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Solutions to Section 1

Problem 1.1
Classify the following equations as either ODE or PDE.

(a) (y′′′)4 + t2

(y′)2+4
= 0.

(b) ∂u
∂x

+ y ∂u
∂y

= y−x
y+x

.

(c) y′′ − 4y = 0.

Solution.
(a) ODE with dependent variable y and independent variabe x.
(b) PDE with dependent variable u and independent variabes x and y.
(c) ODE with dependent variable y and independent variabe x

Problem 1.2
Write the equation

uxx + 2uxy + uyy = 0

in the coordinates s = x, t = x− y.

Solution.
We have

ux =ussx + uttx = us + ut

uxx =usssx + usttx + ustsx + utttx = uss + 2ust + utt

uxy =usssy + ustty + ustsy + uttty = −ust − utt
uy =ussy + utty = −ut
uyy =− ustsy − uttty = utt.

Substituting these expressions into the given equation we find

uss = 0

Problem 1.3
Write the equation

uxx − 2uxy + 5uyy = 0

in the coordinates s = x+ y, t = 2x.
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Solution.
We have

ux =ussx + uttx = us + 2ut

uxx =usssx + usttx + 2ustsx + 2utttx = uss + 4ust + 4utt

uxy =usssy + ustty + 2ustsy + 2uttty = uss + 2ust

uy =ussy + utty = us

uyy =usssy + ustty = uss.

Substituting these expressions into the given equation we find

uss + utt = 0

Problem 1.4
For each of the following PDEs, state its order and whether it is linear or
non-linear. If it is linear, also state whether it is homogeneous or nonhomo-
geneous:
(a) uux + x2uyyy + sinx = 0.
(b) ux + ex

2
uy = 0.

(c) utt + (sin y)uyy − et cos y = 0.

Solution.
(a) Order 3, non-linear.
(b) Order 1, linear, homogeneous.
(c) Order 2, linear, non-homogeneous

Problem 1.5
For each of the following PDEs, determine its order and whether it is linear
or not. For linear PDEs, state also whether the equation is homogeneous or
not; For nonlinear PDEs, circle all term(s) that are not linear.
(a) x2uxx + exu = xuxyy.
(b) eyuxxx + exu = − sin y + 10xuy.
(c) y2uxx + exuux = 2xuy + u.
(d) uxuxxy + exuuy = 5x2ux.
(e) ut = k2(uxx + uyy) + f(x, y, t).

Solution.
(a) Linear, homogeneous, order 3.
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(b) Linear, non-homogeneous, order 3. The inhomogeneity is − sin y.
(c) Non-linear, order 2. The non-linear term is exuux.
(d) Non-linear, order 3. The non-linear terms are uxuxxy and exuuy.
(e) Linear, non-homogeneous, order 2. The inhomogeneity is f(x, y, t)

Problem 1.6
Which of the following PDEs are linear?
(a) Laplace’s equation: uxx + uyy = 0.
(b) Convection (transport) equation: ut + cux = 0.
(c) Minimal surface equation: (1+Z2

y )Zxx−2ZxZyZxy+(1+Z2
x)Zyy = 0.

(d) Korteweg-Vries equation: ut + 6uux = uxxx.

Solution.
(a) Linear.
(b) Linear.
(c) Non-linear where all the terms are non-linear.
(d) Non-linear with non-linear term 6uux

Problem 1.7
Classify the following differential equations as ODEs or PDEs, linear or
non-linear, and determine their order. For the linear equations, determine
whether or not they are homogeneous.
(a) The diffusion equation for u(x, t) :

ut = kuxx.

(b) The wave equation for w(x, t) :

wtt = c2wxx.

(c) The thin film equation for h(x, t) :

ht = −(hhxxx)x.

(d) The forced harmonic oscillator for y(t) :

ytt + ω2y = F cos (ωt).

(e) The Poisson Equation for the electric potential Φ(x, y, z) :

Φxx + Φyy + Φzz = 4πρ(x, y, z).
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where ρ(x, y, z) is a known charge density.
(f) Burger’s equation for h(x, t) :

ht + hhx = νhxx.

Solution.
(a) PDE, linear, second order, homogeneous.
(b) PDE, linear, second order, homogeneous.
(c) PDE, quasi-linear (non-linear), fourth order.
(d) ODE, linear, second order, non-homogeneous.
(e) PDE, linear, second order, non-homogeneous.
(f) PDE, quasilinear (non-linear), second order

Problem 1.8
Write down the general form of a linear second order differential equation of
a function in three variables.

Solution.
A(x, y, z)uxx +B(x, y, z)uxy + C(x, y, z)uyy + E(x, y, z)uxz + F (x, y, z)uyz +
G(x, y, z)uzz+H(x, y, z)ux+I(x, y, z)uy+J(x, y, z)uz+K(x, y, z)u = L(x, y, z)

Problem 1.9
Give the orders of the following PDEs, and classify them as linear or non-
linear. If the PDE is linear, specify whether it is homogeneous or non-
homogeneous.
(a) x2uxxy + y2uyy − log (1 + y2)u = 0
(b) ux + u3 = 1
(c) uxxyy + exux = y
(d) uuxx + uyy − u = 0
(e) uxx + ut = 3u.

Solution.
(a) Order 3, linear, homogeneous.
(b) Order 1, non-linear.
(c) Order 4, linear, non-homogeneous
(d) Order 2, non-linear.
(e) Order 2, linear, homogeneous
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Problem 1.10
Consider the second-order PDE

uxx + 4uxy + 4uyy = 0.

Use the change of variables v(x, y) = y − 2x and w(x, y) = x to show that
uww = 0.

Solution.
Using the chain rule we find

ux =− 2uv + uw

uxx =4uvv − 4uvw + uww

uy =uv

uyy =uvv

uxy =− 2uvv + uvw.

Substituting these into the given PDE we find uww = 0

Problem 1.11
Write the one dimensional wave equation utt = c2uxx in the coordinates
v = x+ ct and w = x− ct.

Solution.
We have

ut =cuv − cuw
utt =c2uvv − 2c2uwv + c2uww

ux =uv + uw

uxx =uvv + 2uvw + uww.

Substituting we find uvw = 0

Problem 1.12
Write the PDE

uxx + 2uxy − 3uyy = 0

in the coordinates v(x, y) = y − 3x and w(x, y) = x+ y.
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Solution.
We have

ux =− 3uv + uw

uxx =− 3(−3uv + uw)v + (−3uv + uw)w = 9uvv − 6uvw + uww

uxy =− 3uvv + uvw − 3uvw + uww = −3uvv − 2uvw + uww

uy =uv + uw

uyy =(uv + uw)v + (uv + uw)w = uvv + 2uvw + uww.

Substituting into the PDE we find uvw = 0

Problem 1.13
Write the PDE

aux + buy = 0

in the coordinates s(x, y) = ax+by and t(x, y) = bx−ay. Assume a2+b2 > 0.

Solution.
According to the chain rule for the derivative of a composite function, we
have

ux =ussx + uttx = aus + but

uy =ussy + utty = bus − aut.

Substituting these into the given equation to obtain

a2us + abut + b2us − abut = 0

or
(a2 + b2)us = 0

and since a2 + b2 > 0 we obtain

us = 0

Problem 1.14
Write the PDE

ux + uy = 1

in the coordinates s = x+ y and t = x− y.
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Solution.
Using the chain rule we find

ux = ussx + uttx = us + ut

uy = ussy + utty = us − ut.

Substituting these into the PDE to obtain us = 1
2

Problem 1.15
Write the PDE

aut + bux = u, a, b 6= 0

in the coordinates v = ax− bt and w = 1
a
t.

Solution.
We have ut = −buv + 1

a
uw and ux = auv. Substituting we find uw = u
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Solutions to Section 2

Problem 2.1
Determine a and b so that u(x, y) = eax+by is a solution to the equation

uxxxx + uyyyy + 2uxxyy = 0.

Solution.
We have uxxxx = a4eax+by, uyyyy = b4eax+by, and uxxyy = a2b2eax+by. Thus,
substituting these into the equation we find

(a4 + 2a2b2 + b4)eax+by = 0.

Since eax+by 6= 0, we must have a4 + 2a2b2 + b4 = 0 or (a2 + b2) = 0. This is
true only when a = b = 0. Thus, u(x, y) = 1

Problem 2.2
Consider the following differential equation

tuxx − ut = 0.

Suppose u(t, x) = X(x)T (t). Show that there is a constant λ such that
X ′′ = λX and T ′ = λtT.

Solution.
Substituting into the differential equation we find

tX ′′T −XT ′ = 0

or
X ′′

X
=
T ′

tT
.

The LHS is a function of x only whereas the RHS is a function of t only.
This is true only when both sides are constant. That is, there is λ such that

X ′′

X
=
T ′

tT
= λ

and this leads to the two ODEs X ′′ = λX and T ′ = λtT
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Problem 2.3
Consider the initial value problem

xux + (x+ 1)yuy = 0, x, y > 1

u(1, 1) = e.

Show that u(x, y) = xex

y
is the solution to this problem.

Solution.
We have xux+(x+1)yuy = x

y
(ex+xex)+(x+1)y

(
−xex

y2

)
= 0 and u(1, 1) = e

Problem 2.4
Show that u(x, y) = e−2y sin (x− y) is the solution to the initial value prob-
lem

ux + uy + 2u = 0, x, y > 1

u(x, 0) = sinx.

Solution.
We have ux+uy+2u = e−2y cos (x− y)−2e−2y sin (x− y)−e−2y cos (x− y)+
2e−2y sin (x− y) = 0 and u(x, 0) = sin x

Problem 2.5
Solve each of the following differential equations:
(a) du

dx
= 0 where u = u(x).

(b) ∂u
∂x

= 0 where u = u(x, y).

Solution.
(a) The general solution to this equation is u(x) = C where C is an arbitrary
constant.
(b) The general solution is u(x, y) = f(y) where f is an arbitrary function of
y

Problem 2.6
Solve each of the following differential equations:
(a) d2u

dx2
= 0 where u = u(x).

(b) ∂2u
∂x∂y

= 0 where u = u(x, y).
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Solution.
(a) The general solution to this equation is u(x) = C1x + C2 where C1 and
C2 are arbitrary constants.
(b) We have uy = f(y) where f is an arbitrary differentiable function of y.
Hence, u(x, y) =

∫
f(y)dy + g(x)

Problem 2.7
Show that u(x, y) = f(y+ 2x) +xg(y+ 2x), where f and g are two arbitrary
twice differentiable functions, satisfy the equation

uxx − 4uxy + 4uyy = 0.

Solution.
Let v(x, y) = y + 2x. Then

ux =2fv(v) + g(v) + 2xgv(v)

uxx =4fvv(v) + 4gv(v) + 4xgvv(v)

uy =fv(v) + xgv(v)

uyy =fvv(v) + xgvv(v)

uxy =2fvv(v) + gv(v) + 2xgvv(v).

Hence,

uxx − 4uxy + 4uyy =4fvv(v) + 4gv(v) + 4xgvv(v)

−8fvv(v)− 4gv(v)− 8xgvv(v)

+4fvv(v) + 4xgvv(v) = 0

Problem 2.8
Find the differential equation whose general solution is given by u(x, t) =
f(x−ct)+g(x+ct), where f and g are arbitrary twice differentiable functions
in one variable.

Solution.
Let v = x− ct and w = x+ ct. We have

ux =fvvx + gwwx = fv + gw

uxx =fvvvx + gwwwx = fvv + gww

ut =fvvt + gwwt = −cfv + cgw

utt =− cfvvvt + cgwwwt = c2fvv + c2gww

Hence, u satisfies the wave equation utt = c2uxx



14 CONTENTS

Problem 2.9
Let p : R→ R be a differentiable function in one variable. Prove that

ut = p(u)ux

has a solution satisfying u(x, t) = f(x + p(u)t), where f is an arbitrary
differentiable function. Then find the general solution to ut = (sinu)ux.

Solution.
Let v = x+ p(u)t. Using the chain rule we find

ut = fv · vt = fv · (p(u) + puutt).

Thus
(1− tfvpu)ut = fvp.

If 1 − tfvpu ≡ 0 on any t−interval I then fvp ≡ 0 on I which implies that
fv ≡ 0 or p ≡ 0 on I. But either condition will imply that tfvpu = 0 and
this will imply that 1 = 1− tfvpu = 0, a contradiction. Hence, we must have
1− tfvpu 6≡ 0. In this case,

ut =
fvp

1− tfvpu
.

Likewise,
ux = fv · (1 + puuxt)

or

ux =
fv

1− tfvpu
.

It follows that ut = p(u)ux.
If ut = (sinu)ux then p(u) = sinu so that the general solution is given by

u(x, t) = f(x+ t sinu)

where f is an arbitrary differentiable function in one variable

Problem 2.10
Find the general solution to the pde

uxx + 2uxy + uyy = 0.

Hint: See Problem 1.2.
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Solution.
Using Problem 1.2, we found uss = 0. Hence, u(s, t) = sf(t) + g(t) where
f and g are arbitrary differentiable functions. In terms of x and y we find
u(x, y) = xf(x− y) + g(x− y)

Problem 2.11
Let u(x, t) be a function such that uxx exists and u(0, t) = u(L, t) = 0 for all
t ∈ R. Prove that ∫ L

0

uxx(x, t)u(x, t)dx ≤ 0.

Solution.
Using integration by parts, we compute∫ L

0

uxx(x, t)u(x, t)dx = ux(x, t)u(x, t)|Lx=0 −
∫ L

0

u2
x(x, t)dx

=ux(L, t)u(L, t)− ux(0, t)u(0, t)−
∫ L

0

u2
x(x, t)dx

=−
∫ L

0

u2(x, t)dx ≤ 0

Note that we have used the boundary conditions u(0, t) = u(L, t) = 0 and
the fact that u2

x(x, t) ≥ 0 for all x ∈ [0, L]

Problem 2.12
Consider the initial value problem

ut + uxx = 0, x ∈ R, t > 0

u(x, 0) = 1.

(a) Show that u(x, t) ≡ 1 is a solution to this problem.

(b) Show that un(x, t) = 1 + en
2t

n
sinnx is a solution to the initial value

problem
ut + uxx = 0, x ∈ R, t > 0

u(x, 0) = 1 +
sinnx

n
.

(c) Find sup{|un(x, 0)− 1| : x ∈ R}.
(d) Find sup{|un(x, t)− 1| : x ∈ R, t > 0}.
(e) Show that the problem is ill-posed.
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Solution.
(a) This can be done by plugging in the equations.
(b) Plug in.
(c) We have sup{|un(x, 0)− 1| : x ∈ R} = 1

n
sup{| sinnx| : x ∈ R} = 1

n
.

(d) We have sup{|un(x, t)− 1| : x ∈ R} = en
2t

n
.

(e) We have limt→∞ sup{|un(x, t) − 1| : x ∈ R, t > 0} = limt→∞
en

2t

n
= ∞.

Hence, the solution is unstable and thus the problem is ill-posed

Problem 2.13
Find the general solution of each of the following PDEs by means of direct
integration.
(a) ux = 3x2 + y2, u = u(x, y).
(b) uxy = x2y, u = u(x, y).
(c) uxtt = e2x+3t, u = u(x, t).

Solution.
(a) u(x, y) = x3 + xy2 + f(y), where f is an arbitrary differentiable function.

(b) u(x, y) = x3y2

6
+ F (x) + g(y), where F (x) =

∫
f(x)dx and g(y) is an

arbitrary differentiable function.
(c) u(x, t) = 1

18
e2x+3t + t

∫
f1(x)dx+

∫
f2(x)dx+ g(t)

Problem 2.14
Consider the second-order PDE

uxx + 4uxy + 4uyy = 0.

(a) Use the change of variables v(x, y) = y − 2x and w(x, y) = x to show
that uww = 0.
(b) Find the general solution to the given PDE.

Solution.
(a) Using the chain rule we find

ux =− 2uv + uw

uxx =4uvv − 4uvw + uww

uy =uv

uyy =uvv

uxy =− 2uvv + uvw.
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Substituting these into the given PDE we find uww = 0.
(b) Solving the equation uww = 0 we find uw = f(v) and u(v, w) = wf(v) +
g(v). In terms of x and y the general solution is u(x, y) = xf(y− 2x) + g(y−
2x)

Problem 2.15
Derive the general solution to the PDE

utt = c2uxx

by using the change of variables v = x+ ct and w = x− ct.

Solution.
We have

ut =cuv − cuw
utt =c2uvv − 2c2uwv + c2uww

ux =uv + uw

uxx =uvv + 2uvw + uww

Substituting we find uvw = 0 and solving this equation we find uv = f(v)
and u(v, w) = F (v) +G(w) where F (v) =

∫
f(v)dv.

Finally, using the fact that v = x + ct and w = x − ct; we get d’Alembert’s
solution to the one-dimensional wave equation:

u(x, t) = F (x+ ct) +G(x− ct)

where F and G are arbitrary differentiable functions
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Solutions to Section 3

Problem 3.1
Solve the IVP: y′ + 2ty = t, y(0) = 0

Solution.
Since p(t) = 2t, we find µ(t) = e

∫
2tdt = et

2
. Multiplying the given equation

by et
2

to obtain (
et

2

y
)′

= tet
2

Integrating both sides with respect to t and using substitution on the right-
hand integral to obtain

et
2

y =
1

2
et

2

+ C

Dividing the last equation by et
2

to obtain

y(t) = Ce−t
2

+
1

2

Since y(0) = 0, we find C = −1
2
. Thus, the unique solution to the IVP is

given by

y =
1

2
(1− e−t2)

Problem 3.2
Find the general solution: y′ + 3y = t+ e−2t

Solution.
Since p(t) = 3, the integrating factor is µ(t) = e3t. Thus, the general solution
is

y(t) = e−3t
∫
e3t(t+ e−2t)dt+ Ce−3t

= e−3t
∫

(te3t + et)dt+ Ce−3t

= e−3t
(
e3t

9
(3t− 1) + et

)
+ Ce−3t

= 3t−1
9

+ e−2t + Ce−3t

Problem 3.3
Find the general solution: y′ + 1

t
y = 3 cos t, t > 0
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Solution.
Since p(t) = 1

t
, the integrating factor is µ(t) = e

∫
dt
t = eln t = t. Using the

method of integrating factor we find

y(t) = 1
t

∫
3t cos tdt+ C

t

= 3
t

(t sin t+ cos t) + C
t

= 3 sin t+ 3 cos t
t

+ C
t

Problem 3.4
Find the general solution: y′ + 2y = cos (3t).

Solution.
We have p(t) = 2 so that µ(t) = e2t. Thus,

y(t) = e−2t

∫
e2t cos (3t)dt+ Ce−2t

But ∫
e2t cos (3t)dt =

e2t

3
sin (3t)− 2

3

∫
e2t sin (3t)dt

=
e2t

3
sin (3t)− 2

3
(−e

2t

3
cos (3t) +

2

3

∫
e2t cos (3t)dt)

13

9

∫
e2t cos (3t)dt =

e2t

9
(3 sin (3t) + 2 cos (3t))∫

e2t cos (3t)dt =
e2t

13
(3 sin (3t) + 2 cos (3t))

Hence,

y(t) =
1

13
(3 sin (3t) + 2 cos (3t)) + Ce−2t

Problem 3.5
Find the general solution: y′ + (cos t)y = −3 cos t.

Solution.
Since p(t) = cos t we have µ(t) = esin t. Thus,

y(t) =e− sin t

∫
esin t(−3 cos t)dt+ Ce− sin t

=− 3e− sin tesin t + Ce− sin t

=Ce− sin t − 3
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Problem 3.6
Given that the solution to the IVP ty′ + 4y = αt2, y(1) = −1

3
exists on the

interval −∞ < t <∞. What is the value of the constant α?

Solution.
Solving this equation with the integrating factor method with p(t) = 4

t
we

find µ(t) = t4. Thus,

y =
1

t4

∫
t4(αt)dt+

C

t4

=
α

6
t2 +

C

t4

Since the solution is assumed to be defined for all t, we must have C = 0.
On the other hand, since y(1) = −1

3
we find α = −2

Problem 3.7
Suppose that y(t) = Ce−2t + t + 1 is the general solution to the equation
y′ + p(t)y = g(t). Determine the functions p(t) and g(t).

Solution.
The integrating factor is µ(t) = e2t. Thus,

∫
p(t)dt = 2t and this implies that

p(t) = 2. On the other hand, the function t + 1 is the particular solution
to the nonhomogeneous equation so that (t + 1)′ + 2(t + 1) = g(t). Hence,
g(t) = 2t+ 3

Problem 3.8
Suppose that y(t) = −2e−t + et + sin t is the unique solution to the IVP
y′ + y = g(t), y(0) = y0. Determine the constant y0 and the function g(t).

Solution.
First, we find y0 : y0 = y(0) = −2 + 1 + 0 = −1. Next, we find g(t) : g(t) =
y′+ y = (−2e−t + et + sin t)′+ (−2e−t + et + sin t) = 2e−t + et + cos t− 2e−t +
et + sin t = 2et + cos t+ sin t

Problem 3.9
Find the value (if any) of the unique solution to the IVP y′ + (1 + cos t)y =
1 + cos t, y(0) = 3 in the long run?
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Solution.
The integrating factor is µ(t) = e

∫
(1+cos t)dt = et+sin t. Thus, the general solu-

tion is

y(t) =e−(t+sin t)

∫
et+sin t(1 + cos t)dt+ Ce−(t+sin t)

=1 + Ce−(t+sin t)

Since y(0) = 3, we find C = 2 and therefore y(t) = 1 + 2e−(t+sin t). Finally,

lim
t→∞

y(t) = lim
t→∞

(1 + 2e− sin te−t) = 1

Problem 3.10
Solve the initial value problem ty′ = y + t, y(1) = 7

Solution.
Rewriting the equation in the form

y′ − 1

t
y = 1

we find p(t) = −1
t

and µ(t) = 1
t
. Thus, the general solution is given by

y(t) = t ln |t|+ Ct

But y(1) = 7 so that C = 7. Hence,

y(t) = t ln |t|+ 7t

Problem 3.11
Show that if a and λ are positive constants, and b is any real number, then
every solution of the equation

y′ + ay = be−λt

has the property that y → 0 as t→∞. Hint: Consider the cases a = λ and
a 6= λ separately.

Solution.
Since p(t) = a we find µ(t) = eat. Suppose first that a = λ. Then

y′ + ay = be−at
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and the corresponding general solution is

y(t) = bte−at + Ce−at

Thus,
limt→∞ y(t) = limt→∞( bt

eat
+ C

eat
)

= limt→∞
b

aeat
= 0

Now, suppose that a 6= λ then

y(t) =
b

a− λ
e−λt + Ce−at

Thus,
lim
t→∞

y(t) = 0

Problem 3.12
Solve the initial-value problem y′ + y = ety2, y(0) = 1 using the substitution
u(t) = 1

y(t)

Solution.
Substituting into the equation we find

u′ − u = −et, u(0) = 1

Solving this equation by the method of integrating factor with µ(t) = e−t we
find

u(t) = −tet + Cet

Since u(0) = 1, C = 1 and therefore u(t) = −tet + et. Finally, we have

y(t) = (−tet + et)−1

Problem 3.13
Solve the initial-value problem ty′ + 2y = t2 − t+ 1, y(1) = 1

2

Solution.
Rewriting the equation in the form

y′ +
2

t
y = t− 1 +

1

t
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Since p(t) = 2
t

we find µ(t) = t2. The general solution is then given by

y(t) =
t2

4
− t

3
+

1

2
+
C

t2

Since y(1) = 1
2

we find C = 1
12
. Hence,

y(t) =
t2

4
− t

3
+

1

2
+

1

12t2

Problem 3.14
Solve y′ − 1

t
y = sin t, y(1) = 3. Express your answer in terms of the sine

integral, Si(t) =
∫ t

0
sin s
s
ds.

Solution.
Since p(t) = −1

t
we find µ(t) = 1

t
. Thus,

(
1
t
y
)′

=
(∫ t

0
sin s
s

)′
1
t
y(t) = Si(t) + C
y(t) = tSi(t) + Ct

Since y(1) = 3, C = 3− Si(1). Hence, y(t) = tSi(t) + (3− Si(1))t
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Solutions to Section 4

Problem 4.1
Solve the (separable) differential equation

y′ = tet
2−ln y2 .

Solution.
At first, this equation may not appear separable, so we must simplify the
right hand side until it is clear what to do.

y′ =tet
2−ln y2

=tet
2 · eln

(
1
y2

)

=tet
2 · 1

y2

=
t

y2
et

2

.

Separating the variables and solving the equation we find

y2y′ =tet
2

1

3

∫
(y3)′dt =

∫
tet

2

dt

1

3
y3 =

1

2
et

2

+ C

y3 =
3

2
et

2

+ C

Problem 4.2
Solve the (separable) differential equation

y′ =
t2y − 4y

t+ 2
.
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Solution.
Separating the variables and solving we find

y′

y
=
t2 − 4

t+ 2
= t− 2∫

(ln |y|)′dt =

∫
(t− 2)dt

ln |y| =t
2

2
− 2t+ C

y(t) =Ce
t2

2
−2t

Problem 4.3
Solve the (separable) differential equation

ty′ = 2(y − 4).

Solution.
Separating the variables and solving we find

y′

y − 4
=

2

t∫
(ln |y − 4|)′dt =

∫
2

t
dt

ln |y − 4| = ln t2 + C

ln |y − 4

t2
| =C

y(t) =Ct2 + 4

Problem 4.4
Solve the (separable) differential equation

y′ = 2y(2− y).

Solution.
Separating the variables and solving (using partial fractions in the process)
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we find

y′

y(2− y)
=2

y′

2y
+

y′

2(2− y)
=2

1

2

∫
(ln |y|)′dt− 1

2

∫
(ln |2− y|)′dt =

∫
2dt

ln

∣∣∣∣ y

2− y

∣∣∣∣ =4t+ C∣∣∣∣ y

2− y

∣∣∣∣ =Ce4t

y(t) =
2Ce4t

1 + Ce4t

Problem 4.5
Solve the IVP

y′ =
4 sin (2t)

y
, y(0) = 1.

Solution.
Separating the variables and solving we find

yy′ =4 sin (2t)

(y2)′ =8 sin (2t)∫
(y2)′dt =

∫
8 sin (2t)dt

y2 =− 4 cos (2t) + C

y(t) =±
√
C − 4 cos (2t).

Since y(0) = 1, we find C = 5 and hence

y(t) =
√

5− 4 cos (2t)

Problem 4.6
Solve the IVP:

yy′ = sin t, y(
π

2
) = −2.
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Solution.
Separating the variables and solving we find

∫ (
y2

2

)′
dt =

∫
sin tdt

y2

2
=− cos t+ C

y2 =− 2 cos t+ C.

Since y(π
2
) = −2, we find C = 4. Thus, y(t) = ±

√
(−2 cos t+ 4). From

y(π
2
) = −2, we have

y(t) = −
√

(−2 cos t+ 4)

Problem 4.7
Solve the IVP:

y′ + y + 1 = 0, y(1) = 0.

Solution.
Separating the variables and solving we find

(ln (y + 1))′ =− 1

ln (y + 1) =− t+ C

y + 1 =Ce−t

y(t) = Ce−t − 1.

Since y(1) = 0, we find C = e. Thus, y(t) = e1−t − 1

Problem 4.8
Solve the IVP:

y′ − ty3 = 0, y(0) = 2.
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Solution.
Separating the variables and solving we find∫

y′y−3dt =

∫
tdt∫ (

y−2

−2

)′
dt =

t2

2
+ C

− 1

2y2
=
t2

2
+ C

y2 =
1

−t2 + C
.

Since y(0) = 2, we find C = 1
4
. Thus, y(t) = ±

√
4

−4t2+1
. Since y(0) = 2, we

have y(t) = 2√
−4t2+1

Problem 4.9
Solve the IVP:

y′ = 1 + y2, y(
π

4
) = −1.

Solution.
Separating the variables and solving we find

y′

1 + y2
=1

arctan y =t+ C

y(t) = tan (t+ C).

Since y(π
4
) = −1, we find C = π

2
. Hence, y(t) = tan (t+ π

2
) = − cot t

Problem 4.10
Solve the IVP:

y′ = t− ty2, y(0) =
1

2
.
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Solution.
Separating the variables and solving we find

y′

y2 − 1
=− t

y′

y − 1
− y′

y + 1
=− 2t

ln

∣∣∣∣y − 1

y + 1

∣∣∣∣ =− t2 + C

y − 1

y + 1
=Ce−t

2

y(t) =
1 + Ce−t

2

1− Ce−t2
.

Since y(0) = 1
2
, we find C = −1

3
. Thus,

y(t) =
3− e−t2

3 + e−t2

Problem 4.11
Solve the equation 3uy + uxy = 0 by using the substitution v = uy.

Solution.
Letting v = uy we obtain 3v + vx = 0. Solving this ODE by the method of
separation of variables we find

vx
v

=− 3

ln |v(x, y)| =− 3x+ f(y)

v(x, y) =f(y)e−3x.

Hence, u(x, y) =
∫
f(y)e−3xdy = F (y)e−3x +G(x) where F (y) =

∫
f(y)dy

Problem 4.12
Solve the IVP

(2y − sin y)y′ = sin t− t, y(0) = 0.
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Solution.
Separating the variables and solving we find

f(y)e−3x

∫
(2y − sin y)y′dt =

∫
(sin t− t)dt (4.1)

f(y)e−3xy2 + cos y =− cos t− t2

2
+ C. (4.2)

Since y(0) = 0, we find C = 2. Thus,

y2 + cos y + cos t+
t2

2
= 2

Problem 4.13
State an initial value problem, with initial condition imposed at t0 = 2,
having implicit solution y3 + t2 + sin y = 4.

Solution.
Differentiating both sides of the given equation we find

3y2y′ + cos y + 2t = 0, y(2) = 0

Problem 4.14
Can the differential equation

dy

dx
= x2 − xy

be solved by the method of separation of variables? Explain.

Solution.
If we try to factor the right side of the ODE, we get

dy

dx
= x(x− y).

The second factor is a function of both x and y. The ODE is not separable
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Solutions to Section 5

Problem 5.1
Classify each of the following PDE as linear, quasi-linear, semi-linear, or non-
linear.
(a) xux + yuy = sin (xy).
(b) ut + uux = 0
(c) u2

x + u3u4
y = 0.

(d) (x+ 3)ux + xy2uy = u3

Solution.
(a) Linear (b) Quasi-linear, non-linear (c) Non-linear (d) Semi-linear, non-
linear

Problem 5.2
Show that u(x, y) = exf(2x− y), where f is a differentiable function of one
variable, is a solution to the equation

ux + 2uy − u = 0.

Solution.
Let w = 2x−y. Then ux+2uy−u = exf(w)+2exfw(w)−2exfw(w)−exf(w) =
0

Problem 5.3
Show that u(x, y) = x

√
xy satisfies the equation

xux − yuy = u

subject to the constraint

u(y, y) = y2, y ≥ 0.

Solution.
We have xux−yuy = x

(
3
2
x

1
2y

1
2

)
−y
(

1
2
x

3
2y−

1
2

)
= x
√
xy = u. Also, u(y, y) =

y2

Problem 5.4
Show that u(x, y) = cos (x2 + y2) satisfies the equation

−yux + xuy = 0

subject to the constraint
u(0, y) = cos y2.
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Solution.
We have −yux + xuy = −2xy sin (x2 + y2) + 2xy sin (x2 + y2) = 0. Moreover,
u(0, y) = cos y2

Problem 5.5
Show that u(x, y) = y − 1

2
(x2 − y2) satisfies the equation

1

x
ux +

1

y
uy =

1

y

subject to u(x, 1) = 1
2
(3− x2).

Solution.
We have 1

x
ux + 1

y
uy = 1

x
(−x) + 1

y
(1 + y) = 1

y
. Moreover, u(x, 1) = 1

2
(3− x2)

Problem 5.6
Find a relationship between a and b if u(x, y) = f(ax+by) is a solution to the
equation 3ux − 7uy = 0 for any differentiable function f such that f ′(x) 6= 0
for all x.

