U(2,s) = L(0) = 0.

This leads to A(s) + B(s) =0 and A(s)e™® + B(s)e® = 0. Solving these equations
we find A(s) = B(s) =0 and the transformed solution becomes

3ssinmx

Ul s) = 32

Using the inverse Laplace transform we find

u(z,t) = 3sinmx cos 2t A
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Solutions to Section 23

Problem 23.1
Find the complex Fourier coefficients of the function

flz)y=2, —1<z<1
extended to be periodic of period 2.

Solution. Using integration by parts we find

1/t ,
Cn, :2/ T

:% (z:fr> —inmx 11 <Z) e—m”dx]
() ()

1 1 I
+5 :(nW)Q: ._ (n 2 ]
5[ e a0 ]
_ (=) [ |

Problem 23.2
Let
0 —m<x< 5
flz) = 1 _7“<x<g
0 T<ax<m

be 2r—periodic. Find its complex series representation.

Solution.
We have
1 m 1
o —dr = -
2m 2 2
and ) )
m —inx inm _inm
. — dx = 2 — 2
o= op | 3¢ e =g ler menr)
for n = £1,£2,--- . These coefficients reduce to the real values
1
Cp = — sin (@) n=+1,42 ...
nw 2
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Note that c_, = ¢,. Thus, the complex series representation of f is given by
f(z) = ! + f: 1 sin (n—ﬂ> (e 4 e7nT) g
2 = nm 2

Problem 23.3
Find the complex Fourier series of the 2r—periodic function f(z) = e
interval (—m, 7).

@ over the

Solution.
We have for n =0, £1,£2,---

1 ™

Cp =— e e STy
2 J_,
:i " 6(&—1'71)deC
2 J_,
1 e(a—in)x 4
or a—in
—Tr
L jpasin _ gamim)(-m)
2r a—1in
_ (=1)™(a + in)sinhar
B m(a? + n?)

Hence, the complex Fourier series of f(x) is

sinhar <= (=1)"(a+in) ;.
Ha)=— > @@ +n2) ¢ u
n=—oo
Problem 23.4
Find the complex Fourier series of the 2r—periodic function f(x) = sinx over the
interval (—m, 7).

Solution.
We have
1 /TF : —€x
Cp =— sinze” “*dx
2 J_,
1 nmw __ ,—inT
_ L e e _ 0
2m n2—1

for n # 1 or n # —1. Thus,
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_ -1

1
1= 73

and ¢ = ;.

Hence, the complex Fourier series of f(z) is

Problem 23.5
Find the complex Fourier series of the 2r—periodic function defined

f(x):{ 1 0<a<T

0 T<x<2m

Solution.
We have

Hence, the complex Fourier series of f(z) is
1 i —int int
flo) =T+ > e = 1le
n
i
—int int
- —1
P

Problem 23.6

Let f(z) = 2%, — 7 <z <7, be 2r—periodic.

(a) Calculate the complex Fourier series representation of f.

(b) Using the complex Fourier series found in (a), recover the real Fourier series
representation of f.
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Solution.
(a) Using integration by parts we find
1 g ,
Cp =7— xle M dy
2 J_,
:i |:x2Z —inT _ % " xe—ina}dl,:|
2r | n U O
21 0+ r_ 2 (fim”7r
o n?2 nd .
2
_ -1 n
L)
for n # 0 and

1 T 5 7.‘_2
co%/ xdacfg.

—T
Hence, the complex Fourier series of f(x) is
2 -1 A > 9 .
f(:B) — ? + Z 7(_1)nemx+zi2(_1)nemx'
n=-—00 n=1 n
2

(b) We have @ = co = % and

Gp =Cp +C_p = %(—1)” and b, = 0.

Hence, the real Fourier series representation of f is
2 o0 4

—_ o n
f(z) = +Zn2( 1)" cosna

n=1

Problem 23.7
Let f(z) =sinnmx, — % <x< %, be of period 1.
(a) Calculate the coefficients ay,, b, and ¢,,.
(b) Find the complex Fourier series representation of f.

