AUTHOR	Comley, Robert E.
TITLE	A Follow-up Study of IIICSM Students who Started
	Course 1 in 1958 and 1959.
twstitumion	Illinois Univ., Urbana. Committee on School Mathematics.
SPONS AGENCY	National Science Foundation, Washington, D.C.
ERPORT NO	UICSM-RR-9
dup Dame	Aug 55
NOTE	89 p .
FDFS PRICE	EDRS Price MF- \$0.50 HC- \$4.55
DESCPIPTORS	*Curriculum, *Evaluation, Experimental Programs,
	*Mathematics, *Program Evaluation, *Secondary Schoo
	Mathematics, Surveys
IDFNTIFIERS	U'ICSM

ABSTRACT
Analyzed are the results from a follow-up of two groups of college students: (1) a sample of 400 students who started $9 t h$ arade i: 1958 and graduate from high school in 1962 , and (2) a sample of 728 students who were in high school from 1959 to 1963. Roth samples ware limited to those students who had continued on to college. The purposes of this study were to compare high school and college achievement, to determine major fields of study in college, to survey college mathematics courses taken, and to sample the attitudes of students toward UICSM courses and toward mathematics in genoral. A discussion is included for those variables which have significant correlations (.01) with the following items: DAT scores, sex, age, semesters of high school mathematics, college grades, high school grades, CPFB scores, calculus in high school, attitude comments, college major, and taking college mathematics. (RS)

u.S. department of healit, eoucation \& welfare

DFFICE OF EDUCAIOH
thls document has been reproduced exactly as received from the PERSON OR ORGAMIZATION ORIGIMATIMG IT. POINTS OF VIEW OR OPIMIONS stated do not mecessarily represent official office of educatioh POSIIIOH OR POLICY.

August, 1965

A Follow-sp Study of UICSM Students Who Started
Course 1 in 1958 and 1959
Robert E. Comley

008140
山
\leftrightarrow

UICSM

RESEARCH REPORT

No. 9

August, 1965

A Follow-up Study of UICSM Sivdents Who Started Course 1 in 1958 and 1959
Robert E. Comley

The research described in this report
was supported by the
National Science Foundation

A Follow-up Study of UICSM Students Who Started Course 1 in 1958 and 1959^{1}

1. Background Information

The University of Illinois Committee on School Mathematics (UICSM) was formed in 1951 as a cooperative undertaking by the College of Education, College of Liberal Arts and Sciences, and the College of Engineering. Professor Max Beberman of the College of Education was appointed as director of this mathematics curriculum project and has served in that capacity ever since. A primary objective of UICSM has been to improve the learning of college-preparatory mathematics in high schools, through major changes in the pedagogy and content of this course sequence.

To achieve this goal, eleven units have been written which comprise the work for four years of high school mathematics. These units cover such topics as the real numbers, algebraic manipulation, equations and inequations, graphs, functions and relations, geometry, mathematical induction, sequences, and special functions. (A more complete topical outline may be found in an appendix to UICSM Research Report No. 7: Comley, 1965.) Since 1959 these units have been available for use in all schools wishing to use them. Prior to 1962 the units were published by the University of lininois Press. In 1962, D. C. Heath and Company began production of the UICSM materials in a series of hardback texts, High School Mathematics, by Beberman and Vaughan, with Course 1 available in September 1964, Course 2 (1965) and Course 3 (1966), Course 4 of High School Mathematics is presently being revised for publication at a later date. An outline of the development of the UICSM materials is given below.

1 The author wishes to acknowledge the special assistance of Judith Boyle, who handled the questionnaires, and Aniruddh Thaker and James Kraatz in collating the data and the many high schools and colleges who sent us records -- often omitting the customary charge.
DEVELOPMENT OF UICSM MATHEMATICS - (1953-1963)

1.1 Purpose of the Study

Throughout the period from 1952 through 1958 the number of students using UICSM textbooks for three or more years of study increased at a partially controlled rate through expanded experimental tryouts. In 1959, when the textbooks were released for general use, the number of users increased sharply and it has risen gradually through further textbook sales; however, no comprehensive totals have been determined at this time.

Some (at least partial) test data have been collected for each of approximately 10,000 students who started Unit 1 of the UICSM sequence in 1958 or 1959. These data include aptitude test scores (DAT-V and N, CEEB-V and N). and achievement test scores (Coop Algebra, Coop Geometry, and UICSMconstructed tests). One analysis of algebra achievement as mpasured by the Coop Algebra test has been carried out by Tatsuoka and Easley (1963). Another report, by Comley (1965), analyses inter-correlations of the previously mentioned variables. Other studies of these students are in progress.

The present report includes results from a follow-up of two groups of college students: (1) A sample of 400 students who started 9th grade in 1958 and graduated from high school in 1962. (2) A sample of 728 students who started 9th grade in 1959 and graduated from high school in 1963. Eoth samples were limited to those students who had continued on to college. The 1962 graduates have been polled through two questionnaires (1963, 1964), while the 1963 graduates have been sampled by means of a questionnaire which incorporated many items similar to those which were sent to the first group. The purposes of this follow-up study were to compare high school and college achievement, to determine major fields of study in college, to survey college mathematics courses taken, and to sample the attitudes of students toward UICSM courses and toward mathematics in general.
2. The Sample of Students Who Started Sth Grade in 1958*

2.1 Description of the Sample

In 1963 the UICSM mathematics project undertook a follow- up study of students who had completed at least three years of UICSM mathematics courses and were enrolled as full-time students in a college or university during the 1962-63 school year. This sample of 1962 high school graduates was obtained from the first group of high school students to complete for nearly complete) the current versions of the UICSM mathematics courses. We wrote to all the high schools whose teachers had been trained by UICSM staff members in the courses they taught, and asked for lists of graduates. Returns from these high schools amounted to about 50% of the mailing.

A total of 560 of the 1962 graduates were contacted, and 417 completed and returned the questionnaire at the end of theix first college year - a very encouraging 74% return. Of these 417 , only 17 students had to be eliminated from the sample because of incomplete data, so that the final sample contained 400 students - 221 boys and 179 girls, from 168 colleges ard universities in 36 states. The mean age of the students in the sample was 18.3 years with the distribution of ages as given in Table 1. Among the 400 students who provided complete data, 379 gave Table 1. Age distribution of students in this sample.

Age	16	17	18	19	20	Σ
n	1	25	244	129	1	400
$\%$	0.3	6.3	61.0	32.3	0.3	100.2

[^0]us permission to obtain their high school records and coilege transcripts. The high schools and colleges involved in this study were very cooperative in providing transcripts - often at no charge - for which we are most grateful.

2. 2 The questionnaires that were sent to the 1958 sample of students in

1963 and in 1964.
The first questionnaire to the 1958 sample (1962 graciuates) was sent out in the Spring of 1963. A copy of this questionnaire has been included as Appondix A. Information was eought concesning high school mathernatics courses and achievement, college mathematics courses and gradepoint avorages, and probable major fields of study in college.

The second questionnaire, sent out in Spring of 1964, dealt mainly with attitudes which UICSM students held with respect to their UICSM courses, tcachers, college mathematics courses, and the proper emphasis on theory and application in mathematics instruction. This questionnaire is included as Appendix B.
2.3 Discussion of findings.

Table 2 summarizes data, from the first questionnaire sent to the 1962 grachtares, concerning the students' high school training and grades.

Table 2
High School Training and Gradepoints*

	N	Mean	S. D.
Semesters of High School Math	379	7.8	73
Semesters of UICSM Math	379	7.1	\dagger
Semesters of High School Science	379	6.1	+
High School Math gp	379	4.1	. 70
High School gp	379	4.1	. 49
CEEB-V	203	569.9	93.7
CEEB-N	203	608.6	89.9
*Gradepoint Scale: $A=5.0, B=$ tWere not computed.		$D=2.0,$	$=1.0$

Also given are means of the CEEB-V and CEEB-N scores that were reported for this sample. These may be compared with some data, from College Board Score Reports (1960 , p42), which are given in the following table.

Table 3 Percentile ranks of secondary school seniors who took the SAT.

Scores	Boys		Girls	
	Verbal	Mathematical	Verbal	Mathematical
800		99+		.
750	$99+$	98	$99+$	99+
700	98	94	98	99
650	93	85	93	96
600	85	72	84	89
550	73	58	71	79
500	58	41	56	64
450	41	26	38	46
400	26	14	22	27
350	12	5	10	12
300	4	1.	1	3
250	1		1	
200				
Average	e 479	527	486	467

The CEEB-V mean of 569.9 (boys and girls) is higher than the 71 st percentile for girls and the 73rd percentile for boys; while the CEEB-N rnean of 608.6 is above the 7 2nd percentile for boys and the 89 th percentile for girls. CEEB, through statistical adjustments, provides for the stability of SAT scores from year to year so that these scores given in the 1960 report and those of UICSM. students in 1962 may properly be compared. It seems evident that this sample of UICSM students for which CEEB scores were reported is a better-than-average group of studerts.

Drop out rate for students in UICSM courses is of interest to us. Some indication of drop out rate in the 12 th grade is given by Figure 1 .

Figure 1. Number of semesters of mathematics taken by the UICSM students in this sample.

It may be noted that all 400 students took at least 6 semesters of UICSM and that 52 students took less than 8 semesters, which may be interpreted as a 13% drop out for this sample in the senior year. The fact that 7 students studied UICSM for 10 semesters is the result of their starting Course 1 in the 8 th grade. The odd numbers of semesters indicate midyear dropouts. It is planned to make further determinations of droprates through future studies.

The question is often asked concerning the effects of curriculum changes on students. College grade-point averages and major field choices may be used as partial indication of these effects. In Table 4, it can be seen that nearly 30% of the sample chose mathematics, engineering, or a physical science as a probable major. The gradepoint means indicate better-than-average achievement by these students.

Table 4
College Grade-point Averages and Major Fields of Study

			N		Mean	S. D.
College gp average			379		3.7	65
College Math gp average			261		3.8	. 98
				Project Talent		
Probable Major Field	\%		N			
Mathematics	12.37		497			
Engineering	8.3	29.4\%	33	117		18.0\%
A Physical Science	8.8]		35			
Other	60.8		243			
Undecided	10.0		40			
Total	100.2		400			

The corresponding percentages for choices of probable major field in college is compared in Table 4 with the expected major fields of study of the Project Talent (1964) sample, which is a larger and more diversified group. The number of major field choices presented by the Project Talent questionnaire was more extensive than that of the UICSM questionnaire so that, apparently, most Project Talent students found some field interesting enough to check as a major and virtually no students were left for an undecided category.

It is interesting to note that larger percentages of the UICSM students chose mathematics and physical science, while a larger percentage of Project Talent students chose engineering as a probable field of specialization.

Distributions of mean scores for grade-point averages and CEEB scores of the groups of students from the 25 high schools involved in the follow-up study are given in Figures 2 and 3. Figure 4 represents the distribution of high schoul mathematics grade-point averages for the 400 students in the 1962 sampie.

Figure 2. Some distributions of mean scores, for grade-point averages, of the student groups from the 25 high schools.
Mi.in School Gp.

HS Math Gp.

College Gp.

College Math Gp.

$$
(\mathrm{A}=5, \mathrm{~B}=4, \mathrm{C}=3, \mathrm{D}=2, \mathrm{E}=1)
$$

Figure 3. Distributions of means, for CEEB scores, of groups of UICSM students from 17 of the 25 high schools in this study.*

*CEEB scores were available only for students from 17 of the 25 schools.

Figure 4. The distribution of high school mathematics grade point averages for the 400 UICSM students in the sample of 1962 high school graduates.

Number of students

Figure 2 indicates that the high schools represented in the sample were fairly uniform with respect to overall high school grade-point averages of their UICSM students; however, there was greater variation among the high schools with respect to mathematics grade-point averages. Both sets of these averages, High School Gp and High School Math Gp, accumulated toward the higher end of the grade-point scale. Similar statements hold for college averages except that there was a shift downward (compared to high school grade-points) along the grade-point scale which resulted in a mean of about 3.8 for these students. This overall downward shift might be expected for the first year of college work.

From Figure' 3 it may be noted that for every school, the average CEEB-N score of UICSM students in this sample was at least 500 . The school with the highest mean had a mean score of 713 .

Figure 4 reiterates findings of Table 2 and Figure 2 but in terms of number of students as a dimension. It is clear that these UICSM students received grades, in their mathematics courses, which tended toward the upper end of the grade-point scale.

Because of considerable interest in the articulation of UICSM - and college mathematics courses, the UICSM students were asked to list the first mathematics courses that were taken in their college careers. From Table 5 it can be seen that 41.3% of the 400 students in this sample enrolled in analytic geometry, calculus, or a more advanced course as their first college math course - or, to make a different comparison, 165 students (61.3%) out of the 269 students who took math courses.

Table 5
College Mathematics Courses and Grades

No. Taking	Number	No. for Whom			
as First	Taking	Grades Were			
Math Course			$\quad \% \quad$	Course $\%$	Available
:---	:---	Mean gp ${ }^{\dagger}$			

Math Courses Taken					
Freshman Math	54	13.5	54	53	4.0
College Algebra	22	5.5	22	18	3.8
Algebra and Trig.	23	5.8	30	28	3.4
Trig.	5	1.3	14	12	3.8
Analytic Geom.	42	10.5	56	54	3.8
Calculus	118	29.5	171	168	3.7
Other	$\frac{5}{269}$	$\frac{1.3}{61.4}$	$\frac{37}{384}$	$\frac{36}{369}$	4.0
Total	$\frac{131}{400}$	$\frac{32.8}{100.2}$			
No College Math Taken					
Total					

* Some students took as many as three mathematics courses in their freshman year.
+ On this scale: $A=5, B=4, C=3, D=2, E=1$.
The students were asked to comment on the mathematics training they had received in high school. What each student wrote in response to this request was broken down into separate comments and these were classified into general comment types. Table 6 lists the comment types which were found in at least 5% of the student's responses, and the number of students making each type of response. Also listed are all suggestions made by at least 5% of the students.