Solution.
Let v = ax+ by. We have

ux =fv(v)
d(ax+ by)

dx
= afv(v)

uy =fv(v)
d(ax+ by)

dy
= bfv(v).

Hence, by substitution we find 3a− 7b = 0

Problem 5.7
Reduce the partial differential equation

aux + buy + cu = 0

to a first order ODE by introducing the change of variables s = ax+ by and
t = bx− ay.
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Solution.
By the chain rule we find

ux = ussx + uttx = aus + but

uy = ussy + utty = bus − aut.

Thus,

0 = aux + buy + cu = (a2 + b2)us + cu

or

us +
cu

a2 + b2
= 0.

This is a first order linear ODE that can be solved using the method of
separation of variables

Problem 5.8
Solve the partial differential equation

ux + uy = 1

by introducing the change of variables s = x+ y and t = x− y.

Solution.
Using the chain rule we find

ux = ussx + uttx = us + ut

uy = ussy + utty = us − ut

Substituting these into the PDE to obtain us = 1
2
. Solving this ODE we

find u(s, t) = 1
2
s+ f(t) where f is an arbitrary differentiable function in one

variable. Now substituting for s and t we find u(x, y) = 1
2
(x+y)+f(x−y)

Problem 5.9
Show that u(x, y) = e−4xf(2x− 3y) is a solution to the first-order PDE

3ux + 2uy + 12u = 0.
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Solution.
We have

ux =− 4e−4xf(2x− 3y) + 2e−4xf ′(2x− 3y)

uy =− 3e−4xf ′(2x− 3y)

Thus,

3ux + 2uy + 12u =− 12e−4xf(2x− 3y) + 6e−4xf ′(2x− 3y)

−6e−4xf ′(2x− 3y) + 12e−4xf(2x− 3y) = 0

Problem 5.10
Derive the general solution of the PDE

aut + bux = u, a, b 6= 0

by using the change of variables v = ax− bt and w = 1
a
t.

Solution.
We have ut = −buv + 1

a
uw and ux = auv. Substituting we find uw = u

and solving this equation we find u(v, w) = f(v)ew where f is an arbitrary
differentiable function in one variable. Thus, u(x, t) = f(ax− bt)e ta

Problem 5.11
Derive the general solution of the PDE

aux + buy = 0, a, b 6= 0

by using the change of variables s(x, y) = ax + by and t(x, y) = bx − ay.
Assume a2 + b2 > 0.

Solution.
According to the chain rule for the derivative of a composite function, we
have

ux =ussx + uttx = aus + but

uy =ussy + utty = bus − aut

Substituting these into the given equation to obtain

a2us + abut + b2us − abut = 0
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or

(a2 + b2)us = 0

and since a2 + b2 > 0 we obtain

us = 0.

Solving this equation, we find

u(s, t) = f(t)

where f is an arbitrary differentiable function of one variable. Now, in terms
of x and y we find

u(x, y) = f(bx− ay)

Problem 5.12
Write the equation

ut + cux + λu = f(x, t)

in the coordinates v = x− ct, w = t.

Solution.
Using the chain rule, we find

ut =uvvt + uwwt = −cuv + uw

ux =uvvx + uwwx = uv

Substituting these into the original equation we obtain the equation

uw + λu = f(v + cw,w)

Problem 5.13
Suppose that u(x, t) = w(x− ct) is a solution to the PDE

xux + tut = Au

where A and c are constants. Let v = x− ct. Write the differential equation
with unknown function w(v).
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Solution.
Using the chain rule we find

ut = −cwv

and
ux = wv.

Substititution into the original PDE gives

vwv(v) = Aw(v)
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Solutions to Section 7

Problem 7.1
Solve ux + yuy = y2 with the initial condition u(0, y) = siny.

Solution.
We have a = 1, b = y, and f = y2. Solving dy

dx
= y we find y = k1e

x. Solving
du
dx

= y2 = k2
1e

2x we find u =
k21
2
e2x + f(k1) = 1

2
y2 + f(k1) = 1

2
y2 + f(ye−x).

Using the initial condition u(0, y) = sin y we find sin y − 1
2
y2 = f(y). Hence,

u(x, y) = 1
2
y2 − 1

2
y2e−2xe2x + sin (ye−x)

Problem 7.2
Solve ux + yuy = u2 with the initial condition u(0, y) = sin y.

Solution.
We have a = 1, b = y, and f = u2. Solving dy

dx
= y we find y = k1e

x. Solving
du
dx

= u2 we find x + 1
u

= k2. Thus, u(x, y) = 1
f(ye−x)−x . Using the initial

condition u(0, y) = sin y we find f(y) = csc y. Hence, u(x, y) = 1
csc (ye−x)−x

Problem 7.3
Find the general solution of yux − xuy = 2xyu.

Solution.
The system of ODEs is

dy

dx
= −x

y
,
du

dx
= 2xu.

Solving the first equation, we find x2 + y2 = k1. Solving the second equation,
we find u = k2e

x2 . Hence, u(x, y) = ex
2
f(x2 + y2) where f is an arbitrary

differentiable function in one variable

Problem 7.4
Find the integral surface of the IVP: xux + yuy = u, u(x, 1) = 2 + e−|x|.

Solution.
The system of ODEs is

dy

dx
=
y

x
,
du

dx
=
u

x
.
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Solving the first equation, we find y = k1x. Solving the second equation, we
find u = k2x. Hence, u(x, y) = xf

(
y
x

)
where f is an arbitrary differentiable

function in one variable. From the initial condition u(x, 1) = 2 + e−|x| we

find f(x) = x(2 + e−
1
|x| . Hence, the integral surface is

u(x, y) = y(2 + e−|
x
y |)

Problem 7.5
Find the unique solution to 4ux + uy = u2, u(x, 0) = 1

1+x2
.

Solution.
The system of ODEs can be written as

dx

4
=
dy

1
=
du

u2
.

Solving the equation dx
4

= dy
1

we find x − 4y = k1. Solving the equation
dy
1

= du
u2

we find u(x, y) = 1
f(x−4y)−y . Using the initial condition u(x, 0) = 1

1+x2

we find f(x) = 1 + x2. Hence, u(x, y) = 1
(x−4y)2+1−y

Problem 7.6
Find the unique solution to e2yux + xuy = xu2, u(x, 0) = ex

2
.

Solution.
The system of ODEs can be written as

dx

e2y
=
dy

x
=

du

xu2
.

Thus, xdx = e2ydy which implies x2−e2y = k1. Solving the equation du
u2

= dy
we find y + 1

u
= k2 = f(x2 − e2y). Hence,

u(x, y) =
1

f(x2 − e2y)− y
.

Using the initial condition u(x, 0) = ex
2

we find f(x) = e−(x+1). Hence,

u(x, y) =
1

e−x2+e2y−1 − y
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Problem 7.7
Find the unique solution to xux + uy = 3x− u, u(x, 0) = tan−1 x.

Solution.
The system of ODEs can be written as

dx

x
=
dy

1
=

du

3x− u
.

Solving the equation dx
x

= dy
1

we find xe−y = k1. On the other hand, we have

dx

x
=

du

3x− u
=
d(3x− u)

u
=⇒ (3x− u)d(3x− u) = udu.

Thus, (3x− u)2 − u2 = k2 = f(xe−y) which leads to

u(x, y) =
3

2
x− 1

6x
f(xe−y).

Using the initial condition, u(x, 0) = tan−1 x we find f(x) = 9x2−6x tan−1 x.
Hence,

u(x, y) =
3

2
x−9x2e−2y − 6xe−y tan−1 (xe−y)

6x
=

3

2
x−3

2
xe−2y+e−y tan−1 (xe−y)

Problem 7.8
Solve: xux − yuy = 0, u(x, x) = x4.

Solution.
Solving the equation dy

dx
= − y

x
we find xy = k1. Since the right-hand side

is 0, u(x, y) = k2 = f(k1) = f(xy). But u(x, x) = x4 = f(x2). Hence,
f(x) = x2, x ≥ 0, Hence,

u(x, y) = x2y2, xy ≥ 0

Problem 7.9
Find the general solution of yux − 3x2yuy = 3x2u.

Solution.
Solving the equation dy

dx
= −3x2 we find y + x3 = k1. Solving the equation

du
u

= −dy
y

we find uy = k2 = f(k1) = f(y + x3) where f is a differentiable
function in one variable
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Problem 7.10
Find u(x, y) that satisfies yux + xuy = 4xy3 subject to the boundary condi-
tions u(x, 0) = −x4 and u(0, y) = 0.

Solution.
Solving the equation dy

dx
= x

y
we find y2 − x2 = k1. On the other hand,

du = 4y3dy so that u(x, y) = y4 + f(y2 − x2). Since u(x, 0) = −x4, we
have f(−x2) = −x4 or f(x) = −x2 for x ≤ 0. Since u(0, y) = 0 we find
f(y2) = −y4 so that f(y) − y2 for y ≥ 0. Hence, f(x) = −x2 for all x.
Finally,

u(x, y) = y4 − (y2 − x2)2 = 2x2y2 − x4
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Solutions to Section 8

Problem 8.1
Find the solution to ut + 3ux = 0, u(x, 0) = sin x.

Solution.
Solving dt

dx
= 1

3
we find x − 3t = k1. Solving the equation du

dx
= 0 we find

u(x, t) = k2 = f(x− 3t) where f is a differentiable function in one variable.
Since u(x, 0) = sin x, we find sin x = f(x). Hence, u(x, t) = sin (x− 3t)

Problem 8.2
Solve the equation aux + buy + cu = 0.

Solution.
Solving the equation dy

dx
= b

a
we find bx− ay = k1. Solving the equation du

dx
=

− c
a
u we find u(x, y) = k2e

− c
a
x = f(bx − ay)e−

c
a
x where f is a differentiable

function in one variable

Problem 8.3
Solve the equation ux+2uy = cos (y − 2x) with the initial condition u(0, y) =
f(y) where f : R→ R is a given function.

Solution.
Solving the equation dy

dx
= 2 we find 2x − y = k1. Solving the equation

du
dx

= cos (y − 2x) we find

u(x, y) = x cos (y − 2x) + k2 = x cos (y − 2x) + g(2x− y)

where g is a differentiable function in one variable.
Since u(0, y) = f(y), we obtain f(y) = g(−y) or g(y) = f(−y). Thus,

u(x, y) = x cos (y − 2x) + f(y − 2x)

Problem 8.4
Show that the initial value problem ut +ux = x, u(x, x) = 1 has no solution.

Solution.
Solving the equation dy

dx
= 1 we find x− y = k1. Solving the equation du

dx
= x

we find u(x, y) = 1
2
x2 + f(x − y) where f is a differentiable function of one

variable. Since u(x, x) = 1 we find 1 = 1
2
x2 + f(0) or f(0) = 1 − x2

2
which

is impossible since f(0) is a constant. Hence, the given initial value problem
has no solution
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Problem 8.5
Solve the transport equation ut + 2ux = −3u with initial condition u(x, 0) =

1
1+x2

.

Solution.
Solving the equation dt

dx
= 1

2
we find x − 2t = k1. Solving the equation

du
dx

= −3
2
u we find u(x, t) = f(x − 2t)e−

3
2
x. Since u(x, 0) = 1

1+x2
we find

f(x) = e
3
2x

1+x2
. Hence,

u(x, t) =
e−3t

1 + (x− 2t)2

Problem 8.6
Solve ut + ux − 3u = t with initial condition u(x, 0) = x2.

Solution.
Solving the equation dt

dx
= 1 we find x − t = k1. Solving the equation du

dx
=

3u+ t = 3u+ x+ k1 by the method of integrating factor, we find

u(x, t) = −1

3
t− 1

9
+ f(x− t)e3x.

But u(x, 0) = x2 which leads to f(x) = e−3x
(
x2 + 1

9

)
. Hence,

u(x, t) = e3t

[
(x− t)2 +

1

9

]
− 1

3
t− 1

9

Problem 8.7
Show that the decay term λu in the transport equation with decay

ut + cux + λu = 0

can be eliminated by the substitution w = ueλt.

Solution.
Using the chain rule we find wt = ute

λt +λueλt and wx = uxe
λt. Substituting

these equations into the original equation we find

wte
−λt − λu+ cwxe

−λt + λu = 0

or
wt + cwx = 0
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Problem 8.8 (Well-Posed)
Let u be the unique solution to the IVP

ut + cux = 0

u(x, 0) = f(x)

and v be the unique solution to the IVP

ut + cux = 0

u(x, 0) = g(x)

where f and g are continuously differentiable functions.
(a) Show that w(x, t) = u(x, t)− v(x, t) is the unique solution to the IVP

ut + cux = 0

u(x, 0) = f(x)− g(x)

(b) Write an explicit formula for w in terms of f and g.
(c) Use (b) to conclude that the transport problem is well-posed. That is, a
small change in the initial data leads to a small change in the solution.

Solution.
(a) w(x, t) is a solution to the equation follows from the principle of super-
position. Moreover, w(x, 0) = u(x, 0)− v(x, 0) = f(x)− g(x).
(b) w(x, t) = f(x− ct)− g(x− ct).
(c) From (b) we see that

sup
x,t
{|u(x, t)− v(x, t)|} = sup

x
{|f(x)− g(x)|}.

Thus, small changes in the initial data produces small changes in the solution.
Hence, the problem is a well-posed problem

Problem 8.9
Solve the initial boundary value problem

ut + cux = −λu, x > 0, t > 0

u(x, 0) = 0, u(0, t) = g(t), t > 0.
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Solution.
Solving dt

dx
= 1

c
we find x− ct = k1. Solving the equation du

dx
= −λ

c
u we find

u(x, t) = f(x− ct)e−λc x. From the condition u(0, t) = g(t) we find f(−ct) =
g(t) or f(t) = g

(
− t
c

)
. Thus,

u(x, t) = g
(
t− x

c

)
e−

λ
c
x.

This is valid only for x < ct since g is defined on (0,∞). Also, this expression
will not satisfy u(x, 0) = 0. So we define u(x, t) = 0 for x ≥ ct. That is, the
solution to the initial boundary value problem is

u(x, t) =

{
g
(
t− x

c

)
e−

λ
c
x if x < ct

0 if x ≥ ct

Problem 8.10
Solve the first-order equation 2ut+3ux = 0 with the initial condition u(x, 0) =
sinx.

Solution.
Solving the equation dt

dx
= 2

3
we find 2x − 3t = k1. Solving the equation

du
dx

= 0 we find u(x, t) = k2 = f(2x−3t) where f is an arbitrary differentiable
function. Using the initial condition we find f(2x) = sin x or f(x) = sin

(
x
2

)
.

The final answer is u(x, t) = sin
(

2x−3t
2

)
Problem 8.11
Solve the PDE ux + uy = 1.

Solution.
Solving the equation dy

dx
= 1 we find x− y = k1. Solving the equation du

dx
= 1

we find u(x, y) = x+ f(x− y) where f is an arbirary differentiable function
in one variable
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Solutions to Section 9

Problem 9.1
Find the general solution of the PDE ln (y + u)ux + uy = −1.

Solution.
The characteristic equations are dx

ln (y+u)
= dy

1
= du
−1
. Using the second and

third fractions we find that y + u = k1. Now, from the first and second
fractions we have dx

ln k1
= dy

1
so that x+k2 = y ln k1. Hence, y ln (y + u)−x =

k2. Hence, the general solution is given by u = −y+f(y ln (y + u)−x) where
f is an arbitrary differentiable function

Problem 9.2
Find the general solution of the PDE x(y − u)ux + y(u− x)uy = u(x− y).

Solution.
The characteristic equations are given by dx

x(y−u)
= dy

y(u−x)
= du

u(x−y)
. We have

dx+ dy + du

x(y − u) + y(u− x) + u(x− y)
=

du

u(x− y)

or
d(x+ y + z)

0
=

du

u(x− y)
.

Hence. x+ y + z = k1. On the other hand we have

dx
x

+ dy
y

−(x− y)
=

du
u

x− y
.

This implies that
dx

x
+
dy

y
= −du

u
or

lnxyu = k

that is xyu = k2. Hence, the general solution is given by u = f(x+y+z)
xy

where
f is an arbitrary differentiable function

Problem 9.3
Find the general solution of the PDE u(u2 + xy)(xux − yuy) = x4.
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Solution.
The characteristic equations are dx

ux(u2+xy)
= − dy

yu(u2+xy)
= du

x4
. From the first

and second fractions we get dx
x

= −dy
y
. Upon integration we find xy = k1.

From first and third fractions we get x3dx = (u3 + uxy)du or x3dx = (u3 +
k1u)du. Integration leads to x4

4
= u4

4
+ k1

2
u2 + k2 or x4 − u4 − 2k1u

2 = k2.
Substituting for k1 we find x4−u4− 2xyu2 = k2. Hence, the general solution
is given by x4 − u4 − 2xyu2 = f(xy) where f is an arbitrary differentiable
function

Problem 9.4
Find the general solution of the PDE (y + xu)ux − (x+ yu)uy = x2 − y2.

Solution.
The characteristic equations are dx

y+xu
= − dy

x+yu
= du

x2−y2 . We have

xdx+ ydy − udu
xy + x2u− xy − y2u− ux2 + uy2

=
du

x2 − y2
.

Thus, xdx+ ydy − udu = 0 or x2 + y2 − u2 = k1. On the other hand,

ydx+ xdy + udu

y2 + xyu− x2 − xyu+ x2 − y2
=

du

x2 − y2
.

That is, ydx+ xdy + udu = 0. Hence, 2xy + u2 = k2. The general solution is
2xy + u2 = f(x2 + y2 − u2) where f is an arbitrary differentiable function

Problem 9.5
Find the general solution of the PDE (y2 + u2)ux − xyuy + xu = 0.

Solution.
The characteristic equations are dx

y2+u2
= dy
−xy = du

−xu . Using the last two

fractions we find dy
y

= du
u

which leads to y
u

= k1. On the other hand, we have

xdx+ ydy + udu

xy2 + xu2 − xy2 − xu2
=

du

−xu
.

Thus, xdx + ydy + udu = 0 or x2 + y2 + u2 = k2. The general solution is
x2 + y2 + u2 = f

(
y
u

)
where f is an arbitrary differentiable function
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Problem 9.6
Find the general solution of the PDE ut + uux = x.

Solution.
The characteristic equations are

dx

u
=
dt

1
=
du

x
.

Solving dx
u

= du
x

we find u2 − x2 = k1. Solving dt
1

= d(x+u)
x+u

we find x + u =
k2e

t = etf(u2 − x2) where f is an arbitrary differentiable function

Problem 9.7
Find the general solution of the PDE (y − u)ux + (u− x)uy = x− y.

Solution.
The characteristic equations are

dx

y − u
=

dy

u− x
=

du

x− y
.

We have
dx+ dy + du

y − u+ u− x+ x− y
=
dx+ dy + du

0

so that dx+ dy + du = 0. Hence, x+ y + u = k1. Likewise,

xdx+ ydy + udu

x(y − u) + y(u− x) + u(x− y)
=
xdx+ ydy + udu

0

so that xdx+ ydy+ udu = 0. Hence, x2 + y2 + u2 = k2. The general solution
is given by

x2 + y2 + u2 = f(x+ y + u)

where f is an arbitrary differentiable function

Problem 9.8
Solve

x(y2 + u)ux − y(x2 + u)uy = (x2 − y2)u.
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Solution.
The characteristic equations are

dx

x(y2 + u)
=

dy

−y(x2 + u)
=

du

(x2 − y2)u
.

We first note that

dx
x

y2 + u
=

dy
y

−(x2 + u)
=

du
u

x2 − y2
=

dx
x

+ dy
y

+ du
u

0
.

Thus,
dx

x
+
dy

y
+
du

u
= 0

which gives xyu = k1. Likewise, we have

xdx+ ydy − du
x2(y2 + u)− y2(x2 + u)− (x2 − y2)u

=
xdx+ ydy − du

0
.

Thus, xdx+ydy−du = 0 and this implies that x2 +y2−2u = k2. The general
solution is given by

x2 + y2 − 2u = f(xyu)

where f is an arbitrary differentiable function

Problem 9.9
Solve √

1− x2ux + uy = 0.

Solution.
The characteristic equations are

dx√
1− x2

=
dy

1
=
du

0
.

From the last fraction, we have u(x, y) = k1. From the first two fractions, we
have y = sin−1 x+ k2 = sin−1 x+ f(u) where f is a differentiable function

Problem 9.10
Solve

u(x+ y)ux + u(x− y)uy = x2 + y2.
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Solution.
The characteristic equations are

dx

u(x+ y)
=

dy

u(x− y)
=

du

x2 + y2
.

Each of these ratio is equivalent to

ydx+ xdy − udu
0

=
xdx− ydy − udu

0

or
d(xy − u2

2
)

0
=

1
2
(x2 − y2 − u2)

0
.

Hence,
1

2
(x2 − y2 − u2) = f(xy − u2

2
)

where f is a differentiable function
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Solutions to Section 10

Problem 10.1
Solve

(y − u)ux + (u− x)uy = x− y

with the condition u(x, 1
x
) = 0.

Solution.
The characteristic equations are

dx

y − u
=

dy

u− x
=

du

x− y
.

We have
dx+ dy + du

y − u+ u− x+ x− y
=
dx+ dy + du

0

so that dx+ dy + du = 0. Hence, x+ y + u = c1. Likewise,

xdx+ ydy + udu

x(y − u) + y(u− x) + u(x− y)
=
xdx+ ydy + udu

0

so that xdx+ ydy + udu = 0. Hence, x2 + y2 + u2 = c2. The general solution
is given by

f(x+ y + u, x2 + y2 + u2) = 0

where f is an arbitrary differentiable function. Now, using the Cauchy data
u = 0 when xy = 1 we find c2

1 = (x + y)2 = x2 + y2 + 2xy = c2 + 2. Hence,
the integral surface is described by

(x+ y + u)2 = x2 + y2 + u2 + 2

and the unique solution is given by

u(x, y) =
1− xy
x+ y

, x+ y 6= 0

Problem 10.2
Solve the linear equation

yux + xuy = u,

with the Cauchy data u(x, 0) = x3.
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Solution.
The characteristic equations are

dx

y
=
dy

x
=
du

u
.

Using the first two fractions we find x2 − y2 = c1 Now, since

du

u
=
dx+ dy

x+ y

we can write u = c2(x+ y). Hence, the general solution is given by

f(x2 − y2,
u

x+ y
) = 0

or
u = (x+ y)g(x2 − y2)

where f and g are arbitrary differentiable functions. Using the Cauchy data
we find g(x2) = x2, that is g(x) = x. Consequently, the unique solution is
given by

u(x, y) = (x+ y)(x2 − y2)

Problem 10.3
Solve

x(y2 + u)ux − y(x2 + u)uy = (x2 − y2)u

with the Cauchy data u(x,−x) = 1.

Solution.
The characteristic equations are

dx

x(y2 + u)
=

dy

−y(x2 + u)
=

du

(x2 − y2)u
.

We first note that

dx
x

y2 + u
=

dy
y

−(x2 + u)
=

du
u

x2 − y2
=

dx
x

+ dy
y

+ du
u

0
.

Thus,
dx

x
+
dy

y
+
du

u
= 0
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which gives xyu = c1. Likewise, we have

xdx+ ydy − du
x2(y2 + u)− y2(x2 + u)− (x2 − y2)u

=
xdx+ ydy − du

0
.

Thus, xdx+ydy−du = 0 and this implies that x2 +y2−2u = c2. The general
solution is given by

f(xyu, x2 + y2 − 2u) = 0

where f is an arbitrary differentiable function. Using the Cauchy data we
see that f(−x2, 2x2− 2) = 0 which implies that f(x, y) = 2x+ y+ 2. Hence,
the unique solution is given by

2xyu+ x2 + y2 − 2u+ 2 = 0

Problem 10.4
Solve

xux + yuy = xe−u

with the Cauchy data u(x, x2) = 0.

Solution.
The characteristic equations are

dx

x
=
dy

y
=

du

xe−u
.

Using the first two fractions we find y
x

= c1. Using the first and the last
fractions we find dx = eudu or x − eu = c2. Hence, the general solution is
given by

f(
y

x
, x− eu) = 0

where f is an arbitrary differentiable function. Using the Cauchy data we
find f(x, x− 1) = 0 so that f(x, y) = −x+ y+ 1. Hence, the unique integral
surface is described by

−y
x

+ x− eu + 1 = 0

or

u(x, y) = ln
(
x+ 1− y

x

)
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Problem 10.5
Solve the initial value problem

xux + uy = 0, u(x, 0) = f(x)

using the characteristic equations in parametric form.

Solution.
The initial curve in parametric form is

Γ : x0(t) = t, y0(t) = 0, u0(t) = f(t).

Since

a(x0(t), y0(t), u0(t))
dy0

dt
(t)− b(x0(t), y0(t), u0(t))

dx0

dt
(t) = −1 6= 0

the initial value problem has a unique solution. The characteristic equations
in parametric form are

dx

ds
= x,

dy

ds
= 1,

du

ds
= 0.

Solving we find

x(s, t) = α(t)es, y(s, t) = s+ β(t), u(s, t) = γ(t).

But

x(0, t) = t, y(0, t) = 0, u(0, t) = f(t).

Hence,

x(s, t) = tes, y(s, t) = s, u(s, t) = f(t).

Now, s = y and t = xe−y. Hence, u(x, y) = f(xe−y)

Problem 10.6
Solve the initial value problem

ut + aux = 0, u(x, 0) = f(x).
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Solution.
The initial curve parametrization is given by

Γ : x0(w) = w, t0(w) = 0, u0(w) = f(w).

Since

a(x0(w), t0(w), u0(w))
dt0
dw

(w)− b(x0(w), t0(w), u0(w))
dx0

dw
(w) = −1 6= 0

the initial value problem has a unique solution. The characteristic curves are
solutions to the system

dt

ds
= 1,

dx

ds
= a,

du

ds
= 0.

Solving this system we find

t(s, w) = s+ α(w), x(s, w) = as+ β(w), u(s, w) = γ(w).

But x(0, w) = w, t(0, w) = 0, and u(0, w) = f(w) so that we find

x(s, w) = as+ w, t(s, w) = s, u(s, w) = f(w).

Using the first two equations we find s = t, w = x − at. Hence, the unique
solution is given by u(t, x) = f(x− at)

Problem 10.7
Solve the initial value problem

aux + uy = u2, u(x, 0) = cos x

Solution.
The initial curve parametrization is given by

Γ : x0(t) = t, y0(t) = 0, u0(t) = cos t.

Since

a(x0(t), y0(t), u0(t))
dy0

dt
(t)− b(x0(t), y0(t), u0(t))

dx0

dt
(t) = −1 6= 0
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the initial value problem has a unique solution. The characteristic curves are
solutions to the system

dx

ds
= a,

dy

ds
= 1,

du

ds
= u2.

Solving this system we find

x(s, t) = as+ α(t), y(s, t) = s+ β(t), u(s, t) = − 1

s+ γ(t)
.

But x(0, t) = t, y(0, t) = 0, and u(0, t) = cos t so that we find

x(s, t) = as+ t, y(s, t) = s, u(s, t) =
1

sec t− s
.

The first two equations lead to s = y and t = x − ay. Substituting into the
third equation we find

u(x, y) =
1

sec (x− ay)− y

Problem 10.8
Solve the initial value problem

ux + xuy = u, u(1, y) = h(y).

Solution.
The initial curve parametrization is given by

Γ : x0(t) = 1, y0(t) = t, u0(t) = h(t).

Since

a(x0(t), y0(t), u0(t))
dy0

dt
(t)− b(x0(t), y0(t), u0(t))

dx0

dt
(t) = 1 6= 0

the initial value problem has a unique solution. The characteristic curves are
solutions to the system

dx

ds
= 1,

dy

ds
= x,

du

ds
= u.
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Solving the first equation we find x(s, t) = s+α(t). Since x(0, t) = 1 we find
x(s, t) = s+1. Hence, the second equation above becomes dy

ds
= s+1. Solving

we obtain y(s, t) = s2

2
+s+β(t). Since y(0, t) = t we find y(s, t) = s2

2
+s++t.

Next, we have du
ds

= u so that u(s, t) = γ(t)es. Since u(0, t) = h(t) we find
u(s, t) = h(t)es.
Now we need to solve for s and t in terms of x and y. In particular, x = s+ 1

implies that s = x− 1. Therefore, y = (x−1)2

2
+ x− 1 + t which implies that

t = y − (x−1)2

2
− (x− 1). And as a result, we have found the solution

u(x, y) = h

(
y − (x− 1)2

2
− (x− 1)

)
ex−1

Problem 10.9
Solve the initial value problem

uux + uy = 0, u(x, 0) = f(x).

Solution.
The initial curve parametrization is given by

Γ : x0(t) = t, y0(t) = 0, u0(t) = f(t).

Since

a(x0(t), y0(t), u0(t))
dy0

dt
(t)− b(x0(t), y0(t), u0(t))

dx0

dt
(t) = −1 6= 0

the initial value problem has a unique solution. The characteristic curves are
solutions to the system

dx

ds
= u,

dy

ds
= 1,

du

ds
= 0.

Solving the second equation we find y(s, t) = s+β(t). Since y(0, t) = 0 we find
y(s, t) = s. Solving the last equation we find u(s, t) = γ(t). But u(0, t) = f(t)
so that u(s, t) = f(t). Now, dx

ds
= f(t) so that x(s, t) = f(t)s + α(t). Since

x(0, t) = t we conclude that x(s, t) = f(t)s + t. Solving s and t in terms
of x and y we find s = y and t = x − f(t)s = x − f(t)y = x − uy. Thus,
u(x, y) = f(x− uy) so that u is defined implicitly
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Problem 10.10
Solve the initial value problem

√
1− x2ux + uy = 0, u(0, y) = y.

Solution.
The initial curve parametrization is given by

Γ : x0(t) = 0, y0(t) = t, u0(t) = t.

Since

a(x0(t), y0(t), u0(t))
dy0

dt
(t)− b(x0(t), y0(t), u0(t))

dx0

dt
(t) = 1 6= 0

the initial value problem has a unique solution. The characteristic curves are
solutions to the system

dx

ds
=

1√
1− x2

,
dy

ds
= 1,

du

ds
= 0.

From the last equation, we have u(s, t) = γ(t). Since u(0, t) = t, we find
u(s, t) = t. From the second equation, we have y(s, t) = s + β(t). Since
y(0, t) = t, we find y(s, t) = s + t. From the first equation, we find x(s, t) =
sin (s+ α(t)). Since x(0, t) = 0, we find x(s, t) = sin s. Solving s and t in
terms of x and y, we find s = arcsinx and t = y − arcsinx. Hence, the
solution to the problem is u(x, y) = y − arcsinx

Problem 10.11
Consider

xux + 2yuy = 0.

(i) Find and sketch the characteristics.
(ii) Find the solution with u(1, y) = ey.
(iii) What happens if you try to find the solution satisfying either u(0, y) =
g(y) or u(x, 0) = h(x) for given functions g and h?
(iv) Explain, using your picture of the characteristics, what goes wrong at
(x, y) = (0, 0).
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Solution.
(i) The characterisitcs are solutions to the ODE dy

dx
= 2y

x
. Solving we find

y = Cx2. Thus, the characteristics are parobolas in the plane centered at the
origin. See figure below.

(ii) The general solution is u(x, y) = f(yx−2), and so the solution satisfy-
ing the condition at u(1, y) = ey is

u(x, y) = eyx
−2

.

(iii) In the first case, we cannot substitute x = 0 into yx−2 (the argument
of the function f, above) because x−2 is not defined at 0. Similarly, in the
second case, we’d need to find a function f so that f(0) = h(x). If h is not
constant, it is not possible to satisfy this condition for all x ∈ R.
(iv) All characteristics intersect at (0, 0). Since the solution is constant along
any characteristic, if the solution is not exactly constant for all (x, y), then
the limit of u(x, y) as (x, y) → (0, 0) is different if we approach (0, 0) along
different characteristics. Therefore, the method doesn’t work at that point

Problem 10.12
Solve the equation ux + uy = u subject to the condition u(x, 0) = cos x.