Solution.
(a) We have

1

2 2
ag =2 /2 sinnmxdr = —;[COS% - COS—%] =0

RI= o)

ap =2 / sinnmx cos 2nmxdr = 0

WI= o)

8(—1)"n

b, =2 sin nrx sin 2nmrdr = 5
_ T —4n*m

D=



186 CONTENTS

where we used a computer software to evaluate b,,.
Now to find ¢,’s we have a0
Ccy) = ? =0
and for n € N we have
an —ib,  4(—1)"n
2 i(m—4n27)

Cp —

and
_ap+ib,  4(—1)"in
Con = 2 7w —4n27

(b) The complex Fourier representation of f (J:) is

2n7r7ja:
Z 1 — 4n2 u

Problem 23.8

Let f(r) =2—x, —2<x <2, be of period 2.

(a) Calculate the coefficients ay,, b, and ¢,,.

(b) Find the complex Fourier series representation of f.

Solution.
(a) We have

1 [? 4(=1)"
by, =5 /_2(2 — x)sin (%x)dx = (mr)

where we used a computer software to evaluate b,,.

Now to find ¢,’s we have

ao
Cco — ? =2
and for n € N we have
an — b, 2(=1)"Ti

2 - nmw

Cp —

and c_, = —c¢p.
(b) The complex Fourier representation of f(z) is

2(_1)n+1 n+1

f((lf) =2+ Z T ””T + Z ZZWJ:) [ |
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Problem 23.9
Suppose that the coefficients ¢,, of the complex Fourier series are given by

imn
0 if |n| is even.

{ 2 if |n] is odd
Cp =

Find a,, n=0,1,2,--- and b,, n=1,2,---.

Solution.
We first find the a,. For n = 0 we have a9 = 2¢y = 0. For n € N we have

ap =c¢p +c_p =0.

Next, we find the coefficients b,. We have for |n| odd

4 4

and for |n| even b, =01

Problem 23.10

Recall that any complex number z can be written as z = Re(z) + iIm(z) where
Re(z) is called the real part of z and Im(z) is called the imaginary part. The
complex conjugate of z is the complex number Z = Re(z) —iIm(z). Using these
definitions show that a,, = 2Re(cy,) and b, = —2Im(cy).

Solution.
Note that for any complex number z we have z+%z = 2Re(z) and z—%z = —2iRe(z).
Thus,

Cn+Cn =ap
which means that a,, = 2Re(c,,). Likewise, we have

Cn — G, = 1by,
That is ib, = —2iIm(cy,). Hence, b, = —2Im(c,,) &

Problem 23.11
Suppose that

L if n=0.

C_{2%k“”—ﬂ if n#0
=
2w

Find a,, and b,
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Solution.
We have

CLO:QC():f
™

Now note that 1
2¢c, = —[sin (nT") + i(cos (nT') — 1)].
™m

Hence,

1—cos (nT)
nmw u

an = 2Re(cp) = = sin (nT) and b, =

Problem 23.12
Find the complex Fourier series of the function f(z) = e* on [-2,2].

Solution.
We have

1 2 inNTx
Cn :[4 /_2 efe” 2 dx

2

-n7r)

1 61(1—27

41— |

isin (2 — inm)
2 —inm
The complex Fourier series is

flz) =i Z isin(?—imr)emwa .

2 —nm

Problem 23.13
Consider the wave form

f(@)

>
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a) Write f(x) explicitly. What is the period of f.
b) Determine ag and a,, for n € N.
c¢) Determine b,, for n € N.

d) Determine ¢¢ and ¢, for n € N.

(
(
(
(

Solution.

(a) We have

1 0<t<1
f(t)_{() 1<t<?2

and f(t+2) = f(t) for all t € R.

(b) We have
9 L 2 1
aoz/ f(x)dx:/ dx:/ dr =1
L Jo 0 0
1 .
an, :/ cosnmxdr = ST 0.
0 nm
(c) We have
! 1-— 1—(=1)"
b, = / sin nrxdr = cosSnT _ (=1) .
0 nmw nmw
Hence,

nm
0 if nis even

bn—{ 2 ifpis odd

(d) We have cg = % = 1 and for n € N we have

Cp =

a, — iby, B —# if n is odd
2 - 0 if n is even

Problem 23.14
If z is a complex number we define sinz = %(e” — e7%). Find the complex form
of the Fourier series for sin 3x without evaluating any integrals.