Table 6

Comments made by at least 5% of the 400 students
Frequency ofComments
Favorable Comment Types
Glad to have had the UICSM program81
Teachers were excellent/well-trained/helpful 78
UICSM gave me a basically sound mathematics program 77
UICSM gave me an advantage over others in college 69
UICSM taught me to think clearly and logically 44
UICSM gave me an interest and desire to learn 36
UICSM has helped me in solving problems of all kinds 36
The basic concepts and skills taught have been especially helpful 34
More was learned than could have been in any other program 30
UICSM stands out from my high school training 28
The self- discovery method is especially helpful 27
UICSM gave me a questioning attitude 25
UICSM is a thinking course 21
Misc. favorable comments (less than 5% each) 168
Unfavorable Comment Types
Teachers were confusing/not well-trained/not helpful 40
I had difficulty making transition to other methods 37
A traditional program would have been more beneficial 23
UICSM left me behind others in college 21
My interest in math was stifled by UICSM 20
UICSM is only for above-average students 20
Misc. unfavorable comments (less than 5% each) 144305
Suggestions
Calculus should be included in the program 36
More emphasis needed on practical applications and manipulation needed 35
UICSM should begin in lower grades 31
Trigonometry should be stressed more 24
Misc. suggestions (less than 5% each) 138

It may be noted from Table 6 that more than twice as many (754) favorable comments were made than unfavorable comments (305) by these students. This summary, in itself, does not clearly demonstrate a general liking or disliking of the UICSM courses by this sample of students. It may have been the case that a small number of students listed a large number of favorable comments or, contrariwise, that a small number of students listed a large number of unfavorable comments. In order to obtairi a more meaningful summary, on a one-man-one-vote basis, the set of comments made by each student was rated in terms of its overall expression of an attitude with respect to the UICSM course sequence. Table 7 gives a summary of the students' general attitudes categorized according to the strength of liking or disliking, so that each student is counted only once. It may be noted that 277 students, or almost 70% of this sample, liked UICSM mathematics.

Table 7

Classification

Moderate to strong liking	219	54.8
Weak to fairly weak liking	58	14.5
Indifferent	31	7.8
Weak to fairly weak disliking	21	5.3
Moderate to strong disliking.	55	13.8
No comments	$\frac{16}{400}$	$\frac{4.0}{99.9}$

The question was asked, in the first questionnaire sent to 1962 graduates, concerning particular topics from high school mathematics which the students found most useful. A list of the topics, which were found in 15 or more responses, is given in Table 8.

Table 8. Important-topic responses (Question XXI) which appeared 15 or more times in answers given by 1962 high school graduates on the first questionnaire sent to this group.

TOPIC
NUMBER
Scientific Notation 111

Trig Identities 81

Logarithms 65
Induction 54
Circular Functions 49
Solving Inequalities 49
Quadratic Equations and Formula 48
Graphing 44
(Fundamentals)
Basic Principles 42(Generalizations)
Exponents 30
Geometric Formulas and Theorems 27
Sequences and Summations 25
Set Theory 23
Logic 23
Trig Formulas (sine law, cosine law, etc.) 23
Trigonometry 22
Simultaneous Equations 22
Complex Numbers 21
Geometric Functions 21
Set Notation 20
Differentiation 20
Equations 20
Geometry 18
Integration 18
Ordered Pairs 17
Linear Equations 16
Algebra 16
Functions 15
Slope Equations 15
Relations 15
Analytic Geometry 15
Totals 31 topics 985

The topics "Scientific Notation" (lll), "Trig Identities'" (81), and "Solving Inequalities" (49) were given as sample topics for this item in the questionnaire. It is unknown how much suggestive effect this listing had on the students' recordings of important topics in their responses. Subject matters that were mentioned in student responses less than 15 times have not been included in this report, so that this list represents only a partial (albeit best recalled) set of important topics.

Another item of interest which was sampled in this questionnaire study was that of overall achievement by UICSM students in high school science courses. A distribution of overall science grade averages is given in Figure 5.

Figure 5. Distribution of overall grade averages achieved by 400 UICSM students in high school science courses.

Referring back to Table 2, it can be seen that the average student took about six semesters (or 3 years) of science courses in high school. The science grade-point averages for this group of students seems to be shifted from a normal curve slightly toward the A-B end of the scale.

Conditions which were statistically significant at the 1% level.
The question may be asked concerning relationships that exist among aptitude, sex, age, achievement; and attitudes for UICSM students in this sample. Table 9 shows the correlations obtained among the variables included in the questionnaire and data obtained from the high schools. The correlation coefficient for any pair of variables appears at the top of each cell and the number of students for whom data wass available on both of those variables appears at the bottom of each cell.

On the following pages, we shall briefly discuss each variable and how it relates to the other variables. Only correlations whichare significant at the 1% level are discussed here.
-17-
Table 9

Correlation Table Sample of 1962 H.S. Graduates Follow -up Study*															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1 DAT -V	-	E36.	. 04	.05 267	.10 267	18289	$\begin{array}{r}110 \\ 176 \\ \hline\end{array}$	$\begin{aligned} & 736 \\ & 255 \end{aligned}$	$\begin{aligned} & 34 \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{r} 686 \\ 113 \\ \hline \end{array}$	$\begin{gathered} 13 \\ 13 \\ \hline \end{gathered}$	$\begin{array}{r} 14 \\ 266 \\ \hline \end{array}$	$\begin{array}{r} -.04 \\ 262 \\ \hline \end{array}$	$\begin{array}{r} -.02 \\ 247 \\ \hline \end{array}$	$\begin{array}{r}-.03 \\ 267 \\ \hline\end{array}$
$2 \mathrm{DAT}-\mathrm{N}$		-	$\begin{array}{r} -.05 \\ \hline 269 \\ \hline \end{array}$. 03	113 269	30 258	178	252	$\frac{56}{256}$	$\begin{array}{r}123 \\ 113 \\ \hline\end{array}$	113	267	$\begin{array}{r}.14 \\ 264 \\ \hline\end{array}$	-15	W66\%
$\begin{array}{ll} \hline 3 \text { Sex } & 1 \text {-Male } \\ & 2 \text {-Female } \\ \hline \end{array}$			-	$\begin{array}{r} .04 \\ 399 \\ \hline \end{array}$	下	$\begin{array}{r} .09 \\ 378 \\ \hline \end{array}$	$\begin{array}{r} .04 \\ 259 \\ \hline \end{array}$	377	$\begin{array}{r} .04 \\ 377 \\ \hline \end{array}$	$\begin{array}{r}-.15 \\ 203 \\ \hline\end{array}$	$\begin{array}{r} 38 \\ 203 \end{array}$	$\begin{array}{r} -.06 \\ 398 \\ \hline \end{array}$	$\begin{array}{\|r} -.06 \\ \hline 389 \\ \hline \end{array}$	$\begin{array}{r} -89 \\ 359 \end{array}$	[4.24]
4 Age		-		-	$\begin{array}{r} -.07 \\ 399 \\ \hline \end{array}$	$\begin{array}{r} -\frac{14}{37} \\ \hline \end{array}$	-.11 259	$\begin{array}{r} .00 \\ 377 \\ \hline \end{array}$	-.08 3.77	-.21 203	-23 .203	398 $-\quad 09$ 398	$\begin{array}{r} .05 \\ 389 \\ \hline \end{array}$	-08 -359	$\begin{array}{r}-.01 \\ 399 \\ \hline\end{array}$
5 Semesters of H.S. Math						$\begin{array}{r} .03 \\ 378 \\ \hline \end{array}$	$\begin{array}{r} -.01 \\ 259 \\ \hline \end{array}$	$\begin{array}{r} .03 \\ 377 \\ \hline \end{array}$	$\begin{aligned} & 23 \\ & 377 \end{aligned}$	$\begin{array}{r}.14 \\ 2.03 \\ \hline\end{array}$.36 203	19 398	$\begin{aligned} & 27 \% \\ & 389 \end{aligned}$	-359	$\begin{array}{r} 23 \\ \times 399 \\ \hline \end{array}$
6 College gp						-	+254	$\begin{array}{r} 49 \\ 37 K 4 \end{array}$	$8 \times \frac{447}{}$	$\begin{array}{r} .17 \\ 203 \\ \hline \end{array}$	203	$\begin{array}{r} .09 \\ 377 \\ \hline \end{array}$	$\frac{15}{3 x}$	$\begin{array}{r} 13 \\ 339 \\ \hline \end{array}$	$\begin{array}{r} .08 \\ 378 \\ \hline \end{array}$
7 College Math gp							-	258	$\frac{36}{258}$	-.04 133	119 133	$\begin{array}{r}16 \\ 259 \\ \hline\end{array}$	235	5.238	$\begin{array}{r} .10 \\ 259 \\ \hline \end{array}$
8 High School gp								-	$\begin{array}{r}882 \\ \hline 377\end{array}$	\% 203	47% -203	.12 376	375	.02 338	$\begin{array}{r}.09 \\ 377 \\ \hline\end{array}$
9 High School Math gp									-	$\begin{array}{r} 38 \\ 203 \\ \hline \end{array}$	$\begin{array}{r} 62 \\ 203 \\ \hline \end{array}$	+ 276	$\begin{array}{r} 32 \\ 371 \\ \hline \end{array}$	$\begin{array}{r} 20 \\ 338 \\ \hline \end{array}$	22 377
10 CEEB -V										-	$\begin{array}{r} 60 \\ 203 \\ \hline \end{array}$	285 203	$\begin{array}{r} 100 \\ 199 \\ \hline \end{array}$	$\begin{array}{r} .06 \\ 177 \\ \hline \end{array}$	$\begin{array}{r}.12 \\ 203 \\ \hline\end{array}$
11 CSEB-N											\bigcirc	$\begin{array}{r} 40 \\ 203 \end{array}$	129	178 177	$\begin{array}{r}1 \\ \hline 21 \\ \hline\end{array}$
12 Calculus in H.S. $\begin{aligned} & 1-\mathrm{Yes} \\ & 0-\mathrm{No}\end{aligned}$												-	$\stackrel{13}{ } 388$	$\begin{array}{r}16 \\ 358 \\ \hline 23\end{array}$	$\begin{array}{r}.09 \\ 398 \\ \hline\end{array}$
13 Summary Comiment (on a likedislike scale from 9 to 0)													-	3.23	$=.22$
$\begin{gathered} 14 \text { Majors } 1 \text {-(Math, Sci., or } \\ \text { Engineering) } \\ 0 \text { (Other) } \end{gathered}$	\cdot									.				-	
15 College Math $\begin{gathered}1-Y e s \\ 0-N o\end{gathered}$															-

*The correlation coefficients in the shaded cells are significant at the 1% level.

I. DAT Scores

A. DAT-Verbal

The following variables correlate significantly with the
DAT-V score.

1. Positive correlations: DAT-N, Cgp, HSgp,

CEEB-N
2. Negative correlations: None
E. DAT-Numerical

The following variables correlate significantly with the DAT-N score

1. Positive correlations: DAT-V, Cgp, CMgp HSgp, HSMgp, CEEB-N, calculus in HS, and taking college mathematics
2. Negative correlations: None

The higher the DAT scores, the higher seem to be the CEEB scores and grade-point averages. Those who made the higher scores on DAT-N tended more to have studied calculus in high school, and to have taken mathematics in college.
II. Sex (Data coding: Male 1, Female 2)

The following variables correlate significantly with sex.

1. Positive correlations: HSgp
2. Negative correlations: Semesters of HS mathematics, CEEB-N, majoring in a scientific field, and taking college mathematics

The girls had significantly higher high school grade-point averages. The boys took more mathematics in high school, did better on the CEEB- N test, tended more often to major in mathematics, science, or engineering in college, and took more mathematics courses in college.
III. Age

The variables that are negatively and significantly correlated with age indicate that the younger students in this sample tended to have higher college averages and higher CEEB scores. Although age differences were not great (i.e. 93% of the students were either $18(61 \%)$ or $19(32 \%)$ year old at the end of their freshman year in college), these correlations may offer further evidence toward the advisability of de-emphasizing age as a criterion for progress through elementary - and secondary curricula. Only 3 out of the 14 other variables correlated significantly with age, the remaining 11 correlations being not significantly different from zero.
IV. Semesters of High School Mathematics The following variables correlate significantly with the number of semesters of high school mathematics at the . 01 level.

1. Positive correlations: HSMgp, CEEB-N, calculus in HS, favorable summary comments, majoring in a scientific field, taking college mathematics
2. Negative correlations: Sex

We note that those students with the greater number of semesters of high school mathematics tended to have higher grades in high school mathematics and higher CEEB-N scores. Also, those students took more calculus in high school, were more favorable in their opinions about their high school mathematics training, took more mathematics in college, and tended more often to major in mathematics, science, or enginerring. The negative correlation with sex here indicates that the boys took more math in high school than did the girls.

V. College Grades

A. Overall grade-point average (Cgp)

The following variables correlate significantly with
Cgp at the . 01 level.

1. Positive correlations: DAT-V, DAT-N, CMgp, HSgp, HSMgp, CEEB-N, favorable summary comments
2. Negative correlations: Age
B. Mathematics grade-point average (CMgp)

The following variables correlate significantly with CMgp at the . 01 level.

1. Positive correlations: DAT-N, Cgp, HSgp, HSMgp, favorable summary comments, majoring in a scientific field
2. Negative correlations: None

The higher the grades in high school, the higher seem to be the grades in college. Those with high overall college grade points also had higher than average scores on the DAT and CEEB tests. Those with the higher college mathematics grades tended to major in mathematics, science, or engineering in college. The students who had the higher Cgp or CMgp were favorable in their comments about their high school mathematics training.
VI. High School Grades
A. Overaill grade-point average (HSgp)

The following variabies correlate significantly with HSgp at the . 01 level.

1. Positive correlations: DAT-V, DAT-N, Sex, Cgp, CMgp, HSMgp, CEEB-V, CEEB-N, favorable summary comments
2. Negative correlations: None
B. Mathematics grade-point average (HSMgp)

The following variables correlate significantly with HSMgp at the . 01 level.

1. Positive correlations: DAT-V, DAT-N, semesters of high school mathematics, Cgp, CMgp, HSgp, CEEB-V, CEEB-N, calculus in high school, favorable summary comments, majoring in a scientific field, taking college mathematics
2. Negative correlations: None

We note from the correlations listed above that the students with the higher overall high school grades were those students with the higher high-school-mathematics grades. These students also had higher college grades and higher scores on the DAT and CEEB tests, made more favorable comments about their high school mathematics training, and praised their high school mathematics teachers. Further, the students with the higher mathematics grades in high school were those who took more semesters of mathematics in high school, studied calculus in high school, took mathematics in college and tended more to major in mathematics, science, or engineering in college. The High School Math gp variable correlated significantly at the 1% level with all of the other variables except sex and age.

VII. CEEB Scores

A. CEEB-V

The following variables correlate significantly with the CEEB-V at the . 01 level.

1. Positive correlations: DAT-V, HSgp, HSMgp,

CEEB-N, calculus in high school
2. Negative correlations: Age
B. CEEB-N

The following variables correlate significantly with the CEEB- N at the . 01 level.