Solution.
The initial curve in R3 can be given parametrically as

Γ : x0(t) = t, y0(t) = 0, u0(t) = cos t.
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We have

a(x0(t), y0(t), u0(t))
dy0

dt
(t)− b(x0(t), y0(t), u0(t))

dx0

dt
(t) = −1 6= 0

so by Theorem 11.1 the given Cauchy problem has a unique solution. To find
this solution, we solve the system of ODEs

dx

ds
=1

dy

ds
=1

du

ds
=u.

Solving this system we find

x(s, t) = s+ α(t), y(s, t) = s+ β(t), u(s, t) = γ(t)es.

But x(0, t) = t so that α(t) = t. Similarly, y(0, t) = 0 so that β(t) = 0
and u(0, t) = cos t implies γ(t) = cos t. Hence, the unique solution is given
parametrically by the equations

x(s, t) = t+ s, y(s, t) = s, u(s, t) = es cos t.

Solving the first two equations for s and t we find

s = y, t = x− y

and substituting these into the third equation we find

u(x, y) = ey cos (x− y)

Problem 10.13
(a) Find the general solution of the equation

ux + yuy = u.

(b) Find the solution satisfying the Cauchy data u(x, 3ex) = 2.
(c) Find the solution satisfying the Cauchy data u(x, ex) = ex.
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Solution.
(a) The characteristic equations in non-parametric form are

dx

1
=
dy

y
=
du

u
.

Using the first two fractions we find y = C1e
x. Using the first and the last

fractions we find u = C2e
x. Thus, the general solution is given by

f(ye−x, ue−x) = 0

or
u = exf(ye−x)

where f is an arbitrary differentiable function.
(b) We want 2 = u(x, 3x) = exf(3exe−x) = exf(3). This equation is impossi-
ble so this Cauchy problem has no solutions.
(c) We want ex = exf(exe−x) =⇒ f(1) = 1. In this case, there are infinitely
many solutions to this Cauchy problem, namely, u(x, y) = exf(ye−x) where
f is an arbitrary function satisfying f(1) = 1

Problem 10.14
Solve the Cauchy problem

ux + 4uy = x(u+ 1)

u(x, 5x) = 1.

Solution.
The characteristic equations are dx

1
= dy

4
= du

x(u+1)
. Solving we find 4x−y = C1

and u + 1 = C2e
x2

2 . Thus, the general solution is given by f(4x − y, (u +

1)e−
x2

2 ) = 0 or u = −1 + e
x2

2 f(4x− y).

Using the condition u(x, 5x) = 1 we obtain e
x2

2 f(−x) = 2 or f(x) = 2e−
x2

2 .
Thus,

u(x, y) = −1 + 2e
x2

2 e−
(4x−y)2

2

Problem 10.15
Solve the Cauchy problem

ux − uy = u

u(x,−x) = sinx.
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Solution.
The characteristic equations are dx

1
= dy
−1

= du
u
. Solving we find x+y = C1 and

u = C2e
x. Thus, the general solution is f(x+ y, ue−x) = 0 or u = exf(x+ y).

Using the condition u(x,−x) = sinx we find f(0) = e−x sinx which is an
impossible equation. Hence, the Cauchy problem has no solutions

Problem 10.16
(a) Find the characteristics of the equation

yux + xuy = 0.

(b) Sketch some of the characteristics.
(c) Find the solution satisfying the boundary condition u(0, y) = e−y

2
.

(d) In which region of the plane is the solution uniquely determined?

Solution.
(a) The characteristics satisfy the ODE dy

dx
= x

y
. Solving this equation we find

x2 − y2 = C. Thus, the characteristics are hyperbolas.
(b)

(c) The general solution to the PDE is u(x, y) = f(x2 − y2) where f is
an arbitrary differentiable function. Since u(0, y) = e−y

2
we find f(y) = ey.

Hence, u(x, y) = ex
2−y2 .

(d) This solution is only defined in the region covered by characteristics that
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cross the y axis: y2 − x2 > 0. The solution in the region y2 − x2 < 0 can be
any function of the form u(x, y) = f(x2 − y2)

Problem 10.17
Consider the equation ux + yuy = 0. Is there a solution satisfying the extra
condition
(a) u(x, 0) = 1
(b) u(x, 0) = x?
If yes, give a formula; if no, explain why.

Solution.
(a) Solving the ODE dy

dx
= y we find the characteristics ye−x = C. Thus,

u(x, y) = f(ye−x). If u(x, 0) = 1 then we choose f to be any arbitrary
differentiable function satisfying f(0) = 1.
(b) The line y = 0 is a characteristic so that u has to be constant there.
Hence, there is no solution satisfying the condition u(x, 0) = x
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Solutions to Section 11

Problem 11.1
Classify each of the following equation as hyperbolic, parabolic, or elliptic:
(a) Wave propagation: utt = c2uxx, c > 0.
(b) Heat conduction: ut = cuxx, c > 0.
(c) Laplace’s equation: ∆u = uxx + uyy = 0.

Solution.
(a) We have A = 1, B = 0 and C = −c2 so that B2 − 4AC = 4c2 > 0. Thus,
the given equation is of hyperbolic type.
(b) We have A = 0, B = 0 and C = c so that B2− 4AC = 0. Thus, the given
equation is of parabolic type.
(c) We have A = 1, B = 0 and C = 1 so that B2 − 4AC = −4 < 0. Thus,
the given equation is of elliptic type

Problem 11.2
Classify the following linear scalar PDE with constant coefficents as hyper-
bolic, parabolic or elliptic.
(a) uxx + 4uxy + 5uyy + ux + 2uy = 0.
(b) uxx − 4uxy + 4uyy + 3ux + 4u = 0.
(c) uxx + 2uxy − 3uyy + 2ux + 6uy = 0.

Solution.
(a) We have A = 1, B = 4 and C = 5 so that B2−4AC = 16−20 = −4 < 0.
Thus, the given equation is of elliptic type.
(b) We have A = 1, B = −4 and C = 4 so that B2 − 4AC = 16 − 16 = 0.
Thus, the given equation is of parabolic type.
(c) We have A = 1, B = 2 and C = −3 so that B2− 4AC = 4 + 12 = 16 > 0.
Thus, the given equation is of hyperbolic type

Problem 11.3
Find the region(s) in the xy−plane where the equation

(1 + x)uxx + 2xyuxy − y2uyy = 0

is elliptic, hyperbolic, or parabolic. Sketch these regions.
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Solution.
We have A = 1 + x, B = 2xy, and C = −y2 so that B2 − 4AC = 4x2y2 +
4y2(1 + x) = 4y2(x2 + x+ 1).
• The PDE is of hyperbolic type if 4y2(x2 + x + 1) > 0. This is true for all
y 6= 0. Graphically, this is the xy−plane with the x−axis removed.
• The PDE is of parabolic type if 4y2(x2 + x+ 1) = 0. Since x2 + x+ 1 > 0
for all x ∈ R, we must have y = 0. Graphically, this is x−axis.
• The PDE is of elliptic type if 4y2(x2 + x+ 1) < 0 which can not happen

Problem 11.4
Show that u(x, t) = cos x sin t is a solution to the problem

utt = uxx

u(x, 0) = 0

ut(x, 0) = cosx

ux(0, t) = 0

for all x, t > 0.

Solution.
We have

ux(x, t) = − sinx sin t,

uxx(x, t) = − cosx sin t,

ut(x, t) = cosx cos t,

utt(x, t) = − cosx sin t.

Thus,

uxx(x, t) = − cosx sin t = utt(x, t),

u(x, 0) = cosx sin 0 = 0,

ut(x, 0) = cosx cos 0 = cosx,

ux(0, t) = − sin 0 sin t = 0

Problem 11.5
Classify each of the following PDE as linear, quasilinear, semi-linear, or non-
linear.
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(a) ut + uux = uuxx
(b) xutt + tuyy + u3u2

x = t+ 1
(c) utt = c2uxx
(d) u2

tt + ux = 0.

Solution.
(a) Quasi-linear (b) Semi-linear (c) Linear (d) Nonlinear

Problem 11.6
Show that, for all (x, y) 6= (0, 0), u(x, y) = ln (x2 + y2) is a solution of

uxx + uyy = 0,

and that, for all (x, y, z) 6= (0, 0, 0), u(x, y, z) = 1√
x2+y2+z2

is a solution of

uxx + uyy + uzz = 0.

Solution.
We have

ux =
2x

x2 + y2

uxx =
2y2 − 2x2

(x2 + y2)2

uy =
2y

x2 + y2

uyy =
2x2 − 2y2

(x2 + y2)2

Plugging these expressions into the equation we find uxx + uyy = 0. Similar
argument holds for the second part of the problem

Problem 11.7
Consider the eigenvalue problem

uxx = λu, 0 < x < L

ux(0) = k0u(0)

ux(L) = −kLu(L)

with Robin boundary conditions, where k0 and kL are given positive numbers
and u = u(x). Can this system have a nontrivial solution u 6≡ 0 for λ > 0?
Hint: Multiply the first equation by u and integrate over x ∈ [0, L].
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Solution.
Multiplying the equation by u and integrating, we obtain

λ

∫ L

0

u2(x)dx =

∫ L

0

uuxx(x)dx

=[u(L)ux(L)− u(0)ux(0)]−
∫ L

0

u2
x(x)dx

=−
[
kLu(L)2 + k0u(0)2 +

∫ L

0

u2
x(x)dx

]
For λ > 0, because k0, kL > 0, the right-hand side is nonpositive and the
left-hand side is nonnegative. Therefore, both sides must be zero, and there
can be no solution other than u ≡ 0, which is the trivial solution

Problem 11.8
Show that u(x, y) = f(x)g(x), where f and g are arbitrary differentiable
functions, is a solution to the PDE

uuxy = uxuy.

Solution.
Substitute u(x, y) = f(x)g(y) into the left side of the equation to obtain
f(x)g(y)(f(x)g(y))xy = f(x)g(y)f ′(x)g′(y). Now, substitute the same thing
into the right side to obtain (f(x)g(y))x(f(x)g(y))y = f ′(x)g(y)f(x)g′(y) =
f(x)g(y)f ′(x)g′(y). So the sides are equal, which means f(x)g(y) is a solu-
tion

Problem 11.9
Show that for any n ∈ N, the function un(x, y) = sinnx sinhny is a solution
to the Laplace equation

∆u = uxx + uyy = 0.

Solution.
We have

(un)xx = −n2 sinnx sinhny and (un)yy = n2 sinnx sinhny

Hence, ∆un = 0
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Problem 11.10
Solve

uxy = xy.

Solution.
Integrate both sides with respect to y to obtain ux(x, y) = xy2

2
+ f(x). Next,

integrate both sides w.r.t. x to obtain u(x, y) = x2y2

4
+ F (x) + G(y), where

F (x) =
∫
f(x)dx can be any function of x, since f(x) itself is an arbitrary

function of x

Problem 11.11
Classify each of the following second-oder PDEs according to whether they
are hyperbolic, parabolic, or elliptic:
(a) 2uxx − 4uxy + 7uyy − u = 0.
(b) uxx − 2 cosxuxy − sin2 xuyy = 0.
(c) yuxx + 2(x− 1)uxy − (y + 2)uyy = 0.

Solution.
(a) We have A = 2, B = −4, C = 7 so B2 − 4AC = 16− 56 = −40 < 0. So
this equation is elliptic everywhere in R2.
(b) We have A = 1, B = −2 cosx, C = − sin2 x so B2 − 4AC = 4 cos2 x +
4 sin2 x = 4 > 0. So this equation is hyperbolic everywhere in R2.
(c) We have A = y, B = 2(x − 1), C = −(y + 2) so B2 − 4AC = 4(x −
1)2 + 4y(y + 2) = 4[(x − 1)2 + (y + 1)2 − 4]. The equation is parabolic if
(x− 1)2 + (y+ 1)2 = 4. It is hyperbolic if (x− 1)2 + (y+ 1)2 > 4 and elliptic
if (x− 1)2 + (y + 1)2 < 4

Problem 11.12
Let c > 0. By computing ux, uxx, ut, and utt show that

u(x, t) =
1

2
(f(x+ ct) + f(x− ct)) +

1

2c

∫ x+ct

x−ct
g(s)ds

is a solution to the PDE

utt = c2uxx

where f is twice differentiable function and g is a differentiable function.
Then compute and simplify u(x, 0) and ut(x, 0).
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Solution.
Using the chain rule we find

ut(x, t) =
1

2
(cf ′(x+ ct)− cf ′(x− ct)) +

1

2c
[g(x+ ct)(c)− g(x− ct)(−c))

=
c

2
(f ′(x+ ct)− f ′(x− ct)) +

1

2
(g(x+ ct) + g(x− ct))

utt =
c2

2
(f ′′(x+ ct) + f ′′(x− ct)) +

c

2
(g′(x+ ct)− g′(c− xt))

ux(x, t) =
1

2
(f ′(x+ ct) + f ′(x− ct)) +

1

2c
[g(x+ ct)− g(x− ct)]

uxx(x, t) =
1

2
(f ′′(x+ ct) + f ′′(x− ct)) +

1

2c
[g′(x+ ct)− g′(x− ct)].

By substitutition we see that c2uxx = utt. Moreover,

u(x, 0) =
1

2
(f(x) + f(x)) +

1

2c

∫ x

x

g(s)ds = f(x)

and
ut(x, 0) = g(x)

Problem 11.13
Consider the second-order PDE

yuxx + uxy − x2uyy − ux − u = 0.

Determine the region D in R2, if such a region exists, that makes this PDE:
(a) hyperbolic, (b) parabolic, (c) elliptic.

Solution.
We have A = y, B = 1, and C = −x2. Thus, B2−4AC = 1 + 4yx2. We have
then (a) 1 + 4x2y > 0, (b) 1 + 4x2y = 0, (c) 1 + 4x2y < 0

Problem 11.14
Consider the second-order hyperbolic PDE

uxx + 2uxy − 3uyy = 0.

Use the change of variables v(x, y) = y− 3x and w(x, y) = x+ y to solve the
given equation.
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Solution.
We have

ux =− 3uv + uw

uxx =9uvv − 6uvw + uww

uxy =− 3uvv − 2uvw + uww

uy =uv + uw

uyy =(uv + uw)v + (uv + uw)w = uvv + 2uvw + uww

Substituting into the PDE we find uvw = 0. Solving this equation we find
u(v, w) = f(v) + g(w). In terms of x and y we have

u(x, y) = f(y − 3x) + g(x+ y)

Problem 11.15
Solve the Cauchy problem

uxx + 2uxy − 3uyy = 0.

u(x, 2x) = 1, ux(x, 2x) = x.

Solution.
From the previous exercise we have

u(x, y) = f(y − 3x) + g(x+ y).

From the Cauchy data u(x, 2x) = 1 we find

1 = f(−x) + g(3x). (11.3)

Now from the Cauchy data ux(x, 2x) = x we find

x = −3f ′(−x) + g′(3x). (11.4)

Differentiate (11.3) with respect to x we find

−f ′(−x) + 3g′(3x) = 0 (11.5)

Multiply (11.5) by −3 to obtain

3f ′(−x)− 9g′(3x) = 0 (11.6)
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Add (11.4) and (11.6) to obtain x = −8g′(3x) or g′(x) = − x
24
. Integrating,

we find g(x) = −x2

48
+ C. Now, from (11.3) we have 1 = f(−x) + g(3x) or

f(−x) = 1 + 9
48
x2 − C = f(x). Thus,

u(x, y) = f(y − 3x) + g(x+ y) =
10x2 + y2 − 7xy + 6

6
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Solutions to Section 12

Problem 12.1
Show that if v(x, t) and w(x, t) satisfy equation 12.1 then αv + βw is also a
solution to 12.1, where α and β are constants.

Solution.
Let z(x, t) = αv(x, t) + βw(x, t). Then we have

c2zxx =c2αvxx + c2βwxx

=αvtt + βvtt

=ztt

Problem 12.2
Show that any linear time independent function u(x, t) = ax+ b is a solution
to equation 12.1.

Solution.
Indeed we have c2uxx(x, t) = 0 = utt(x, t)

Problem 12.3
Find a solution to 12.1 that satisfies the homogeneous conditions u(x, 0) =
u(0, t) = u(L, t) = 0.

Solution.
Clearly the trivial solution u(x, t) = 0 for all x and t is an answer to the
question

Problem 12.4
Solve the initial value problem

utt =9uxx

u(x, 0) = cos x

ut(x, 0) =0.

Solution.
According to Example 12.1, the unique solution is given by

u(x, t) =
1

2
(cos (x− 3t) + cos (x+ 3t))
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Problem 12.5
Solve the initial value problem

utt =uxx

u(x, 0) =
1

1 + x2

ut(x, 0) =0.

Solution.
According to Example 12.1 with w(x) = 0, the unique solution is given by

u(x, t) =
1

2

[
1

1 + (x+ t)2
+

1

1 + (x− t)2

]
Problem 12.6
Solve the initial value problem

utt =4uxx

u(x, 0) =1

ut(x, 0) = cos (2πx).

Solution.
We have v(x) = 1 and w(x) = cos (2πx). The unique solution is given by

u(x, t) =
1

2
[2 +

1

2

∫ x+2t

x−2t

cos (2πs)ds]

=1 +
1

4

[
1

2π
sin (2πs)

]x+2t

x−2t

=1 +
1

8π
[sin (2πx+ 4πt)− sin (2πx− 4πt)]

Problem 12.7
Solve the initial value problem

utt =25uxx

u(x, 0) =v(x)

ut(x, 0) =0

where

v(x) =

{
1 if x < 0
0 if x ≥ 0.
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Solution.
The general solution is given by

u(x, t) =
1

2
(v(x+ 5t) + v(x− 5t)).

Thus,

u(x, t) =


1 if x− 5t < 0 and x+ 5t < 0
1
2

if x− 5t < 0 and x+ 5t > 0
1
2

if x− 5t > 0 and x+ 5t < 0
0 if x− 5t > 0 and x+ 5t > 0

Problem 12.8
Solve the initial value problem

utt =c2uxx

u(x, 0) =e−x
2

ut(x, 0) = cos2 x.

Solution.
We have

u(x, t) =
1

2
[e−(x+ct)2 + e−(x−ct)2 ] +

1

2c

∫ x+ct

x−ct
cos2 sds

=
1

2
[e−(x+ct)2 + e−(x−ct)2 ] +

t

2
+

1

4c
cos (2x) sin (2ct)

Problem 12.9
Prove that the wave equation, utt = c2uxx satisfies the following properties,
which are known as invariance properties. If u(x, t) is a solution, then
(i) Any translate, u(x− y, t) where y is a fixed constant, is also a solution.
(ii) Any derivative, say ux(x, t), is also a solution.
(iii) Any dilation, u(ax, at), is a solution, for any fixed constant a.

Solution.
Just plug the translated/differentiated/dialated solution into the wave equa-
tion and check that it is a solution

Problem 12.10
Find v(r) if u(r, t) = v(r)

r
cosnt is a solution to the PDE

urr +
2

r
ur = utt.
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Solution.
We have

ur =
v′(r)

r
cosnt− v(r)

r2
cosnt

urr =
v′′(r)

r
cosnt− 2

v′(r)

r2
cosnt+ 2

v(r)

r3
cosnt

ut =− nv(r)

r
sinnt

utt =− n2v(r)

r
cosnt

Avoiding the trivial solution u = 0, we cancel cosnt and find from urr+
2
r
ur =

utt the ODE
v′′(r)

r
= −n2v(r)

r
or

v′′(r) + n2v(r) = 0.

Solving this equation we find

v(r) = A cos (nr) +B sin (nr)

Problem 12.11
Find the solution of the wave equation on the real line (−∞ < x < +∞)
with the initial conditions

u(x, 0) = ex, ut(x, 0) = sin x.

Solution.
The general solution is given by

u(x, t) =
1

2
[ex−ct + ex+ct +

1

c

∫ x+ct

x−ct
sin sds]

Thus,

u(x, t) =
1

2
[ex−ct + ex+ct +

1

c
(cos (x− ct)− cos (x+ ct))]
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Problem 12.12
The total energy of the string (the sum of the kinetic and potential energies)
is defined as

E(t) =
1

2

∫ L

0

(u2
t + c2u2

x)dx.

(a) Using the wave equation derive the equation of conservation of energy

dE(t)

dt
= c2(ut(L, t)ux(L, t)− ut(0, t)ux(0, t)).

(b) Assuming fixed ends boundary conditions, that is the ends of the string
are fixed so that u(0, t) = u(L, t) = 0, for all t > 0, show that the energy is
constant.
(c) Assuming free ends boundary conditions for both x = 0 and x = L, that
is both u(0, t) and u(L, t) vary with t, show that the energy is constant.

Solution.
(a) We have

dE

dt
(t) =

∫ L

0

ututtdx+

∫ L

0

c2uxuxtdx

=

∫ L

0

ututtdx+ c2ut(L, t)ux(L, t)− c2ut(0, t)ux(0, t)− c2

∫ L

0

utuxxdx

=c2ut(L, t)ux(L, t)− c2ut(0, t)ux(0, t) +

∫ L

0

ut(utt − c2uxx)dx

=c2(ut(L, t)ux(L, t)− ut(0, t)ux(0, t))

since utt − c2uxx = 0.
(b) Since the ends are fixed, we have ut(0, t) = ut(L, t) = 0. From (a) we
have

dE

dt
(t) = c2(ut(L, t)ux(L, t)− ut(0, t)ux(0, t)) = 0.

(c) Assuming free ends boundary conditions, that is ux(0, t) = ux(L, t) = 0,
we find dE

dt
(t) = 0

Problem 12.13
For a wave equation with damping

utt − c2uxx + dut = 0, d > 0, 0 < x < L

with the fixed ends boundary conditions show that the total energy decreases.
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Solution.
Using the previous exercise, we find

dE

dt
(t) = −d

∫ L

0

(ut)
2dx.

The right-hand side is nonpositive, so the energy either decreases or is con-
stant. The latter case can occur only if ut(x, t) is identically zero, which
means that the string is at rest

Problem 12.14
(a) Verify that for any twice differentiable R(x) the function

u(x, t) = R(x− ct)

is a solution of the wave equation utt = c2uxx. Such solutions are called
traveling waves.
(b) Show that the potential and kinetic energies (see Exercise 12.12) are
equal for the traveling wave solution in (a).

Solution.
(a) By the chain rule we have ut(x, t) = −cR′(x−ct) and utt(x, t) = c2R′′(x−
ct). Likewise, ux(x, t) = R′(x− ct) and uxx = R′′(x− ct). Thus, utt = c2uxx.
(b) We have

1

2

∫ L

0

(ut)
2dx =

∫ L

0

c2

2
[R′(x− ct)]2dx =

∫ L

0

c2

2
(ux)

2dx

Problem 12.15
Find the solution of the Cauchy wave equation

utt = 4uxx

u(x, 0) = x2, ut(x, 0) = sin 2x.

Simplify your answer as much as possible.

Solution.
The solution is

u(x, t) =
1

2
[f(x− ct) + f(x+ ct) +

1

c

∫ x+ct

x−ct
g(s)ds].
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Here, f(x) = x2, g(x) = sin 2x, and c = 2. Thus,

u(x, t) =
1

2
[(x− 2t)2 + (x+ 2t)2] +

1

4

∫ x+2t

x−2t

sin 2sds

=x2 + 4t2 − 1

8
cos 2s

∣∣∣∣x+2t

x−2t

=x2 + 4t2 − 1

8
cos (2x+ 4t) +

1

8
cos (2x− 4t)

=x2 + 4t2 +
1

4
sin 2x sin 4t
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Solutions to Section 13

Problem 13.1
Show that if u(x, t) and v(x, t) satisfy equation (13.1) then αu+ βv is also a
solution to (13.1), where α and β are constants.

Solution.
Let z(x, t) = αu(x, t) + βv(x, t). Then we have

kzxx =kαuxx + kβvxx

=αut + βvt

=zt

Problem 13.2
Show that any linear time independent function u(x, t) = ax+ b is a solution
to equation (13.1).

Solution.
Indeed we have kuxx(x, t) = 0 = ut(x, t)

Problem 13.3
Find a linear time independent solution u to (13.1) that satisfies u(0, t) = T0

and u(L, T ) = TL.

Solution.
Letg u(x, t) = ax + b. From the assumptions of the problem we must have
b = T0 and a = TL−T0

L
. Thus, u(x, t) = T0 + TL−T0

L
x

Problem 13.4
Show that to solve (13.1) with the boundary conditions u(0, t) = T0 and
u(L, t) = TL it suffices to solve (13.1) with the homogeneous boundary
conditions u(0, t) = u(L, t) = 0.

Solution.
Let u be the solution to (13.1) that satisfies u(0, t) = u(L, t) = 0. Let w(x, t)
be the time independent solution to (13.1) that satisfies w(0, t) = T0 and
w(L, t) = TL. That is, w(x, t) = T0+ TL−T0

L
x. From Exercise 13.1, the function

u(x, t) = u(x, t)+w(x, t) is a solution to (13.1) that satisfies u(0, t) = T0 and
u(L, t) = TL
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Problem 13.5
Find a solution to (13.1) that satisfies the conditions u(x, 0) = u(0, t) =
u(L, t) = 0.

Solution.
Clearly the trivial solution u(x, t) = 0 for all x and t is an answer to the
question

Problem 13.6
Let (I) denote equation (13.1) together with intial condition u(x, 0) = f(x),
where f is not the zero function, and the homogeneous boundary conditions
u(0, t) = u(L, t) = 0. Suppose a nontrivial solution to (I) can be written in
the form u(x, t) = X(x)T (t). Show that X and T satisfy the ODE

X ′′ − λ
k
X = 0 and T ′ − λT = 0

for some constant λ.

Solution.
Substituting u(x, t) = X(x)T (t) into (13.1) we obtain

k
X ′′

X
=
T ′

T
.

Since X only depends on x and T only depends on t, we must have that
there is a constant λ such that

kX
′′

X
= λ and T ′

T
= λ.

This gives the two ordinary differential equations

X ′′ − λ
k
X = 0 and T ′ − λT = 0

Problem 13.7
Consider again the solution u(x, t) = X(x)T (t). Clearly, T (t) = T (0)e−λt.
Suppose that λ > 0.
(a) Show that X(x) = Aex

√
α + Be−x

√
α, where α = λ

k
and A and B are

arbitrary constants.
(b) Show that A and B satisfy the two equations A + B = 0 and A(eL

√
α −

e−L
√
α) = 0.

(c) Show that A = 0 leads to a contradiction.
(d) Using (b) and (c) show that eL

√
α = e−L

√
α. Show that this equality leads

to a contradiction. We conclude that λ < 0.
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Solution.
(a) Letting α = λ

k
> 0 we obtain the ODE X ′′ − αX = 0 whose general

solution is given by X(x) = Aex
√
α +Be−x

√
α for some constants A and B.

(b) The condition u(0, t) = 0 implies that X(0) = 0 which in turn implies

A+B = 0. Likewise, the condition u(L, t) = 0 implies Ae
√
Lα +Be−L

√
α = 0.

Hence, A(eL
√
α − e−L

√
α) = 0.

(c) If A = 0 then B = 0 and u(x, t) is the trivial solution which contradicts
the assumption that u is non-trivial. Hence, we must have A 6= 0.
(d) Using (b) and (c) we obtain eL

√
α = e−L

√
α or e2L

√
α = 1. This equation

is impossible since 2L
√
α > 0. Hence, we must have λ < 0 so that X(x) =

A cos (x
√
−α) +B sin (x

√
−α

Problem 13.8
Consider the results of the previous exercise.

(a) Show that X(x) = c1 cos βx+ c2 sin βx where β =
√
−λ
k
.

(b) Show that λ = λn = −kn2π2

L2 , where n is an integer.

Solution.

(a)Now, write β =
√
−λ
k
. Then we obtain the equation X ′′+β2X = 0 whose

general solution is given by

X(x) = c1 cos βx+ c2 sin βx.

(b) Using X(0) = 0 we obtain c1 = 0. Since c2 6= 0 we must have sin βL = 0.
Thus, λ = −kn2π2

L2 , where n is an integer

Problem 13.9

Show that u(x, t) =
∑n

k=1 uk(x, t), where un(x, t) = cne
kn2π2

L2 t sin
(
nπ
L

)
x sat-

isfies (13.1) and the homogeneous boundary conditions.

Solution.

For each integer n ≥ 0 we have un(x, t) = cn
T (0)

T (0)e
kn2π2

L2 t sin
(
nπ
L

)
x is a

solution to (13.1). By superposition, u(x, t) is also a solution to (13.1).
Moreover, u(0, t) = u(L, t) = 0 since un(0, t) = un(L, t) = 0

Problem 13.10
Suppose that a wire is stretched between 0 and a. Describe the boundary
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conditions for the temperature u(x, t) when
(i) the left end is kept at 0 degrees and the right end is kept at 100 degrees;
and
(ii) when both ends are insulated.

Solution.
(i) u(0, t) = 0 and u(a, t) = 100 for t > 0.
(ii) ux(0, t) = ux(a, t) = 0 for t > 0

Problem 13.11
Let ut = uxx for 0 < x < π and t > 0 with boundary conditions u(0, t) =
0 = u(π, t) and initial condition u(x, 0) = f(x). Let E(t) =

∫ π
0

(u2
t + u2

x)dx.
Show that E ′(t) < 0.

Solution.
Solving this problem we find u(x, t) = e−t sinx. We have

E(t) =

∫ π

0

[e−2t sin2 x+ e−2t cos2 x]dx =

∫ π

0

e−2tdx = πe−2t.

Thus, E ′(t) = −2πe−2t < 0 for all t > 0

Problem 13.12
Suppose

ut = uxx + 4, ux(0, t) = 5, ux(L, t) = 6, u(x, 0) = f(x).

Calculate the total thermal energy of the one-dimensional rod (as a function
of time).

Solution.
We have

d

dt

∫ L

0

u(x, t)dx = ux|L0 + 4L = 1 + 4L.

Thus,

E(t) =

∫ L

0

f(x)dx+ (1 + 4L)t
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Problem 13.13
Consider the heat equation

ut = kuxx

for x ∈ (0, 1) and t > 0, with boundary conditions u(0, t) = 2 and u(1, t) = 3
for t > 0 and initial conditions u(x, 0) = x for x ∈ (0, 1). A function v(x)
that satisfies the equation v′′(x) = 0, with conditions v(0) = 2 and v(1) = 3
is called a steady-state solution. Find v(x).

Solution.
Solving the equation v′′(x) = 0 we find v(x) = ax + b. Using the conditions
v(0) = 2 and v(1) = 3 we find v(x) = x+ 2

Problem 13.14
Consider the equation for the one-dimensional rod of length L with given
heat energy source:

ut = uxx + q(x).

Assume that the initial temperature distribution is given by u(x, 0) = f(x).
Find the equilibrium (steady state) temperature distribution in the following
cases.
(a) q(x) = 0, u(0, t) = 0, u(L, t) = T.
(b) q(x) = 0, ux(0, t) = 0, u(L, t) = T.
(c) q(x) = 0, u(0, t) = T, ux(L, t) = α.

Solution.
Recall that a steady-state solution is a solution that does not depend on time
(i.e. ut = 0.).
(a) We have v′′(x) = 0 =⇒ v(x) = c1x + c2. But v(0) = 0 and v(L) = T so
that c1 = T

L
and c2 = 0. Thus, the steady-state solution is v(x) = T

L
x.

(b) We have v(x) = c1x+ c2 with v′(0) = 0 and v(L) = T. Thus, c1 = 0 and
c2 = T so that v(x) = T.
(c) We have v(x) = c1x+ c2 with v(0) = T and v′(L) = α. Thus, c1 = α and
c2 = T so that v(x) = αx+ T

Problem 13.15
Consider the equation for the one-dimensional rod of length L with insulated
ends:

cρut = Kuxx, ux(0, t) = ux(L, t) = 0.
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(a) Give the expression for the total thermal energy of the rod.
(b) Show using the equation and the boundary conditions that the total
thermal energy is constant.

Solution.
(a) E(t) =

∫ L
0
cρu(x, t)dx.