Solution.
We have

1 . A
sin 3x = 5(63” — %) g
Problem 23.15

Find ¢, for the 2w —periodic function

f(x):{l fs<x<s+h

0 elsewhere in [—7, ]
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Solution.

We have

) ogsth . 1 — e—inh
J . 2min
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Solutions to Section 24

Problem 24.1
Find the Fourier transform of the function

1 f-1<z<1
f(z) = { 0  otherwise.

Solution.
We have
. 0o ‘ 1 1 1
(6 :/ f(z)e %% dx :/ e dy :/ cos Exdx —i/ sin £xdax.
— oo -1 -1 -1

The second integral is zero since the integrand is odd. Hence,

s ] o2mmE ife 40
f(g)_{ 25 iféE=0m

Problem 24.2
Obtain the transformed problem when applying the Fourier transform with respect
to the spatial variable to the equation and initial condition

ur + cugy =0
u(z,0) = f(x).

Solution.
Let @(&,t) be the Fourier transform of u in z. Performing the Fourier transform
on both the PDE and the initial condition, we reduce the PDE into an ODE in ¢

A~

ou

ot
W&, 0)=f(¢m

+éct =0

Problem 24.3
Obtain the transformed problem when applying the Fourier transform with respect
to the spatial variable to the equation and both initial conditions

Ugt :CQUM, reR, t>0

u(z,0) = f(z)
ug(x,0) = g(x).
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Solution.
By performing the Fourier transform of w in z, we reduce the PDE problem into
an ODE problem in the variable ¢:

a@ig = -2
a(€,0) = f(&)

:(€,0) = g(&) m

Problem 24.4
Obtain the transformed problem when applying the Fourier transform with respect
to the spatial variable to the equation and both initial conditions

Au= Uy +uyy =0, 2€R, 0<y<L

u(z,0) =0

1l f-a<z<a
u(z, L) = { 0 otherwise

Solution.
Performing Fourier Transform in x for the PDE we obtain the second order PDE

in y
N 2 A
Uyy = 70

_ 2sinéa

Problem 24.5
Find the Fourier transform of f(z) = e~ 1¥1%, where a > 0.
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Solution.

We have

A S .
for = [ etesns
—00
:/ e$ae—z£$dx+/ e—xae—zfxdl,
—00 0
) [eS)
_/ €_xa€i§xd$+/ €_xa€_i§xd$
0 0

:/ e—m(a—if)dx+/ o a(ati€) g,
0 0

eu(a=i&) | g-a(artig) |7
 a-— 19 o  a-— 19 o
1 1 2a

:a—i§+a+i§ T o+ &2 "
Problem 24.6

Prove that )
Fle *H =
T H@) = e
where
1 ifz>0

H(z) = { 0 otherwise.
Solution.
We have

Fle "H(x)] :/00 e T H(x)e “%dx

—00
[e'e] —x(141 >
:/ 6—z(1+i§)dx — _6 (o — 1 ]

0 14 4€ 0 14 4€
Problem 24.7
Prove that .

= 2 H(—€).

7 [1 + m} e H (=¢)

Solution.

Using the duality property, we have

F [1 jx} = FIFleCH(©)]) = 2ne H(-6) m

193
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Problem 24.8
Prove

Flf(@— )] = e f(9).

Solution.
We have

Flf(x — a)] :/ f(z — a)e %%z
_ezfa/ f 'qudu
7efz§af

whereu=z—a Nl

Problem 24.9
Prove

Fle"f(x)] = f(z — ).