1. Positive correlations: DAT-V, DAT-N, semesters of high school mathematics, Cgp,

HSgp, HSMgp, CEEB-V, calculus in high school, favorable summary comments, majoring in a scientific field, taking college mathematics

2. Negative correlations: Age, Sex

Students with the higher scores on the CEEB-V also have the higher scores on the DAT-V, the CEEB-N, and made higher grades in high school. These were the students who took calculus in high school. Students with the higher scores on the CEEB- N also fit the description above, but they also had the higher scores on the DAT-N, took more mathematics in high school and in college, tended more to major in mathematics, science, or engineering in college, and were more favorable in their comments about their high school mathematics training. It is interesting to note that the CEEB-N scores correlated significantly at the 1% level with all variables except College Math gp.
VIII. Calculus in High School

This variable correlates at the .01 level with the following variables.

1. Positive correlations: DAT-N, semesters of HS mathematics, HSMgp, CEEB-V, CEEB-N, favorable summary comments, majoring in a scientific field
2. Negative correlations: None

That is, the students who studied calculus in high school were those who made the higher scores on the DAT- N and the CEEB tests, made higher grades in mathematics in high school, took more mathematics in high school, tended more to major in mathematics, science, or engineering in college, and were more favorable in their comments about their high school mathematics training.
IX. Summary Comments

This variable correlates significantly at the .01 level with the following variables.

1. Positive correlations: Semesters of high school mathematics, Cgp, CMgp, HSgp, HSMgp, CEEB-N, calculus in high school, majoring in a scientific field, taking college mathematics
2. Negative correlations: None

We note here that the more favorable comments made about high school mathematics training were from the students who had the higher grades in both high school and college. These students also did better on the CEEB-N test, studied more mathematics in Kigh school including calculus, studied more mathematics in college and tended to choose a major in mathematics, science, or engineering in college.
X. Majors

The following variables correlate significantly at the .01 level with choice of college major.

1. Positive correlation: semesters of high school mathematics, CMgp, HSMgp, CEEB-N, calculus in HS, favorable summary comments, taking college mathematics
2. Negative correlations: Sex

The students who planned to major in mathematics, science, or engineering were those who studied more mathematics in high school and college, had the higher grades in mathernatics in both high school and college as well as the higher scores on the CEEB-N test. These students also were more favorable in their comments about their high school mathematics training and less critical of their high school mathematics teachers.

The negative correlation with sex indicates that more boys than girls tended to major in mathematics, science, or engineering. XI. College Mathematics

The following variables correlate significantly at the . 01 level with the taking of college mathematics.

1. Positive correlations: $D A T-N$, semesters of high school mathematics, HSMgp, CEsB-N, favorable summary comments, majoring in a scientific field
2. Negative correlations: Sex (Data coding: Male 1, Female 2) Those students who took mathematics in college had higher scores on the DAT-N and the CEEB- N, they had taken more mathematics in high school and received higher grades in high school mathematics;
they tended to major in mathematics, science or engineering in college, and were favorable in their comments about their high school mathematics teachers and training. More boys than girls took mathematics in college.

A note on some statístically non-significant correlations
It is interesting to note that the correlation between DAT-N and sex is almost zero, i.e. $r=-.05$, which indicates that girls in thes sample have a distribution mean of numerical aptitude scores approxirnately equal to the distribution mean for boys in this sample. It may also be noted that the correlation coefficient of sex with high school math grade point average is $r=0.04$. However, if one looks at the correlation coefficient of sex with semesters of high school mathematics, it is found that $r=-0.23$ which is significant at the 1% level and indicates that boys take more mathematics than girls. The combination of these three correlation coefficients, among students who do take mathematics, suggests that girls may be mathematically as capable as boys but do not elect to pursue mathematics to the same degree. This may be due to factors of social and cultural expectations or differences in interest patterns but could represent, on a national scale, a large and possibly needless loss of mathematical talent. Any program which utilizes more completely the available potential, should be of interest to workers in the field of mathematics education and to personnel in the
different sciences which use mathematics in varying degrees. Further comments are given on this problem in an article by Peden (1965), who presents a strong case for the increased entrance of talented girls into scientific fields and urges the support of teachers and counselors in this effort.

That such a trend may have already begun is suggested by U.S. Office of Education estimates (see reference 6) of the percent increases in the number of baccalaureate degrees conferred in mathematics in 1962 over the number conferred in 1960. These estimates show a 31% increase for men and a 34% increase for women.

One further summary of data on the first questionnaire was done. The students in this sample were asked to check, or write in, the names of college entrance examinations which they had taken. This list is summarized below with the totals obtained from the questionnaires.

Table 10, College entrance exams taken by UICSM students.

	No. of Testings	\%
Scholastic Aptitude Test (SAT)	383	95.8
Writing Sample (WS)	166	41.5
American College Testing Program (ACT)	118	29.5
Intermediate Mathematics Achievement Test	$t \quad 133$	33.3
Advanced Mathematics Achievement Test	107	26.8
PSSC Physics Achievement Test	20	5.0
Traditional Physics Achievement Test	24	6.0
Combined Physics Achievement Test	1	0.3
Total	952	
Other	304 (36 different tests)	
Grand To	Total 1256	

The "Other" category included tests in languages, social studies, sciences, history, mathematics, and special local entrance examinations, totaling 36 different listings. It can be seen from the grand total of 1256 that these 400 students each took, on the average, about three college entrance examinations.

It is hoped that more detailed studies of UICSM students relative to their scores on these tests can be done in the future.

Some results from a second questionnaire sent to the 1962 graduates in the
spring of 1964.
A second questionnaire was sent, at the end of their sophomore year, to the group of 400 college students who had returned the first questionnaire. Thesc returns totaled 299 of the 400 mailed out, a 74.8% return which duplicated essentially the return ratc for the first questionnaire.

The students were asked to list the colleges and universities that they had attended, along with the location and dates of attendance. In addition to providing a list of current college addresses of the respondents, these data provided information concerning mobility of this group as college stucients. Of the 299 respondents, $256(85.6 \%)$ listed only one institution, $42(14.0 \%)$ listed two, and $1(0.3 \%)$ listed three institutions; so 14.3% of this group had attended more than one college or university by the end of the sophomore year.

In order to get some information on time spent as a student and the variability of college calendars within this group, another question asked for the number of term's of college work which would be completed "at the end of the present term', and allowed for recording semesters, quarters, trimesters, and summer sessions. The distributions of the numbers of terms of study are given in Table 11 for each type of college term. It was noted that some students recorded numbers for more than one type of term, because of having attended two colleges that used different academic calendars.

Table 11. Numbers of terms of study crmpleted by respondents.

	1	2	3	4	5	6	7	8	Totals
	3	13	8	216	2	2	0	1	244
semesters	0	0	6	2	1	27	2	1	39
quarters	0	5	0	6	1	8			21
trimesters	1							Σ	304^{*}
mer sessions 18	2							20	

*Evidently, some of the 299 students reported more than one kind of college te rm.

It can be seen that the students who had completed two full academic years (4 semesters, 6 quarters, or 4 trimesters) number 249 (83.3%, while 17 students (5.7%) had completed more than two academic years, leaving only 11% of these students who had completed less than two academic years of college in the spring of 1964 , two years after graduation from high school. Only 20 (6.7%) of these 299 students had attended summer sessions in college.

There was some interest in knowing about the kinds of mathematics courses the se students had taken since the end of, their first year in college, which texts were used, the students' reasons for taking the courses, and the grades received. Consequently, a question was included in the questionnaire to elicit this information. A variety of courses were listed, with an even greater variety of texts. A summary of these findings is included below in Table 12.
Table 12. Data related to mathematics courses taken by students in

Course	$\left\|\begin{array}{c} \text { No. of } \\ \text { student- } \\ \text { terins } \end{array}\right\|$	Reasons for taking cnurse				their first year in collGrades in course					ege.	No. of different Texts	Mostifequently listed Authors
		Req	Major	Elective	Suggested	A	B	C	D	E			
Calculus	142	39	42	- 23	1	27	35	25	8	3		22	Taylor; JohnsonKiekerrister; Thomas; Buck
Engineering Math	7	3	2			3		2				3	Wilks; Kreyseig
Analytic Geometry	12	3	6	4		1	6	3	2			5	Purcell; Rainville
Differential Equations	48	15	18	7	1	11	8	11	0	1		12	Kaplan; MartinReissner; Rainville
Algebra and Trigonometry	11	4	5	2		5	4	2				6	$\begin{aligned} & \text { Fisher-Ziebur; } \\ & \text { Vance } \end{aligned}$
Computer Math	5			3		1	2					3	Germain; McCracken
Linear Algebra	11		6	3	1	5	2	1	1			6	Shields; HoffmanKunze
Vector Analysis	2		2									2	Kaplan; Davis
Number Theory	1		1									1	Wiven
Modern Algebre	19	4	5	5		1	4	5				10	McCoy; BirkhoffMaclane
Statistics and Probability	17	4	7	6		4	6					11	Wilks; Brunk
Other	79	31	$\underline{23}$	5	-	23	16	15	3			28	
Totals Σ	354	103	117	58	3	81	83			4			
$\Sigma \Sigma$					\| 281						246		
Percentages**		36.7	41. 6	20.6	. $1.0 \mid 99.9$	32.9	33.7	26.0	5.7	1.6	99.9		

Of the 299 students who returned this questionnaire, $176(58.9 \%)$ of them listed mathematics courses they had taken since the end of their first year of college, 58 (19. 1%) indicated that they had taken no mathematics courses in their second college year, and $65(21.7 \%)$ made no response to this item. The percentage of students who did not take any mathematics during their second college year might, the refore, be anywhere from 19.4% to 41.1% of the 299 respondents. On the average, those students who did take some mathematics took two terms in their sophomore year (i.e. 176 students took 354 terms). Of the 281 who listed a reason for taking some mathematics, 36.7% took it as a required course, 41.6% indicated "major" as the reason for taking their courses, 20.6% said that they took mathematics because they "wanted to", and the remaining 1% listed "suggested" as a reason. Of those students who recorded their grades, 66.6% of them received A or B while 7.3% received D or E.

The remainder of the second questionnaire to the 1962 graduates consisted of a series of items to sample attitudes of these students toward mathematics gene rally and the mathematics instruction they had received in UICSM courses in high school. Since the sample of 1963 graduates received these same items on a questionnaire, both sets of responses will be treated together later in this report.
3. The Sample of Students Who Graduated from High School in 1963.
3.1 Description of the Sample

A total of 728 high school students, who graduated from 54 high schools in 1963 and had studied one or more years of UICSM mathematics, were included in a questionnaire survey in the Spring of 1964. The mean age of these students was 18.5 year with their ages keing distributed as: $17(2.9 \%), 18(57.8 \%), 19(38.2 \%), 20(0.8 \%)$. The sample of 728 students $(63.9 \%$ return) was composed of equal numbers of boys and girls who
returned the questionnaires mailed out to 1,141 of the 1963 graduates. The total group of students was attending 279 colleges in 38 states, Canada, and Belgium. A more detailed listing of colleges attended has been included in Appendix D, along with a distribution of the students by states for both the respondents and non-respondents combined in Appendix F.

3.2 Discussion of the Questionnaire

The questionnaire for this sample resembled the second questionnaire that was used for the sample of 1962 graduates. It consisted of some items of a clerical nature along with samplings of specific educational outcomes. The variables which we re surveyed included aptitude, sex, number of semesters of studying mathematics, grade~point ave rages, and a set of questions related to attitudes. The ariables are listed briefly in Table 21 , which is a matrix of correlation coefficients from which some relationships may be noted. The exact and complete forms of the questions can be found in the sample questionnaire which is included as Appendix C.

3.3 Discussion of the Findings

Eighty-seven percent of the students in this sample took six or more semesters of UICSM mathematics in high school. Some took as few as two semesters; others, who started in the 8th grade took as many as ten semesters of UICSM. A number of the se stulents also took some non\because.:SM mathematics courses including traditional algebra and geometry courses, analytic geometry, calculus, and probability and statistics. More detailed analysis of the number of semesters of UICSM and traditional mathematics is given in Table 13.

Table 13. The distribution of the number of semesters of mathe matics taken by the sample of 1963 H. S. graduates.

No. of Semesters	0	1	2	3	4	5	6	7	8	9	10	Blanks	Totals
UICSM ${ }^{\text {No. }}$	0	0	28	11	42	11	181	40	368	5	39		728
\%	0	0	3.8	1.5	5.8	1.5	24.9	5.5	50.5	0.7	5.4	0.4	100.0
Non- No.	519	52	118	4	25	0	6	0	0	0	4	4	728
UICSM \%	71.3	7.1	16.2	0.5	3.4	0	0.8	0	0	0	0.5	0.5	99.8

It is of interest to know the distribution of grades received by UICSM students. Overall high school grade-point averages and high school mathe matics grade -point averages were obtained for the students in the 1963 sample and are given in Table $14.64 .9 \%$ of these students had overall grade-point

Table 14. Grade-point averages.
[1.0-2.5][2.5-3.0][3.0.-3.5][3.5-4.0][4.0-4.5][4.5-5.0]Blanks Σ

Overall HS GPA	1	6	77	167	235	237	5	728
$\%$	0.1	0.8	10.6	22.9	32.3	32.6	0.7	100.0
HS Math GPA	7	28	150	104	186	245	8	728
$\%$	1.0	3.8	20.6	14.3	25.5	33.7	1.1	100.0

averages of 4.0 or better, while 59.2% had mathematics averages 4.0 or better, so that these students represent a better-than-average group of high school graduates. All but about 1% of this group answe red the question asking for grade-point averages.

Although most (87%) of these students had been in college for one complete academic year, there was some variability in the number of terms of college attendance. These variations are given in detail in Table 15.

Table 15. Numbers of college terms completed by students in this sample.

	1	2	3	4	5	Σ
Semesters	54	512	0	2		568
Quarters	15	8	92	3		118
Trimesters	2	29	21	2	1	$\frac{55}{741 *}$
Summer sessions	5					$\frac{5}{746}$

[^1]There were 702 students (96.4\%) in this sample who indicated that they were full-time college students at the time of the questionnaire return. Furthermore, 504 students (69.3%) felt that there was little likelihood that they would change their major field; while 185 students (25.4%) thought that they would change their major, and 39 students (5.4\%) gave no response on this item. Concerning the possibility of attending graduate school; of these students 206 (28.3%) said it was very likely, $284(39.0 \%)$ said it was likely, $182(25.0 \%)$ indicated that it was unlikely, oniy $41(5.6 \%)$ stated that it was very unlikely. So, in terms of these students' perceptions of their circumstances, 67.3% of this group rather expected to attend graduate school.

Each student was asked to list his or her major field of study in college. 92 different fields were listed, but only those having a frequency of ten or more are recorded in Table 16 below.