(b) We integrate the equation in x from 0 to L :∫ L

0

cρut(x, t)dx =

∫ L

0

Kuxxdx = Kux(x, t)|L0 = 0,

since ux(0, t) = ux(L, t) = 0. The left-hand side can also be written as

d

dt

∫ L

0

cρu(x, t)dx = E ′(t).

Thus, we have shown that E ′(t) = 0 so that E(t) is constant

Problem 13.16
Suppose

ut = uxx + x, u(x, 0) = f(x), ux(0, t) = β, ux(L, t) = 7.

(a) Calculate the total thermal energy of the one-dimensional rod (as a func-
tion of time).
(b) From part (a) find the value of β for which a steady-state solution exist.
(c) For the above value of β find the steady state solution.

Solution.
(a) The total thermal energy is

E(t) =

∫ L

0

u(x, t)dx.

We have

dE

dt
=

∫ L

0

ut(x, t)dx = ux|L0 +

∫ L

0

xdx = (7− β) +
L2

2
.

(b) The steady solution (equilibrium) is possible if the right-hand side van-
ishes:

(7− β) +
L2

2
= 0
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Solving this equation for β we find β = 7 + L2

2
.

(c) By integrating the equation uxx + x = 0 we find the steady solution

u(x) = −x
3

6
+ C1x+ C2

From the condition ux(0) = β we find C1 = β. The steady solution should
also have the same value of the total energy as the initial condition. This
means ∫ L

0

(
−x

3

6
+ βx+ C2

)
dx =

∫ L

0

f(x)dx = E(0).

Performing the integration and then solving for C2 we find

C2 =
1

L

∫ L

0

f(x)dx+
L3

24
− βL

2
.

Therefore, the steady-state solution is

u(x) =
1

L

∫ L

0

f(x)dx+
L3

24
− βL

2
+ βx− x3

6
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Solutions to Section 14

Problem 14.1
Define fn : [0, 1]→ R by fn(x) = xn. Define f : [0, 1]→ R by

f(x) =

{
0 if 0 ≤ x < 1
1 if x = 1

(a) Show that the sequence {fn}∞n=1 converges pointwise to f.
(b) Show that the sequence {fn}∞n=1 does not converge uniformly to f. Hint:
Suppose otherwise. Let ε = 0.5 and get a contradiction by using a point
(0.5)

1
N < x < 1.

Solution.
(a) For all 0 ≤ x < 1 we have limn→∞ fn(x) = limn→∞ x

n = 0. Also,
limn→∞ fn(1) = 1. Hence, the sequence {fn}∞n=1 converges pointwise to f.
(b) Suppose the contrary. Let ε = 1

2
. Then there exists a positive integer N

such that for all n ≥ N we have

|fn(x)− f(x)| < 1

2

for all x ∈ [0, 1]. In particular, we have

|fN(x)− f(x)| < 1

2

for all x ∈ [0, 1]. Choose (0.5)
1
N < x < 1. Then |fN(x)− f(x)| = xN > 0.5 =

ε which is a contradiction. Hence, the given sequence does not converge
uniformly

Problem 14.2
Consider the sequence of functions

fn(x) =
nx+ x2

n2

defined for all x in R. Show that this sequence converges pointwise to a
function f to be determined.
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Solution.
For every real number x, we have

lim
n→∞

fn(x) = lim
n→∞

nx+ x2

n2
= lim

n→∞

x

n
+ lim

n→∞

x2

n2
= 0

Thus, {fn}∞n=1 converges pointwise to the zero function on R

Problem 14.3
Consider the sequence of functions

fn(x) =
sin (nx+ 3)√

n+ 1

defined for all x in R. Show that this sequence converges pointwise to a
function f to be determined.

Solution.
For every real number x, we have

− 1√
n+ 1

≤ fn(x) ≤ 1√
n+ 1

.

Moreover,

lim
n→∞

1√
n+ 1

= 0.

Applying the squeeze rule for sequences, we obtain

lim
n→∞

fn(x) = 0

for all x in R. Thus, {fn}∞n=1 converges pointwise to the zero function on R

Problem 14.4
Consider the sequence of functions defined by fn(x) = n2xn for all 0 ≤ x ≤ 1.
Show that this sequence does not converge pointwise to any function.

Solution.
First of all, observe that fn(0) = 0 for every n in N. So the sequence
{fn(0)}∞n=1 is constant and converges to zero. Now suppose 0 < x < 1
then n2xn = n2en lnx. But lnx < 0 when 0 < x < 1, it follows that
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limn→∞ fn(x) = 0 for 0 < x < 1

Finally, fn(1) = n2 for all n. So,

lim
n→∞

fn(1) =∞.

Therefore, {fn}∞n=1 is not pointwise convergent on [0, 1]

Problem 14.5
Consider the sequence of functions defined by fn(x) = (cosx)n for all −π

2
≤

x ≤ π
2
. Show that this sequence converges pointwise to a noncontinuous

function to be determined.

Solution.
For −π

2
≤ x < 0 and 0 < x ≤ π

2
we have

lim
n→∞

(cosx)n = 0.

For x = 0 we have fn(0) = 1 for all n in N. Therefore, {fn}∞n=1 converges
pointwise to

f(x) =

{
0 if −π

2
≤ x < 0 and 0 < x ≤ π

2

1 if x = 0

Problem 14.6
Consider the sequence of functions fn(x) = x− xn

n
defined on [0, 1).

(a) Does {fn}∞n=1 converge to some limit function? If so, find the limit func-
tion and show whether the convergence is pointwise or uniform.
(b) Does {f ′n}∞n=1 converge to some limit function? If so, find the limit func-
tion and show whether the convergence is pointwise or uniform.

Solution.
(a) Let ε > 0 be given. Let N be a positive integer such that N > 1

ε
. Then

for n ≥ N ∣∣∣∣x− xn

n
− x
∣∣∣∣ =
|x|n

n
<

1

n
≤ 1

N
< ε.

Thus, the given sequence converges uniformly (and pointwise) to the function
f(x) = x.
(b) Since limn→∞ f

′
n(x) = 1 for all x ∈ [0, 1), the sequence {f ′n}∞n=1 converges
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pointwise to f ′(x) = 1. However, the convergence is not uniform. To see
this, let ε = 1

2
and suppose that the convergence is uniform. Then there is a

positive integer N such that for n ≥ N we have

|1− xn−1 − 1| = |x|n−1 <
1

2
.

In particular, if we let n = N + 1 we must have xN < 1
2

for all x ∈ [0, 1).

But x =
(

1
2

) 1
N ∈ [0, 1) and xN = 1

2
which contradicts xN < 1

2
. Hence, the

convergence is not uniform

Problem 14.7
Let fn(x) = xn

1+xn
for x ∈ [0, 2].

(a) Find the pointwise limit f(x) = limn→∞ fn(x) on [0, 2].
(b) Does fn → f uniformly on [0, 2]?

Solution.
(a) The pointwise limit is

f(x) =


0 if 0 ≤ x < 1
1
2

if x = 1
1 if 1 < x ≤ 2

(b) The convergence cannot be uniform because if it were f would have to
be continuous

Problem 14.8
For each n ∈ N define fn : R→ R by fn(x) = n+cosx

2n+sin2 x
.

(a) Show that fn → 1
2

uniformly.

(b) Find limn→∞
∫ 7

2
fn(x)dx.

Solution.
(a) Let ε > 0 be given. Note that

|fn(x)− 1

2
| =

∣∣∣∣2 cosx− sin2 x

2(2n+ sin2 x)

∣∣∣∣ ≤ 3

4n
.

Since limn→∞
3

4n
= 0 we can find a positive integer N such that if n ≥ N

then 3
4n
< ε. Thus, for n ≥ N and all x ∈ R we have

|fn(x)− 1

2
| ≤ 3

4n
< ε.
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This shows that fn → 1
2

uniformly on R and also on [2, 7].
(b) We have

lim
n→∞

∫ 7

2

fnxdx =

∫ 7

2

lim
n→∞

fnxdx =

∫ 7

2

1

2
dx =

5

2

Problem 14.9
Show that the sequence defined by fn(x) = (cosx)n does not converge uni-
formly on [−π

2
, π

2
].

Solution.
We have proved earlier that this sequence converges pointwise to the discon-
tinuous function

f(x) =

{
0 if −π

2
≤ x < 0 and 0 < x ≤ π

2

1 if x = 0

Therefore, uniform convergence cannot occur for this given sequence

Problem 14.10
Let {fn}∞n=1 be a sequence of functions such that

sup{|fn(x)| : 2 ≤ x ≤ 5} ≤ 2n

1 + 4n
.

(a) Show that this sequence converges uniformly to a function f to be found.

(b) What is the value of the limit limn→∞
∫ 5

2
fn(x)dx?

Solution.
(a) Using the squeeze rule we find

lim
n→∞

sup{|fn(x)| : 2 ≤ x ≤ 5} = 0.

Thus, {fn}∞n=1 converges uniformly to the zero function.
(b) We have

lim
n→∞

∫ 5

2

fn(x)dx =

∫ 5

2

0dx = 0
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Solutions to Section 15

Problem 15.1
Let f and g be two functions with common domain D and common period
T. Show that
(a) fg is periodic of period T.
(b) c1f + c2g is periodic of period T, where c1 and c2 are real numbers.

Solution.
(a) We have (fg)(x+ T ) = f(x+ T )g(x+ T ) = f(x)g(x) = (fg)(x).
(b) We have (c1f+c2g)(x+T ) = c1f(x+T )+c2g(x+T ) = c1f(x)+c2g(x) =
(c1f + c2g)(x)

Problem 15.2
Show that for m 6= n we have
(a)
∫ L
−L sin

(
mπ
L
x
)

sin
(
nπ
L
x
)
dx = 0 and

(b)
∫ L
−L cos

(
mπ
L
x
)

sin
(
nπ
L
x
)
dx = 0.

Solution.
(a) For n 6= m we have

∫ L

−L
sin
(mπ
L
x
)

sin
(nπ
L
x
)
dx =− 1

2

∫ L

−L

[
cos

(
(m+ n)π

L
x

)
− cos

(
(m− n)π

L
x

)]
dx

=− 1

2

[
L

(m+ n)π
sin

(
(m+ n)π

L
x

)
− L

(m− n)π
sin

(
(m− n)π

L
x

)]L
−L

=0

where we used the trigonometric identiy

sin a sin b =
1

2
[− cos (a+ b) + cos (a− b)].
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(b) For n 6= m we have∫ L

−L
cos
(mπ
L
x
)

sin
(nπ
L
x
)
dx =

1

2

∫ L

−L

[
sin

(
(m+ n)π

L
x

)
− sin

(
(m− n)π

L
x

)]
dx

=
1

2

[
− L

(m+ n)π
cos

(
(m+ n)π

L
x

)
+

L

(m− n)π
cos

(
(m− n)π

L
x

)]L
−L

=0

where we used the trigonometric identiy

cos a sin b =
1

2
[sin (a+ b)− sin (a− b)]

Problem 15.3
Compute the following integrals:
(a)
∫ L
−L cos2

(
nπ
L
x
)
dx.

(b)
∫ L
−L sin2

(
nπ
L
x
)
dx.

(c)
∫ L
−L cos

(
nπ
L
x
)

sin
(
nπ
L
x
)
dx.

Solution.
(a) Using the trigonometric identity cos2 a = 1+cos 2a

2
we can write∫ L

−L
cos2

(nπ
L
x
)
dx =

1

2

∫ L

−L

(
1 + cos

(
2nπ

L

)
x

)
dx

=
1

2

[
x+

(
L

2nπ

)
sin

(
2nπ

L
x

)]L
−L

= L.

(b) Using the trigonometric identity sin2 a = 1−cos 2a
2

we can write∫ L

−L
sin2

(nπ
L
x
)
dx =

1

2

∫ L

−L

(
1− cos

(
2nπ

L
x

))
dx

=
1

2

[
x−

(
L

2nπ

)
sin

(
2nπ

L
x

)]L
−L

= L
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(c) Using the trigonometric identity cos a sin a = cos 2a
2

we can write

∫ L

−L
cos
(nπ
L
x
)

sin
(nπ
L
x
)
dx =

1

2

∫ L

−L
cos

(
2nπ

L
x

)
dx

=

(
L

4nπ

)[
sin

(
2nπ

L
x

)]L
−L

= 0

Problem 15.4
Find the Fourier coefficients of

f(x) =


−π, −π ≤ x < 0
π, 0 < x < π
0, x = 0, π

on the interval [−π, π].

Solution.
We have

a0 =
1

π

∫ π

−π
f(x)dx = 0

an =
1

π

∫ π

−π
f(x) cosnxdx

=−
∫ 0

−π
cosnxdx+

∫ π

0

cosnxdx = 0

bn =
1

π

∫ π

−π
f(x) sinnxdx

=−
∫ 0

−π
sinnxdx+

∫ π

0

sinnxdx

=
2

n
[1− (−1)n]

Problem 15.5
Find the Fourier series of f(x) = x2 − 1

2
on the interval [−1, 1].
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Solution.
We have

a0 =

∫ 1

−1

(x2 − 1

2
)dx = −1

3

an =

∫ 1

−1

(x2 − 1

2
) cosnπxdx

=

∫ 1

−1

x2 cosnπxdx− 1

2

∫ 1

−1

cosnπxdx

= x2 sin (nπx)

nπ

]1

−1

−
∫ 1

−1

2x
sin (nπx)

nπ
dx− 1

2

[
sin (nπx)

nπ

]1

−1

=2x

[
cos (nπx)

(nπ)2

]1

−1

−
∫ 1

−1

2
cos (nπx)

(nπ)2
dx

=
4

(nπ)2
(−1)n.

bn =

∫ 1

−1

(x2 − 1

2
) sinnxdx = 0.

Note that bn = 0 because the integrand is odd. Hence,

f(x) = −1

6
+
∞∑
n=1

4

(nπ)2
(−1)n cos (nπx)

Problem 15.6
Find the Fourier series of the function

f(x) =


−1, −2π < x < −π
0, −π < x < π
1, π < x < 2π.

Solution.
From the graph of f(x) we see that f is an odd function on (−2π, 2π). Thus,
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f(x) cos
(
nx
2

)
is odd so that an = 0 for all n ∈ N. Now,

a0 =
1

2π

∫ 2π

−2π

f(x)dx = 0

bn =
1

2π

∫ 2π

−2π

f(x) sin
(nx

2

)
dx

=
1

π

∫ 2π

0

f(x) sin
(nx

2

)
dx

=
1

π

∫ 2π

π

sin
(nx

2

)
dx

=− 2

nπ
cos
(nx

2

)]2π

π

=
2

nπ

[
cos
(nπ

2

)
− (−1)n

]

Hence,

f(x) =
∞∑
n=1

2

nπ

[
cos
(nπ

2

)
− (−1)n

]
sin
(nx

2

)

Problem 15.7
Find the Fourier series of the function

f(x) =

{
1 + x, −2 ≤ x ≤ 0
1− x, 0 < x ≤ 2.

Solution.
From the graph of f(x) we see that f is an even function on [−2, 2]. Thus,
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f(x) sin
(
nπ
2
x
)

is odd so that bn = 0 for all n ∈ N. Now,

a0 =
1

2

∫ 2

−2

f(x)dx =
1

2

[∫ 0

−2

(1 + x)dx+

∫ 2

0

(1− x)dx

]
= 0

an =
1

2

∫ 2

−2

f(x) cos
(nπ

2
x
)
dx

=

∫ 2

0

(1− x) cos
(nπ

2
x
)
dx

=

∫ 2

0

cos
(nπ

2
x
)
dx−

∫ 2

0

x cos
(nπ

2
x
)
dx

=− 4

(nπ)2
cos
(nπ

2
x
)]2

0

=
4

(nπ)2
[1− (−1)n]

Hence,

f(x) =
∞∑
n=1

4

(nπ)2
[1− (−1)n] cos

(nπ
2
x
)

Problem 15.8
Show that f(x) = 1

x
is not piecewise continuous on [−1, 1].

Solution.
Since the sided limits at the point of discontinuity x = 0 do not exist, the
function is not piecewise continuous in [−1, 1]

Problem 15.9
Assume that f(x) is continuous and has period 2L. Prove that∫ L

−L
f(x)dx =

∫ L+a

−L+a

f(x)dx

is independent of a ∈ R. In particular, it does not matter over which interval
the Fourier coefficients are computed as long as the interval length is 2L.
[Remark: This result is also true for piecewise continuous functions].

Solution.
Define the function

g(a) =

∫ L+a

−L+a

f(x)dx.
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Using the fundamental theorem of calculus, we have

dg

da
=
d

da

∫ L+a

−L+a

f(x)dx

=f(L+ a)− f(−L+ a) = f(−L+ a+ 2L)− f(−L+ a)

=f(−L+ a)− f(−L+ a) = 0

Hence, g is a constant function, and in particular we can write g(a) = g(0)
for all a ∈ R which gives the desired result

Problem 15.10
Consider the function f(x) defined by

f(x) =

{
1 0 ≤ x < 1
2 1 ≤ x < 3

and extended periodically with period 3 to R so that f(x+ 3) = f(x) for all
x.
(i) Find the Fourier series of f(x).
(ii) Discuss its limit: In particular, does the Fourier series converge pointwise
or uniformly to its limit, and what is this limit?
(iii) Plot the graph of f(x) and the limit of the Fourier series.

Solution.
(i) The Fourier series is computed for functions of period 2L. Since this
function has period 3, L = 3/2. By the previous problem, we can compute
the coefficients over any interval of length 3, so we might as well use [0, 3].
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Using the formulas for the coefficients, we obtain:

a0 =
1

L

∫ L

−L
f(x)dx =

2

3

[∫ 1

0
dx+

∫ 3

1
2dx

]
=

10

3

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx =

2

3

[∫ 1

0
cos

(
2nπx

3

)
dx+

∫ 3

1
2 cos

(
2nπx

3

)
dx

]
=

2

3

3

2nπ

[(
sin

(
2nπ

3

)
− 0

)
+ 2

(
sin 2nπ − sin

(
2nπ

3

))]
=− 1

nπ
sin

(
2nπ

3

)
bn =

1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx =

2

3

[∫ 1

0
sin

(
2nπx

3

)
dx+

∫ 3

1
2 sin

(
2nπx

3

)
dx

]
=− 2

3

3

2nπ

[(
cos

(
2nπ

3

)
− 1

)
+ 2

(
cos 2nπ − cos

(
2nπ

3

))]
=− 1

nπ

(
− cos

(
2nπ

3

)
+ 1

)
Thus, the Fourier series is

f(x) =
10

3
+
∞∑
n=1

[
− 1

nπ
sin

(
2nπ

3

)
cos

(
2nπx

3

)
− 1

nπ

(
− cos

(
2nπ

3

)
+ 1

)
sin

(
2nπx

3

)]
.

(ii) Using the theorem discussed in class, because this function and its derivative
are piecewise continuous, the Fourier series will converge to the function at each
point of continuity. At any point of discontinuity, the Fourier series will converge
to the average of the left and right limits.
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(iii)

.

Problem 15.11
For the following functions f(x) on the interval −L < x < L, determine the
coefficients an, n = 0, 1, 2, · · · and bn, n ∈ N of the Fourier series expansion.
(a) f(x) = 1.
(b) f(x) = 2 + sin

(
πx
L

)
.

(c) f(x) =

{
1 x ≤ 0
0 x > 0.

(d) f(x) = x.

Solution.
(a) a0 = 2, an = bn = 0 for n ∈ N.
(b) a0 = 4, an = 0, b1 = 1, and bn = 0.
(c) a0 = 1, an = 0, bn = 1

πn [1− (−1)n], n ∈ N.
(d) a0 = an = 0, bn = 2L

πn(−1)n+1, n ∈ N

Problem 15.12
Let f(t) be the function with period 2π defined as

f(t) =

{
2 if 0 ≤ x ≤ π

2
0 if π

2 < x ≤ 2π

f(t) has a Fourier series and that series is equal to

a0

2
+

∞∑
n=1

(an cosnt+ bn sinnt).

Find a3
b3

.
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Solution.
We have

a3 =
1

π

∫ π
2

0
2 cos 3xdx = − 2

3π

and

b3 =
1

π

∫ π
2

0
2 sin 3xdx =

2

3π
.

Thus, a3
b3

= −1

Problem 15.13
Let f(x) = x3 on [−π, π], extended periodically to all of R. Find the Fourier
coefficients an, n = 1, 2, 3, · · · .

Solution.
Since the extension is an odd function, we must have an = 0 for all n ∈ N

Problem 15.14
Let f(x) be the square wave function

f(x) =

{
−π −π ≤ x < 0
π 0 ≤ x ≤ π

extended periodically to all of R. To what value does the Fourier series of f(x)
converge when x = 0?

Solution.
f(x) is piecewise smooth function with discontinuity at x = 0. Thus, the Fourier
series of f(x) at x = 0 converges to

f(0−) + f(0+)

2
=
−π + π

2
= 0

Problem 15.15
(a) Find the Fourier series of

f(x) =

{
1 −π ≤ x < 0
2 0 ≤ x ≤ π

extended periodically to all of R. Simplify your coefficients as much as possible.

(b) Use (a) to evaluate the series
∑∞

n=1
(−1)n+1

(2n−1) . Hint: Evaluate the Fourier series

at x = π
2 .
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Solution.
(a) We have

a0 =
1

π

∫ π

−π
f(x)dx =

1

π

[∫ 0

−π
dx+

∫ π

0
dx

]
= 3

an =
1

π

∫ π

−π
f(x) cosnxdx = 0

bn =
1

π

∫ π

−π
f(x) sinnxdx =

1

π

[
1

n
− (−1)n

n

]
Thus,

f(x) =
3

2
+

2

π

∞∑
n=1

sin (2n− 1)x

2n− 1
.

(b) By the convergence theorem we have

1

2
[f

(
π

2

−
)

+ f

(
π

2

−
)

=
3

2
+

2

π

∞∑
n=1

sin (2n− 1)π2
2n− 1

.

This implies

2 =
3

2
+

2

π

∞∑
n=1

(−1)n+1

2n− 1

and this reduces to
∞∑
n=1

(−1)n+1

2n− 1
=
π

4
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Solutions to Section 16

Problem 16.1
Give an example of a function that is both even and odd.

Solution.
Let f(x) be such a function. Since f is both even and odd, we must have f(x) =
−f(x). This implies that 2f(x) = 0 and therefore f(x) = 0 for all x in the domain
of f

Problem 16.2
Graph the odd and even extensions of the function f(x) = 1, 0 ≤ x ≤ 1.

Solution.
We have

fodd(x) =


1 0 < x ≤ 1
−1 −1 ≤ x < 0
0 x = 0

and feven(x) = 1 for −1 ≤ x ≤ 1. The odd extension of f is shown in (a) while the
even extension is shown in (b)

Problem 16.3
Graph the odd and even extensions of the function f(x) = L− x for 0 ≤ x ≤ L.

Solution.
We have

fodd(x) =


L− x 0 < x ≤ L
−L− x −L ≤ x < 0

0 x = 0

and

feven(x) =

{
L− x 0 ≤ x ≤ L
L+ x −L ≤ x ≤ 0
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The odd extension is shown in (a) while the even extension is shown in (b)

Problem 16.4
Graph the odd and even extensions of the function f(x) = 1 + x2 for 0 ≤ x ≤ L.

Solution.
We have feven(x) = 1 + x2 for −L ≤ x ≤ L while

fodd(x) =


1 + x2 0 < x ≤ L
−1− x2 −L ≤ x < 0

0, x = 0

The odd extension is shown in (a) while the even extension is shown in (b)
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Problem 16.5
Find the Fourier cosine series of the function

f(x) =

{
x, 0 ≤ x ≤ π

2
π − x, π

2 ≤ x ≤ π

Solution.
We have

a0 =
2

π

[∫ π
2

0
xdx+

∫ π

π
2

(π − x)dx

]
=
π

2

and for n ∈ N

an =
2

π

[∫ π
2

0
x cosnxdx+

∫ π

π
2

(π − x) cosnxdx

]
.

Using integration by parts we find

∫ π
2

0
x cosnxdx =

[x
n

sinnx
]π

2

0
− 1

n

∫ π
2

0
sinnxdx

=
π sin (nπ/2)

2n
+

1

n2
[cosnx]

π
2
0

=
π sin (nπ/2)

2n
+

cos (nπ/2)

n2
− 1

n2

while ∫ π

π
2

(π − x) cosnxdx =

[
(π − x)

n
sinnx

]π
π
2

+
1

n

∫ π

π
2

sinnxdx

=− π sin (nπ/2)

2n
− 1

n2
[cosnx]ππ

2

=− π sin (nπ/2)

2n
+

cos (nπ/2)

n2
− 1

n2
cos (nπ).

Thus, when n ∈ N

an =
2

πn2
[2 cos (nπ/2)− 1− (−1)n],

and the Fourier cosine series of f(x) is

f(x) =
π

4
+
∞∑
n=1

2

πn2
[2 cos (nπ/2)− 1− (−1)n] cosnx



104 CONTENTS

Problem 16.6
Find the Fourier cosine series of f(x) = x on the interval [0, π].

Solution.
We have

a0 =
2

π

∫ π

0
xdx = π

and

an =
2

π

∫ π

0
x cosnxdx

=
2

π

[[x
n

sinnx
]π

0
− 1

n

∫ π

0
sinnxdx

]
=

2

n2π
[cosnx]π0 =

2

n2π
[(−1)n − 1]

Hence, the Fourier cosine of f is

f(x) =
π

2
+
∞∑
n=1

2

n2π
[(−1)n − 1] cosnx

Problem 16.7
Find the Fourier sine series of f(x) = 1 on the interval [0, π].

Solution.
We have

bn =
2

π

∫ π

0
sinnxdx =

2

nπ
[1− (−1)n].

Hence, the Fourier sine series of f is

f(x) =

∞∑
n=1

2

nπ
[1− (−1)n] sinnx

Problem 16.8
Find the Fourier sine series of f(x) = cosx on the interval [0, π].
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Solution.
We have

bn =
2

π

∫ π

0
cosx sinnxdx

=
1

π

∫ π

0
[sin (n+ 1)x− sin (1− n)x]dx

=
1

π

[
−cos (n+ 1)x

n+ 1
+

cos (1− n)x

1− n

]π
0

=
2n

π

(
1− (−1)n

n2 − 1

)
Hence, the Fourier sine series is

f(x) =
2

π

∞∑
n=1

n

(
1− (−1)n

n2 − 1

)
sinnx

Problem 16.9
Find the Fourier cosine series of f(x) = e2x on the interval [0, 1].

Solution.
We have

a0 = 2

∫ 1

0
e2xdx = e2 − 1

and using integration by parts twice one finds

an = 2

∫ 1

0
e2x cosnπxdx =

4[(−1)ne2 − 1]

4 + n2π2
.

Hence, the Fourier cosine series is given by

f(x) =
1

2
(e2 − 1) +

∞∑
n=1

4[(−1)ne2 − 1]

4 + n2π2
cos (nπx)

Problem 16.10
For the following functions on the interval [0, L], find the coefficients bn of the
Fourier sine expansion.
(a) f(x) = sin

(
2π
L x
)
.

(b) f(x) = 1
(c) f(x) = cos

(
π
Lx
)
.
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Solution.
The coefficients bn are given by the formula

bn =
2

L

∫ L

0
f(x) sin

(nπ
L
x
)
, n ∈ N.

(a) If f(x) = sin
(

2π
L x
)

then bn = 0 if n 6= 2 and b2 = 1.
(b) If f(x) = 1 then

bn =
2

L

∫ L

0
sin
(nπ
L
x
)
dx =

2

nπ
[1− (−1)n].

(c) If f(x) = cos
(
π
Lx
)

then

b1 =
2

L

∫ L

0
cos
(π
L
x
)

sin
(π
L
x
)
dx = 0

and for n 6= 1 we have

bn =
2

L

∫ L

0
cos
(π
L
x
)

sin
(nπ
L
x
)
dx

=
1

2

2

L

∫ L

0

[
sin
(πx
L

)
(1 + n)− sin

(πx
L

)
(1− n)

]
dx

=
1

L

[
− L

(1 + n)π
cos
(πx
L

)
(1 + n) +

L

(1− n)π
cos
(πx
L

)
(1− n)

]L
0

=
2n

(n2 − 1)π
[1− (−1)n]

Problem 16.11
For the following functions on the interval [0, L], find the coefficients an of the
Fourier cosine expansion.
(a) f(x) = 5 + cos

(
π
Lx
)
.

(b) f(x) = x
(c)

f(x) =

{
1 0 < x ≤ L

2

0 L
2 < x ≤ L

Solution.
(a) a0 = 10 and a1 = 1, and an = 0 for n 6= 1.
(b) a0 = L and an = 2L

(πn)2
[(−1)n − 1], n ∈ N.

(c) a0 = 1 and an = 2
πn sin

(
πn
2

)
, n ∈ N
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Problem 16.12
Consider a function f(x), defined on 0 ≤ x ≤ L, which is even (symmetric) around
x = L

2 . Show that the even coefficients (n even) of the Fourier sine series are zero.

Solution.
By definition of Fourier sine coefficients,

bn =
2

L

∫ L

0
f(x) sin

(nπ
L
x
)
dx

The symmetry around x = L
2 can be written as

f

(
L

2
+ x

)
= f

(
L

2
− x
)

for all x ∈ R. To use this symmetry it is convenient to make the change of variable
x− L

2 = u in the above integral to obtain

bn =

∫ L
2

−L
2

f

(
L

2
+ u

)
sin

[
nπ

L

(
L

2
+ u

)]
du.

Since f
(
L
2 + u

)
is even in u and for n even sin

[
nπ
L

(
L
2 + u

)]
= sin

(
nπu
L

)
is odd in

u, the integrand of the above integral is odd in u for n even. Since the intergral is
from −L

2 to L
2 we must have b2n = 0 for n = 0, 1, 2, · · ·

Problem 16.13
Consider a function f(x), defined on 0 ≤ x ≤ L, which is odd around x = L

2 . Show
that the even coefficients (n even) of the Fourier cosine series are zero.

Solution.
By definition of Fourier cosine coefficients,

an =
2

L

∫ L

0
f(x) cos

(nπ
L
x
)
dx

The anti-symmetry around x = L
2 can be written as

f

(
L

2
− y
)

= −f
(
L

2
+ y

)
for all y ∈ R. To use this symmetry it is convenient to make the change of variable
x = L

2 + y in the above integral to obtain

an =

∫ L
2

−L
2

f

(
L

2
+ y

)
cos

[
nπ

L

(
L

2
+ y

)]
dy.
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Since f
(
L
2 + y

)
is odd in y and for n even cos

[
nπ
L

(
L
2 + y

)]
= ± cos

(nπy
L

)
is even

in y, the integrand of the above integral is odd in y for n even. Since the intergral
is from −L

2 to L
2 we must have a2n = 0 for all n = 0, 1, 2, · · ·

Problem 16.14
The Fourier sine series of f(x) = cos

(
πx
L

)
for 0 ≤ x ≤ L is given by

cos
(πx
L

)
=
∞∑
n=1

bn sin
(nπx
L

)
, n ∈ N

where

b1 = 0, bn =
2n

(n2 − 1)π
[1− (−1)n].

Using term-by-term integration, find the Fourier cosine series of sin
(
nπx
L

)
.

Solution.
Integrate both sides from 0 to x we find

L

π
sin
(nπx
L

)
=
∞∑
n=1

Lbn
πn

(
1− cos

(nπx
L

))
.

Thus,

sin
(nπx
L

)
=
a0

2
−
∞∑
n=1

bn
n

cos
(nπx
L

)
where

a0

2
=
∞∑
n=1

bn
n
.

It is more convenient to calculate a0 using the definition rather than trying to sum
the series;

a0 =
2

L

∫ L

0
sin
(πx
L

)
dx =

4

π
.

Hence,

sin
(nπx
L

)
=

2

π
− 2

π

∞∑
n=2

1− (−1)n

n2 − 1
cos
(nπx
L

)
Problem 16.15
Consider the function

f(x) =

{
1 0 ≤ x < 1
2 1 ≤ x < 2
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(a) Sketch the even extension of f.
(b) Find a0 in the Fourier series for the even extension of f.
(c) Find an (n = 1, 2, · · · ) in the Fourier series for the even extension of f.
(d) Find bn in the Fourier series for the even extension of f.
(e) Write the Fourier series for the even extension of f.