Solution.
We have

f[eiaxf(I)] _ /oo eiaxf(x)e*iﬁwdx — /oo eix(afff(:c)efigxdaj = f(f - Oé) [ |

—00

Problem 24.10
Prove the following

Fleos (az) f(x)] = S[f(€+a) + f(¢ - a)]

Flsin (az) f(z)] = S[f(€+a) = f(€ - a)]

l\DM— l\D\H

Solution.
We will just prove the first one. We have

f(x)eiaa: e—iam

W
S FLF@)e™] + Flf(x)e™]

—5[fe—a)+ fa+a)m

Flcos (ax) f(z)] =F]
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Problem 24.11
Prove

FIf' ()] = (i) f(£).

Solution.
Using the definition and integration by parts we find

i) = [ " P@)e €

o

—s@e | i) [ fwea
=f(z) coséx — if(x)sinéx + (i€) f(€) = (i€) £ (€)

where we used the fact that lim, f(z) =01

Problem 24.12
Find the Fourier transform of f(z) =1 —|z| for —1 <z <1 and 0 otherwise.

Solution.
We have

1
f(6) = / (1~ al)e 7 da

-1

1
—2/ (1—x)e ®%dz
0

1
=2 1-— d
/0( x) cos Exdx
:;2(1 —cosé)

Problem 24.13
Find, using the definition, the Fourier transform of

-1 —a<z<0
flx) = 1 O0O<z<a

0 otherwise
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Solution.

We have

fo= | " o) d
0

:/ e_grdqu/ e % dy
—a 0

:l(l — %) ¢ 21§(1 — ey

i€
2
=—(1 —cos
(1~ cosca)
Here we use Euler’s formula e*%¢ = cos&a +isinéa B

Problem 24.14

R 2
Find the inverse Fourier transform of f(§) =e™ =.

Solution.
Using (5’) we find

Problem 24.15
Find .7:71( L )

a+i€ | °

Solution.
From Example 24.1, we find

1
.7:1< +'§>:eax7 z > 0.
a—+1i
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Solutions to Section 25

Problem 25.1
Solve, by using Fourier transform

Au=20

uy(z,0) = f(z)
lim  w(z,y) =0.

z24+y2—oc0

Solution.
Using the Fourier transform method, we begin by taking the transform of the PDE
in . The result is

Qyy — E20 = 0.

The solution of the ODE in y is
W€, y) = A(€)e™ + B(E)e ™.
Applying the boundary condition

lim  wu(x,y) =0

z2+y2—00

we can write

a(&,y) = O(&)e™

where C(§) is some constant distinct from A(§) or B(&). Applying the first bound-
ary condition, we get

iy(€,0) = —[€[C(E)e™ W] = —[¢|C(€) = f(¢).
Thus,
C(€) = —JE)
and )
il6y) = - et

If we leave this in terms of a convolution integral, we obtain

u(z,t) = f(z)« F ! —iefm
(@,8) = fl@) « F - = rge ™) m
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Problem 25.2
Solve, by using Fourier transform

U + cu, =0

NN

u(z,0) =€~

Solution.

Let u(&,t) be the Fourier transform of w in z. Performing the Fourier transform

on both the PDE and the initial condition, we reduce the PDE into an ODE
dot

Wﬁ'ifcﬂzo

a(€,0) = \/17?6_52.

Solution of the ODE gives
N 1 —£2 _—ict
u(é, t) = ﬁe e .

Thus,
(a:fct)2

u(z,t) = F_l[u(f,t)] =e 4 N

Problem 25.3
Solve, by using Fourier transform

u = kg —au, x €R

22

u(z,0) =€ 7.

Solution.
Let @(&,t) be the Fourier transform of u in z. Performing the Fourier transform
on both the PDE and the initial condition, we reduce the PDE into an ODE in ¢

ou

_— = — 2 9

o (k& + o)
N _ [ e
u(&,0) = i .

Solution of the ODE in t gives

. t) = a(e, 0)e~RE+,
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a(g,t) = \/%6_52(“+%)6_0‘t.

Taking inverse Fourier transform we find

/ '7 o 2
(SE t) t]_- [ —&2 (kt+7 )]
et 4 e 4(kt+7/4)
—V 47r kt kt + /4

=\/74kt + ve~ 4kt+we ot

Thus,

Problem 25.4
Solve the heat equation
U = klgy

subject to the initial condition

1 ifxz>0
u(z,0) = { 0 otherwise.