Table 16. Major fields which had a frequency of 10 or more as listed by these students.

Major field	Number of students (a
Mathematics	$65(8.9)$
Education (Elem. and Sec.)	$64(8.8)$
Engineering (7 types listed)	$59(8.1)$
Business	$50(6.9)$
English	$34(4.7)$
Biology	$32(4.4)$
Pre-med	$23(3.2)$
Chemistry	$21(2.9)$
Physics	$19(2.6)$
Accounting	$15(2.1)$
Art (Fine and Applied)	$14(1.9)$
Psychology	$14(1.9)$
Political Science	$14(1.9)$
Nursing	$13(1.8)$
History	$13(1.8)$
Zoology	$10(1.4)$
Others (less than 10 responses.each)	$140(19.2)$
Undecided	$128(17.6)$
Totals	$728(100.1)$

26.9% chose mathematics, engineering, or natural science as a major field. It is interesting to note that education (8.8%) was the second largest category.

Table 17. Occupational classification of UICSM students
for occupations indicated in 5 or more responses. \%
Number of students (and \%)

Accountants and auditors	$16(2.2)$
Architects	$6(0.8)$
Artists and art teachers	$13(1.8)$
Authors	$5(0.7)$
Chemists	$14(1.9)$
College professors and instructors	$6(0.8)$
Engineers (8 types)	$47(6.5)$
Lawyers and judges	$21(2.9)$
Biological scientists	$5(0.7)$
Physicists	$10(1.4)$
Miscellaneous natural scientists	$7(1.0)$
Nurses, professional	$12(1.6)$
Pharmacists	$5(0.7)$
Physicians and surgeons	$43(5.9)$
Social Scientists	$12(1.6)$
Teachers, elementary	$24(3.3)$
Ieachers, secondary	$25(3.4)$
Teachers (not elsewhere classified)	$107(14.7)$
Technicians, medical and dental	$7(1.0)$
Veterinarians	$5(0.7)$
Business managers	$33(4.5)$
Others	$97(13.3)$
Undecided	$208(28.6)$
Total	728100.0

In Table 17 of occupations, engineering and the natural sciences account for 11.5% of the student choices. Teaching accounts for 22.2% of the occupational choices.

[^2]The UICSM students in the sample of 1963 high school graduates we re asked to give information on the college mathematics courses they had taken in their first year of college. This information was to include course titles, text authors, terms when studied, year, reasons for taking the courses, and grades received. It was hoped that this data would give a useful (though partial) picture of the mathematical activities of this sample of UICSM students. The responses to this question are summarized in Table 18. Since the data is rather incomplete, only gene ral impressions can be obtained.

Table 18. Some data related to mathematics courses taken by UICSM students in the sample of 1963 high school graduates.

	No. of different	Terms when studied	Year	Reason for taking course\%	Grades
Course	listed	Fall Sp. Su.	'62.63 '64	12345	A B C D E
Calculus	34	1871977	10180187	624341292	809462191
Statistics	9	360	38	$\begin{array}{lllll}7 & 2 & 1 & 0 & 1\end{array}$	$\begin{array}{lllll}5 & 3 & 0 & 0 & 0\end{array}$
Pre-calculus (Alg., Trig., Geom.)	59	$123 \quad 76$	211787	971649430	536442116
Business	12	$12 \quad 10 \quad 1$	$\begin{array}{lll}0 & 14 & 10\end{array}$	$\begin{array}{llllll}6 & 4 & 1 & 0 & 12\end{array}$	$\begin{array}{lllll}7 & 4 & 7 & 0 & 0\end{array}$
Differential Equations	7	270	$\begin{array}{lll}0 & 2\end{array}$	2 lllll	$\begin{array}{lllll}2 & 2 & 0 & 1 & 0\end{array}$
Other (General)	35	$18 \quad 13 \quad 2$	$0 \quad 20 \quad 11$	$22 \begin{array}{lllll}2 & 0 & 2 & 0 & 5\end{array}$	
Σ	156	34530910	12336310	19666946142	158177118328
$\Sigma \Sigma$	156	664	658	504	493

$\begin{aligned} * 1 & =\text { Required by college, } 2=\text { Math major, } 3=\text { Wanted to, } 4=\text { Suggested, } \\ 5 & =\text { Required for major (e.g., physics). }\end{aligned}$

One thing that stands out in Table 18 is the large number of different texts that are used for these courses. This is one problem which must be met by a "college preparatory mathematics'" sequence in high school. Although the concepts may be constant over the set of texte for a course, neither the approach nor the symbolism can be expected to be so.

It may be noted from Table 18 that at least 12 students (Year '62) took some college mathematics in high school. (Whether or not other students took college courses in the spring of 1963 is not clear.) The 504 reasons that were given for taking these mathematics courses we re divided as follows: 38.9% required by the college, 13.1%-required for a major in mathematics, 18.7% wanted to, 1.2%-suggested to the student, 28.2%-required for another major (e.g., physics). It is evident that mathematics courses listed as a requirement account for about 80% of these responses. (These we re free responses, not multiple choice.) The 493 grades recorded tended to accumuiate more at the $A-B$ end of the scale than in the $D-E$ region. It is difficult to say what the distribution might be if the 171 missing grades were known.

The last item on the questionnaire to the 1963 g raduaies requested, "indicate anything about (your) UICSM courses which you especially liked or disliked." The responses which occurred five or more times seemed to fall into three broad areas-those related to teaching, content, and texts. These comments are summarized separately as "Liked" or "Disliked" in the paragraphs below. In these lists an additional section in each group lists other comments which occurred 2-4 times. An attempt has been made to use the same, or very similar, wordings as those used in the responses written to the questionnaires.

Liked Teaching: "thinking for yourself" approach 58; approach (why instead of how) 53; teacher 35; methods in teaching concepts 13; precise, specific terminology 13; presentation of mate rial 11; challenge 10; not just memorization 10; careful and thorough explanations 7; humor 6; basic principles 5; Content: logic 31 ; theory 30 ; interesting material 13 ; geometry 8; having to do proofs 7; algebra part 6.

Texts: original loose-leaf books 12; soft-covered books 7; printed on only one side 6; interest in improving, revising the course 5.

Other comments (2-4 occurrences): informality 3 , section on reasoning 3, shown to be more abstract than usually thought 2 , examples 3 , continuity 4 , discovery 3 , method of proof 2, less drill and more understanding 2 , organization 2 , problems 4 , geometry proofs 2, trigonometry 4, unit circle approach to trigonometry 2 , separation of classes according to ability 2 , being able to take notes in the books 3, induction 2, liked as a whole 2 , prepared more adequately 2 .

Disliked Teaching: a particular teacher 21; instructor not qualified 16; didn't see practicality 16 ; not enough practical problems 15; grouping of students 14; speed 10; the fact that the teacher didn't fully explain 7; constant reference to Zabranchburg 6; disliked the standardized tests 6 .

Content: lack of an introductory unit to calculus 11 ; what we we re studying 9; geometry 8.

Other comments (2-4 occurrences): the fact that we were never sure where the problem was leading until it was all firished 2; proofs 3; students 2; odd symbols 3; lack of review 3; trig not sufficient preparation for calculus 2; no continuity 2 ; too much covered 2; no logs 2 .

It seems that these students did enjoy having the theory and understanding which carried them beyond the traditional drill and that they enjoyed being challenged, so long as the presentations of the mate rial were carefully and thoroughly done. Mainly, these students disliked those teachers and practices which they perceived as ill-prepared.

Ove rall college grade-point averages and college mathematics grade -point averages were obtained from many of the respondents although some students did not provide this information. The data for the 299 students in the 1962 sample and for the 728 students in the 1963 sample are summarized in the following tables.

Table 19. Overall college grade-point averages for the 1962 and 1963 samples combined.

GPA
Sarnple Blanks[1.0-2.0][2.0-2.5][2.5-3.0][3.0-3.5][3.5-4.0][4.0-4.5][4.5-5.0] Σ

1962	21	2	5	12	45	87	84	43	299
$\%$	7.0	0.7	1.7	4.0	15.1	29.1	28.1	14.4	100.1
1963	62	4	12	42	170	190	166	82	728
$\%$	8.5	0.6	1.6	5.8	23.4	26.1	22.8	11.3	100.1

Table 20. College mathematics grade-point ave rages for the 1962 and 1963 samples combined.

Sample Blanks[1.0-2.0][2.0-2.5][2.5-3.0][3.0-3.5][3.5-4.0][4.0-4.5][4.5-5.0] Σ

1962	150	3	6	4	35	7	52	42	299
$\%$	50.2	1.0	2.0	1.3	11.7	2.3	17.4	14.0	99.9
1963	265	8	25	16	90	32	148	144	728
$\%$	36.4	1.1	3.4	2.2	12.4	4.4	20.3	19.8	100.0

From Table 20 it is apparent that only about 49% of the 1962 sample and 64% of the 1963 sample recorded any grades for mathematics courses. The
"Blanks" designation includes both stadents who responded "none" to this item and those who did not respond at all to this item; so that it is not possible to say exactly how many students took a mathematics course but did not respond.
37.6% of the students, from both samples, who did record their mathematics grades reported grade -point. ave rages of 4.0 or higher.

The following statements are inferences which are made by considering the significant correlations which exist among the variables in Table 21 and the means for these variables in Table 22 . The critical reader will want to check the inferences made, by comparing volues from Tables 21 and 22 for the variables discussed. First, it may be noted that those UICSM students whe obtain high DAT-Verbal scores also tend to have high DAT-numerical scores, tend to take more semesters of UICSM mathematics: tend to have higher grade-point averages both in high school and college, and seemed to take more mathematics beyond calculus in college. There exists a positive correlation (significant at the 1% level) between DAT-V and question 7 in the questionnaire (related to heterogeneous grouping) which implies that students with higher DAT-V scores favor hete rogeneous grouping in classes, while those students
with lower scores tend to favor homogeneous grouping. ${ }^{*}$ However, consideration of Table 23 shows a low mean of 25 for question 7, which implies that the sample of students as a whole tended to favor homogeneous grouping.

[^3]| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| :---: |
| 1 DAT-V | 435 1 | | | | | | | | | | | | | ble 20 | | | | | |
| $2 \mathrm{DAT}-\mathrm{N}$ | 433 .46 | 452 1 | | | | | | | | | | | | lete | $\times 3$ | trix | | | |
| 3 Age | 434 .15 | 451 .30 | 727 1 | | | | | | | | | | | | | | | | |
| 4 Sex | 434 .00 | $\begin{array}{r} 451 \\ -.12 \\ \hline \end{array}$ | $\begin{array}{r} 726 \\ -.06 \\ \hline \end{array}$ | 728 1 | | | | | | | | | | | | | | | |
| 5 Sem. UICSM Math. | 435 .15 | 452 .17 | $\begin{array}{r} 727 \\ -.05 \\ \hline \end{array}$ | $\begin{array}{r} 726 \\ -.21 \end{array}$ | 728
 1 | | | | | | | | | | | | | | |
| 6 Sem. Other Math. | $\begin{array}{r}432 \\ -.07 \\ \hline\end{array}$ | 449 -.06 | 724
 .05 | 724 -.08 | -725 | 725
 1 | | | | | | | | | | | | | |
| 7 Beyond H.S. Math. | $\begin{array}{r} 155 \\ -23 \end{array}$ | 154 -24 | - 214 | 215 .18 | - 215 | 213 .44 | 215 | | | | | | | | | | | | |
| 7 Beyond H.S. Math. | $\underline{157}$ | -. 162 | - 220 | $\stackrel{121}{ }$ | - 221 | 219 | 193 | 221 | | | | | | | | | | | |
| 8 Calculus in H.S. | -. 09 | - 07 | -. 33 | -. 13 | . 15 | . 42 | . 30 | 1 | | | | | | | | | | | |
| 9 H.S. Ave. | . 431 | 447 .26 | 721 -.03 | 721 .12 | 723 46 | 720 .01 | $\begin{array}{r}214 \\ .02 \\ \hline\end{array}$ | $\begin{array}{r} 219 \\ -.07 \\ \hline \end{array}$ | 723 1 | | | | | | | | | | |
| | 428 | 444 | 719 | 720 | 721 | 719 | 212 | 217 | 729 | 721 | | | | | | | | | |
| 10 H.S. Math. Ave. | . 32 | | -. 07 | -. 10 | . 325 | . 04 | +27 | r-30 | . 64 | 1 | | | | | | | | | |
| 11 Sem. College | 432 .00 | 449 -.01 | 724 .08 | 72.4 -.01 | 725 -.01 | 723
 .04
 721 | 215 .09 | .221 -.16 | $\begin{array}{r}720 \\ .04 \\ \hline\end{array}$ | $\begin{array}{r}718 \\ .06 \\ \hline\end{array}$ | $\begin{gathered} 725 \\ 1 \\ \hline \end{gathered}$ | | | | | | | | |
| | 429 | -. 446 | 721 | 721 | 723 | 721 | 214 | 220 | 717 | 716 | 721 | 722 | | | | | | | |
| 12% Time as student | -. 01 | $-.01$ | . 02 | -. 02 | -. 08 | . 03 | -. 05 | -. 03 | -. 07 | -. 10 | - -13 | 712 | 713 | | | | | | |
| 13 Major | 424 -.04 | 441 -.22 | 712 -.05 | 712 | -713 | $\begin{array}{r}712 \\ -.07 \\ \hline\end{array}$ | . 12 | -. 20 | -. 05 | -. 29 | -. 01 | -. 01 | 1 | | | | . | | |
| | 424 | 441 | 712 | 713 | 714 | 712 | 209 | 215 | 709 | 78 | 711 | 711 | 704 | 714 | | | | - | |
| 14 Grad. Sch. (Plan to go to)
 lst College Course | . 00 | -. 05 | . 05 | $\because .30$ | -21 | -. 01 | . 07 | -. 16 | -. 15 | -. 19 | -. 01 | . 06 | . 04 | ${ }^{1}$ | | | | | |
| Pre. Analyt. | 286 | 299 | 498 | 500 | 520 | 498 | 160 | 165 | 496 | 496. | 499 | 449 $-\quad 04$ | - 493 | $\begin{aligned} & 495 \\ & .01 \\ & \hline \end{aligned}$ | $\begin{gathered} 500 \\ 1 \end{gathered}$ | | | | |
| | . 180 | .191 | . 00 | -.14 | . 340 | - 338 | -. 13 | . 120 | $\frac{.13}{336}$ | + 337 | 339 | 339 | 337 | 337 | 340 | 340 | | | |
| 16 Analyt. or Calculus | -. 01 | . 02 | . 03 | $-.05$ | . 00 | . 11 | . 16 | . 06 | . 14 | - 这 | . 07 | -. 04 | . 03 | -. 05 | . 58 | 1 | | | |
| 17 Other Math. Taken | 20 | 29 | 61 | 61 | 61 | 61 | 21 | 22 | 60 30 | 60 | 61 02 | $\begin{array}{r}61 \\ -\quad 02 \\ \hline\end{array}$ | - 61 .- .22 | $\begin{array}{r} 61 \\ -.29 \\ \hline \end{array}$ | 61 .50 | $\begin{array}{r} 60 \\ .45 \\ \hline \end{array}$ | ${ }_{1}^{61}$ | | |
| | | . 278 | . 26 | - 462 | -. 466 | . 22 | - 159 | -. 157 | - 463 | 463 | 466 | 466 | 460 | 44 | 466 | 332 | 6t | 467 | |
| 18 College Math. Ave. | . 11 | . 21 | -. 01 | -. 02 | 14 | . 03 | . 09 | . 12 | -. 35 | 43 | . 00 | -. 09 | $-.12$ | - 40. | . 04 | -. 03 | < 40 | 1 | |
| 19 College Ave | 395 | 410 | 669 | 670 | 671 | 669 $-\quad 05$ | -205 | 212 .15 | 617 | . 666 | 670 .04 | 669 -.10 | 661 -.11 | -6\% | 491 .08 | 334 .02 | 60 .14 | | $\begin{gathered} 671 \\ 1 \end{gathered}$ |