Solution.
(a)

(b) a0 = 2
2

∫ 2
0 f(x)dx = 3.

(c) We have

an =
2

2

∫ 2

0
f(x) cos

(nπx
2

)
dx

=

∫ 1

0
cos
(nπx

2

)
dx+

∫ 2

1
2 cos

(nπx
2

)
dx

=
2

nπ
sin
(nπx

2

)∣∣∣∣1
0

+ 2
2

nπ
sin
(nπx

2

)∣∣∣∣2
1

=− 2

nπ
sin
(nπ

2

)
.

(d) bn = 0 since f(x) sin
(
nπx

2

)
is odd in−2 ≤ x ≤ 2.

(e)

f(x) =
3

2
+

∞∑
n=1

(
− 2

nπ
sin
(nπ

2

))
cos
(nπx

2

)
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Solutions to Section 17

Problem 17.1
Solve using the separation of variables method

∆u+ λu = 0.

Solution.
We look for a solution of the form u(x, y) = X(x)Y (y). Substituting in the given
equation, we obtain

X ′′Y +XY ′′ + λXY = 0.

Assuming X(x)Y (y) is nonzero, dividing for X(x)Y (y) and subtract both sides for
X′′(x)
X(x) , we find:

−X
′′(x)

X(x)
=
Y ′′(y)

Y (y)
+ λ.

The left hand side is a function of x while the right hand side is a function of y.
This says that they must equal to a constant. That is,

−X
′′(x)

X(x)
=
Y ′′(y)

Y (y)
+ λ = δ.

where δ is a constant. This results in the following two ODEs

X ′′ + δX = 0 and Y ′′ + (λ− δ)Y = 0.

• If δ > 0 and λ− δ > 0 then

X(x) =A cos δx+B sin δx

Y (y) =C cos (λ− δ)y +D sin (λ− δ)y

• If δ > 0 and λ− δ < 0 then

X(x) =A cos δx+B sin δx

Y (y) =Ce−
√
−(λ−δ)y +De

√
−(λ−δ)y

• If δ = λ > 0 then

X(x) =A cos δx+B sin δx

Y (y) =Cy +D



SOLUTIONS TO SECTION 17 111

• If δ = λ < 0 then

X(x) =Ae−
√
−δx +Be

√
−δx

Y (y) =Cy +D

• If δ < 0 and λ− δ > 0 then

X(x) =Ae−
√
−δx +Be

√
−δx

Y (y) =C cos (λ− δ)y +D sin (λ− δ)y

• If δ < 0 and λ− δ < 0 then

X(x) =Ae−
√
−δx +Be

√
−δx

Y (y) =Ce−
√

(λ−δ)y +De
√

(λ−δ)y

Problem 17.2
Solve using the separation of variables method

ut = kuxx.

Solution.
Let’s assume that the solution can be written in the form u(x, t) = X(x)T (t).
Substituting into the heat equation we obtain

X ′′

X
=

T ′

kT
.

Since X only depends on x and T only depends on t, we must have that there is
a constant λ such that

X′′

X = λ and T ′

kT = λ.

This gives the two ordinary differential equations

X ′′ − λX = 0 and T ′ − kλT = 0.

Next, we consider the three cases of the sign of λ.
Case 1: λ = 0
In this case, X ′′ = 0 and T ′ = 0. Solving these equations we find X(x) = ax + b
and T (t) = c.

Case 2: λ > 0
In this case, X(x) = Ae

√
λx +Be−

√
λx and T (t) = Cekλt.

Case 3: λ < 0
In this case, X(x) = A cos

√
−λx+B sin

√
−λx and and T (t) = Cekλt
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Problem 17.3
Derive the system of ordinary differential equations for R(r) and Θ(θ) that is
satisfied by solutions to

urr +
1

r
ur +

1

r2
uθθ = 0.

Solution.
Suppose that a solution u(r, θ) of the given equation can be written in the form
u(r, θ) = R(r)Θ(θ). Substituting in the given equation we obtain

R′′(r)Θ(θ) +
1

r
R′(r)Θ(θ) +

1

r2
R(r)Θ′′(θ) = 0

Dividing by RΘ (under the assumption that RΘ 6= 0) we obtian

Θ′′(θ)

Θ(θ)
= −r2R

′′(r)

R(r)
− rR

′(r)

R(r)
.

The left-hand side is independent of r whereas the right-hand side is independent
of θ so that there is a constant λ such that

−Θ′′(θ)

Θ(θ)
= r2R

′′(r)

R(r)
+ r

R′(r)

R(r)
= λ.

This results in the following ODEs

Θ′′(θ) + λΘ(θ) = 0

and
r2R′′(r) + rR′(r)− λR(r) = 0.

The second equation is known as Euler’s equation

Problem 17.4
Derive the system of ordinary differential equations and boundary conditions for
X(x) and T (t) that is satisfied by solutions to

utt = uxx − 2u, 0 < x < 1, t > 0

u(0, t) = 0 = ux(1, t) t > 0

of the form u(x, t) = X(x)T (t). (Note: you do not need to solve for X and T .)

Solution.
First, plug u(x, t) = X(x)T (t) into the equation for the boundary conditions to
obtain
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X(0)T (t) = 0 and X ′(1)T (t) = 0.

Since this must hold for all t > 0, we either have T (t) = 0 for all t > 0, which
leads to the trivial solution, so we throw this possibility out, or

X(0) = 0 and X(1) = 0

which we keep. Plug u(x, t) = X(x)T (t) into the equation and rearrange terms to
obtain

T ′′

T
=
X ′′ − 2X

X
.

Since one side depends only on t and the other only on x, they must both be
constant:

T ′′

T
=
X ′′ − 2X

X
= λ.

Writing this as two separate equations, we obtain

X ′′ = (2 + λ)X

T ′′ = λT.

Thus, the final set of ODEs and boundary conditions is:

X ′′ = (2 + λ)X, T ′′ = λT,X(0) = 0, X(1) = 0

Problem 17.5
Derive the system of ordinary differential equations and boundary conditions for
X(x) and T (t) that is satisfied by solutions to

ut = kuxx, 0 < x < L, t > 0

u(x, 0) = f(x), u(0, t) = 0 = ux(L, t) t > 0

of the form u(x, t) = X(x)T (t). (Note: you do not need to solve for X and T .)

Solution.
Plug u(x, t) = X(x)T (t) into the equation and rearrange terms to obtain

T ′

kT
=
X ′′

X
.

Since one side depends only on t and the other only on x, they must both be
constant:

T ′

kT
=
X ′′

X
= λ.
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Writing this as two separate equations, we obtain

X ′′ − λX = 0

T ′ = kλT.

Next, plug u(x, t) = X(x)T (t) into the equation for the boundary conditions to
obtain

X ′(0)T (t) = 0 and X ′(L)T (t) = 0.

Since this must hold for all t > 0, we either have T (t) = 0 for all t > 0, which
leads to the trivial solution, so we throw this possibility out, or

X ′(0) = 0 = X ′(L)

which we keep. Using the initial value condition u(x, 0) = f(x) we find X(x)T (0) =
f(x).
Thus, the final set of ODEs and boundary conditions is:

X ′′ − λX = 0, T ′ = kλT,X ′(0) = 0 = X ′(L)

Problem 17.6
Find all product solutions of the PDE ux + ut = 0.

Solution.
Substitute u(x, t) = X(x)T (t) into the given equation we find

X ′(x)T (t) +X(x)T ′(t) = 0.

Divide through by X(x)T (t) we obtain

X ′

X
= −T

′

T
.

The left hand side is a function of x while the right hand side is a function of t.
This says that they must equal to a constant. That is,

X ′

X(x)
= −T

′

T
= λ

where λ is a constant. This results in the following two ODEs

X ′ = λX and T ′ = −λT.
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Solving this system of ODEs we find X(x) = C1e
λx and T (t) = C2e

−λt. The
product solutions are given by

u(x, t) = Ceλ(x−t)

Problem 17.7
Derive the system of ordinary differential equations for X(x) and Y (y) that is
satisfied by solutions to

3uyy − 5uxxxy + 7uxxy = 0.

of the form u(x, y) = X(x)Y (y).

Solution.
Substitute u(x, t) = X(x)Y (y) into the given equation we find

3XY ′′ − 5X ′′′Y ′ + 7X ′′Y ′ = 0.

Divide through by XY ′ we obtain

3
Y ′′

Y ′
=

5X ′′′ − 7X ′′

X
.

The left hand side is a function of y while the right hand side is a function of x.
This says that they must equal to a constant. That is,

3
Y ′′

Y ′
=

5X ′′′ − 7X ′′

X
= λ

where λ is a constant. This results in the following two ODEs

5X ′′′ − 7X ′′ − λX = 0 and 3Y ′′ − λY ′ = 0

Problem 17.8
Find the general solution by the method of separation of variables.

uxy + u = 0.

Solution.
Substitute u(x, t) = X(x)Y (y) into the given equation we find

X ′Y ′ +XY = 0

which can be separated as
X ′

X
= − Y

Y ′
.
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The left hand side is a function of x while the right hand side is a function of y.
This says that they must equal to a constant. That is,

X ′

X
= − Y

Y ′
= λ

where λ is a constant. This results in the following two ODEs

X ′ − λX = 0 and Y ′ + 1
λY = 0.

Solving these equations using the method of separation of variable for ODEs we
find X(x) = Aeλx and Y (y) = Be−

y
λ . Thus, the general solution is given by

u(x, y) = Ceλx−
y
λ

Problem 17.9
Find the general solution by the method of separation of variables.

ux − yuy = 0.

Solution.
Substitute u(x, t) = X(x)Y (y) into the given equation we find

X ′Y − yXY ′ = 0

which can be separated as
X ′

X
= −yY

′

Y
.

The left hand side is a function of x while the right hand side is a function of y.
This says that they must equal to a constant. That is,

X ′

X
=
yY ′

Y
= λ.

where λ is a constant. This results in the following two ODEs

X ′ − λX = 0 and yY ′ − λY = 0

Solving these equations using the method of separation of variable for ODEs we
find X(x) = Aeλx and Y (y) = Byλ. Thus, the general solution is given by

u(x, y) = Ceλxyλ

Problem 17.10
Find the general solution by the method of separation of variables.

utt − uxx = 0.
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Solution.
We look for a solution of the form u(x, y) = X(x)T (t). Substituting in the wave
equation, we obtain

X ′′(x)T (t)−X(x)T ′′(t) = 0.

Assuming X(x)T (t) is nonzero, dividing for X(x)T (t) we find:

X ′′(x)

X(x)
=
T ′′(t)

T (t)
.

The left hand side is a function of x while the right hand side is a function of t.
This says that they must equal to a constant. That is,

X ′′(x)

X(x)
=
T ′′(t)

T (t)
= λ

where λ is a constant. This results in the following two ODEs

X ′′ − λX = 0 and T ′′ − λT = 0.

The solutions of these equations depend on the sign of λ.
• If λ > 0 then the solutions are given

X(x) =Ae
√
λx +Be−

√
λx

T (t) =Ce
√
λt +De−

√
λt

where A,B,C, and D are constants. In this case,

u(x, t) = k1e
√
λ(x+t) + k2e

√
λ(x−t) + k3e

−
√
λ(x+t) + k4e

−
√
λ(x−t).

• If λ = 0 then

X(x) =Ax+B

T (t) =Ct+D

where A,B, and C are arbitrary constants. In this case,

u(x, t) = k1xt+ k2x+ k3t+ k4.

• If λ < 0 then

X(x) =A cos
√
−λx+B sin

√
−λx

T (t) =A cos
√
−λt+B sin

√
−λt

where A,B,C, and D are arbitrary constants. In this case,

u(x, t) = k1 cos
√
−λx cos

√
−λt+k2 cos

√
−λx sin

√
−λt+k3 sin

√
−λx cos

√
−λt+k4 sin

√
−λx sin

√
−λt
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Problem 17.11
For the following PDEs find the ODEs implied by the method of separation of
variables.
(a) ut = kr(rur)r
(b) ut = kuxx − αu
(c) ut = kuxx − aux
(d) uxx + uyy = 0
(e) ut = kuxxxx.

Solution.
Details can be verified easily and therefore are omitted.
(a) u(r, t) = R(r)T (t), T ′(t) = kλT, r(rR′)′ = λR.
(b) u(x, t) = X(x)T (t), T ′ = λT, kX ′′ − (α+ λ)X = 0.
(c) u(x, t) = X(x)T (t), T ′ = λT, kX ′′ − aX ′ = λX.
(d) u(x, t) = X(x)Y (y), X ′′ = λX, Y ′′ = −λY.
(e) u(x, t) = X(x)T (t), T ′ = kλT, X ′′′′ = λX

Problem 17.12
Find all solutions to the following partial differential equation that can be obtained
via the separation of variables.

ux − uy = 0.

Solution.
Assume u(x, y) = X(x)Y (y). Then by substitution into the given PDE we find
X ′Y −XY ′ = 0 or

X ′

X
=
Y ′

Y
.

Since the left-hand side is independent of y and the right-hand side is independent
from x, there must be a constant λ such that

X ′

X
=
Y ′

Y
= λ.

This leads to the system of ODEs

X ′ = λX, Y ′ = λY

whose solution is X(x) = Aeλx and Y (y) = Beλy. Thus, u(x, y) = Ceλ(x+y)

Problem 17.13
Separate the PDE uxx − uy + uyy = u into two ODEs with a parameter. You do
not need to solve the ODEs.
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Solution.
Assume u(x, y) = X(x)Y (y). Then by substitution into the given PDE we find
X ′′Y −XY ′ +XY ′′ = XY or

X ′′

X
=
Y ′

Y
− Y ′′

Y
+ 1.

Since the left-hand side is independent of y and the right-hand side is independent
from x, there must be a constant λ such that

X ′′

X
=
Y ′

Y
− Y ′′

Y
+ 1 = λ.

This leads to the system of ODEs

X ′′ = λX, Y ′ − Y ′′ + Y = λY
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Solutions to Section 18

Problem 18.1
Find the temperature in a bar of length 2 whose ends are kept at zero and lateral
surface insulated if the initial temperature is f(x) = sin

(
π
2x
)

+ 3 sin
(

5π
2 x
)
.

Solution.
Let u(x, t) be the temperature of the bar. The boundary conditions are u(0, t) =
u(2, t) = 0 for any t > 0. The initial condition is u(x, 0) = sin

(
π
2x
)

+ 3 sin
(

5π
2 x
)
.

The solution is

u(x, t) =
∞∑
n=1

Cn sin
(nπ

2
x
)
e−

n2π2k
4

t

where

Cn =

∫ 2

0

(
sin
(π

2
x
)

+ 3 sin

(
5π

2
x

))
sin
(nπ

2
x
)
dx.

Simple algebra shows that C1 = 1, C5 = 3, and Cn = 0 otherwise. Hence,

u(x, t) = sin
(π

2
x
)
e−

π2k
4
t + 3 sin

(
5π

2
x

)
e−

25π2k
4

t

Problem 18.2
Find the temperature in a homogeneous bar of heat conducting material of length
L with its end points kept at zero and initial temperature distribution given by
f(x) = dx

L2 (L− x), 0 ≤ x ≤ L.

Solution.
The solution is

u(x, t) =
∞∑
n=1

Cn sin
(nπ
L
x
)
e−

kn2π2

L2 t
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where

Cn =
2

L

∫ L

0

dx

L2
(L− x) sin

(nπ
L
x
)
dx

=
2d

L3

[
x(L− x) ·

(
− L

nπ

)
cos
(nπ
L
x
)

−(L− 2x) ·
(
− L2

n2π2

)
· sin

(nπ
L
x
)

+ (−2)

(
−L3

n3π3

)
·
(
− cos

(nπ
L
x
))]L

0

=
2d

L3

[
0 + 0− 2L3

n3π3
[(−1)n − 1]

]
=

8d

n3π3

if n is odd and 0 otherwise. Therefore the temperature distribution in the bar is

u(x, t) =
8d

π3

∞∑
n=1

1

(2n− 1)3
sin

(
(2n− 1)π

L
x

)
e−

k(2n−1)2π2

L2 t

Problem 18.3
Find the temperature in a thin metal rod of length L, with both ends insulated
(so that there is no passage of heat through the ends) and with initial temperature
in the rod f(x) = sin

(
π
Lx
)
.

Solution.
The solution is given by

u(x, t) =
C0

2
+
∞∑
n=1

Cn cos
(nπ
L
x
)
e−k

4n2π2

L2 t
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where

C0 =
2

L

∫ L

0
sin
(π
L
x
)
dx

=
2

π

[
− cos

(π
L
x
)]L

0
=

4

π

C1 =
2

L

∫ L

0
sin
(π
L
x
)

cos
(π
L
x
)
dx = 0

Cn =
2

L

∫ L

0
sin
(π
L
x
)

cos
(
n
π

L
x
)
dx

=
1

L

∫ L

0

[
sin

(
(n+ 1)π

L
x

)
+ sin

(
(1− n)π

L
x

)]
dx

=
1

L

[
− L

(n+ 1)π
cos

(
(n+ 1)π

L
x

)
− L

(1− n)π
cos

(
(1− n)π

L
x

)]L
0

=− 2

π(n2 − 1)
[(−1)n+1 + 1]

=
4

π(n2 − 1)

if n ≥ 2 is even and 0 otherwise. Thus, the temperature u(x, t) in the rod is given
by

u(x, t) =
2

π
− 4

π

∞∑
n=1

1

(4n2 − 1)
cos

(
2nπ

L
x

)
e−k

4n2π2

L2 t

Problem 18.4
Solve the following heat equation with Dirichlet boundary conditions

ut = kuxx

u(0, t) = u(L, t) = 0

u(x, 0) =

{
1 0 ≤ x < L

2

2 L
2 ≤ x ≤ L.

Solution.
The solution is given by

u(x, t) =

∞∑
n=1

Cn sin
(nπ
L
x
)
e−

n2π2

L2 t
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where

Cn =
2

L

∫ L
2

0
sin
(nπ
L
x
)
dx+

4

L

∫ L

L
2

sin
(nπ
L
x
)
dx

=
2

L

[
− L

nπ
cos
(nπ
L
x
)]L2

0

+
4

L

[
− L

nπ
cos
(nπ
L
x
)]L

L
2

=
2

nπ
+

2

nπ
cos
(nπ

2

)
− 4

nπ
cos (nπ)

Thus,

Cn =


− 4
nπ n = 2, 6, 10, · · ·
0 n = 4, 8, 12, · · ·
6
nπ n is odd

Problem 18.5
Solve

ut = kuxx

u(0, t) = u(L, t) = 0

u(x, 0) = 6 sin

(
9π

L
x

)
.

Solution.
The solution is given by

u(x, t) =
∞∑
n=1

Cn sin
(nπ
L
x
)
e−

n2π2

L2 t

where

Cn =
2

L

∫ L

0
6 sin

(
9π

L
x

)
sin
(nπ
L
x
)
dx

=6

if n = 9 and 0 otherwise. Hence, the solution is given by

u(x, t) = 6 sin

(
9π

L
x

)
e
−81π2

L2 t
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Problem 18.6
Solve

ut = kuxx

subject to
ux(0, t) = ux(L, t) = 0

u(x, 0) =

{
0 0 ≤ x < L

2

1 L
2 ≤ x ≤ L

Solution.
The solution is given by

u(x, t) =
C0

2
+

∞∑
n=1

Cn cos
(nπ
L
x
)
e−

n2π2

L2 t

where

C0 =
2

L

∫ L

L
2

dx = 1

Cn =
2

L

∫ L

L
2

cos
(nπ
L
x
)
dx

=− 2

nπ
sin
(nπ

2

)
.

Thus, for n ∈ N we have

Cn =


− 2
nπ n = 1, 5, 9, · · ·
2
nπ n = 3, 7, 11, · · ·
0 n is even

So the solution is given by

u(x, t) =
1

2
+

∞∑
n=1

Cn cos
(nπ
L
x
)
e−

n2π2

L2 t

with the Cn defined as above

Problem 18.7
Solve

ut = kuxx

subject to
ux(0, t) = ux(L, t) = 0

u(x, 0) = 6 + 4 cos

(
3π

L
x

)
.
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Solution.
The solution is given by

u(x, t) =
C0

2
+
∞∑
n=1

Cn cos
(nπ
L
x
)
e−

n2π2

L2 t

where

C0 =
2

L

∫ L

0

(
6 + 4 cos

(
3π

L
x

))
dx = 12

Cn =
2

L

∫ L

0

(
6 + 4 cos

(
3π

L
x

))
cos
(nπ
L
x
)
dx

=4

if n = 3 and 0 otherwise. Thus, the solution is given by

u(x, t) = 6 + 4 cos

(
3π

L
x

)
e−

9π2

L2 t

Problem 18.8
Solve

ut = kuxx

subject to
ux(0, t) = ux(L, t) = 0

u(x, 0) = −3 cos

(
8π

L
x

)
.

Solution.
The solution is given by

u(x, t) =
C0

2
+
∞∑
n=1

Cn cos
(nπ
L
x
)
e−

n2π2

L2 t

where

C0 =
2

L

∫ L

0

[
−3 cos

(
8π

L
x

)]
dx = 0

Cn =
2

L

∫ L

0

(
−3 cos

(
8π

L
x

))
cos
(nπ
L
x
)
dx

=− 3

if n = 8 and 0 otherwise. Thus, the solution is given by

u(x, t) = −3 cos

(
8π

L
x

)
e−

64π2

L2 t
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Problem 18.9
Find the general solution u(x, t) of

ut = uxx − u, 0 < x < L, t > 0

ux(0, t) = 0 = ux(L, t), t > 0.

Briefly describe its behavior as t→∞.

Solution.
Using separation of variables and taking care to note of the boundary conditions,
we see that the general solution is

u(x, t) =
∞∑
n=0

an cos
(nπ
L
x
)
e
−
(

1+n2π2

L2

)
t
.

As t→∞, e−
(

1+n2π2

L2

)
t → 0 for each n ∈ N. Hence, u(x, t)→ 0

Problem 18.10 (Energy method)
Let u1 and u2 be two solutions to the Robin boundary value problem

ut = uxx − u, 0 < x < 1, t > 0

ux(0, t) = ux(1, t) = 0, t > 0

u(x, 0) = g(x), 0 < x < 1

Define w(x, t) = u1(x, t)− u2(x, t).
(a) Show that w satisfies the initial value problem

wt = wxx − w, 0 < x < 1, t > 0

w(x, 0) = 0, 0 < x < 1

(b) Define E(t) =
∫ 1

0 w
2(x, t)dx ≥ 0 for all t ≥ 0. Show that E′(t) ≤ 0. Hence,

0 ≤ E(t) ≤ E(0) for all t > 0.
(c) Show that E(t) = 0, w(x, t) = 0. Hence, conclude that u1 = u2.

Solution.
(a) Easy calculation.
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(b) We have

E′(t) =2

∫ 1

0
w(x, t)wt(x, t)dx

=2

∫ 1

0
w(x, t)[wxx(x, t)− w(x, t)]dx

= 2w(x, t)wx(x, t)|10 − 2

[∫ 1

0
w2
x(x, t)dx+

∫ 1

0
w2(x, t)dx

]
=− 2

[∫ 1

0
w2
x(x, t)dx+

∫ 1

0
w2(x, t)dx

]
≤ 0

Hence, E is decreasing, and 0 ≤ E(t) ≤ E(0) for all t > 0.
(c) Since w(x, 0) = 0, we must have E(0) = 0. Hence, E(t) = 0 for all t ≥ 0. This
implies that w(x, t) = 0 for all t > 0 and all 0 < x < 1. Therefore u1(x, t) = u2(x, t).
This means that the given problem has a unique solution

Problem 18.11
Consider the heat induction in a bar where the left end temperature is maintained
at 0, and the right end is perfectly insulated. We assume k = 1 and L = 1.
(a) Derive the boundary conditions of the temperature at the endpoints.
(b) Following the separation of variables approach, derive the ODEs for X and T.
(c) Consider the equation in X(x). What are the values of X(0) and X(1)? Show
that solutions of the form X(x) = sin

√
−λx, λ < 0 satisfy the ODE and one of

the boundary conditions. Can you choose a value of λ so that the other boundary
condition is also satisfied?

Solution.
(a) u(0, t) = 0 and ux(1, t) = 0.
(b) Let’s assume that the solution can be written in the form u(x, t) = X(x)T (t).
Substituting into the heat equation we obtain

X ′′

X
=

T ′

kT
.

Since X only depends on x and T only depends on t, we must have that there is
a constant λ such that

X′′

X = λ and T ′

kT = λ.

This gives the two ordinary differential equations

X ′′ − λX = 0 and T ′ − kλT = 0.
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As far as the boundary conditions, we have

u(0, t) = 0 = X(0)T (t) =⇒ X(0) = 0

and
ux(1, t) = 0 = X ′(1)T (t) =⇒ X ′(1) = 0.

Note that T is not the zero function for otherwise u ≡ 0 and this contradicts our
assumption that u is the non-trivial solution.
(c) We have X ′ =

√
−λ cos

√
−λx and X ′′ = λ sin

√
−λx. Thus, X ′′ − λX = 0.

MoreoverX(0) = 0.Now, X ′(1) = 0 implies cos
√
−λ = 0 or

√
−λ =

(
n− 1

2

)
π, n ∈

N. Hence, λ = −
(
n− 1

2

)2
π2

Problem 18.12
Using the method of separation of variables find the solution of the heat equation

ut = kuxx

satisfying the following boundary and initial conditions:
(a) u(0, t) = u(L, t) = 0, u(x, 0) = 6 sin

(
9πx
L

)
(b) u(0, t) = u(L, t) = 0, u(x, 0) = 3 sin

(
πx
L

)
− sin

(
3πx
L

)
Solution.
(a) Let’s assume that the solution can be written in the form u(x, t) = X(x)T (t).
Substituting into the heat equation we obtain

X ′′

X
=

T ′

kT
.

Since the LHS only depends on x and the RHS only depends on t, there must be
a constant λ such that

X′′

X = λ and T ′

kT = λ.

This gives the two ordinary differential equations

X ′′ − λX = 0 and T ′ − kλT = 0.

As far as the boundary conditions, we have

u(0, t) = 0 = X(0)T (t) =⇒ X(0) = 0

and
u(L, t) = 0 = X(L)T (t) =⇒ X(L) = 0.
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Note that T is not the zero function for otherwise u ≡ 0 and this contradicts our
assumption that u is the non-trivial solution.
Next, we consider the three cases of the sign of λ.

Case 1: λ = 0
In this case, X ′′ = 0. Solving this equation we find X(x) = ax+ b. Since X(0) = 0
we find b = 0. Since X(L) = 0 we find a = 0. Hence, X ≡ 0 and u(x, t) ≡ 0. That
is, u is the trivial solution.

Case 2: λ > 0
In this case, X(x) = Ae

√
λx + Be−

√
λx. Again, the conditions X(0) = X(L) = 0

imply A = B = 0 and hence the solution is the trivial solution.

Case 3: λ < 0
In this case, X(x) = A cos

√
−λx + B sin

√
−λx. The condition X(0) = 0 implies

A = 0. The condition X(L) = 0 implies B sin
√
−λL = 0. We must have B 6= 0

otherwise X(x) = 0 and this leads to the trivial solution. Since B 6= 0, we obtain

sin
√
−λL = 0 or

√
−λL = nπ where n ∈ N. Solving for λ we find λ = −n2π2

L2 .
Thus, we obtain infinitely many solutions given by

Xn(x) = An sin
nπ

L
x, n ∈ N.

Now, solving the equation

T ′ − λkT = 0

by the method of separation of variables we obtain

Tn(t) = Bne
−n

2π2

L2 kt, n ∈ N.

Hence, the functions

un(x, t) = Cn sin
(nπ
L
x
)
e−

n2π2

L2 kt, n ∈ N

satisfy ut = kuxx and the boundary conditions u(0, t) = u(L, t) = 0.
Now, in order for these solutions to satisfy the initial value condition u(x, 0) =
6 sin

(
9πx
L

)
, we invoke the superposition principle of linear PDE to write

u(x, t) =

∞∑
n=1

Cn sin
(nπ
L
x
)
e−

n2π2

L2 kt. (18.7)
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To determine the unknown constants Cn we use the initial condition u(x, 0) =
6 sin

(
9πx
L

)
in (18.7) to obtain

6 sin

(
9πx

L

)
=
∞∑
n=1

Cn sin
(nπ
L
x
)
.

By equating coefficients we find C9 = 6 and Cn = 0 if n 6= 9. Hence, the solution
to the problem is given by

u(x, t) = 6 sin

(
9πx

L

)
e−

81π2

L2 kt.

(b) Similar to (a), we find

u(x, t) = 3 sin
(π
L
x
)
e−

π2kt
L2 − sin

(
3π

L
x

)
e−

9π2kt
L2

Problem 18.13
Using the method of separation of variables find the solution of the heat equation

ut = kuxx

satisfying the following boundary and initial conditions:
(a) ux(0, t) = ux(L, t) = 0, u(x, 0) = cos

(
πx
L

)
+ 4 cos

(
5πx
L

)
.

(b) ux(0, t) = ux(L, t) = 0, u(x, 0) = 5.

Solution.
(a) See the Neumann boundary case of Section 18. The answer is

u(x, t) = cos
(πx
L

)
e−

pi2kt

L2 + 4 cos

(
5πx

L

)
e−

25pi2kt

L2 .

(b) The answer is
u(x, t) = 5

Problem 18.14
Find the solution of the following heat conduction partial differential equation

ut = 8uxx, 0 < x < 4π, t > 0

u(0, t) = u(4π, t) = 0, t > 0

u(x, 0) = 6 sinx, 0 < x < 4π.
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Solution.
The solution is given by the Fourier sine series

u(x, t) =

∞∑
n=1

cn sin
(nx

4

)
e−

n2

2
t.

Using the condition u(x, 0) = 6 sinx we find

6 sinx =
∞∑
n=1

cn sin
(nx

4

)
.

Thus, c4 = 6 and cn = 0 for n 6= 4. Finally,

u(x, t) = 6 sinxe−8t
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Solutions to Section 19

Problem 19.1
Solve 

uxx + uyy = 0
u(a, y) = f2(y),

u(0, y) = u(x, 0) = u(x, b) = 0.

Solution.
Assume that the solution can be written in the form u(x, y) = X(x)Y (y). Substi-
tuting in (19.1), we obtain

X ′′(x)Y (y) +X(x)Y ′′(y) = 0.

Assuming X(x)Y (y) is nonzero, dividing for X(x)Y (y) and subtracting Y ′′(y)
Y (y) from

both sides, we find:
X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
.

The left hand side is a function of x while the right hand side is a function of y.
This says that they must equal to a constant. That is,

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
= λ

where λ is a constant. This results in the following two ODEs

X ′′ − λX = 0 and Y ′′ + λY = 0.

As far as the boundary conditions, we have for all 0 ≤ x ≤ a and 0 ≤ y ≤ b

u(0, y) = 0 = X(0)Y (y) =⇒ X(0) = 0

u(a, y) = f2(y) = X(a)Y (y)

u(x, 0) = 0 = X(x)Y (0) =⇒ Y (0) = 0

u(x, b) = 0 = X(x)Y (b) =⇒ Y (b) = 0

Note that X and Y are not the zero functions for otherwise u ≡ 0 and this
contradicts our assumption that u is the non-trivial solution.
Consider the second equation: since Y ′′ + λY = 0 the solution depends on the
sign of λ. If λ = 0 then Y (y) = Ay + B. Now, the conditions Y (0) = Y (b) = 0
imply A = B = 0 and so u ≡ 0. So assume that λ 6= 0. If λ < 0 then Y (y) =

Ae
√
−λy + Be−

√
−λy. Now, the condition Y (0) = Y (b) = 0 imply A = B = 0 and
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hence the solution is the trivial solution. Hence, in order to have a nontrivial
solution we must have λ > 0. In this case,

Y (y) = A cos
√
λy +B sin

√
λy.