Solution.

The solution is )
_(z=s)

1wkt ds B

u(x,t)

1
B varkt /0

Problem 25.5
Use Fourier transform to solve the heat equation

Ut = Ugy + U, —00<Tz<00< t>0
u(z,0) = f(z).

Solution.
Let @(&,t) be the Fourier transform of u in z. Performing the Fourier transform
on both the PDE and the initial condition, we reduce the PDE into an ODE in ¢

o
L
a(€,0) = f(€).

(€% -1

Solution of the ODE in ¢ gives

a(g,t) = a(€, 0)e~ €L,
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Thus,
ae,t) = f(e)e e,

Taking inverse Fourier transform we find

u(z,t) =e! F~! [€_E2t]

Problem 25.6

Prove that o
/ e lElveitrge — 22y 5.
oo T4+ y
Solution.
We have

[e) . 0 ) o) )
/ e—|£|ye%§$d£:/ 65y616$d£+/ e_fyezgwdf

00 0
1 0 1 >
— = flytiz) 4+ = t(ytia)
Yy +ix oo YTtz 0
1 1 2y

— + — = — 5 B
y+iix —y+ix x°+4+y

Problem 25.7
Solve Laplace’s equation in the half plane

Ugy +Uyy =0, —oco<x <00, 0<y<oo
subject to the boundary condition
u(z,0) = f(x), lu(z,y)| < oc.

Solution.
Performing Fourier Transform in x for the PDE we obtain the second order PDE
in y
A 2a
Uyy = £10.
The general solution is given by

W, y) = A(€)eY + B(¢e V.

To ensure boundedness we must have
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A(§)=0for £ >0o0r B(§) =0 for £ <O.

Hence,
(¢, y) = C(§e 1.
Using the boundary condition (¢, 0) = f(€) we find C(€) = f(€). Hence,

i, y) = f(€)e .

Taking inverse Fourier transform we find
wzlt/wf@k—mga%
2 J_ s
1 2y
“ae [w}

/ fx +yd§l

Problem 25.8
Use Fourier transform to find the transformed equation of

ug + (o + Bug + afu = gy

where «, 8 > 0.

Solution.
Using the properties of Fourier transform we find

g + (o + By + afi = —c*&%0

Problem 25.9
Solve the initial value problem

ur + 3u, =0
u(z,0) =e "

using the Fourier transform.

Solution.
The answer is (see notes)
u(z,t) = e @3 g
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Problem 25.10
Solve the initial value problem
U = Kigy

u(z,0) =e "

using the Fourier transform.

Solution.
The answer is (see notes)
u(x,t) = e @k g

Problem 25.11
Solve the initial value problem
Ut = kuacar
u(z,0) = e’

using the Fourier transform.

Solution.
The answer is (see notes)

U(.%‘ t) = 1 /00 6*82*‘@4;;)2 ds &
’ varkt J_co

Problem 25.12
Solve the initial value problem

ur + cuy =0
u(z,0) = 22
using the Fourier transform.

Solution.
The answer is (see notes)
u(z,t) = (x —ct)* m

Problem 25.13
Solve, by using Fourier transform

Au=0

uy(x,0) = f(z)
lim  wu(z,y) =0.

z24+y2—o00
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Solution.
Using the Fourier transform method, we begin by taking the transform of the PDE
in . The result is

Gy — £20 = 0.

The solution of the ODE in y is
(€ y) = A + B(€)e™™.
Applying the boundary condition

lim  wu(z,y) =0

x24y2—00

we can write

W€, y) = C(g)e

where C'(§) is some constant distinct from A(&) or B(§). Applying the first bound-
ary condition, we get

y(€,0) = —[¢lC(©e™ V| = —lele(e) = ().

Thus, R
oo -1
and .
i, y) = _f‘(é)e_m

If we leave this in terms of a convolution integral, we obtain

u(a.t) = (@)« F =g ]
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