+ See computer codings in Table 22.
Table 2l－2．Matrix of Correlation Coefficients（1963 graduates）

N							0			$\Delta 1$						\sim	$\left\|\begin{array}{cc} \infty & \sim \\ M_{4} & \underset{1}{1} \end{array}\right\|$
9		∞	$\begin{array}{rr} 10 & 0 \\ 10 & 0 \\ 1 & 1 \\ \hline \end{array}$										$a N$	$\sim \infty$		$\stackrel{n}{\circ}$	$\begin{gathered} -1 \\ \hline \end{gathered} 0^{\circ}$
				18			$\begin{array}{cc} \infty & m \\ +1 & 0 \end{array}$	$0 \begin{array}{ll} 4 & 0 \\ y_{1} & 0 \end{array}$	$\ln x$						O.	108	
$\underset{\sim}{N}$	$\begin{array}{cc} -1 & 10 \\ -1 & \mathrm{~m} \\ 1 \\ 1 \end{array}$		$1-10$		$\left[\left.\begin{array}{rr} H & 0 \\ n & -1 \end{array} \right\rvert\,\right.$	0		$\begin{gathered} \infty \\ i n \\ i \\ i \end{gathered}$	$\begin{array}{ll} 0 & +4 \\ i n & 0 \\ i \end{array}$					$\begin{array}{ll} 0 & m \\ n & -1 \\ & i \end{array}$	\dot{m}	$\left\|\begin{array}{rr} 0 & 0 \\ 1 & \mathrm{~N} \\ & 1 \end{array}\right\|$	M $\begin{gathered}\text { H } \\ \\ i\end{gathered}$
$\underbrace{0}_{-4}$		$\begin{array}{cc} H & N \\ N & \\ \hline \end{array}$	$\begin{array}{ll} 1 & 0 \\ m & 0 \\ m & 0 \end{array}$	$\begin{aligned} & n \\ & m \\ & m \\ & m \end{aligned}$	$\left\|\begin{array}{ll} \infty & 1 \\ \infty & 1 \\ n & n \\ N & 1 \end{array}\right\|$	$\begin{array}{ll} m & n \\ m & 0 \\ 0 \end{array}$	$\left\lvert\, \begin{array}{ll} 0 & n \\ & 0 \\ m & i \end{array}\right.$	$\operatorname{lix}_{\operatorname{mox}} 0$	$\begin{gathered} N_{1} \\ m \\ m \end{gathered}$		$\left[\begin{array}{ll} x+1 & 0 \\ n & 0 \\ n & 0 \end{array}\right.$	$\begin{array}{ll} \infty & 0 \\ 0 & 0 \\ m & i \end{array}$	$\begin{array}{ll} a & n \\ N & 0 \\ m & 0 \end{array}$	$\begin{array}{ll} \infty & m \\ y_{1} & 0 \\ & 1 \end{array}$	$\left.\begin{array}{cc} 10 & 10 \\ 0 & - \\ m & i \end{array}\right]$	$\left\|\begin{array}{ll} m & y \\ m & 0 \\ m & i \end{array}\right\|$	$\begin{array}{ll} m & \ddots \\ m & 0 \\ m & 0 \end{array}$
\ln		$\frac{3}{4}$	$\begin{gathered} m \\ \sigma_{1} \\ \underset{y}{1} 0 \\ \hline \end{gathered}$	0		$\left\|\begin{array}{cc} 1 & 0 \\ 4 & 0 \\ \text { H1 } & 0 \end{array}\right\|$	$\left\lvert\, \begin{array}{ll} a & N \\ \vdots & 0 \\ x & 0 \end{array}\right.$	0	0	$\begin{gathered} \mathrm{N} \\ \mathrm{~N} \\ 4 \\ \hline \end{gathered}$	$\begin{array}{ll} n & 0 \\ \underset{y}{1} & 0 \\ \hline \end{array}$	$\left\lvert\, \begin{array}{cc} \infty & \infty \\ z^{4} & 0 \\ 7 & \\ & \\ & 1 \end{array}\right.$	$\left\lvert\, \begin{array}{ll} \infty & 0 \\ 4 & 0 \end{array}\right.$	$\begin{array}{ll} 1 & -2 \\ 0 & 0 \end{array}$	$\begin{array}{ll} 0 & 0 \\ m & 0 \end{array}$	$\left\|\begin{array}{ll} 1 & 0 \\ \infty & 0 \\ 7 & \\ & i \end{array}\right\|$	$\stackrel{10}{\ln } \underset{4}{4}$
$\underset{\sim}{H}$					$\begin{array}{cc} 1 & 0 \\ 0 & 0 \\ 10 & 1 \\ & 1 \end{array}$	$\left.\begin{array}{ll} y_{1}^{1} & -1 \\ y_{1} & -1 \end{array} \right\rvert\,$	$\left\lvert\, \begin{array}{ll} \infty & 0 \\ \infty & 0 \\ 0 & 0 \end{array}\right.$		0	$\begin{aligned} & 41 \\ & -10 \end{aligned}$			$\left\lvert\, \begin{array}{ll} 1 & 0 \\ \infty & 0 \\ 1 & 0 \\ & 1 \end{array}\right.$	$\frac{1}{n} 0$	$\begin{array}{cc} N & \infty \\ n_{1} & 0 \\ 1 \\ i \end{array}$	$\begin{array}{ll} n & - \\ 0 & 0 \\ \forall & 0 \\ & 1 \end{array}$	$\ln \cdots$
$\stackrel{m}{-1}$						$\begin{array}{ll} -1 & 0 \\ \text { Ha } \\ 0 & 0 \end{array}$	$\left\lvert\, \begin{array}{ll} 10 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right.$	$\left\lvert\, \begin{array}{ll} 4 & 1 \\ 6 & 0 \\ 0 & 0 \end{array}\right.$	$0 \begin{array}{ll} M & 0 \\ 0 & 0 \end{array}$	$1 \begin{array}{ll} 1 & 2 \\ 0 & 0 \end{array}$	$\left\lvert\, \begin{array}{l\|l\|} 0.10 \\ 0 \end{array}\right.$	$\begin{array}{ll} 1 & -1 \\ n_{0} & 0 \\ & i \end{array}$	$\begin{aligned} & \text { N } \\ & \times 1 \\ & 1 \end{aligned}$	${ }_{\sim}^{\infty} 0$	$\begin{array}{cc} \underset{\sim}{\alpha} & 0 \\ \underset{4}{*} & 0 \\ & i \end{array}$	$\left\|\begin{array}{ll} 0 & 0 \\ 7 & 1 \end{array}\right\|$	
$\xrightarrow{\sim}$	$\begin{array}{\|cc} 5 & 0 \\ i \end{array}$	$\begin{array}{ll} \infty & 0 \\ \infty & 0 \\ 4 & 0 \end{array}$		$\left\lvert\, \begin{array}{ll} 0 & 1 \\ \infty & 0 \\ 0 & 0 \end{array}\right.$	$\left.\begin{array}{ll} 0 & 9 \\ n & 0 \\ i n & 0 \end{array} \right\rvert\,$	$\left.\begin{array}{\|cc\|} \hline 0 & 0 \\ \ln & 0 \\ 0 & i \end{array} \right\rvert\,$	$\left\lvert\, \begin{array}{ll} 1 & 1 \\ 0 & 2 \\ 0 & 0 \\ 0 & 1 \end{array}\right.$	0	$\begin{array}{ll} 0 \\ N & 0 \\ \text { n } \\ \hline \end{array}$	$\left\lvert\, \begin{array}{cc} 9 & N \\ -1 & 0 \end{array}\right.$	$\left\lvert\, \begin{array}{rr} -1 & 0 \\ 8 & 0 \\ & 1 \end{array}\right.$	$\begin{array}{ll} 0 & 10 \\ 7 & 0 \\ 10 & 0 \end{array}$	$\left\lvert\, \begin{array}{ll} n & 0 \\ 0 & 0 \\ 4 & 0 \end{array}\right.$	$\left(\begin{array}{ll} \infty & \infty \\ \infty & 0 \\ +4 & i \end{array}\right.$	$\begin{array}{\|cc} \ln & 8 \\ \ln _{1} & 0 \\ & 1 \end{array}$	$\left\|\begin{array}{cc} 1 & 10 \\ 7 & 0 \\ & i \end{array}\right\|$	
\cdots		$\begin{array}{ll} \infty & 0 \\ \infty & 0 \\ \forall 1 & 0 \end{array}$	$\begin{array}{ll} 2 n & m \\ 0 & 0 \\ & 0 \end{array}$	$\begin{aligned} & -7 \\ & \sigma \\ & 0 \end{aligned}$	$\left\|\begin{array}{ll} n & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right\|$	$\begin{array}{\|cc\|} \hline 0 & 9 \\ 10 & 0 \\ 0 & 1 \\ & 1 \end{array}$	$\begin{array}{ll} 1 & m \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{r} -1 \\ 0 \\ \hline \end{array}$	$\begin{array}{ll} 0 \\ N & 0 \\ \hline \end{array}$	$1 \begin{array}{ll} 0 & -1 \\ 1 & 0 \\ 0 & i \end{array}$	$\left\lvert\, \begin{array}{ll} -1 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right.$	$\begin{array}{ll} 0 & x_{1}^{4} \\ y_{1} & 0 \end{array}$	$\left\|\begin{array}{cc} N & N \\ 0 & 0 \\ d & 1 \end{array}\right\|$	$\left\lvert\, \begin{array}{ll} 9 & 0 \\ \infty & 0 \end{array}\right.$	$\begin{array}{ll} n & N \\ n & 0 \\ 4 & i \end{array}$		$\left.\begin{array}{ll} 4 & N \\ H & n-1 \end{array} \right\rvert\,$
\neg									－	$\begin{array}{ll} 0 & m \\ 0 & 0 \end{array}$	$\left\|\begin{array}{l} \mathrm{O} \\ \mathrm{n} \end{array}\right\|$	$\left\lvert\, \frac{n}{n}+\right.$	$1 \text { are }$	∞	$\left\lvert\, \begin{array}{ll} 17 \\ 4 & 0 \\ 0 \end{array}\right.$	N	$\begin{array}{cc} N & \infty \\ n_{i} & 0 \\ 0 \end{array}$
						4			$\begin{array}{ll} \infty & r_{1} \\ -1 & -1 \end{array}$	$\left.\right\|_{r-1} ^{n}$	$\begin{array}{ll} 8 & n \\ 8 & \end{array}$	$\left\|\begin{array}{ll} 0 & m \\ m & 0 \\ n & 0 \end{array}\right\|$		$\left\lvert\, \begin{array}{ll} \infty \\ \infty & 0 \\ \hline \end{array}\right.$	$\left\|\begin{array}{ll} n & 0 \\ n & 0 \end{array}\right\|$	${ }^{2} \mathrm{~N}$	$\left\|\begin{array}{cc} N & -1 \\ N & -1 \\ -8 & -1 \end{array}\right\|$
∞		为为为		$\begin{array}{ll} 1 \\ \mathrm{~N}_{\mathrm{N}} & 0 \end{array}$	$\left\|\begin{array}{ll} 1 & 1 \\ \infty & 0 \\ -1 & 0 \end{array}\right\|$	$\left\|\begin{array}{cc} n & 4 \\ \underset{n}{2} & -1 \end{array}\right\|$	$\left(\begin{array}{ll} n-1 \\ n & 0_{1} \\ n & 0 \end{array}\right.$	0	\hat{i}	$\left\lvert\, \begin{array}{ll} 0 & 0 \\ \infty & 0 \end{array}\right.$	$\begin{array}{ll} \infty & \infty \\ \sim & -1 \end{array}$	-1		n	${ }_{n=1}^{n}$		-180
－	$\begin{array}{ll} 0 & \underset{\sim}{0} \\ \underset{N}{0} & 0 \end{array}$	$\left.\begin{array}{cc} m & 4 \\ \text { H } \\ n & 0 \end{array} \right\rvert\,$	$\begin{array}{ll} n & 0 \\ \sim & 0 \\ N \end{array}$	$\left\lvert\, \begin{array}{ll} 9 & 0 \\ 0 & 0 \\ N & 0 \end{array}\right.$	$\left.\begin{array}{rr} -1 & n \\ \infty & -1 \\ -1 & \end{array} \right\rvert\,$	$1 \begin{array}{ll} 0 & 0 \\ -1 & 0 \end{array}$	$\begin{array}{ll} -1 \\ w & 0 \\ N & 0 \end{array}$	$\begin{array}{ll} \ln & \infty \\ n & 0 \\ n \end{array}$	$\begin{array}{ll} m & 1 \\ 0 & 0 \\ n-1 & 0 \end{array}$	$\left(\left.\begin{array}{ll} \infty & N \\ - & 0 \\ -1 & i \end{array} \right\rvert\,\right.$	$l l_{n}^{n} 0$	$\left\|\begin{array}{ll} 1 & \infty \\ & 0 \\ m & 0 \end{array}\right\|$	$\left\lvert\, \begin{array}{ll} 0 & 10 \\ 0 & n \\ t i \end{array}\right.$	$\left\|\begin{array}{ll} 0 & 0 \\ 10 & -1 \end{array}\right\|$	$\left\|\begin{array}{ll} \infty & 4 \\ -1 & 0 \\ -1 & 0 \end{array}\right\|$		
\bigcirc	$$	$\left\|\begin{array}{cc} 10 & 10 \\ \infty & 0 \\ +1 & i \end{array}\right\|$	$\begin{array}{\|cc\|} \hline 10 & -1 \\ 0 & 0 \\ \hline \end{array}$	$\begin{array}{cc} -1 & 0 \\ 0 & 0 \end{array}$	$\left\|\begin{array}{ll} -1 & 0 \\ 0 & 8 \\ 0 & 0 \end{array}\right\|$	0	0	$\left[\begin{array}{cc} N & \infty \\ & 0 \\ 0 & 1 \end{array}\right.$	$\left\|\begin{array}{cc} a & 9 \\ -1 & 0 \end{array}\right\|$	$\left\lvert\, \begin{array}{ll} 9 & 0 \\ -1 & 0 \end{array}\right.$	$\left\|\begin{array}{cc} 1 & -1 \\ 0 & -1 \\ 0 & 1 \end{array}\right\|$		\＃		$\left\|\begin{array}{ll} 1 & 0 \\ 5 & 0 \\ 4 & 0 \end{array}\right\|$	$\left\|\begin{array}{cc} 1 & 1 \\ 0 & 0 \\ 1 & 0 \end{array}\right\|$	$\begin{array}{cc} 4 & 0 \\ 4 & -1 \\ 4 & i \end{array}$
10								∞	$\left\lvert\, \begin{array}{ll} 40 \\ \text { Ha } \end{array}\right.$	NN		in ${ }^{\text {an }}$	$\frac{\infty}{4}$	∞	－${ }_{0}^{0} \mathrm{O}$		
4	$\begin{array}{ll} -1 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$	$\left\|w_{0} x\right\|$	$\left\|\begin{array}{ll} 1 & 0 \\ 0 & 0 \\ r & 0 \end{array}\right\|$	$\left\|\begin{array}{ll} m & -1 \\ 0 & 0 \\ 0 & 0 \end{array}\right\|$		$\left\lvert\, \begin{array}{cc} -1 & -1 \\ 0 & -1 \\ & 1 \\ & 1 \end{array}\right.$	$\left\|\begin{array}{cc} \infty & N \\ 0 & 0 \\ 0 & 0 \end{array}\right\|$	$\frac{1}{2} \mathrm{C}$	$\left[\begin{array}{cc} -N \\ N & 0 \\ \text { N } \\ i \end{array}\right.$	$\begin{array}{cc} 0 & 1 \\ N & 0 \\ 0 & 0 \end{array}$		$\left\|\begin{array}{cc} 0 & m \\ y_{1} & 0 \\ \text { n } & i \end{array}\right\|$	$\begin{gathered} 98 \\ 4 \\ 4 \end{gathered}$	$\left\|\begin{array}{ll} 4 & d \\ \infty & 0 \\ y & \end{array}\right\|$	$\left\|\begin{array}{ll} 10 & -2 \\ n & 0 \end{array}\right\|$	$\begin{array}{ll} \infty & 0 \\ 0_{1} & n \\ x_{1} & 1 \end{array}$	$\begin{array}{ll} 10 & -1 \\ 10 & 0 \\ i \end{array}$
m	$\begin{array}{cc} 0 & N \\ \infty & 0 \\ 0 & i \end{array}$	$\left\lvert\, \begin{array}{cc} n & 2 \\ 0 & 0 \\ +1 & 0 \end{array}\right.$	$\begin{array}{ll} 10 & -1 \\ 0 & 0 \\ 1 & 0 \end{array}$	$\begin{array}{cc} N & N \\ \alpha & 0 \\ 0 & \end{array}$	$\begin{array}{\|cc\|} \hline N & H \\ 0 & 0 \\ 0 & 1 \\ \hline \end{array}$	$\left[\begin{array}{cc} -1 & \infty \\ 0 & 0 \\ 0 & 1 \end{array}\right.$	$\left\lvert\, \begin{array}{cc} 1 & -1 \\ 0 & 0 \\ 0 & 1 \end{array}\right.$	$\mid c c_{N}^{2}$	$\begin{array}{ll} 10 & 0 \\ 10 & 0 \\ \text { in } \end{array}$	$\left\|\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right\|$	$\left\lvert\, \begin{array}{ll} n & \infty \\ 0 & 0 \\ 0 & 1 \end{array}\right.$	$\begin{array}{cc} 0 & -x \\ n_{1} & 0 \\ n & i \end{array}$	$\left\|\begin{array}{ll} -1 & N \\ -+1 & 0 \end{array}\right\|$		$\begin{array}{cc} \ln _{1} & 0 \\ x^{2} & 0 \end{array}$	$\left\|\begin{array}{ll} 0 & N \\ 0 & 0 \\ f & 0 \end{array}\right\|$	Mr
N			$\begin{array}{\|cc\|} \hline 0 & 0 \\ m & 0 \\ \nabla & 0 \\ & \\ \hline \end{array}$	$\left\|\begin{array}{ll} \infty & 0 \\ 0 & 0 \\ \rightarrow & 0 \end{array}\right\|$	$\left\|\begin{array}{ll} 1 & 1 \\ 0 & 0 \\ m & 0 \end{array}\right\|$	$\left\|\begin{array}{ll} 0 & \infty \\ 0 & 0 \end{array}\right\|$	$\begin{array}{ll} \\ \\ \hline \end{array}$	$\left\lvert\, \begin{array}{ll} 0 & 0 \\ N & -1 \\ y_{1} & -1 \end{array}\right.$	$\begin{cases}9 & m \\ 0 & m \\ m & i\end{cases}$	$\begin{array}{ll} \alpha & 0 \\ \rho_{1} & 0 \end{array}$	$\left\lvert\, \begin{array}{cc} \Psi_{1} & m \\ m & \end{array}\right.$	$\left\lvert\, \begin{array}{ll} 0 & \infty \\ N & 0 \\ m & 0 \end{array}\right.$	$\begin{aligned} & 4, \\ & O_{0} \end{aligned}$	$\left\|\begin{array}{ll} \infty & \infty \\ \infty & 0 \\ N & 0 \end{array}\right\|$	$\left.\begin{array}{ll} 0 & m \\ N & 0 \\ N & 0 \end{array} \right\rvert\,$	$\left\|\begin{array}{ll} 0 & 0 \\ N & 0 \\ N & 0 \end{array}\right\|$	$\underset{N}{+}{ }_{N}^{\infty}$
\rightarrow	$\begin{array}{ll} 4 & 9 \\ 0 & 0 \end{array}$		$\left\|\begin{array}{ll} 0 & N \\ -1 & 0 \\ -1 & 0 \end{array}\right\|$	$\left\|\begin{array}{ll} -1 & 0 \\ w & 0 \end{array}\right\|$	$\left\|\begin{array}{cc} 0 & \infty \\ \ln & 0 \\ m & \end{array}\right\|$	$\left\lvert\, \begin{array}{ll} n & 0 \\ \infty & 0 \\ m & 0 \end{array}\right.$	-8	0	$\left\|\begin{array}{ll} 1 & -1 \\ & -1 \\ n & 1 \end{array}\right\|$	$\begin{array}{cc} N & \infty \\ N & 0 \\ m & i \end{array}$		$\left.\begin{array}{cc} m_{1} & \infty \\ m & 1 \end{array} \right\rvert\,$	$\left\|\begin{array}{rr} \alpha & 0 \\ n & n \end{array}\right\|$	$\ln 0$	$\left\|\begin{array}{ll} 1 & 0 \\ x_{0} & 1 \\ N & 1 \end{array}\right\|$	$\left\|\begin{array}{ll} \infty & 0 \\ \infty & -1 \\ N & 1 \end{array}\right\|$	$\left\|\begin{array}{cc} n & -m \\ 0 & \cdots \\ n & \cdots \end{array}\right\|$
							$\begin{array}{ll} r & \\ d & \\ 0 & \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 8 \\ 0 & 8 \\ 0 & 0 \\ 0 & \\ N & \end{array}$										$\begin{aligned} & 1 \\ & r \\ & r \\ & \hline \end{aligned}$