The condition Y (0) = 0 implies A = 0. The condition Y (b) = 0 implies B sin
√
λb =

0. We must have B 6= 0 otherwise Y (y) = 0 and this leads to the trivial solution.
Since B 6= 0, we obtain sin

√
λb = 0 or

√
λb = nπ where n ∈ N. Solving for λ we

find λn = n2π2

b2
. Thus, we obtain infinitely many solutions given by

Yn(y) = sin
(nπ
b
y
)
, n ∈ N.

Now, solving the equation

X ′′ − λX = 0, λ > 0

we obtain

Xn(x) = ane
√
λnx + bne

−
√
λnx = An cosh

(nπ
b
x
)

+Bn sinh
(nπ
b
x
)
, n ∈ N.

The boundary condition X(0) = 0 implies An = 0. Hence, the functions

un(x, y) = Bn sin
(nπ
b
y
)

sinh
(nπ
b
x
)
, n ∈ N

satisfy (19.1) and the boundary conditions u(0, y) = u(x, 0) = u(x, b) = 0.
Now, in order for these solutions to satisfy the boundary value condition u(a, y) =
f2(y), we invoke the superposition principle of linear PDE to write

u(x, y) =

∞∑
n=1

Bn sin
(nπ
b
y
)

sinh
(nπ
b
x
)
. (19.8)

To determine the unknown constants Bn we use the boundary condition u(a, y) =
f2(y) in (19.8) to obtain

f2(y) =

∞∑
n=1

(
Bn sinh

(nπ
b
a
))

sin
(nπ
b
y
)
.

Since the right-hand side is the Fourier sine series of f2 on the interval [0, b], the
coefficients Bn are given by

Bn =

[
2

b

∫ b

0
f2(y) sin

(nπ
b
y
)
dy

] [
sinh

(nπ
b
a
)]−1

. (19.9)

Thus, the solution to the Laplace’s equation is given by (19.8) with the B′ns cal-
culated from (19.9)
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Problem 19.2
Solve 

uxx + uyy = 0
u(x, 0) = g1(x),

u(0, y) = u(a, y) = u(x, b) = 0.

Solution.
Assume that the solution can be written in the form u(x, y) = X(x)Y (y). Substi-
tuting in (19.1), we obtain

X ′′(x)Y (y) +X(x)Y ′′(y) = 0.

Assuming X(x)Y (y) is nonzero, dividing for X(x)Y (y) and subtracting Y ′′(y)
Y (y) from

both sides, we find:
X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
.

The left hand side is a function of x while the right hand side is a function of y.
This says that they must equal to a constant. That is,

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
= λ

where λ is a constant. This results in the following two ODEs

X ′′ − λX = 0 and Y ′′ + λY = 0.

As far as the boundary conditions, we have for all 0 ≤ x ≤ a and 0 ≤ y ≤ b

u(0, y) = 0 = X(0)Y (y) =⇒ X(0) = 0

u(a, y) = 0 = X(a)Y (y) =⇒ X(a) = 0

u(x, 0) = g1(x) = X(x)Y (0)

u(x, b) = 0 = X(x)Y (b) =⇒ Y (b) = 0

Note that X and Y are not the zero functions for otherwise u ≡ 0 and this
contradicts our assumption that u is the non-trivial solution.
Consider the first equation: since X ′′−λX = 0 the solution depends on the sign of
λ. If λ = 0 then X(x) = Ax+B. Now, the conditions X(0) = X(a) = 0 imply A =

B = 0 and so u ≡ 0. So assume that λ 6= 0. If λ > 0 then X(x) = Ae
√
λx+Be−

√
λx.

Now, the conditions X(0) = X(a) = 0, λ 6= 0 imply A = B = 0 and hence the
solution is the trivial solution. Hence, in order to have a nontrivial solution we
must have λ < 0. In this case,

X(x) = A cos
√
−λx+B sin

√
−λx.
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The conditionX(0) = 0 impliesA = 0. The conditionX(a) = 0 impliesB sin
√
−λa =

0. We must have B 6= 0 otherwise X(x) = 0 and this leads to the trivial solution.
Since B 6= 0, we obtain sin

√
−λa = 0 or

√
−λa = nπ where n ∈ Z. Solving for λ

we find λn = −n2π2

a2
. Thus, we obtain infinitely many solutions given by

Xn(x) = sin
nπ

a
x, n ∈ N.

Now, solving the equation
Y ′′ + λY = 0

we obtain

Yn(y) = ane
√
−λny + bne

−
√
−λny = An cosh

√
−λny +Bn sinh

√
−λny, n ∈ N.

However, this is not really suited for dealing with the boundary condition Y (b) = 0.
So, let’s also notice that the following is also a solution.

Yn(y) = An cosh
(nπ
a

(y − b)
)

+Bn sinh
(nπ
a

(y − b)
)
, n ∈ N.

Using the boundary condition Y (b) = 0 we obtain An = 0 for all n ∈ N. Hence,
the functions

un(x, y) = Bn sin
nπ

a
x sinh

(nπ
a

(y − b)
)
, n ∈ N

satisfy (19.1) and the boundary conditions u(0, y) = u(a, y) = u(x, b) = 0.
Now, in order for these solutions to satisfy the boundary value condition u(x, 0) =
g1(x), we invoke the superposition principle of linear PDE to write

u(x, y) =
∞∑
n=1

Bn sin
nπ

a
x sinh

(nπ
a

(y − b)
)
. (19.10)

To determine the unknown constants Bn we use the boundary condition u(x, 0) =
g1(x) in (19.10) to obtain

g1(x) =
∞∑
n=1

(
Bn sinh−

(nπ
a
b
))

sin
nπ

a
x.

Since the right-hand side is the Fourier sine series of f on the interval [0, a], the
coefficients Bn are given by

Bn =

[
2

a

∫ a

0
g1(x) sin

(nπ
a
x
)
dx

]
[sinh

(
−nπ
a
b
)

]−1. (19.11)

Thus, the solution to the Laplace’s equation is given by (19.10) with the B′ns
calculated from (19.11)
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Problem 19.3
Solve 

uxx + uyy = 0
u(x, 0) = u(0, y) = 0,

u(1, y) = 2y, u(x, 1) = 3 sinπx+ 2x

where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Hint: Define U(x, y) = u(x, y)− 2xy.

Solution.
With the suggested hint we are supposed to solve the problem

Uxx + Uyy = 0
U(0, y) = U(1, y) = 0,

U(x, 0) = 0, U(x, 1) = 3 sinπx

The solution is given by

U(x, y) =

∞∑
n=1

Bn sinnπx sinhnπy

where

Bn =

[
2

∫ 1

0
3 sinπx sinnπxdx

]
[sinhnπ]−1.

Simple integration shows that A1 = 3
sinhπ and An = 0 otherwise. Hence,

U(x, y) =
3

sinhπ
sinπx sinhπy

and finally

u(x, y) = 2xy +
3

sinhπ
sinπx sinhπy

Problem 19.4
Show that u(x, y) = x2 − y2 and u(x, y) = 2xy are harmonic functions.

Solution.
If u(x, y) = x2 − y2 then uxx = 2 and uyy = −2 so that ∆u = 0. If u(x, y) = 2xy
then uxx = uyy = 0 so that ∆u = 0

Problem 19.5
Solve

uxx + uyy = 0, 0 ≤ x ≤ L, − H

2
≤ y ≤ H

2
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subject to

u(0, y) = u(L, y) = 0, − H

2
< y <

H

2

u(x,−H
2

) = f1(x), u(x,
H

2
) = f2(x), 0 ≤ x ≤ L.

Solution.
Assume that the solution can be written in the form u(x, y) = X(x)Y (y). Substi-
tuting in (19.1), we obtain

X ′′(x)Y (y) +X(x)Y ′′(y) = 0.

Assuming X(x)Y (y) is nonzero, dividing for X(x)Y (y) and subtracting Y ′′(y)
Y (y) from

both sides, we find:
X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
.

The left hand side is a function of x while the right hand side is a function of y.
This says that they must equal to a constant. That is,

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
= λ

where λ is a constant. This results in the following two ODEs

X ′′ − λX = 0 and Y ′′ + λY = 0.

As far as the boundary conditions, we have for all 0 ≤ x ≤ a and 0 ≤ y ≤ b

u(0, y) = 0 = X(0)Y (y) =⇒ X(0) = 0

u(L, y) = 0 = X(L)Y (y) =⇒ X(L) = 0

u(x,−H
2

) = f1(x) = X(x)Y (0)

u(x,
H

2
) = f2(x) = X(x)Y (b)

Note that X and Y are not the zero functions for otherwise u ≡ 0 and this
contradicts our assumption that u is the non-trivial solution.
Consider the first equation: since X ′′−λX = 0 the solution depends on the sign of
λ. If λ = 0 then X(x) = Ax+B. Now, the conditions X(0) = X(L) = 0 imply A =

B = 0 and so u ≡ 0. So assume that λ 6= 0. If λ > 0 then X(x) = Ae
√
λx+Be−

√
λx.

Now, the conditions X(0) = X(L) = 0, λ 6= 0 imply A = B = 0 and hence the
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solution is the trivial solution. Hence, in order to have a nontrivial solution we
must have λ < 0. In this case,

X(x) = A cos
√
−λx+B sin

√
−λx.

The conditionX(0) = 0 impliesA = 0. The conditionX(L) = 0 impliesB sin
√
−λL =

0. We must have B 6= 0 otherwise X(x) = 0 and this leads to the trivial solution.
Since B 6= 0, we obtain sin

√
−λL = 0 or

√
−λL = nπ where n ∈ Z. Solving for λ

we find λn = −n2π2

L2 . Thus, we obtain infinitely many solutions given by

Xn(x) = sin
nπ

L
x, n ∈ N.

Now, solving the equation
Y ′′ + λY = 0

we obtain

Yn(y) = ane
√
−λny + bne

−
√
−λny = An cosh

√
−λny +Bn sinh

√
−λny, n ∈ N.

Thus, the solution is given by

u(x, y) =
∞∑
n=1

[An cosh
(nπ
L
y
)

+Bn sinh
(nπ
L
y
)

] sin
nπ

L
x.

Now using the boundary condition u(x,−H
2 ) = f1(x) we find

f1(x) =
∞∑
n=1

[An cosh

(
−nπH

2L

)
+Bn sinh

(
−nπH

2L

)
] sin

nπ

L
x

where

An cosh

(
nπH

2L

)
−Bn sinh

(
−nπH

2L

)
=

2

L

∫ L

0
f1(x) sin

nπ

L
xdx.

Likewise, using the boundary condition u(x, H2 ) = f2(x) we find

f2(x) =
∞∑
n=1

[An cosh

(
nπH

2L

)
+Bn sinh

(
2
nπH

2L

)
] sin

nπ

L
x

where

An cosh

(
nπH

2L

)
+Bn sinh

(
nπH

2L

)
=

2

L

∫ L

0
f2(x) sin

nπ

L
xdx.
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Solving the above two equations in An and Bn we find

An =

[
2

L

∫ L

0
(f1(x) + f2(x)) sin

nπ

L
xdx

] [
cosh

(
nπH

2L

)]−1

and

Bn =

[
2

L

∫ L

0
(f2(x)− f1(x)) sin

nπ

L
xdx

] [
sinh

(
nπH

2L

)]−1

which completes the solution

Problem 19.6
Consider a complex valued function f(z) = u(x, y) + iv(x, y) where i =

√
−1. We

say that f is holomorphic or analytic if and only if f can be expressed as a
power series in z, i.e.

u(x, y) + iv(x, y) =
∞∑
n=0

anz
n =

∞∑
n=0

an(x+ iy)n

(a) By differentiating with respect to x and y show that

ux = vy and uy = −vx

These are known as the Cauchy-Riemann equations.
(b) Show that ∆u = 0 and ∆v = 0.

Solution.
(a) Differentiating term by term with respect to x we find

ux + ivx =
∞∑
n=0

nan(x+ iy)n−1.

Likewise, differentiating term by term with respect to y we find

uy + ivy =

∞∑
n=0

nani(x+ iy)n−1.

Multiply this equation by i we find

−iuy + vy =
∞∑
n=0

nan(x+ iy)n−1.

Hence, ux + ivx = vy − iuy which implies ux = vy and vx = −uy.
(b) We have uxx = (vy)x = (vx)y = −uyy so that ∆u = 0. Similar argument for
∆v = 0
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Problem 19.7
Show that Laplace’s equation in polar coordinates is given by

urr +
1

r
ur +

1

r2
uθθ = 0.

Solution.
Polar and Cartesian coordinates are related by the expressions x = r cos θ and
y = r sin θ where r = (x2 + y2)

1
2 and tan θ = y

x . Using the chain rule we obtain

ux =urrx + uθθx = cos θur −
sin θ

r
uθ

uxx =uxrrx + uxθθx

=

(
cos θurr +

sin θ

r2
uθ −

sin θ

r
urθ

)
cos θ

+

(
− sin θur + cos θurθ −

cos θ

r
uθ −

sin θ

r
uθθ

)(
−sin θ

r

)
uy =urry + uθθy = sin θur +

cos θ

r
uθ

uyy =uyrry + uyθθy

=

(
sin θurr −

cos θ

r2
uθ +

cos θ

r
urθ

)
sin θ

+

(
cos θur + sin θurθ −

sin θ

r
uθ +

cos θ

r
uθθ

)(
cos θ

r

)
Substituting these equations into (19.1) we obtain the dersired equation

Problem 19.8
Solve

uxx + uyy = 0, 0 ≤ x ≤ 2, 0 ≤ y ≤ 3

subject to

u(x, 0) = 0, u(x, 3) =
x

2

u(0, y) = sin

(
4π

3
y

)
, u(2, y) = 7.

Solution.
We have

u(x, y) = u1(x, y) + u2(x, y) + u3(x, y) + u4(x, y).
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The solution u1 to the problem

uxx + uyy = 0, 0 ≤ x ≤ 2, 0 ≤ y ≤ 3

subject to

u(x, 0) = u(x, 3) = u(0, y) = u(2, y) = 0

is the trivial solution, i.e. u1 ≡ 0. The solution u2 to the problem

uxx + uyy = 0, 0 ≤ x ≤ 2, 0 ≤ y ≤ 3

subject to

u(x, 0) = 0, u(x, 3) =
x

2

u(0, y) = u(2, y) = 0

is given by

u2(x, y) =
∞∑
n=1

an sin
nπ

2
x sinh

(nπ
2
y
)

where

an =

[∫ 2

0

x

2
sin
(nπ

2
x
)
dx

]
[sinh

(
3nπ

2

)
]−1

=− 2

nπ
· (−1)n

sinh
(

3nπ
2

)
Thus,

u2(x, y) =

∞∑
n=1

[
− 2

nπ
· (−1)n

sinh
(

3nπ
2

)] sin
nπ

2
x sinh

(nπ
2
y
)

The solution u3 to the problem

uxx + uyy = 0, 0 ≤ x ≤ 2, 0 ≤ y ≤ 3

subject to

u(x, 0) = u(x, 3) = 0

u(0, y) = sin

(
4π

3
y

)
, u(2, y) = 0

is given by

u3(x, y) =

∞∑
n=1

an sin
(nπ

3
y
)

sinh
(nπ

3
(x− 2)

)
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where

an =
2

3 sinh
(

2nπ
3

) ∫ 3

0
sin

(
4π

3
y

)
sin
(nπ

3
y
)
dy

Simple calculation shows that an = 0 if n 6= 4 and

a4 = − 1

sinh
(

8π
3

) .
Thus,

u3(x, y) =
1

sinh
(

8π
3

) sinh

(
4π(x− 2)

3

)
sin

(
4π

3
y

)
.

Now, the solution u3 to the problem

uxx + uyy = 0, 0 ≤ x ≤ 2, 0 ≤ y ≤ 3

subject to
u(x, 0) = u(x, 3) = 0

u(0, y) = 0, u(2, y) = 2

is given by

u4(x, y) =

∞∑
n=1

an sin
(nπ

3
y
)

sinh
(nπ

3
x
)
.

where

an =
2

3 sinh
(

2nπ
3

) ∫ 3

0
7 sin

(nπ
3
y
)
dy

=
14(1− (−1)n)

nπ sinh
(

2nπ
3

)
Hence,

u4(x, y) =

∞∑
n=1

14(1− (−1)n)

nπ sinh
(

2nπ
3

) sin
(nπ

3
y
)

sinh
(nπ

3
x
)

Problem 19.9
Solve

uxx + uyy = 0, 0 ≤ x ≤ L, 0 ≤ y ≤ H

subject to
uy(x, 0) = 0, u(x,H) = 0

u(0, y) = u(L, y) = 4 cos
( πy

2H

)
.
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Solution.
Let’s assume that the solution can be written in the form u(x, y) = X(x)Y (y).
Substituting in (21.1), we obtain

X ′′(x)Y (y) +X(x)Y ′′(y) = 0.

Assuming X(x)Y (y) is nonzero, dividing for X(x)Y (y) and subtracting Y ′′(y)
Y (y) from

both sides, we find:
X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
.

The left hand side is a function of x while the right hand side is a function of y.
This says that they must equal to a constant. That is,

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
= λ

where λ is a constant. This results in the following two ODEs

X ′′ − λX = 0 and Y ′′ + λY = 0.

As far as the boundary conditions, we have for all 0 ≤ x ≤ L and 0 ≤ y ≤ H

u(x,H) = 0 = X(x)Y (H) =⇒ Y (H) = 0

uy(x, 0) = 0 = X(x)Y ′(0) =⇒ Y ′(0) = 0

u(0, y) = 4 cos
( πy

2H

)
= X(0)Y (y)

u(L, y) = 4 cos
( πy

2H

)
= X(L)Y (y).

Note that X and Y are not the zero functions for otherwise u ≡ 0 and this
contradicts our assumption that u is the non-trivial solution.
Consider the second equation: since Y ′′ + λY = 0 the solution depends on the
sign of λ. If λ = 0 then Y (y) = Ay + B. Now, the conditions Y (H) = Y ′(0) = 0
imply A = B = 0 and so u ≡ 0. So assume that λ 6= 0. If λ < 0 then Y (y) =
A cosh

√
λy +B sinh

√
λy. Now, the condition Y ′(0) = 0, λ 6= 0 imply B = 0. The

condition Y (H) = 0 implies A cosh
√
λy = 0. Since coshx > 0 for all x then we

must have A = 0 and therefore u ≡ 0.
Hence, in order to have a nontrivial solution we must have λ > 0. In this case,

Y (y) = A cos
√
λy +B sin

√
λy.

The condition Y ′(0) = 0 impliesB = 0. The condition Y (H) = 0 impliesA cos
√
λH =

0. We must have A 6= 0 otherwise Y (y) = 0 and this leads to the trivial solution.
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Since A 6= 0, we obtain cos
√
λH = 0 or

√
λH =

(
n− 1

2

)
π where n ∈ N. Solving

for λ we find λn =
(
n− 1

2

)2 π2

H2 . Thus, we obtain infinitely many solutions given
by

Yn(x) = A cos

[(
n− 1

2

)
π

H
y

]
, n ∈ N.

Now, solving the equation

X ′′ − λX = 0, λ > 0

we obtain

Xn(x) = an sinh
√
λnx+ bn sinh

√
λn(x− L), n ∈ N.

Hence, the general solution is given by

u(x, t) =
∞∑
n=1

[An sinh
√
λnx+Bn sinh

√
λn(x− L)] cos

√
λny.

Using the boundary conditions u(0, y) = u(L, y) = 4 cos
( πy

2H

)
we obtain

∞∑
n=1

Bn sinh
√
λn(−L) cos

√
λny = 4 cos

( πy
2H

)
∞∑
n=1

An sinh
√
λnL cos

√
λny = 4 cos

( πy
2H

)
Comparing coefficients we find

−B1 sinh πL
2H = 4 and A1 sinh πL

2H = 4

and zero for n 6= 1. Hence,

u(x, y) =
4

sinh
(
πL
2H

) {sinh
( πx

2H

)
− sinh

(
π(x− L)

2H

)}
cos

πy

2H

Problem 19.10
Solve

uxx + uyy = 0, x > 0, 0 ≤ y ≤ H

subject to

u(0, y) = f(y), |u(x, 0)| <∞

uy(x, 0) = uy(x,H) = 0.
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Solution.
Let’s assume that the solution can be written in the form u(x, y) = X(x)Y (y).
Substituting in (19.1), we obtain

X ′′(x)Y (y) +X(x)Y ′′(y) = 0.

Assuming X(x)Y (y) is nonzero, dividing for X(x)Y (y) and subtracting Y ′′(y)
Y (y) from

both sides, we find:
X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
.

The left hand side is a function of x while the right hand side is a function of y.
This says that they must equal to a constant. That is,

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
= λ

where λ is a constant. This results in the following two ODEs

X ′′ − λX = 0 and Y ′′ + λY = 0.

As far as the boundary conditions, we have for all x > 0 and 0 ≤ y ≤ H

u(0, y) = f(y) = X(0)Y (y)

uy(x, 0) = 0 = X(x)Y ′(0) =⇒ Y ′(0) = 0

uy(x,H) = 0 = X(x)Y ′(H) =⇒ Y ′(H) = 0.

Note that X and Y are not the zero functions for otherwise u ≡ 0 and this
contradicts our assumption that u is the non-trivial solution.
Consider the second equation: since Y ′′+λY = 0 the solution depends on the sign
of λ. If λ = 0 then Y (y) = Ay +B. Now, the condition Y ′(H) = 0 implies A = 0.
Hence, u ≡ C. But clearly we are looking for a non-constant solution. So assume
that λ 6= 0. If λ < 0 then Y (y) = A cosh

√
λy + B sinh

√
λy. Now, the condition

Y ′(0) = 0, λ 6= 0 imply B = 0. The condition Y ′(H) = 0 implies A sinh
√
λH = 0

which implies that λ = 0.
Hence, in order to have a nontrivial solution we must have λ > 0. In this case,

Y (y) = A cos
√
λy +B sin

√
λy.

The condition Y ′(0) = 0 implies B = 0. The condition Y ′(H) = 0 implies
A sin

√
λH = 0. We must have A 6= 0 otherwise Y (y) = 0 and this leads to

the trivial solution. Since A 6= 0, we obtain sin
√
λH = 0 or

√
λH = nπ where
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n ∈ Z. Solving for λ we find λn = n2π2

H2 . Thus, we obtain infinitely many solutions
given by

Yn(x) = A cos
nπ

H
y, n ∈ N.

Now, solving the equation

X ′′ − λX = 0, λ > 0

we obtain

Xn(x) = ane
√
λnx + bne

−
√
λnx, n ∈ N.

Since the solution must be bounded, we must have an = 0. Hence, Xn(x) =

bne
−
√
λnx.

Hence, the general solution is given by

u(x, t) = A0 +
∞∑
n=1

Ane
−
√
λnx cos

√
λny.

Using the boundary conditions u(0, y) = f(y) we obtain

∞∑
n=0

An cos
√
λny = f(y)

This is the Fourier cosine series of f. Hence,

A0 =
1

H

∫ H

0
f(y)dy

An =
2

H

∫ H

0
f(y) cos

nπ

H
ydy

Problem 19.11
Consider Laplace’s equation inside a rectangle

uxx + uyy = 0, 0 ≤ x ≤ L, 0 ≤ y ≤ H

subject to the boundary conditions

u(0, y) = 0, u(L, y) = 0, u(x, 0)−uy(x, 0) = 0, u(x,H) = 20 sin
(πx
L

)
−5 sin

(
3πx

L

)
.

Find the solution u(x, y).
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Solution.
Look for solutions of the form u(x, y) = X(x)Y (y). Separation of variables gives

X ′′ + λX = 0, X(0) = X(L) = 0

and
Y ′′ − λY = 0, Y (0)− Y ′(0) = 0.

From the first set of equations find eigenvalues and eigenfunctions:

λn =
(nπ
L

)2
, Xn(x) = sin

(nπ
L
x
)
, n ∈ N.

Solving the problem for Y (y) we find

Yn(y) = An cosh
(nπ
L

)
y +Bn sinh

(nπ
L

)
y, n ∈ N.

Using the condition Y (0)− Y ′(0) = 0 we find An = Bn
(
nπ
L

)
and

Yn(y) = Bn

(nπ
L

cosh
(nπ
L

)
y + sinh

(nπ
L

)
y
)
, n ∈ N.

Using the superposition principle we find

u(x, t) =
∞∑
n=1

Bn

(nπ
L

cosh
(nπ
L

)
y + sinh

(nπ
L

)
y
)

sin
(nπ
L
x
)

Using the boundary condition

u(x,H) = 20 sin
(πx
L

)
− 5 sin

(
3πx

L

)
we find

u(x, y) =
20

Y1(H)
Y1(y) sin

(πx
L

)
− 5

Y3(H)
sin

(
3πx

L

)
Problem 19.12
Solve Laplace’e equation uxx + uyy = 0 in the rectangle 0 < x, y < 1 subject to
the conditions

u(0, y) = u(1, y) = 0

u(x, 0) = sin (2πx), ux(x, 0) = −2π sin (2πx).

Solution.
The answer is u(x, y) = sin (2πx)e−2πy (detail left to the reader)
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Problem 19.13
Find the solution to Laplace’s equation on the rectangle 0 < x < 1, 0 < y < 1 with
boundary conditions

u(x, 0) = 0, u(x, 1) = 1

ux(0, y) = ux(1, y) = 0.

Solution.
The answer is u(x, y) = y (detail left to the reader)

Problem 19.14
Solve Laplace’s equation on the rectangle 0 < x < a, 0 < y < b with the boundary
conditions

ux(0, y) = −a, ux(a, y) = 0

uy(x, 0) = b, uy(x, b) = 0.

Solution.
The answer is u(x, y) = 1

2x
2 − 1

2y
2 − axby + C where C is an arbitrary constant

(detail left to the reader)

Problem 19.15
Solve Laplace’s equation on the rectangle 0 < x < π, 0 < y < 2 with the boundary
conditions

u(0, y) = u(π, y) = 0

uy(x, 0) = 0, uy(x, 2) = 2 sin 3x− 5 sin 10x.

Solution.
The answer is

u(x, y) =
2 cosh 3y sin 3x

cosh 6
− 5 cosh 10y sin 10x

cosh 20
.

The details are left to the reader
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Solutions to Section 20

Problem 20.1
Solve the Laplace’s equation in the unit disk with u(1, θ) = 3 sin 5θ.

Solution.
We have

u(r, θ) = C0 +

∞∑
n=1

rn(An cosnθ +Bn sinnθ)

so that

u(1, θ) = C0 +

∞∑
n=1

(An cosnθ +Bn sinnθ) = 3 sin 5θ.

Comparing coefficients we find C0 = An = 0 for all n ∈ N and Bn = 0 for all n 6= 5
and B5 = 3. Thus, the solution to the problem is

u(r, θ) = 3r5 sin 5θ

Problem 20.2
Solve the Laplace’s equation in the upper half of the unit disk with u(1, θ) = π−θ.

Solution.
We have

u(r, θ) = C0 +
∞∑
n=1

rn(An cosnθ +Bn sinnθ)

where

C0 =
1

2π

∫ π

0
(π − θ)dθ =

π

4

An =
1

π

∫ π

0
(π − θ) cosnθdθ =

1− (−1)n

n2π

Bn =
1

π

∫ π

0
(π − θ) sinnθdθ =

1

n

Thus, the solution to the problem is

u(r, θ) =
π

4
+

∞∑
n=1

rn
[

1− (−1)n

n2π
cosnθ +

sinnθ

n

]
Problem 20.3
Solve the Laplace’s equation in the unit disk with ur(1, θ) = 2 cos 2θ.
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Solution.
We have

u(r, θ) = C0 +
∞∑
n=1

rn(An cosnθ +Bn sinnθ)

with

ur(1, θ) =
∞∑
n=1

n(An cosnθ +Bn sinnθ) = 2 cos 2θ.

Expanding this series and equating coefficients of like terms in both sides we find
An = 0 for n 6= 2 and A2 = 2. Moreocer, Bn = 0 for all n ∈ N. Hence, the solution
to the problem is

u(r, θ) = C0 + r2 cos 2θ

Problem 20.4
Consider

u(r, θ) = C0 +
∞∑
n=1

rn(An cosnθ +Bn sinnθ)

with

C0 =
a0

2
=

1

2π

∫ 2π

0
f(φ)dφ

An =
an
an

=
1

anπ

∫ 2π

0
f(φ) cosnφdφ, n = 1, 2, · · ·

Bn =
bn
an

=
1

anπ

∫ 2π

0
f(φ) sinnφdφ, n = 1, 2, · · ·

Using the trigonometric identity

cos a cos b+ sin a sin b = cos (a− b)

show that

u(r, θ) =
1

2π

∫ 2π

0
f(φ)

[
1 + 2

∞∑
n=1

(r
a

)n
cosn(θ − φ)

]
dφ.

Solution.
Substituting C0, An, and Bn into the right-hand side of u(r, θ) we find

u(r, θ) =
1

2π

∫ 2π

0
f(φ)dφ+

∞∑
n=1

rn

πan

∫ 2π

0
f(φ) [cosnφ cosnθ + sinnφ sinnθ] dφ

=
1

2π

∫ 2π

0
f(φ)

[
1 + 2

∞∑
n=1

(r
a

)n
cosn(θ − φ)

]
dφ
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Problem 20.5
(a) Using Euler’s formula from complex analysis eit = cos t+ i sin t show that

cos t =
1

2
(eit + e−it),

where i =
√
−1.

(b) Show that

1 + 2
∞∑
n=1

(r
a

)n
cosn(θ − φ) = 1 +

∞∑
n=1

(r
a

)n
ein(θ−φ) +

∞∑
n=1

(r
a

)n
e−in(θ−φ).

(c) Let q1 = r
ae
i(θ−φ) = r

a [cos (θ − φ)+i sin (θ − φ)] and q2 = r
ae
−i(θ−φ) = r

a [cos (θ − φ)−
i sin (θ − φ)]. It is defined in complex analysis that the absolute value of a complex

number z = x + iy is given by |z| = (x2 + y2)
1
2 . Using these concepts, show that

|q1| < 1 and |q2| < 1.

Solution.
(a) We have eit = cos t + i sin t and e−it = cos t − i sin t. The result follows by
adding these two equalities and dividing by 2.
(b) This follows from the fact that

cosn(θ − φ) =
1

2
(ein(θ−φ) + e−in(θ−φ)).

(c) We have |q1| = r
a

√
cos (θ − φ)2 + sin (θ − φ)2 = r

a < 1 since 0 < r < a. A

similar argument shows that |q2| < 1

Problem 20.6
(a)Show that

∞∑
n=1

(r
a

)n
ein(θ−φ) =

rei(θ−φ)

a− rei(θ−φ)

and
∞∑
n=1

(r
a

)n
e−in(θ−φ) =

re−i(θ−φ)

a− re−i(θ−φ)

Hint: Each sum is a geoemtric series with a ratio less than 1 in absolute value so
that these series converges.
(b) Show that

1 + 2
∞∑
n=1

(r
a

)n
cosn(θ − φ) =

a2 − r2

a2 − 2ar cos (θ − φ) + r2
.
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Solution.
(a) The first sum is a convergent geometric series with ratio q1 and sum

∞∑
n=1

(r
a

)n
ein(θ−φ) =

r
ae
i(θ−φ)

1− q1

=
rei(θ−φ)

a− rei(θ−φ)

Similar argument for the second sum.
(b) We have

1 + 2
∞∑
n=1

(r
a

)n
cosn(θ − φ) =1 +

rei(θ−φ)

a− rei(θ−φ)

+
re−i(θ−φ)

a− re−i(θ−φ)

=1 +
r

ae−i(θ−φ) − r
+

r

ae−i(θ−φ) − r
=1 +

r

a cos (θ − φ)− r − ai sin (θ − φ)

+
r

a cos (θ − φ)− r + ai sin (θ − φ)

=1 +
r[a cos (θ − φ)− r + ai sin (θ − φ)]

a2 + 2ar cos (θ − φ) + r2

+
r[a cos (θ − φ)− r − ai sin (θ − φ)]

a2 − 2ar cos (θ − φ) + r2

=
a2 − r2

a2 − 2ar cos (θ − φ) + r2

Problem 20.7
Show that

u(r, θ) =
a2 − r2

2π

∫ 2π

0

f(φ)

a2 − 2ar cos (θ − φ) + r2
dφ.