-45-

	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
21 Question 2	$\begin{gathered} 486 \\ 1 \end{gathered}$															
22 Question 3	$\begin{array}{r} 477 \\ .39 \\ \hline \end{array}$	$\begin{gathered} 708 \\ 1 \\ \hline \end{gathered}$														
23 Question 4	$\begin{array}{r} 465 \\ -.47 \end{array}$	$\begin{array}{r} 687 \\ -.61 \end{array}$	694													
24 Question 5	$\begin{array}{r} 407 \\ -.24 \\ \hline \end{array}$	$\begin{array}{r} 591 \\ -.13 \\ \hline \end{array}$	$\begin{array}{r} 583 \\ .26 \\ \hline \end{array}$	$\begin{gathered} 603 \\ 1 \\ \hline \end{gathered}$												
25 Question 6	$\begin{array}{r} 439 \\ -\quad .25 \\ \hline \end{array}$	$\begin{array}{r} 637 \\ -.15 \end{array}$	$\begin{array}{r} 625 \\ .28 \\ \hline \end{array}$	$\begin{array}{r} 561 \\ .39 \\ \hline \end{array}$	$\begin{gathered} 652 \\ 1 \end{gathered}$											
26 Question 7	$\begin{array}{r} -.29 \\ 465 \\ -.02 \end{array}$	$\begin{array}{r} .684 \\ -.03 \\ -.03 \end{array}$	$\begin{aligned} & 671 \\ & \hline 671 \\ & .10 \end{aligned}$	$\begin{array}{r} 587 \\ -.06 \\ \hline \end{array}$	$\begin{array}{r} 627 \\ .01 \\ \hline \end{array}$	$\begin{gathered} 699 \\ 1 \\ \hline \end{gathered}$										
27 Question 8	$\begin{array}{r} -.02 \\ -456 \\ -.20 \\ \hline \end{array}$	$\begin{array}{r} -.05 \\ -.18 \end{array}$	$\begin{array}{r} 110 \\ \hline 648 \\ \hline 33 \end{array}$	$\begin{array}{r} -.00 \\ \hline 564 \\ .09 \\ \hline \end{array}$	$\begin{aligned} & .01 \\ & \hline 606 \\ & .09 \end{aligned}$	$\begin{array}{r} 657 \\ \hline 22 \end{array}$	$.673$									
28 Question 9	$\begin{array}{\|c} -.64 \\ 379 \\ 31 \end{array}$	$\begin{array}{r} -10 \\ \frac{513}{28} \\ .2 \end{array}$	$\begin{array}{r} .506 \\ -.25 \end{array}$	$\begin{array}{r} 440 \\ -.21 \\ \hline \end{array}$	$\begin{array}{r} 467 \\ -.27 \\ \hline \end{array}$	$\begin{array}{r} 500 \\ -.04 \\ \hline \end{array}$	$\begin{array}{r} 483 \\ -.21 \\ \hline \end{array}$	$\begin{gathered} 521 \\ 1 \end{gathered}$								
29 Question 10	$\begin{array}{r} 421 \\ .31 \\ \hline \end{array}$	$\begin{array}{r} 608 \\ \hline .26 \\ \hline \end{array}$	$\begin{array}{r} 595 \\ .26 \\ \hline \end{array}$	$\begin{array}{r} 524 \\ -.07 \\ \hline \end{array}$	$\begin{array}{r} 572 \\ -.18 \\ \hline \end{array}$	$\begin{array}{r} 558 \\ .02 \\ \hline \end{array}$	$\begin{array}{r} 583 \\ -.12 \\ \hline \end{array}$	$\begin{array}{r} 447 \\ +35 \\ \hline \end{array}$	$\begin{gathered} 621 \\ 1 \end{gathered}$							
30 Question 1I	$\begin{array}{r} 411 \\ -.17 \end{array}$	$\begin{array}{r} 592 \\ -.33 \\ -.33 \end{array}$	$\begin{aligned} & 580 \\ & .51 \end{aligned}$	$\begin{array}{r} 513 \\ .30 \\ \hline \end{array}$	$\begin{array}{r} 546 \\ +34 \end{array}$	$\begin{aligned} & 564 \\ & .05 \end{aligned}$	$\begin{array}{r} 565 \\ -.31 \\ \hline \end{array}$	$\begin{array}{r} 445 \\ -.54 \\ \hline \end{array}$	$\begin{array}{r} 1 \\ \hline 525 \\ .35 \\ \hline \end{array}$	$\begin{gathered} 604 \\ 1 \end{gathered}$						
31 Question 12	$\begin{array}{r} -.11 \\ \hline 384 \\ -.30 \end{array}$	$\begin{array}{r} 533 \\ -.25 \\ \hline \end{array}$	$\begin{array}{r} .51 \\ 528 \\ .37 \\ \hline \end{array}$	$\begin{array}{r} .30 \\ \hline 456 \\ .19 \\ \hline \end{array}$	$\begin{array}{r} .24 \\ \hline 494 \\ .25 \\ \hline \end{array}$	$\begin{aligned} & 522 \\ & .05 \\ & \hline \end{aligned}$	$\begin{array}{r} .21 \\ \hline .24 \\ \hline \end{array}$	$\begin{array}{r} 463 \\ -\quad .64 \\ \hline \end{array}$	$\begin{array}{r} 475 \\ -.35 \\ \hline \end{array}$	$\begin{aligned} & 171 \\ & .67 \\ & \hline \end{aligned}$	$\begin{gathered} 541 \\ 1 \\ \hline \end{gathered}$					
32 Question 13	$\begin{array}{r} 361 \\ -.33 \end{array}$	$\begin{array}{r} -.45 \\ \hline 485 \\ -.05 \end{array}$	479 .10	$\begin{array}{r} +17 \\ \hline .13 \\ \hline \end{array}$	$\begin{array}{r} .243 \\ 443 \\ .11 \end{array}$	$\begin{array}{r} .05 \\ 473 \\ -.07 \end{array}$	$\begin{array}{r} 460 \\ -.04 \\ \hline \end{array}$	$\begin{aligned} & 474 \\ & .23 \\ & \hline \end{aligned}$	$\begin{array}{r} 421 \\ .11 \\ \hline \end{array}$	$\begin{array}{r} 419 \\ .02 \\ \hline \end{array}$	$\begin{array}{r} 443 \\ -.25 \\ \hline \end{array}$	$\begin{gathered} 493 \\ 1 \end{gathered}$				
33 Question 14	$\begin{gathered} 354 \\ .01 \end{gathered}$	$\begin{array}{r} .05 \\ -.177 \\ \hline \end{array}$	471 .12	$\begin{array}{r} .15 \\ \hline 411 \\ .06 \\ \hline \end{array}$	$\begin{aligned} & .11 \\ & \hline 440 \\ & .02 \end{aligned}$	465 .00	450 .10	$\begin{array}{r} .466 \\ -.11 \\ \hline \end{array}$	$\begin{array}{r} 420 \\ -.23 \\ \hline \end{array}$	$\begin{aligned} & 411 \\ & .11 \\ & \hline \end{aligned}$	$\begin{array}{r} 441 \\ .19 \\ \hline \end{array}$	$\begin{array}{r} 464 \\ -.25 \\ \hline \end{array}$	484 1			
34 Question 15	$\begin{array}{r} 332 \\ -.11 \\ \hline \end{array}$	449 -.02	446 .19	390 .09	419 .09	459 -.10	430 .12	$\begin{array}{r} 434 \\ -.10 \\ \hline \end{array}$	$\begin{array}{r} 402 \\ -.16 \\ \hline \end{array}$	$\begin{array}{r} 339 \\ .21 \\ \hline \end{array}$	$\begin{array}{r} 412 \\ -.23 \\ \hline \end{array}$	$\begin{array}{r} 426 \\ -.23 \\ \hline \end{array}$	$\begin{array}{r} 435 \\ +48 \\ \hline \end{array}$	$\begin{gathered} 456 \\ 1 \end{gathered}$		
35 Question 16	$\begin{array}{r} .11 \\ 366 \\ -.01 \end{array}$	$\begin{array}{r} . \\ \hline 491 \\ .06 \end{array}$	484 .05	422 .11	447 .00	479 .05	$\begin{array}{r}464 \\ -.09 \\ \hline\end{array}$	481 -.04	427 .14	422 .00	$\begin{array}{r} 450 \\ .00 \\ \hline \end{array}$	$\begin{array}{r} 477 \\ .12 \\ \hline \end{array}$	$\begin{array}{r} 467 \\ -.31 \\ \hline \end{array}$	$\begin{array}{r} 432 \\ -.35 . \end{array}$	$\begin{gathered} 498 \\ 1 \\ \hline \end{gathered}$	
36 Question 17	$\begin{array}{r} .339 \\ .12 \\ \hline \end{array}$	$\begin{array}{r} 448 \\ -.09 \\ \hline \end{array}$	$\begin{aligned} & 442 \\ & .08 \end{aligned}$	$\begin{array}{r} .1 \\ \hline 388 \\ .02 \\ \hline \end{array}$	$\begin{array}{r}411 \\ .14 \\ \hline\end{array}$	438 .02	$\begin{array}{r} 429 \\ .03 \\ \hline \end{array}$	440 .15	400 -.01	392 .08	$\begin{array}{r}413 \\ -.00 \\ \hline\end{array}$	433 .16	428 .29	400 .14	$\begin{array}{r}443 \\ -.36 \\ \hline\end{array}$	$\begin{gathered} 455 \\ 1 \\ \hline \end{gathered}$

Table 22. Sample sizes, means, and standard deviations of "scores" (coded or actual) for variables in the 1964 follow-up study of UICSM students.

Variable (computer code, if used)	N	Mean	S. D.
1. DAT-V	435	28.7	7.77
2. DAT-N	452	25.8	6.71
3. Age	727	18.5	5.07
4. Sex $\begin{aligned} & 0 \text { male } \\ & 1 \text { female }\end{aligned}$	728	. 50	. 51
5. Sem. UICSM	728	6.98	1.77
6. Sem. other	725	. 62	1.15
7. Beyond H. S. math. l^{1} yes	215	. 30	. 65
8. Calculus $\begin{aligned} & \text { l yes } \\ & 0 \text { no }\end{aligned}$	221	. 35	. 65
9. H. S. ave.	723	4.078	. 54
10. H. S. math. àve.	721	3.97	. 74
11. Sem. college	725	2.019	. 45
12. \% time $\begin{aligned} & 1 \text { full-time } \\ & 2 \text { half-time } \\ & 3<\text { half-time }\end{aligned}$ $3<$ half-time	722	1.04	. 26
13. Major $\begin{aligned} & \text { l math. } \\ & 2 \text { science } \\ & 3 \text { other }\end{aligned}$	713	2.64	. 72
$1 \rightarrow 4$ for 14. Grad School very likely \rightarrow very unlikely	714	2.07	. 88
1 st college course			
15. Pre-analyt $\begin{aligned} & \text { l lst semester } \\ & 2 \text { 2nd semester } \\ & 3 \text { 3rd repeater }\end{aligned}$	500	1.63	. 76
16. Analytir geometry or calculus	340	1.89	. 70
17. Otler	61	2.11	. 66
18. Coll. math. ave.	467	3.04	. 99
19. Coll. avie.	671	3.64	. 687

Table 22 is a list of numbers of respondents for 19 of the se variables, along with the means and standard deviations of the responses. This table also includes, for some of the variables, the computer codings that were used. This information will be helpful for interpreting the corresponding means and standard deviations. Distributions of the responses to the questions related to attitudes are also given in Table 23 along with means and standard deviations. The format used in the distributions of responses of the 1962 and 1963 graduates to the attitude inventory items is as follows. The items are reprom duced as in the questionnaire (except for the "No opinion" check box in ?terns 1-17) and the number of students giving each response from each of the two samples a re given immediately above or below the response scale. Above and below these numbers are the percentages for each response from the corresponding sample. The data for the 1962 sample are above the scale, while the 1963 data are below the scale. A column, entitled "blanks" giving the numbers and percents of students who did not answer an item, has also been added, along with an additional column for totals. Means and standard deviations are listed under the B end of the scale, as in the format below.

The scale division points were calibrated from 10 to 70 for computing means and standard deviations of responses.

A

20. 21. My UICSM courses stifled my interest in mathematics.

A

21. 2. My UICSM mathematic: background con^ributed toward my selection of a mapor in mathematics or a strong math-related field.

A

22. 3. My UICSM teachers explained the concepts very well.

A

23. 4. My UICSM teachers made mathematics dull for me..

A

24. 5. There should be more drill work in the UICSM courses.

A

25. 6. There should be more practical application in the UICSM courses.

A

26. 7. UICSM slasses should be grouped according to math ability - that is, high-ability students in one class, average-ability in another and so forth.

A

27. 8. The way my UICSM classes were grouped was detrimental to me.

31

Non

| $\begin{aligned} & B_{0}^{2} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| :---: | B

My UICSM courses stimulated my interest in mathematics.
S.D. $=16$

B

My UICSM mathematics background contributed toward my avoidance of a major in math. ematics or a strong moth-ralated field.

17

B
My UICSH teachers explained the concepts very poorly.

15

B
My UICSM teachers made mathenatics interesting to me. 16

B
There should be less practical application in the UICSM courres.

14

There should be less drill work in the UICSM courses.

12

B
UICSM classes should have students of different ability levals together in onc class.

10

B

The way my UICSM classes were grouped was NOT defrimentol to me.

A

28. 9. My UICSM courses prepared me for my college math courses,

A

29. 10. My UICSM training has helped me in my non-moth content courses in college.

A

30. 11. I would have received a better mathematics background in a traditional mathematics program.

A

31. 12. I am behind other students in college because of my UICSM background.

A

32. 13. My college mathematics courses are less difficult than my UICSM courses.
1.
2. There A
is more emphasis on theory theory and understanding in my college math courses than there was in my UICSM courses.

A

34. 15. There should be less emphasis on theory and understanding in my sollege math courses.

A

35. 16. My college math coursas are mainly courses in memorizing and applying rulos and formulas.

A

36. 17. My college mathematics courses have increased my interest in mathematics.

51

43

50
27.4
62
230
31.6

39
$\underset{\sim}{0} \underset{\sim}{0} \underset{\sim}{0}$

I have an advaritage over other students in college because of my UICSM backgraund.

15

B
My college mathematics courses are more difficult than my UICSM courses.

19

B

There was more emphasis on theory and understanding in my UICSM courses than in my college math courses.

17

B
There should be more emphasis on theory and understanding in my college math courses.

14

B

My college math courses are mainly courses in learning and understanding mathematical concepts.

18

B
My college mathematics courses have decreased my interest in mathematics.

Concerning the distributions of the attitude inventory items, it may be noted that: the distributions for the two samples are quite similar in spite of the students in the 1962 sample being at the end of their sophomore year in college, and the students in the 1963 sample being at the end of their freshman year; further differences existed in sample size (299 and 728) and in the high schools from which these studerits came. There were in the 1962 sample 25 high schools and in the 1963 sample 53 high schools, with 23 high schools in the intersection of the se two sets.

The last two items (questions 18 and 19 , see Appendix B) on the question naire sampled the students' self images, and their opinions concerning which ability levels of students ought to be taught UICSM mathematics. All but 1.3% of the 1962 sample responded to the question related to the concept of their own ability levels. 31.8% felt they we re of higher ability; 54.8% felt that they. were of average ability; 9.0% felt themselves to be of lowe r-than-average ability; 3% said that they didn't know. 91% of the 1962 sample felt that UICSM mathematics should be taught to students of high ability; 76.9% felt that this content was suited to average ability students; while 26.8% indicated that the mathematics which they studied in their UICSM courses might be taught to low ability students.

The corresponding responses for the 1963 sample were as follows: selfperceptions of ability - high (33.5%), ave rage (48.4%), low (11.3%); levels of ability to which UICSM mathematics should be taught - high (90.9\%), average (76.8%), low (21.0%). These percents agree substantially with those of the 1962 graduates.

Those students having high DAT -numerical scores tended to be older, to take more semesters of UICSM mathematics, to have higher grade-point averages, and to choose mathematics as a major in college. The mean of 52
on question 1 implies that these graduates felt that UICSM mathematics stimulated their interest in mathematics, and the positive correlation of DAT N with question 1 indicates that the higher aptitude students tended to record more decidedly this feeling of stimulation. The significant correlation between DAT-N scores and question 2, together with the me a of 36 on question 2 , may indicate that the more able of these students felt that the UICSM courses contributed toward their selecting mathematics or mathematics-related fields as their major field of study.

It has long seemed to be the case that traditional mathematics instruction has turned many people away from mathematics. It would be most welcome if the finding noted above could be taken as an indication of a reconstruction of attitudes in high school graduates, which could result in a greate r appreciation of and use of each iridividual's mathematical talents. It is unfortunate that we have been unable to obtain data for comparison; however, the data may have some value for those who can relate the population studied he re to students about which they have some comparable information.

The mean age of students in this sample was 18.5 year and ranged from 17.5 years to 19 years, in the Spring of their freshman year in college. Some of the younger stadents took college mathematics courses, e.g. calculus, while still in high school; but this is the exception rather than the rule, as the . 30 and .35 computed mean values for items 7 and 8 in Table 22 indicate.

Both of the high echool grade-point averages (ove rall and math. only) correlate significantly with the perceived possibility of attendance in graduate school, and with the college total- and college math-gpa's. Those students who had higher secondary school ave rages felt that UICSM courses stimulated their interest in mathematics, believed that UICSM teachers explained concepts well, felt that more drill was needed in the UICSM courses, wanted more
applications, favored homogeneous grouping, and felt that they had received a better mathematics background in UICSM courses then they would have received in traditional courses. The better students also felt that college mathematics courses are harder than UICSM mathematics courses (contrary to misconceptions, relative to modern mathematics curricula, which are sometimes held by parents of high school students).

Concerning these categories of choice of major: (1) mathematics, (2) science, or (3) something else, students with high DAT $-N$ tended to choose mathematics or science; boys mostly went into categories (1) and (2) and girls tended to choose somethirg else. Those who took the most UICiSM mathematics courses chose majors in mathematics or science, and this group tended to have higher mathematics averages in high school. The students who selected mathematics as a major field felt that UICSM mathematics had stimulated their interest in mathematics generally and had contributed toward their selection of mathematics as a major.

The college grade-point averages correlated significantly with DAT scores, the number of semesters of UICSM mathematics taken, the high school averages, and probability of attendance at a graduate school. Those students who obtained higher college grade-point averages felt that UICSM courses had stimulated their mathematical interests, that UICSM teachers had explained concepts well, but that further drill work was needed in these courses. Furthermore, this group felt that UICSM mathematics had prepared them well for their college mathematics courses, better than could have been done by traditional courses.

Conside ring Table 23 and the questions on attitudes which may be found on the questionnaire in Appendix C, we may make some statements related to attitudes of the sample as a whole. These students felt that UICSM courses
stimulated their interest in mathematics and contributed toward their choice of a major in a strongly math~related field. It was a general feeling that UICSM texts and teachers explained the concepts very well. This may be due to the training which their teachers received at the UICSM summer institutes or may be a result of the better teachers choosing to teach UICSM mathematics, or both. Most of the students in the sample thought that there should be more drill and applications in the courses, a shortcoming which project staff members recognized and have attempted to remedy. The sample group as a whole favored homogeneous grouping of UICSM classes but felt that hete rogeneous grouping was not detrimental to them.

The feeling was gene ral among the students that UICSM courses prepared them for their college mathematics courses and even helped some in nonmathematics courses. It might be of interest to survey UICSM students to identify some of the specific forms of these by-products of UICSM course participation. There exists among UICSM students a feeling that their mathe ratics background is better than could have been received in traditional courses, and that it gives them some advantage over other students in college who had studied a traditional curriculum.

The graduates in this sample as a whole felt that their college mathematics courses were more difficult than their UICSM courses, but as a group there were doubt s in the minds of some students, as attested to by the mean of 43 (almost at the middle of the scale) on attitude question number 13 dealing with a comparison of difficulty of UICSM. and college mathematics courses. These doubts are compensated for, however, by their feelings of well-preparedness as mentioned previously. It was a common judgment among these students that the re was more emphasis on theory and understanding in their UICSM courses than in their ccllege courses; but also that the re should be more emphasis on
theory and understanding in their college courses. The UICSM emphasis on theory, far from frightening the se students, does appear to be appreciated as a basis for understanding, since they urge the greater use of well-organized theory in mathematics teaching to clarify and give structure to their mathe $=$ matical understandings.

4. Summary and Conclusions

In summary, UICSM students like their high school mathematics and derive a feeling of understanding mathematics from it. These attitudes are maintained and reinforced when they compare their command of mathematics with that of their classmates in college. Further follow-up studies will be carried out on these and other UICSM students in order to prepare a record which teachers, administrators, and parents may use in making decisions related to this program in modern mathematics.