This is known as the Poisson formula in polar coordinates.
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Solution.
We have

u(r, θ) =
1

2π

∫ 2π

0
f(φ)

[
1 + 2

∞∑
n=1

(r
a

)n
cosn(θ − φ)

]
dφ

=
1

2π

∫ 2π

0
f(φ)

a2 − r2

a2 − 2ar cos (θ − φ) + r2
dφ

=
a2 − r2

2π

∫ 2π

0

f(φ)

a2 − 2ar cos (θ − φ) + r2
dφ

Problem 20.8
Solve

uxx + uyy = 0, x2 + y2 < 1

subject to

u(1, θ) = θ, − π ≤ θ ≤ π.

Solution.
We have

C0 =
1

2π

∫ π

−π
θdθ = 0

An =
1

π

∫ π

−π
θ cosnθdθ = 0

Bn =
1

π

∫ π

−π
θ sinnθdθ = 2(−1)n+1

Hence,

u(r, θ) = 2

∞∑
n=1

(−1)n+1rn
sinnθ

n

Problem 20.9
The vibrations of a symmetric circular membrane where the displacement u(r, t)
depends on r and t only can be describe by the one-dimensional wave equation in
polar coordinates

utt = c2(urr +
1

r
ur), 0 < r < a, t > 0

with initial condition

u(a, t) = 0, t > 0
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and boundary conditions

u(r, 0) = f(r), ut(r, 0) = g(r), 0 < r < a.

(a) Show that the assumption u(r, t) = R(r)T (t) leads to the equation

1

c2

T ′′

T
=

1

R
R′′ +

1

r

R′

R
= λ.

(b) Show that λ < 0.

Solution.
(a) Differentiating u(r, t) = R(r)T (t) with respect to r and t we find

utt = RT ′′ and ur = R′T and urr = R′′T.

Substituting these into the given PDE we find

RT ′′ = c2

(
R′′T +

1

r
R′T

)
Dividing both sides by c2RT we find

1

c2

T ′′

T
=
R′′

R
+

1

r

R′

R
.

Since the RHS of the above equation depends on r only, and the LHS depends on
t only, they must equal to a constant λ.
(b) The given boundary conditions imply

u(a, t) = 0 = R(a)T (t) =⇒ R(a) = 0

u(r, 0) = f(r) = R(r)T (0)

ut(r, 0) = g(r) = R(r)T ′(0).

If λ = 0 then R′′ + 1
rR
′ = 0 and this implies R(r) = C ln r. Using the condition

R(a) = 0 we find C = 0 so that R(r) = 0 and hence u ≡ 0. If λ > 0 then
T ′′ − λc2T = 0. This equation has the solution

T (t) = A cos (c
√
λt) +B sin (c

√
λt).

The condition u(r, 0) = f(r) implies that A = f(r) which is not possible. Hence,
λ < 0
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Problem 20.10
Cartesian coordinates and cylindrical coordinates are shown in Figure 22.1 below.

Figure 20.1

(a) Show that x = r cos θ, y = r sin θ, z = z.
(b) Show that

uxx + uyy + uzz = urr +
1

r
ur +

1

r2
uθθ + uzz.

Solution.
(a) Follows from the figure and the definitions of trigonometric functions in a right
triangle.
(b) The result follows from Equation (20.1)

Problem 20.11
An important result about harmonic functions is the so-called the maximum
principle which states: Any harmonic function u(x, y) defined in a domain Ω
satisfies the inequality

min
(x,y)∈∂Ω

≤ u(x, y) ≤ max
(x,y)∈∂Ω

, ∀(x, y) ∈ Ω

where ∂Ω denotes the boundary of Ω.
Let u be harmonic in Ω = {(x, y) : x2 + y2 < 1} and satisfies u(x, y) = 2 − x for
all (x, y) ∈ ∂Ω. Show that u(x, y) > 0 for all (x, y) ∈ Ω.
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Solution.
By the maximum principle we have

min
(x,y)∈∂Ω

u(x, y) ≤ u(x, y) ≤ max
(x,y)∈∂Ω

u(x, y), ∀(x, y) ∈ Ω

But min(x,y)∈∂Ω u(x, y) = u(1, 0) = 1 and max(x,y)∈∂Ω u(x, y) = u(−1, 0) = 3.
Hence,

1 ≤ u(x, y) ≤ 3

and this implies that u(x, y) > 0 for all (x, y) ∈ Ω

Problem 20.12
Let u be harmonic in Ω = {(x, y) : x2 + y2 < 1} and satisfies u(x, y) = 1 + 3x for
all (x, y) ∈ ∂Ω. Determine
(i) max(x,y)∈Ω u(x, y)
(ii) min(x,y)∈Ω u(x, y)
without solving ∆u = 0.

Solution.
(i) The solution is not constant because it is not constant on the boundary. There-
fore, the maximum is achieved on the boundary. The maximum value of the
boundary data is u(1, 0) = 4, which is therefore also the maximum value of the
solution.
(ii) Similar to above, the minimum is achieved on the boundary, and is u(−1, 0) =
−2

Problem 20.13
Let u1(x, y) and u2(x, y) be harmonic functions on a smooth domain Ω such that

u1|∂Ω = g1(x, y) and u2|∂Ω = g3(x, y)

where g1 and g2 are continuous functions satisfying

max
(x,y)∈∂Ω

g1(x, y) < min
(x,y)∈∂Ω

g1(x, y).

Prove that u1(x, y) < u2(x, y) for all (x, y) ∈ Ω ∪ ∂Ω.

Solution.
Using the maximum principle and the hypothesis on g1 and g2, for all (x, y) ∈
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Ω ∪ ∂Ω we have

min
(x,y)∈∂Ω

u1(x, y) = min
(x,y)∈∂Ω

g1(x, y)

≤u1(x, y) ≤ max
(x,y)∈∂Ω

u1(x, y)

= max
(x,y)∈∂Ω

g1(x, y) < max
(x,y)∈∂Ω

g2(x, y)

≤ min
(x,y)∈∂Ω

g1(x, y) = min
(x,y)∈∂Ω

u2(x, y)

≤u2(x, y) ≤ max
(x,y)∈∂Ω

u2(x, y) = max
(x,y)∈∂Ω

g2(x, y)

Problem 20.14
Show that rn cos (nθ) and rn sin (nθ) satisfy Laplace’s equation in polar coordi-
nates.

Solution.
We have

∆(rn cos (nθ)) =
∂2

∂r2
(rn cos (nθ)) +

1

r

∂

∂r
(rn cos (nθ)) +

1

r2

∂2

∂θ2
(rn cos (nθ))

=n(n− 1)rn−2 cos (nθ) + nrn−2 cos (nθ)− rn−2n2 cos (nθ) = 0

Likewise, ∆(rn sin (nθ)) = 0

Problem 20.15
Solve the Dirichlet problem

∆u = 0, 0 ≤ r < a, − π ≤ θ ≤ π

u(a, θ) = sin2 θ.

Solution.
A solution has the form

u(r, θ) =
a0

2
+

∞∑
n=1

(anr
n cosnθ + bnr

n sinnθ)

where

a0 =
1

π

∫ π

−π
sin2 θdθ = 1

an =
1

πan

∫ π

−π
sin2 θ cosnθdθ = 0
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if n 6= 2. If n = 2 we find a2 = − 1
2a2
. On the other hand, since sin2 θ sinnθ is odd

we have bn = 0 for all n ∈ N. Thus, solution to the Dirichlet problem is

u(r, θ) =
1

2
− r2

2a2
cos 2θ

Problem 20.16
Solve Laplace’s equation

uxx + uyy = 0

outside a circular disk (r ≥ a) subject to the boundary condition

u(a, θ) = ln 2 + 4 cos 3θ.

You may assume that the solution remains bounded as r →∞.

Solution.
Solving the problem the way we did for the inside the circle we find

Θn(θ) = An cosnθ +Bn sinnθ, n = 0, 1, 2, · · ·

and
R0 = C0 ln r +D0, Rn = Cnr

n +Dnr
−n, n ∈ N.

We use the condition that the solution remains bounded as r →∞ (that is Cn = 0)
we find

u(r, θ) = ln 2 + 4
(a
r

)3
cos 3θ
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Solutions to Section 21

Problem 21.1
Determine whether the integral

∫∞
0

1
1+t2

dt converges. If the integral converges,
give its value.

Solution.
We have

∫ ∞
0

1

1 + t2
dt = lim

A→∞

∫ A

0

1

1 + t2
dt = lim

A→∞
[arctan t]A0

= lim
A→∞

arctanA =
π

2

So the integral is convergent

Problem 21.2
Determine whether the integral

∫∞
0

t
1+t2

dt converges. If the integral converges,
give its value.

Solution.
We have ∫ ∞

0

t

1 + t2
dt =

1

2
lim
A→∞

∫ A

0

2t

1 + t2
dt =

1

2
lim
A→∞

[
ln (1 + t2)

]A
0

=
1

2
lim
A→∞

ln (1 +A2) =∞

Hence, the integral is divergent

Problem 21.3
Determine whether the integral

∫∞
0 e−t cos (e−t)dt converges. If the integral con-

verges, give its value.

Solution.
Using substitution we find

∫ ∞
0

e−t cos (e−t)dt = lim
A→∞

∫ e−A

1
− cosudu

= lim
A→∞

[− sinu]e
−A

1 = lim
A→∞

[sin 1− sin (e−A)]

= sin 1

Hence, the integral is convergent
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Problem 21.4
Using the definition, find L[e3t], if it exists. If the Laplace transform exists then
find the domain of F (s).

Solution.
We have

L[e3t = lim
A→∞

∫ A

0
e3te−stdt = lim

A→∞
et(3−s)dt

= lim
A→∞

[
et(3−s)

3− s

]A
0

= lim
A→∞

[
eA(3−s)

3− s
− 1

3− s

]
=

1

s− 3
, s > 3

Problem 21.5
Using the definition, find L[t− 5], if it exists. If the Laplace transform exists then
find the domain of F (s).

Solution.
Using integration by parts we find

L[t− 5] = lim
A→∞

∫ A

0
(t− 5)e−stdt = lim

A→∞

{[
−(t− 5)e−st

s

]A
0

+
1

s

∫ A

0
e−stdt

}

= lim
A→∞

{
−(A− 5)e−sA + 5

s
−
[
e−st

s2

]A
0

}
=

1

s2
− 5

s
, s > 0

Problem 21.6
Using the definition, find L[e(t−1)2 ], if it exists. If the Laplace transform exists
then find the domain of F (s).

Solution.
We have ∫ ∞

0
e(t−1)2e−stdt =

∫ ∞
0

e(t−1)2−stdt.
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Since limt→∞(t − 1)2 − st = limt→∞ t
2
(

1− (2+s)
t + 1

t2

)
= ∞, for any fixed s we

can choose a positive C such that (t− 1)2− st ≥ 0. In this case, e(t−1)2−st ≥ 1 and
this implies that

∫∞
0 e(t−1)2−stdt ≥

∫∞
C dt. The integral on the right is divergent

so that the integral on the left is also divergent by the comparison theorem of
improper integrals. Hence, f(t) = e(t−1)2 does not have a Laplace transform

Problem 21.7
Using the definition, find L[(t − 2)2], if it exists. If the Laplace transform exists
then find the domain of F (s).

Solution.
We have

L[(t− 2)2] = lim
T→∞

(t− 2)2e−stdt.

Using integration by parts with u′ = e−st and v = (t− 2)2 we find∫ T

0
(t− 2)2e−stdt =−

[
(t− 2)2e−st

s

]T
0

+
2

s

∫ T

0
(t− 2)e−stdt

=
4

s
− (T − 2)2e−sT

s
+

2

s

∫ T

0
(t− 2)e−stdt.

Thus,

lim
T→∞

∫ T

0
(t− 2)2e−stdt =

4

s
+

2

s
lim
T→∞

∫ T

0
(t− 2)e−stdt

Using by parts with u′ = e−st and v = t− 2 we find∫ T

0
(t− 2)e−stdt =

[
−(t− 2)e−st

s
+

1

s2
e−st

]T
0

.

Letting T →∞ in the above expression we find

lim
T→∞

∫ T

0
(t− 2)e−stdt = −2

s
+

1

s2
, s > 0.

Hence,

F (s) =
4

s
+

2

s

(
−2

s
+

1

s2

)
=

4

s
− 4

s2
+

2

s3
, s > 0

Problem 21.8
Using the definition, find L[f(t)], if it exists. If the Laplace transform exists then
find the domain of F (s).

f(t) =

{
0, 0 ≤ t < 1

t− 1, t ≥ 1
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Solution.
We have

L[f(t)] = lim
T→∞

∫ T

1
(t− 1)e−stdt.

Using integration by parts with u′ = e−st and v = t− 1 we find

lim
T→∞

∫ T

1
(t− 1)e−stdt = lim

T→∞

[
−(t− 1)e−st

s
− 1

s2
e−st

]T
1

=
e−s

s2
, s > 0

Problem 21.9
Using the definition, find L[f(t)], if it exists. If the Laplace transform exists then
find the domain of F (s).

f(t) =


0, 0 ≤ t < 1

t− 1, 1 ≤ t < 2
0, t ≥ 2.

Solution.
We have

L[f(t)] =

∫ 2

1
(t− 1)e−stdt =

[
−(t− 1)e−st

s
− 1

s2
e−st

]2

1

=− e−2s

s
+

1

s2
(e−s − e−2s), s 6= 0

Problem 21.10
Let n be a positive integer. Using integration by parts establish the reduction
formula ∫

tne−stdt = − t
ne−st

s
+
n

s

∫
tn−1e−stdt, s > 0.

Solution.
Let u′ = e−st and v = tn. Then u = − e−st

s and v′ = ntn−1. Hence,∫
tne−stdt = − t

ne−st

s
+
n

s

∫
tn−1e−stdt, s > 0

Problem 21.11
For s > 0 and n a positive integer evaluate the limits

(a) limt→0 t
ne−st (b) limt→∞ t

ne−st
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Solution.
(a) limt→0 t

ne−st = limt→0
tn

est = 0
1 = 0.

(b) Using L’Hôpital’s rule repeatedly we find

lim
t→∞

tne−st = · · · = lim
t→∞

n!

snest
= 0

Problem 21.12
Use the linearity property of Laplace transform to find L[5e−7t + t + 2e2t]. Find
the domain of F (s).

Solution.
We have L[e−7t] = 1

s+7 , s > −7, L[t] = 1
s2
, s > 0, and L[e2t] = 1

s−2 , s > 2. Hence,

L[5e−7t + t+ 2e2t] = 5L[e−7t] + L[t] + 2L[e2t] =
5

s+ 7
+

1

s2
+

2

s− 2
, s > 2

Problem 21.13
Find L−1

(
3
s−2

)
.

Solution.
Since L

(
1
s−a

)
= 1

s−a , s > a then

L−1

(
3

s− 2

)
= 3L−1

(
1

s− 2

)
= 3e2t, t ≥ 0

Problem 21.14
Find L−1

(
− 2
s2

+ 1
s+1

)
.

Solution.
Since L[t] = 1

s2
, s > 0 and L

(
1
s−a

)
= 1

s−a , s > a, we find

L−1
(
− 2
s2

+ 1
s+1

)
= −2L−1

(
1
s2

)
+ L−1

(
1
s+1

)
= −2t+ e−t, t ≥ 0

Problem 21.15
Find L−1

(
2
s+2 + 2

s−2

)
.

Solution.
We have

L−1

(
2

s+ 2
+

2

s− 2

)
= 2L−1

(
1

s+ 2

)
+ 2L−1

(
1

s− 2

)
= 2(e−2t + e2t), t ≥ 0
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Problem 21.16
Use Table L to find L[2et + 5].

Solution.

L[2et + 5] = 2L[et] + 5L[1] =
2

s− 1
+

5

s
, s > 1

Problem 21.17
Use Table L to find L[e3t−3H(t− 1)].

Solution.

L[e3t−3H(t− 1)] = L[e3(t−1)H(t− 1)] = e−sL[e3t] =
e−s

s− 3
, s > 3

Problem 21.18
Use Table L to find L[sin2 ωt].

Solution.

L[sin2 ωt] = L[
1− cos 2ωt

2
] =

1

2
(L[1]−L[cos 2ωt]) =

1

2

(
1

s
− s2

s2 + 4ω2

)
, s > 0

Problem 21.19
Use Table L to find L[sin 3t cos 3t].

Solution.

L[sin 3t cos 3t] = L[
sin 6t

2
=

1

2
L[sin 6t] =

3

s2 + 26
, s > 0

Problem 21.20
Use Table L to find L[e2t cos 3t].

Solution.

L[e2t cos 3t] =
s− 3

(s− 3)2 + 9
, s > 3

Problem 21.21
Use Table L to find L[e4t(t2 + 3t+ 5)].
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Solution.

L[e4t(t2+3t+5)] = L[e4tt2]+3L[e4tt]+5L[1] =
2

(s− 4)3
+

3

(s− 4)2
+

5

s− 4
, s > 4

Problem 21.22
Use Table L to find L−1[ 10

s2+25
+ 4

s−3 ].

Solution.

L−1[
10

s2 + 25
+

4

s− 3
] = 2L−1[

5

s2 + 25
] + 4L−1[

1

s− 3
] = 2 sin 5t+ 4e3t, t ≥ 0

Problem 21.23
Use Table L to find L−1[ 5

(s−3)4
].

Solution.

L−1[
5

(s− 3)4
] =

5

6
L−1[

3!

(s− 3)4
] =

5

6
e3tt3, t ≥ 0

Problem 21.24
Use Table L to find L−1[ e

−2s

s−9 ].

Solution.

L−1[
e−2s

s− 9
] = e9(t−2)H(t− 2) =

{
0, 0 ≤ t < 2

e9(t−2), t ≥ 2

Problem 21.25
Using the partial fraction decomposition find L−1

[
12

(s−3)(s+1)

]
.

Solution.
Write

12

(s− 3)(s+ 1)
=

A

s− 3
+

B

s+ 1

Multiply both sides of this equation by s− 3 and cancel common factors to obtain

12

s+ 1
= A+

B(s− 3)

s+ 1
.
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Now, find A by setting s = 3 to obtain A = 3. Similarly, by multiplying both sides
by s+1 and then setting s = −1 in the resulting equation leads to B = −3. Hence,

12

(s− 3)(s+ 1)
= 3

(
1

s− 3
− 1

s+ 1

)
Finally,

L−1
[

12
(s−3)(s+1)

]
= 3L−1

[
1
s−3

]
− 3L−1

[
1
s+1

]
= 3e3t − 3e−t, t ≥ 0

Problem 21.26
Using the partial fraction decomposition find L−1

[
24e−5s

s2−9

]
.

Solution.
Write

24

(s− 3)(s+ 3)
=

A

s− 3
+

B

s+ 3

Multiply both sides of this equation by s− 3 and cancel common factors to obtain

24

s+ 3
= A+

B(s− 3)

s+ 3
.

Now, find A by setting s = 3 to obtain A = 4. Similarly, by multiplying both sides
by s+3 and then setting s = −3 in the resulting equation leads to B = −4. Hence,

24

(s− 3)(s+ 3)
= 4

(
1

s− 3
− 1

s+ 3

)
Finally,

L−1
[

24e−5s

(s−3)(s+3)

]
= 4L−1

[
e−5s

s−3

]
− 4L−1

[
e−5s

s+3

]
= 4[e3(t−5) − e−3(t−5)]H(t− 5), t ≥ 0

Problem 21.27
Use Laplace transform technique to solve the initial value problem

y′ + 4y = g(t), y(0) = 2

where

g(t) =


0, 0 ≤ t < 1
12, 1 ≤ t < 3
0, t ≥ 3
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Solution.
Note first that g(t) = 12[H(t− 1)−H(t− 3)] so that

L[g(t)] = 12L[H(t− 1)]− 12L[H(t− 3)] =
12(e−s − e−3s

s
, s > 0.

Now taking the Laplace transform of the DE and using linearity we find

L[y′] + 4L[y] = L[g(t)].

But L[y′] = sL[y]− y(0) = sL[y]− 2. Letting L[y] = Y (s) we obtain

sY (s)− 2 + 4Y (s) = 12
e−s − e−3s

s
.

Solving for Y (s) we find

Y (s) =
2

s+ 4
+ 12

e−s − e−3s

s(s+ 4)
.

But

L−1

[
2

s+ 4

]
= 2e−4t

and

L−1

[
12
e−s − e−3s

s(s+ 4)

]
=3L−1

[
(e−s − e−3s)

(
1

s
− 1

s+ 4

)]
=3L−1

[
e−s

s

]
− 3L−1

[
e−3s

s

]
− 3L−1

[
e−s

s+ 4

]
+ 3L−1

[
e−3s

s+ 4

]
=3H(t− 1)− 3H(t− 3)− 3e−4(t−1)H(t− 1) + 3e−4(t−3)H(t− 3)

Hence,

y(t) = 2e−4t+3[H(t−1)−H(t−3)]−3[e−4(t−1)H(t−1)−e−4(t−3)H(t−3)], t ≥ 0

Problem 21.28
Use Laplace transform technique to solve the initial value problem

y′′ − 4y = e3t, y(0) = 0, y′(0) = 0.

Solution.
Taking the Laplace transform of the DE and using linearity we find

L[y′′]− 4L[y] = L[e3t].
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But L[y′′] = s2L[y]− sy(0)− y′(0) = s2L[y]. Letting L[y] = Y (s) we obtain

s2Y (s)− 4Y (s) =
1

s− 3
.

Solving for Y (s) we find

Y (s) =
1

(s− 3)(s− 2)(s+ 2)
.

Using partial fraction decomposition

1

(s− 3)(s− 2)(s+ 2)
=

A

s− 3
+

B

s+ 2
+

C

s− 2

we find A = 1
5 , B = 1

20 , and C = −1
4 . Thus,

y(t) =L−1[
1

(s− 3)(s− 2)(s+ 2)
=

1

5
L−1

[
1

s− 3

]
+

1

20
L−1

[
1

s+ 2

]
− 1

4
L−1

[
1

s− 2

]
=

1

5
e3t +

1

20
e−2t − 1

4
e2t, t ≥ 0

Problem 21.29
Consider the functions f(t) = et and g(t) = e−2t, t ≥ 0. Compute f ∗ g in two
different ways.
(a) By directly evaluating the integral.
(b) By computing L−1[F (s)G(s)] where F (s) = L[f(t)] and G(s) = L[g(t)].

Solution.
(a) We have

(f ∗ g)(t) =

∫ t

0
f(t− s)g(s)ds =

∫ t

0
e(t−s)e−2sds

=et
∫ t

0
e−3sds =

[
e(t−3s)

−3

]t
0

=
et − e−2t

3

(b) Since F (s) = L[et] = 1
s−1 and G(s) = L[e−2t] = 1

s+2 we find (f ∗ g)(t) =

L−1[F (s)G(s)] = L−1[ 1
(s−1)(s−2) ]. Using partial fractions decomposition we find

1

(s− 1)(s+ 2)
=

1

3
(

1

s− 1
− 1

s+ 2
).
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Thus,

(f ∗ g)(t) = L−1[F (s)G(s)] =
1

3
(L−1[

1

s− 1
]− L−1[

1

s+ 2
] =

et − e−2t

3

Problem 21.30
Consider the functions f(t) = sin t and g(t) = cos t, t ≥ 0. Compute f ∗ g in two
different ways.
(a) By directly evaluating the integral.
(b) By computing L−1[F (s)G(s)] where F (s) = L[f(t)] and G(s) = L[g(t)].

Solution.
(a) Using the trigonometric identity 2 sin p cos q = sin (p+ q) + sin (p− q) we find
that 2 sin (t− s) cos s = sin t+ sin (t− 2s). Hence,

(f ∗ g)(t) =

∫ t

0
f(t− s)g(s)ds =

∫ t

0
sin (t− s) cos sds

=
1

2
[

∫ t

0
sin tds+

∫ t

0
sin (t− 2s)ds]

=
t sin t

2
+

1

4

∫ t

−t
sinudu

=
t sin t

2

(b) Since F (s) = L[sin t] = 1
s2+1

and G(s) = L[cos t] = s
s2+1

we find

(f ∗ g)(t) = L−1[F (s)G(s)] = L−1[
s

(s2 + 1)2
] =

t

2
sin t

Problem 21.31
Compute t ∗ t ∗ t.

Solution.
By the convolution theorem we have L[t ∗ t ∗ t] = (L[t])3 =

(
1
s2

)3
= 1

s6
. Hence,

t ∗ t ∗ t = L−1
[

1
s6

]
= t5

5! = t5

120

Problem 21.32
Compute H(t) ∗ e−t ∗ e−2t.
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Solution.
By the convolution theorem we have L[H(t) ∗ e−t ∗ e−2t] = L[H(t)]L[e−t]L[e−2t] =
1
s ·

1
s+1 ·

1
s+2 . Using the partial fractions decomposition we can write

1

s(s+ 1)(s+ 2)
=

1

2s
− 1

s+ 1
+

1

2
· 1

s+ 2
.

Hence,

H(t) ∗ e−t ∗ e−2t =
1

2
− e−t +

1

2
e−2t

Problem 21.33
Compute t ∗ e−t ∗ et.

Solution.
By the convolution theorem we have L[t∗e−t ∗et] = L[t]L[e−t]L[et] = 1

s2
· 1
s+1 ·

1
s−1 .

Using the partial fractions decomposition we can write

1

s2(s+ 1)(s− 1)
= − 1

s2
− 1

2
· 1

s− 1
− 1

2
· 1

s+ 1
.

Hence,

t ∗ e−t ∗ et = −t+
et

2
− e−t

2
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Solutions to Section 22

Problem 22.1
Solve by Laplace transform

ut + ux = 0 , x > 0, t > 0
u(x, 0) = sinx,
u(0, t) = 0

Hint: Method of integrating factor of ODEs.

Solution.
Applying Laplace transform to both sides of the equation we obtain

sU(x, s)− u(x, 0) + Ux(x, s) = 0

or

Ux(x, s) + sU(x, s) = sinx

with boundary condition U(0, t) = 0. Solving this initial value ODE by the method
of integrating (details omitted) we find the unique solution

U(x, s) =
1

s2 + 1
[s sinx− cosx+ e−sx].

Taking inverse Laplace transform we find

u(x, t) = sin (x− t)−H(t− x) sin (x− t)

Problem 22.2
Solve by Laplace transform

ut + ux = −u , x > 0, t > 0
u(x, 0) = sinx,
u(0, t) = 0

Solution.
Applying Laplace transform to both sides of the equation we obtain

sU(x, s)− u(x, 0) + Ux(x, s) = −U(x, s)

or

Ux(x, s) + (s+ 1)U(x, s) = sinx



172 CONTENTS

with boundary condition U(0, t) = 0. Solving this initial value ODE by the method
of integrating factor we find the unique solution

U(x, s) =
1

s2 + 2s+ 2
[(s+ 1) sinx− cosx+ e−(s+1)x].

Taking inverse Laplace transform we find

u(x, t) = [sin (x− t)−H(t− x) sin (x− t)]e−t

Problem 22.3
Solve

ut = 4uxx

u(0, t) = u(1, t) = 0

u(x, 0) = 2 sinπx+ 3 sin 2πx.

Hint: A particular solution of a second order ODE must be found using the method
of variation of parameters.

Solution.
Applying Laplace transform to both sides of the equation we obtain

sU(x, s)− u(x, 0)− 4Uxx(x, s) = 0

or

4Uxx(x, s)− sU(x, s) = −2 sinπx− 3 sin 2πx.

This is a second order linear ODE in the variable x and positive parameter s. Its
general solution is

U(x, s) = A(s)e
√
s

2
x +B(s)e−

√
s

2
x +

2 sinπx

s+ 4π2
+

6 sin 2πx

s+ 16π2
.

Next, we apply Laplace transform to the boundary condition obtaining U(0, s) =

U(1, s) = L(0) = 0. These lead to A(s) +B(s) = 0 and A(s)e
√
s

2 +B(s)e−
√
s

2 = 0.
Solving these equations we find A(s) = B(s) = 0 and the transformed solution
becomes

U(x, s) =
2 sinπx

s+ 4π2
+

6 sin 2πx

s+ 16π2
.

Now, taking inverse Laplace transform we find

u(x, t) = 2e−4π2t sinπx+ 6e−16π2t sin 2πx
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Problem 22.4
Solve by Laplace transform

ut + ux = u , x > 0, t > 0
u(x, 0) = sinx,
u(0, t) = 0

Solution.
Applying Laplace transform to both sides of the equation we obtain

sU(x, s)− u(x, 0) + Ux(x, s) = U(x, s)

or
Ux(x, s) + (s− 1)U(x, s) = − sinx

with boundary condition U(0, t) = 0. Solving this initial value ODE by the method
of integrating factor we find the unique solution

U(x, s) =
1

s2 − 2s+ 2
[(s− 1) sinx− cosx+ e−(s−1)x].

Taking inverse Laplace transform we find

u(x, t) = [sin (x− t)−H(t− x) sin (x− t)]et

Problem 22.5
Solve by Laplace transform

ut + ux = t , x > 0, t > 0
u(x, 0) = 0,
u(0, t) = t2

Solution.
Applying Laplace transform to both sides of the equation we obtain

sU(x, s)− u(x, 0) + Ux(x, s) =
1

s2

or

Ux(x, s) + sU(x, s) =
1

s2

with boundary condition U(0, t) = 2
t3
. Solving this initial value ODE by the method

of integrating factor we find the unique solution

U(x, s) =

(
2

s3
− 1

s2

)
e−x +

1

s2
.

Taking inverse Laplace transform we find

u(x, t) = t2e−x − te−x + t
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Problem 22.6
Solve by Laplace transform

xut + ux = 0 , x > 0, t > 0
u(x, 0) = 0,
u(0, t) = t

Solution.
Applying Laplace transform to both sides of the equation we obtain

xsU(x, s)− xu(x, 0) + Ux(x, s) = 0

or
Ux(x, s) + xsU(x, s) = 0

with boundary condition U(0, t) = 1
t2
. Solving this ODE by the method of separa-

tion of variables we find

U(x, s) = A(s)e−
sx2

2 .

Using the boundary condition we find A(s) = 1
s2
. Hence

U(x, s) =
e−

sx2

2

s2
.

Taking inverse Laplace transform we find

u(x, t) =

(
t− 1

2
x2

)
H

(
t− 1

2
x2

)
Problem 22.7
Solve by Laplace transform

utt − c2uxx = 0 , x > 0, t > 0
u(x, 0) = ut(x, 0) = 0,

u(0, t) = sinx,
|u(x, t)| <∞

Solution.
Applying Laplace transform to both sides of the equation we obtain

s2U(x, s)− su(x, 0)− ut(x, 0)− c2Uxx(x, s) = 0

or
c2Uxx(x, s)− s2U(x, s) = 0.
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This is a second order linear ODE in the variable x and positive parameter s. Its
general solution is

U(x, s) = A(s)e−
s
c
x +B(s)e

s
c
x.

Since U(x, s) is bounded, we must have B(s) = 0 and in this case we obtain

U(x, s) = A(s)e−
s
c
x.

Next, we apply Laplace transform to the boundary condition obtaining

U(0, s) = L(sinx) =
1

s2 + 1
.

This leads to A(s) = 1
s2+1

and the transformed solution becomes

U(x, s) =
e−

s
c
x

s2 + 1
.

Thus,

u(x, t) = L−1

(
e−

s
c
x

s2 + 1

)
= H

(
t− x

c

)
sin
(
t− x

c

)
Problem 22.8
Solve by Laplace transform

utt − 9uxx = 0, 0 ≤ x ≤ π, t > 0

u(0, t) = u(π, t) = 0,

ut(x, 0) = 0, u(x, 0) = 2 sinx.

Solution.
Applying Laplace transform to both sides of the equation we obtain

s2U(x, s)− su(x, 0)− ut(x, 0)− 9Uxx(x, s) = 0

or

9Uxx(x, s)− s2U(x, s) = −2s sinx.

This is a second order linear ODE in the variable x and positive parameter s. Its
general solution is

U(x, s) = A(s)e
s
3
x +B(s)e−

s
3
x +

2s sinx

s2 + 9
.
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Next, we apply Laplace transform to the boundary condition u(0, t) = u(π, t) = 0
obtaining

U(0, s) = U(π, s) = L(0) = 0.

This leads to A(s) +B(s) = 0 and A(s)es +B(s)e−s = 0. Solving these equations
we find A(s) = B(s) = 0 and the transformed solution becomes

U(x, s) =
2s sinx

s2 + 9
.

Using the inverse Laplace transform we find

u(x, t) = 2 sinx cos 3t

Problem 22.9
Solve by Laplace transform

uxy = 1 , x > 0, y > 0
u(x, 0) = 1,

u(0, y) = y + 1.

Solution.
First we note that u(x, 0) = 1 implies ux(x, 0) = 0. Using Laplace transform in y
we obtain

sUx(x, s)− ux(x, 0) =
1

s
or

Ux(x, s) =
1

s2
.

Solving this equation we find

U(x, s) =
x

s2
+ C(s).

Now we can apply the BC to obtain

U(0, s) =
1

s2
+

1

s
= C(s).

Hence,

U(x, s) =
1

s2
(x+ 1) +

1

s
.

Taking the inverse Lapalce transform we find

u(x, y) = y(x+ 1) + 1
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Problem 22.10
Solve by Laplace transform

utt = c2uxx , x > 0, t > 0
u(x, 0) = ut(x, 0) = 0,

ux(0, t) = f(t),
|u(x, t)| <∞.

Solution.
Applying Laplace transform to both sides of the equation we obtain

s2U(x, s)− su(x, 0)− ut(x, 0)− c2Uxx(x, s) = 0

or

c2Uxx(x, s)− s2U(x, s) = 0.

This is a second order linear ODE in the variable x and positive parameter s. Its
general solution is

U(x, s) = A(s)e−
s
c
x +B(s)e

s
c
x.

Since U(x, s) is bounded, we must have B(s) = 0 and in this case we obtain

U(x, s) = A(s)e−
s
c
x.

Next, we apply Laplace transform to the boundary condition obtaining

Ux(0, s) = L(f(t)) = F (t).

This leads to A(s) = − cF (s)
s and the transformed solution becomes

U(x, s) = −cF (s)

s
e−

s
c
x.

Using the integration property and the translation property, we find that,

u(x, t) = L−1

[
−cF (s)

s
e−

s
c
x

]
= −c

∫ t−x
c

0
f(τ)dτ.

Thus,

u(x, t) = L−1

(
e−

s
c
x

s2 + 1

)
= h

(
t− x

c

)
sin
(
t− x

c

)
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Problem 22.11
Solve by Laplace transform

ut − ux = u , x > 0, t > 0
u(x, 0) = e−5x,
|u(x, t)| <∞

Solution.
Applying Laplace transform to both sides of the equation we obtain

sU(x, s)− u(x, 0)− Ux(x, s) = U(x, s)

or

Ux(x, s)− (s− 1)U(x, s) = −e−5x

Solving this ODE by the method of integrating factor we find general solution

U(x, s) =
e−5x

s+ 4
+ C(s)e(s− 1)x

Since s is arbitrary and U is bounded we must have C(s) = 0. Hence, we obtain
the transformed solution

U(x, s) =
e−5x

s+ 4
.

Taking inverse Laplace transform we find

u(x, t) = e−5xe−4tH(t)

Problem 22.12
Solve by Laplace transform

ut − c2uxx = 0 , x > 0, t > 0
u(x, 0) = T,
u(0, t) = 0,
|u(x, t)| <∞

Solution.
Applying Laplace transform to both sides of the equation we obtain

sU(x, s)− u(x, 0)− c2Uxx(x, s) = 0

or

c2Uxx(x, s)− sU(x, s) = −T.
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This is a second order linear ODE in the variable x and positive parameter s. Its
general solution is

U(x, s) = A(s)e−
√
s
c
x +B(s)e

√
s
c
x +

T

s
.

Since U(x, s) is bounded in both variables, we must have B(s) = 0 and in this case
we obtain

U(x, s) = A(s)e−
√
sx +

T

s
.

Next, we apply Laplace transform to the boundary condition obtaining U(0, s) =
L(0) = 0. This leads to A(s) = −T

s and the transformed solution becomes

U(x, s) = −T
s
e−
√
s
c
x +

T

s
.

Thus,

u(x, t) = L−1

(
−T
s
e−
√
s
c
x +

T

s

)
.

One can use a software package to find the expression for L−1
(

1
se
−
√
s
c
x
)

Problem 22.13
Solve by Laplace transform

ut − 3uxx = 0, 0 ≤ x ≤ 2, t > 0

u(0, t) = u(2, t) = 0,

u(x, 0) = 5 sin (πx).

Solution.
Applying Laplace transform to both sides of the equation we obtain

sU(x, s)− u(x, 0)− 3Uxx(x, s) = 0

or

3Uxx(x, s)− sU(x, s) = −5 sin (πx).

This is a second order linear ODE in the variable x and positive parameter s. Its
general solution is

U(x, s) = A(s)e−
√
s

3
x +B(s)e

√
s

3
x +

5 sin (πx)

s+ 3π2
.
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Next, we apply Laplace transform to the boundary condition obtaining U(0, s) =

U(2, s) = L(0) = 0. These lead to A(s)+B(s) = 0 and A(s)e−2
√
s

3 +B(s)e2
√
s

3 = 0.
Solving these equations we find A(s) = B(s) = 0 and the transformed solution
becomes

U(x, s) =
5 sin (πx)

s+ 3π2
.

Now, taking inverse Laplace transform we find

u(x, t) = 5e−3π2t sin (πx)

Problem 22.14
Solve by Laplace transform

ut − 4uxx = 0, 0 ≤ x ≤ π, t > 0

ux(0, t) = u(π, t) = 0,

u(x, 0) = 40 cos
x

2
.

Solution.
Applying Laplace transform to both sides of the equation we obtain

sU(x, s)− u(x, 0)− 4Uxx(x, s) = 0

or
4Uxx(x, s)− sU(x, s) = −40 cos

x

2
.

This is a second order linear ODE in the variable x and positive parameter s. Its
general solution is

U(x, s) = A(s)e−
√
s

2
x +B(s)e

√
s

2
x +

40 cos x2
s+ 1

.

Next, we apply Laplace transform to the boundary condition obtaining Ux(0, s) =

U(π, s) = L(0) = 0. These lead to −A(s)+B(s) = 0 and A(s)e−π
√
s

2 +B(s)eπ
√
s

2 =
0. Solving these equations we find A(s) = B(s) = 0 and the transformed solution
becomes

U(x, s) =
40 cos x2
s+ 1

.

Now, taking inverse Laplace transform we find

u(x, t) = 40e−t cos
x

2
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Problem 22.15
Solve by Laplace transform

utt − 4uxx = 0, 0 ≤ x ≤ 2, t > 0

u(0, t) = u(2, t) = 0,

ut(x, 0) = 0, u(x, 0) = 3 sinπx.

Solution.
Applying Laplace transform to both sides of the equation we obtain

s2U(x, s)− su(x, 0)− ut(x, 0)− 4Uxx(x, s) = 0

or
4Uxx(x, s)− s2U(x, s) = −3s sinπx.

This is a second order linear ODE in the variable x and positive parameter s. Its
general solution is

U(x, s) = A(s)e−
s
2
x +B(s)e

s
2
x +

3s sinπx

s2 + 4π2
.

Next, we apply Laplace transform to the boundary condition u(0, t) = u(2, t) = 0
obtaining

U(0, s) = U(2, s) = L(0) = 0.

This leads to A(s) +B(s) = 0 and A(s)e−s +B(s)es = 0. Solving these equations
we find A(s) = B(s) = 0 and the transformed solution becomes

U(x, s) =
3s sinπx

s2 + 4π2
.

Using the inverse Laplace transform we find

u(x, t) = 3 sinπx cos 2πt
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Solutions to Section 23

Problem 23.1
Find the complex Fourier coefficients of the function

f(x) = x, − 1 ≤ x ≤ 1

extended to be periodic of period 2.

Solution. Using integration by parts we find

cn =
1

2

∫ 1

−1
xe−inπxdx

=
1

2

[(
ix

nπ

)
e−inπx

∣∣∣∣1
−1

−
∫ 1

−1

(
i

nπ

)
e−inπxdx

]

=
1

2

[(
i

nπ

)
e−inπ +

(
i

nπ

)
einπ

]
+

1

2

[
1

(nπ)2
e−inπ − 1

(nπ)2
einπ

]
=

1

2

[
i(−1)n

nπ
+
i(−1)n

nπ
+

1

(nπ)2
(−1)n − 1

(nπ)2
(−1)n

]
=

(−1)ni

nπ

Problem 23.2
Let

f(x) =


0 −π < x < −π

2
1 −π

2 < x < π
2

0 π < x < π

be 2π−periodic. Find its complex series representation.

Solution.
We have

c0 =
1

2π

∫
−π

2

π

2
dx =

1

2

and

cn =
1

2π

∫
−π

2

π

2
e−inxdx =

1

2inπ
(e

inπ
2 − e−

inπ
2 )

for n = ±1,±2, · · · . These coefficients reduce to the real values

cn =
1

nπ
sin
(nπ

2

)
, n = ±1,±2, · · · .
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Note that c−n = cn. Thus, the complex series representation of f is given by

f(x) =
1

2
+

∞∑
n=1

1

nπ
sin
(nπ

2

)
(einx + e−inx)

Problem 23.3
Find the complex Fourier series of the 2π−periodic function f(x) = eax over the
interval (−π, π).

Solution.
We have for n = 0,±1,±2, · · ·

cn =
1

2π

∫ π

−π
eaxe−∈xdx

=
1

2π

∫ π

−π
e(a−in)xdx

=
1

2π

e(a−in)x

a− in

]π
−π

=
1

2π
· 1

a− in
[e(a−in)π − e(a−in)(−π)]

=
(−1)n(a+ in) sinh aπ

π(a2 + n2)

Hence, the complex Fourier series of f(x) is

f(x) =
sinh aπ

π

∞∑
n=−∞

(−1)n(a+ in)

(a2 + n2)
einx

Problem 23.4
Find the complex Fourier series of the 2π−periodic function f(x) = sinx over the
interval (−π, π).

Solution.
We have

cn =
1

2π

∫ π

−π
sinxe−∈xdx

=
1

2π

[
einπ − e−inπ

n2 − 1

]
= 0

for n 6= 1 or n 6= −1. Thus,
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c−1 = −1
2i and c1 = 1

2i .

Hence, the complex Fourier series of f(x) is

f(x) =
eix − e−ix

2i

Problem 23.5
Find the complex Fourier series of the 2π−periodic function defined

f(x) =

{
1 0 < x < T
0 T < x < 2π

Solution.
We have

cn =
1

2π

∫ 2π

0
f(x)e−inxdx =

1

2π

∫ T

0
e−inxdx

=
1

2πn
[e−inT − 1]

for n 6= 0. For n = 0 we find

c0 =
1

2π

∫ T

0
dt =

T

2π
.

Hence, the complex Fourier series of f(x) is

f(x) =
1

2π

{
T +

−1∑
n=−∞

i

n
[e−int − 1]eint

+
∞∑
n=1

i

n
[e−int − 1]eint

}

Problem 23.6
Let f(x) = x2, − π < x < π, be 2π−periodic.
(a) Calculate the complex Fourier series representation of f.
(b) Using the complex Fourier series found in (a), recover the real Fourier series
representation of f.
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Solution.
(a) Using integration by parts we find

cn =
1

2π

∫ π

−π
x2e−inxdx

=
1

2π

[
x2i

n
e−inx

∣∣∣∣π
−π
− 2i

n

∫ π

−π
xe−inxdx

]
=

1

2π

[
0 +

(
2x

n2
− 2i

n3

)
e−inx

∣∣∣∣π
−π

]
=

2

n2
(−1)n

for n 6= 0 and

c0 =
1

2π

∫ π

−π
x2dx =

π2

3
.

Hence, the complex Fourier series of f(x) is

f(x) =
π2

3
+

−1∑
n=−∞

2

n2
(−1)neinx +

∞∑
n=1

2

n2
(−1)neinx.

(b) We have a0
2 = c0 = π2

3 and

an = cn + c−n = 4
n2 (−1)n and bn = 0.

Hence, the real Fourier series representation of f is

f(x) =
π2

3
+
∞∑
n=1

4

n2
(−1)n cosnx

Problem 23.7
Let f(x) = sinnπx, − 1

2 < x < 1
2 , be of period 1.

(a) Calculate the coefficients an, bn and cn.
(b) Find the complex Fourier series representation of f.

Solution.
(a) We have

a0 =2

∫ 1
2

− 1
2

sinnπxdx = − 2

π
[cos

π

2
− cos−π

2
] = 0

an =2

∫ 1
2

− 1
2

sinnπx cos 2nπxdx = 0

bn =2

∫ 1
2

− 1
2

sinnπx sin 2nπxdx =
8(−1)nn

π − 4n2π
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where we used a computer software to evaluate bn.
Now to find cn’s we have

c0 =
a0

2
= 0

and for n ∈ N we have

cn =
an − ibn

2
=

4(−1)nn

i(π − 4n2π)

and

c−n =
an + ibn

2
=

4(−1)nin

π − 4n2π

(b) The complex Fourier representation of f(x) is

f(x) =
4

π

∞∑
n=−∞

(−1)nn

i(1− 4n2)
e2nπix

Problem 23.8
Let f(x) = 2− x, − 2 < x < 2, be of period 2.
(a) Calculate the coefficients an, bn and cn.
(b) Find the complex Fourier series representation of f.

Solution.
(a) We have

a0 =
1

2

∫ 2

−2
(2− x)dx = 4

an =
1

2

∫ 2

−2
(2− x) cos

(nπ
2
x
)
dx = 0

bn =
1

2

∫ 2

−2
(2− x) sin

(nπ
2
x
)
dx =

4(−1)n

nπ

where we used a computer software to evaluate bn.
Now to find cn’s we have

c0 =
a0

2
= 2

and for n ∈ N we have

cn =
an − ibn

2
=

2(−1)n+1i

nπ
and c−n = −cn.
(b) The complex Fourier representation of f(x) is

f(x) = 2 +
−1∑

n=−∞

2(−1)n+1i

nπ
e(

inπ
2
x) +

∞∑
n=1

2(−1)n+1i

nπ
e(

inπ
2
x)
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Problem 23.9
Suppose that the coefficients cn of the complex Fourier series are given by

cn =

{
2
iπn if |n| is odd
0 if |n| is even.

Find an, n = 0, 1, 2, · · · and bn, n = 1, 2, · · · .

Solution.
We first find the an. For n = 0 we have a0 = 2c0 = 0. For n ∈ N we have

an = cn + c−n = 0.

Next, we find the coefficients bn. We have for |n| odd

bn = i
4

inπ
=

4

nπ

and for |n| even bn = 0

Problem 23.10
Recall that any complex number z can be written as z = Re(z) + iIm(z) where
Re(z) is called the real part of z and Im(z) is called the imaginary part. The
complex conjugate of z is the complex number z = Re(z)− iIm(z). Using these
definitions show that an = 2Re(cn) and bn = −2Im(cn).

Solution.
Note that for any complex number z we have z+z = 2Re(z) and z−z = −2iRe(z).
Thus,

cn + cn = an

which means that an = 2Re(cn). Likewise, we have

cn − cn = ibn

That is ibn = −2iIm(cn). Hence, bn = −2Im(cn)

Problem 23.11
Suppose that

cn =

{
i

2πn [e−inT − 1] if n 6= 0
T
2π if n = 0.

Find an and bn.
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Solution.
We have

a0 = 2c0 =
T

π
Now note that

2cn =
1

πn
[sin (nT ) + i(cos (nT )− 1)].

Hence,

an = 2Re(cn) = 1
πn sin (nT ) and bn = 1−cos (nT )

nπ

Problem 23.12
Find the complex Fourier series of the function f(x) = ex on [−2, 2].

Solution.
We have

cn =
[1

4

∫ 2

−2
exe−

inπx
2 dx

=
1

4

ex(1−inπ
2

)

1− inπ2

∣∣∣∣∣
2

−2

=
i sin (2− inπ)

2− inπ
The complex Fourier series is

f(x) = i
∞∑

n=−∞

i sin (2− inπ)

2− inπ
e
inπ
2
x

Problem 23.13
Consider the wave form
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(a) Write f(x) explicitly. What is the period of f.
(b) Determine a0 and an for n ∈ N.
(c) Determine bn for n ∈ N.
(d) Determine c0 and cn for n ∈ N.

Solution.
(a) We have

f(t) =

{
1 0 < t < 1
0 1 < t < 2

and f(t+ 2) = f(t) for all t ∈ R.
(b) We have

a0 =
2

L

∫ L

0
f(x)dx =

∫ 2

0
dx =

∫ 1

0
dx = 1

an =

∫ 1

0
cosnπxdx =

sinnπ

nπ
= 0.

(c) We have

bn =

∫ 1

0
sinnπxdx =

1− cosnπ

nπ
=

1− (−1)n

nπ
.

Hence,

bn =

{
2
nπ if n is odd
0 if n is even

(d) We have c0 = a0
2 = 1

2 and for n ∈ N we have

cn =
an − ibn

2
=

{
− i
nπ if n is odd
0 if n is even

Problem 23.14
If z is a complex number we define sin z = 1

2(eiz − e−iz). Find the complex form
of the Fourier series for sin 3x without evaluating any integrals.

Solution.
We have

sin 3x =
1

2
(e3ix − e−3ix)

Problem 23.15
Find cn for the 2π−periodic function

f(x) =

{
1 if s ≤ x ≤ s+ h
0 elsewhere in [−π, π]
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Solution.
We have

cn =
2π∫ π

−π
f(x)e−inxdx =

2π∫ s+h

s

e−inxdx = e−ins
(

1− e−inh

2πin

)
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Solutions to Section 24

Problem 24.1
Find the Fourier transform of the function

f(x) =

{
1 if −1 ≤ x ≤ 1
0 otherwise.

Solution.
We have

f̂(ξ) =

∫ ∞
−∞

f(x)e−iξxdx =

∫ 1

−1
e−iξxdx =

∫ 1

−1
cos ξxdx− i

∫ 1

−1
sin ξxdx.

The second integral is zero since the integrand is odd. Hence,

f̂(ξ) =

{
2 sin ξ

ξ if ξ 6= 0

2 if ξ = 0

Problem 24.2
Obtain the transformed problem when applying the Fourier transform with respect
to the spatial variable to the equation and initial condition

ut + cux = 0

u(x, 0) = f(x).

Solution.
Let û(ξ, t) be the Fourier transform of u in x. Performing the Fourier transform
on both the PDE and the initial condition, we reduce the PDE into an ODE in t

∂û

∂t
+ iξcû = 0

û(ξ, 0) = f̂(ξ)

Problem 24.3
Obtain the transformed problem when applying the Fourier transform with respect
to the spatial variable to the equation and both initial conditions

utt = c2uxx, x ∈ R, t > 0

u(x, 0) = f(x)

ut(x, 0) = g(x).
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Solution.
By performing the Fourier transform of u in x, we reduce the PDE problem into
an ODE problem in the variable t:

∂2û

∂t2
= −c2ξ2û

û(ξ, 0) = f̂(ξ)

ût(ξ, 0) = ĝ(ξ)

Problem 24.4
Obtain the transformed problem when applying the Fourier transform with respect
to the spatial variable to the equation and both initial conditions

∆u = uxx + uyy = 0, x ∈ R, 0 < y < L

u(x, 0) = 0

u(x, L) =

{
1 if −a < x < a
0 otherwise

Solution.
Performing Fourier Transform in x for the PDE we obtain the second order PDE
in y

ûyy = ξ2û

û(ξ, 0) = 0, û(ξ, L) =
2 sin ξa

ξ

Problem 24.5
Find the Fourier transform of f(x) = e−|x|α, where α > 0.
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Solution.
We have

f̂(ξ) =

∫ ∞
−∞

e−|x|αe−iξxdx

=

∫ 0

−∞
exαe−iξxdx+

∫ ∞
0

e−xαe−iξxdx

=

∫ ∞
0

e−xαeiξxdx+

∫ ∞
0

e−xαe−iξxdx

=

∫ ∞
0

e−x(α−iξ)dx+

∫ ∞
0

e−x(α+iξ)dx

= −e
−x(α−iξ)

α− iξ

∣∣∣∣∣
∞

0

− e−x(α+iξ)

α− iξ

∣∣∣∣∣
∞

0

=
1

α− iξ
+

1

α+ iξ
=

2α

α2 + ξ2

Problem 24.6
Prove that

F [e−xH(x)] =
1

1 + iξ

where

H(x) =

{
1 if x ≥ 0
0 otherwise.

Solution.
We have

F [e−xH(x)] =

∫ ∞
−∞

e−xH(x)e−iξxdx

=

∫ ∞
0

e−x(1+iξ)dx = −e
−x(1+iξ)

1 + iξ

∣∣∣∣∣
∞

0

=
1

1 + iξ

Problem 24.7
Prove that

F
[

1

1 + ix

]
= 2πeξH(−ξ).

Solution.
Using the duality property, we have

F
[

1

1 + ix

]
= F [F [e−ξH(ξ)]] = 2πeξH(−ξ)
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Problem 24.8
Prove

F [f(x− α)] = e−iξαf̂(ξ).

Solution.
We have

F [f(x− α)] =

∫ ∞
−∞

f(x− α)e−iξxdx

=e−iξα
∫ ∞
−∞

f(u)e−iξudu

=e−iξαf̂(ξ)

where u = x− α

Problem 24.9
Prove

F [eiαxf(x)] = f̂(x− α).

Solution.
We have

F [eiαxf(x)] =

∫ ∞
−∞

eiαxf(x)e−iξxdx =

∫ ∞
−∞

eix(α−ξf(x)e−iξxdx = f̂(ξ − α)

Problem 24.10
Prove the following

F [cos (αx)f(x)] =
1

2
[f̂(ξ + α) + f̂(ξ − α)]

F [sin (αx)f(x)] =
1

2
[f̂(ξ + α)− f̂(ξ − α)]

Solution.
We will just prove the first one. We have

F [cos (αx)f(x)] =F [
f(x)eiαx

2
+ f(x)

e−iαx

2

=
1

2
[F [f(x)eiαx] + F [f(x)e−iαx]]

=
1

2
[f̂(x− α) + f̂(x+ α)]
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Problem 24.11
Prove

F [f ′(x)] = (iξ)f̂(ξ).

Solution.
Using the definition and integration by parts we find

F [f ′(x)] =

∫ ∞
−∞

f ′(x)e−iξxdx

= f(x)e−iξx
∣∣∣∞
−∞

+ (iξ)

∫ ∞
−∞

f(x)e−iξxdx

=f(x) cos ξx− if(x) sin ξx+ (iξ)f̂(ξ) = (iξ)f̂(ξ)

where we used the fact that limx→∞ f(x) = 0

Problem 24.12
Find the Fourier transform of f(x) = 1− |x| for −1 ≤ x ≤ 1 and 0 otherwise.

Solution.
We have

f̂(ξ) =

∫ 1

−1
(1− |x|)e−iξxdx

=2

∫ 1

0
(1− x)e−iξxdx

=2

∫ 1

0
(1− x) cos ξxdx

=
2

ξ2
(1− cos ξ)

Problem 24.13
Find, using the definition, the Fourier transform of

f(x) =


−1 −a < x < 0
1 0 < x < a
0 otherwise
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Solution.
We have

f̂(ξ) =

∫ ∞
−∞

f(x)e−iξxdx

=−
∫ 0

−a
e−ξxdx+

∫ a

0
e−ξxdx

=
1

iξ
(1− eiξa) +

1

iξ
(1− e−iξa)

=
2

iξ
(1− cos ξa)

Here we use Euler’s formula e±iξa = cos ξa± i sin ξa

Problem 24.14

Find the inverse Fourier transform of f̂(ξ) = e−
ξ2

2 .

Solution.
Using (5’) we find

F−1[f̂(ξ)] =
1√
2π
e−

x2

2

Problem 24.15
Find F−1

(
1

a+iξ

)
.

Solution.
From Example 24.1, we find

F−1

(
1

a+ iξ

)
= e−ax, x ≥ 0.
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Solutions to Section 25

Problem 25.1
Solve, by using Fourier transform

∆u = 0

uy(x, 0) = f(x)

lim
x2+y2→∞

u(x, y) = 0.

Solution.
Using the Fourier transform method, we begin by taking the transform of the PDE
in x. The result is

ûyy − ξ2û = 0.

The solution of the ODE in y is

û(ξ, y) = A(ξ)eξy +B(ξ)e−ξy.

Applying the boundary condition

lim
x2+y2→∞

u(x, y) = 0

we can write
û(ξ, y) = C(ξ)e−|ξ|y

where C(ξ) is some constant distinct from A(ξ) or B(ξ). Applying the first bound-
ary condition, we get

ûy(ξ, 0) = −|ξ|C(ξ)e−|ξ|y
∣∣∣
y=0

= −|ξ|C(ξ) = f̂(ξ).

Thus,

C(ξ) = − f̂(ξ)

|ξ|
and

û(ξ, y) = − f̂(ξ)

|ξ|
e−|ξ|y.

If we leave this in terms of a convolution integral, we obtain

u(x, t) = f(x) ∗ F−1[− 1

|ξ|
e−|ξ|y]
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Problem 25.2
Solve, by using Fourier transform

ut + cux = 0

u(x, 0) = e−
x2

4 .

Solution.
Let û(ξ, t) be the Fourier transform of u in x. Performing the Fourier transform
on both the PDE and the initial condition, we reduce the PDE into an ODE

d∂û

∂t
+ iξcû = 0

û(ξ, 0) =
1√
π
e−ξ

2
.

Solution of the ODE gives

û(ξ, t) =
1√
π
e−ξ

2
e−iξct.

Thus,

u(x, t) = F−1[u(ξ, t)] = e−
(x−ct)2

4

Problem 25.3
Solve, by using Fourier transform

ut = kuxx − αu, x ∈ R

u(x, 0) = e
−x

2

γ .

Solution.
Let û(ξ, t) be the Fourier transform of u in x. Performing the Fourier transform
on both the PDE and the initial condition, we reduce the PDE into an ODE in t

∂û

∂t
= −(kξ2 + α)û

û(ξ, 0) =

√
γ

4π
e−γ

ξ2

4 .

Solution of the ODE in t gives

û(ξ, t) = û(ξ, 0)e−(kξ2+α)t.
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Thus,

û(ξ, t) =

√
γ

4π
e−ξ

2(kt+ γ
4

)e−αt.

Taking inverse Fourier transform we find

u(x, t) =

√
γ

4π
e−αtF−1[e−ξ

2(kt+ γ
4

)]

=

√
γ

4π
e−αt ·

√
π

kt+ γ/4
· e−

x2

4(kt+γ/4)

=
√
γ4kt+ γe

− x2

4kt+γ e−αt

Problem 25.4
Solve the heat equation

ut = kuxx

subject to the initial condition

u(x, 0) =

{
1 if x ≥ 0
0 otherwise.

Solution.
The solution is

u(x, t) =
1√

4πkt

∫ ∞
0

e−
(x−s)2

4kt ds

Problem 25.5
Use Fourier transform to solve the heat equation

ut = uxx + u, −∞ < x <∞ < t > 0

u(x, 0) = f(x).

Solution.
Let û(ξ, t) be the Fourier transform of u in x. Performing the Fourier transform
on both the PDE and the initial condition, we reduce the PDE into an ODE in t

∂û

∂t
= −(ξ2 − 1)û

û(ξ, 0) = f̂(ξ).

Solution of the ODE in t gives

û(ξ, t) = û(ξ, 0)e−(ξ2−1)t.
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Thus,
û(ξ, t) = f̂(ξ)e−ξ

2(tet.

Taking inverse Fourier transform we find

u(x, t) =etF−1[e−ξ
2t]

=e−αt
1√
4πt

e−
x2

4t

Problem 25.6
Prove that ∫ ∞

−∞
e−|ξ|yeiξxdξ =

2y

x2 + y2
.

Solution.
We have ∫ ∞

−∞
e−|ξ|yeiξxdξ =

∫ 0

−∞
eξyeiξxdξ +

∫ ∞
0

e−ξyeiξxdξ

=
1

y + ix
eξ(y+ix)

∣∣∣∣0
−∞

+
1

−y + ix
eξ(−y+ix)

∣∣∣∣∞
0

=
1

y + ix
+

1

−y + ix
=

2y

x2 + y2

Problem 25.7
Solve Laplace’s equation in the half plane

uxx + uyy = 0, −∞ < x <∞, 0 < y <∞

subject to the boundary condition

u(x, 0) = f(x), |u(x, y)| <∞.

Solution.
Performing Fourier Transform in x for the PDE we obtain the second order PDE
in y

ûyy = ξ2û.

The general solution is given by

û(ξ, y) = A(ξ)eξy +B(ξ)e−ξy.

To ensure boundedness we must have
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A(ξ) = 0 for ξ > 0 or B(ξ) = 0 for ξ < 0.

Hence,

û(ξ, y) = C(ξ)e−|ξ|y.

Using the boundary condition û(ξ, 0) = f̂(ξ) we find C(ξ) = f̂(ξ). Hence,

û(ξ, y) = f̂(ξ)e−|ξ|y.

Taking inverse Fourier transform we find

u(x, y) =
1

2π

∫ ∞
−∞

f̂(ξ)e−|ξ|yeiξxdξ

=
1

2π
f(x) ∗

[
2y

x2 + y2

]
=

1

2π

∫ ∞
−∞

f(x)
2y

(x− ξ)2 + y2
dξ

Problem 25.8
Use Fourier transform to find the transformed equation of

utt + (α+ β)ut + αβu = c2uxx

where α, β > 0.

Solution.
Using the properties of Fourier transform we find

ûtt + (α+ β)ût + αβû = −c2ξ2û

Problem 25.9
Solve the initial value problem

ut + 3ux = 0

u(x, 0) = e−x

using the Fourier transform.

Solution.
The answer is (see notes)

u(x, t) = e−(x−3t)
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Problem 25.10
Solve the initial value problem

ut = kuxx

u(x, 0) = e−x

using the Fourier transform.

Solution.
The answer is (see notes)

u(x, t) = e−(x−kt)

Problem 25.11
Solve the initial value problem

ut = kuxx

u(x, 0) = e−x
2

using the Fourier transform.

Solution.
The answer is (see notes)

u(x, t) =
1√

4πkt

∫ ∞
−∞

e−s
2− (x−s)2

4kt ds

Problem 25.12
Solve the initial value problem

ut + cux = 0

u(x, 0) = x2

using the Fourier transform.

Solution.
The answer is (see notes)

u(x, t) = (x− ct)2

Problem 25.13
Solve, by using Fourier transform

∆u = 0

uy(x, 0) = f(x)

lim
x2+y2→∞

u(x, y) = 0.
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Solution.
Using the Fourier transform method, we begin by taking the transform of the PDE
in x. The result is

ûyy − ξ2û = 0.

The solution of the ODE in y is

û(ξ, y) = A(ξ)eξy +B(ξ)e−ξy.

Applying the boundary condition

lim
x2+y2→∞

u(x, y) = 0

we can write
û(ξ, y) = C(ξ)e−|ξ|y

where C(ξ) is some constant distinct from A(ξ) or B(ξ). Applying the first bound-
ary condition, we get

ûy(ξ, 0) = −|ξ|C(ξ)e−|ξ|y
∣∣∣
y=0

= −|ξ|C(ξ) = f̂(ξ).

Thus,

C(ξ) = − f̂(ξ)

|ξ|
and

û(ξ, y) = − f̂(ξ)

|ξ|
e−|ξ|y.

If we leave this in terms of a convolution integral, we obtain

u(x, t) = f(x) ∗ F−1[− 1

|ξ|
e−|ξ|y]
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