References

1. Tatsuoka, M. M. and Easley, J. A., Jr., Comparis on of UICSM vs. "Traditional" Algebra Classes on C'oop Algebra Test Scores, UICSM Research Report No. 1, September, 1963.
2. Flanagan, J. et al, Project Talent, The American High School Student, Unive rsity of Pittsburgh, 1964.
3. Peden, I.C., The missing half of our technical potential: Can we motivate the girls?, The Mathematics Teacher, Vol. 58, No. 1, January, 1965, p. 2-13.
4. College Entrance Examination Board. College Board Score Reports: A guide for counselors. Princeton, 1960. 63 p .
5. Comley, R.E., A correlational study of achievement of students beginning UICSM high schonl mathematics in 1958 or 1959 , UICSM Research Report No. 7, 1965.
6. Office of Education Studies and Surveys: Baccalaureates in Science and Mathematics in 1962. Higher Education 18:20-3, July 1962.

Appendix A
1 sî Year Follow-up Questionnaire for 1962 Graduates
I. Name \qquad 1
II. What college or university are you attending?
\square
III. Your address at college \qquad
(number and street)

- Tety)
IV. Your address at homb \qquad
(number and street)
(city) (state)
V. 1. Male (check onc)
\qquad 11. Female
VI. \qquad Age at last birthday
VII. Which does your college or university use: (check one)
\qquad 1. the quarter system?

2. the semester sy:tem?
3. the trimester system?
VIII. When did you first register at your presunt college or university? (check one)
_1. Summer session (or summer quarter)
4. winter semester (or quarter)
IX. Which are you considered: (cher: one)
\qquad 1. a full-time student?
5. a half-time student?
6. aless than half-time student?
X. A. Please check each of the UICSM units which you studied in high school. Also, indicate the total number (1, 2, 11) of units you studied.

XI. Please check each science course you completed in high school.
\qquad General Science
biology
Chemistry
Physics
XII. What was your overall grade average for your high school mathematics courses? (check one)

	8.	A			
	7.	Between B	A		B
	5.	Between	B	and	C
	4.	C			
	3.	Between	C	and	D
	2.	D			
	1.	Between	D	and	E
		E or \mathbf{F}			

XIII. What was your overall grade average for your high school science courses? (check one)

8.	A	
7.	Between A and B	
6.	B	
5.	Between B and C	
4.	C	
3.	Between C and D	
2.	D	
1.	$B e t w e e n ~ D ~ a n d ~$	or F
0.	E or F	

XIV. Please check the namo of each (inll"a口 Fintrance: Examination which you have taken.

XV. Have you ever received a scholarnhip or an award based on academic achievement, or a listing on your collegn's honor roll or Dean's list?

$$
\begin{aligned}
& \text { 1. Yes } \\
& \ldots \\
& \hline
\end{aligned}
$$

XVI. Please fill in the following table as completely as you can, describing the college mathematics courses you have studied or are now studying.

Under the column headed "Reason for Taking Course," please be as specific as you can.

Under the column headed "How did you enjoy this course?" please use the following 4 -point scale.
$4-$ - enjoyed the course very much
$3 .-$ - enjoyed the course moderately well
$2 .-$ neither espe ally liked nor disliked the course
1 - - disliked the course

		Title of Course	Title of Textbook and Author	Reason for Taking Course	Final Grade	How did you enjoy this course?
Example		Beginning Calculus	$\frac{\text { Calculus }}{\text { Taylor }}$	Required for my major	B	2
Mathematics Courses Studied during the Summer Session (or Quàrter)	A_{1}					
	A_{2}					
Mathematics Courses Studied during the Fall Semes ter (or Quarter)	B_{1}					
	B_{2}					
Mathernatics Courses Studied during the Winter Semester (or Quarter)	C_{1}					
	C_{2}					

XVII. Do you plan to take any more mathematics courses in college? (check one)

$$
\begin{array}{ll}
\text { 1. Yes } \\
\text { 2. } & \text { No } \\
\text { 3. } & \text { Undecided }
\end{array}
$$

XVIII. Pleast list the names of any other college courses you have taken or are now taking in which your mathematics helped in any way.
\qquad
\qquad
\qquad
\qquad
\qquad
XIX. A. Please check the field from which you are most likely to select your major.
\qquad 1. mathematics (pure mathematics, applied mathematics, etc.)
_ 2. engineering (civil, mechanical, electrical, etc.)
\qquad 3. a physical science (physics chemistry, geology, etc.)
\qquad 4. a biological science (biology, botany, zoology, agriculture, etc.)
\qquad 5. a social science (history, psychology, home economics, etc.)
\qquad 6. a language (English, French, German, etc.)
\qquad 7. a fine art (music, art, dramatics, etc.)
\qquad 8. business (accounting, administration, etc.)
\qquad 9. pre-professional (pre-medicine, pre-law, pre-dentistry, pre-nursing, etc.)
B. If you have decided on your major, please write your selection below.

I am majoring in \qquad -
XX. What do you feel that you will probatly do after graduating from college? (check one)
\qquad 1. Go on to graduate school
\qquad 2. Begin working in your chosen field
\qquad 3. \qquad
\qquad 4. I have no idea what I will do after graduation
XXI. This question is especially important, so please allow yourself a few minutes to thirk betore answering.

In the table below list a few particular topics from one or more of your high school ninathematics courses which you feel have been the most useful to you. Please give an example for each topic to show precisely what you mean.

Topics		Examples	
S A \mathbf{H} \mathbf{P} L E S	Scientific notation Trigonometric identities Solving inequalities	Expressing. 0000036 as 3.6×10^{-6} Equations like: $\sin ^{2} x+\cos ^{2} x=1$ Finding the roots of: $3 x-4<12$.	S A M P P L E S

XXII. On this page please make any comments you wish about your high school mathematics program. We should like to have your personal evaluation of your training.

The University of lllimois Mathematies project [UICSM〕 has my permission to whtain transcripts of my high school and collegr rocords

Appendix B
UICSM College Student Follow-up — Spring, 1964
and Year Follow-up of 1962 Graduates

UICSM College Student Follow-up Study -- Spring, 1964

Questionnaire

1. Name \qquad
2. Colleges and universities attended

Colleges and universities attended	City	State	Dates of attendance	

3. Number of terms of college work you will have completed at the end of the present term
__ Semesters ___ Quarters \quad Trimesters ___ Summer Sessions
4. Please fill in the table below for each math course you have taken since the end of your first year in college.

| Course | Text-Author | Term(s) when
 studied | Reason for
 taking course | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |

5. Place an " X " on the scale below to indicate your cumulative average grade at the end of your last complete term

Inventory

The following statements were designed so that you can indicate what your personal opinions are about UICSM mathematics training and your present college mathematics training.

For each pair of statements A and B, place an "X" mark on the scale betweer them to show the relative strength of your agreement with statement A or statement B. Mark the middle of the scale if your feelings lie equally between the two statements.

If neither statement applies to you, please check the box marked 'no opinion'.

Statement A
Scale

Statement B

Example:

A
High school was more difficult than college

No Opinion

In this example, the student has indicated that he is in between weak agreement and agreement with Statement B.

A

1. My UICSM courses stifled my interest in mathematics

A

2. My UICSM muthematics background contributed toward my selection of a major in mathematics or a strong math-related field

A
3. My JICSM teachers explained the concepts very well

A

4. My UICSM teachers made mathematics dull for me

A

5. There should the nore drill work in the UICSM courses

B
My UICSM courses stimulated my interest in mathematics

College is more difficult than high school

No Opinion

My UICSM mathematics background contributed toward my avoidance of a major in mathematics or a strong math-related field

No Opinion

No Opinion \square

No Opinion \square

B

No Opinion

B

My UICSM teachers explained the concepts very poorly

B

My UICSN teachers made mathematics interesting to me

B

There should be less drill work in the UiCSM courses

A

6. There should be more practical application in the UICSM courses

A

7. UICSM classes should be grouped according to math ability -- that is, high-ability students in one class, average"ability in another, and so forth

A

8. The way my UICSM classes were grouped was detrimental to me

A

9. My UICSM courses prepared me for my college math courses

A

10. My UICSM training has heiped me in my non-math content courses in college

A

11. I would have received a better mathematics background in a traditional mathematics program

A

12. I am behind other students in college because of my UICSM background

A

13. My college mathematics courses are less difficult than my UICSM courses

A
14. There is more emphasis on theory and understanding in my college math courses than there was in my UICSM courses

No Opinion

No Opinion

There should be less practical application in the UICSM courses

B

UICSM classes should have students of different ability levels together in one class

E

The way my UICSM classes were grouped was NOT detrimental to me

B

My UICSM courses did not prepare me for my college math courses

B

My UICSM training has not helped me in my non-math content courses in college

B

My UICSM mathematics background is better than I could have received in a traditional mathematics program

B

I have an advantage over other students in college because of in UJCSM background

B

My college mathematics courses are more difficult than my UICSM courses

B

There was more emphasis on theory and understanding it my UICSM courses than in my college math courses

A
15. There should be less emphasis on theory and understanding in my college math courses

A

16. My college math courses are mainly courses in memorizing and applying rules and formulas

A

17. My college mathematics courses have increased my interest in mathematics

No Opinion

No Opinion

No Opinion

B
There should be more emphasis on theory and understanding in my college moth courses

B

My college math courses are mainly courses in learning and understanding mathematical concepts

B

My college mathematics courses have decreased my interest in mathematics
18. Compared with my classmates in UICSM classes, I feel that my real ability washigher than mostthe same as mostlower than mostI don't know
19. Check each group of students to whom you feel UICSM courses should be taughtaverage abilitylow abilityno one

Appendix C

UICSM College Student Follow-up Study - Spring, 1964
Part 1
lst Year Follow-up of 1963 Graduates

Part 1

Inventory

The following statements were designed so that you can indicate what your personal opinions are about UICSM mathematics training and your present college inathematics training.

For each pair of statements A and B, place an " X " mark on the scale between them to show the relative strength of your agreement with statement A or statement B. Mark the middle of the scale if your feelings lie equally between the two statements.

If neither statement applies to you, please check the box marked 'no opinion'.

Statement A
Scale

Statement B

Example:

A
High school was more difficult than college

No Opinion

B
College is more diffi" cult thon high school

In this example, the student has indicated that he is in between weak agreement and agreement with Statement B.

A

1. My UICSM courses stifled my interest in mathematios

A
2. My UICSM mathematics back. ground contributed toward my selection of a major in mothematics or a strong math-related field

A
3. My UICSM teachers explained the concepts very well!

A

4. My UICSM teachers made mathematics dull for me

A
5. There should be more drill work in th UICSM courses

No Opinion \square

No Opinion

No Opinion

No Opinion \square

B
My UICSM courses stimulated my interest in mathematics

B
My UiCSM mathematics background contributed toward my avoidance of a major in mathematics or a strong math-related field

B
My UICSM teachers explained the concepts very poorly

B
My UICSM teachers made mathematics interesting to me

B
There should be less drill work in the UICSM cuurses

A

6. There should be more prectical application in the UICSM courses

A

7. UlCSM classes should be grouped according to math ability - - that is, high-ability students in one class, average-ability in another, and so forth

A

8. The way my UICSM classes were grouped was detrimental to me

A
9. My UICSM courses prepu. .a lle for my college math courses

A

10. My UICSM training has helped me in my non-math content courses in college

A

11. I would have received a better mathernatics background in a traditional mathematiss progrem

A

12. I am behind other students in college because of my UICSM background

A

13. My college mathematics courses are less difficult than my UICSM courses

A

14. There is more emphasis on theory and understanding in my college math courses than there was in my UICSM courses

No Opinion

No Opinion

B
There should be less practical application it the UICSM courses

B

UICSM classes should have students of different ability levels together in one class

B

The way my UICSM classes were grouped was NOT detrimental to me

B

My UlCSM courses did not prepare me for my college math courses

B

My UICSM training has not helped me in my non-math content courses in college

B

My UICSM mathematies background is better than I could have received in a traditional mathematics program

B

I have an advantage over othe, students in colloge because of my UICSN, background

B

My college mathematics courses are more difficult than my UICSM courses

B

There was more emphasis on theory and understanding in my UICSM courses than in my college matt, courses

A
15. There should be less emphasis on theory and understanding in my college math courses

A

16. Wy college math courses are mainly courses in memorizing and applying rules and formulas

A
17. My college mathematics courses have Increased my interest in mathematics

No Opinion \square

No Opinion

No Opinion

B

There should be more emphasis on theory and understanding in my college math courses

B
My college math courses are mainly courses in learning and understanding mathematical concepts

B

My college mathematics courses have decreased my interest in mathematics
18. Compared with my classmates in UICSM classes, I feel that my real ability washigher than mostthe same as mostlower than mostI don't know
19. Check each group of students to whom you feel UICSM courses should be taughthigh abilityaverage abilitylow abilityno one
20. Please indicate anything about your UICSM courses which you especially liked or disliked, and tell why you liked or disliked it.

Appendix D

Colleges attended by five or more UICSM stuclents in the 1962 and 1963 samples and the distribution of the total sample among the states.

Colleges attended by five or more UICSM studerits in the 1962 and 1963 samples.*

State	No, of students.		Institution
	1962	$\underline{1.963}$	
Arizona	5	20	University of Arizona
California		5	University of California, Berkeley
	10		Stanford University
Colorado		5	University of Colorado
		5	University of Denver
Connecticut		12	University of Connecticut
		5	Wesleyan University
Hawaii		86	Uliversity of Hawaii
Illinois	33	64	University of Mllinois
	8	25	Northern Illinois University
		13	Illinois Statc Normal University
		12	Northwestern University
		9	Westexn Illinois University
		7	Principia College
		5	Elmhurst College
		5	Knox College
		5	Monmouth College
Indiana	14	24	Purdue University
		6	Indiana University
	7	6	Wabash Coillege
		5	De Pauw University
Iowa		9	Iowra State University
Maine		5	Colby College
Massachusetts	8	14	University of Massachusetts
		10	Boston University
		9	Amherst Coll.ege
		9	Northeastern University
		7	Wellesley College
		7	Tafts University
	6	6	Harvard University

[^4]

The Distribution of Colleges Attended by UICSM 1963 Graduates Who Returned the April 1964 Follow-up Questionaires.
261 Colleges in 38 States, Canada, and Belgium
-85-

Appendix E
The high schools which had 1963 graduates who participated in the 1964 follow-up of UICSM students.

Appendix E. The high schools which had 1963 graduates who participated in the 1964 follow-up of UICSM students.

Arizona

Catalina High School
Pueblo High School
Tucson
Tucson

California

Desert Sun High School
W. C. Crawford High School

Colorado

Colorado Academy Denver

Connecticut

Florida
Melbourne High School

Hawaii

Kapaa High School	Kapaa
Kauai High School	Lihue, Kauai
University of Hawaii High School	Honolulu
Kaimuki High School	Honolulu
Waianae High School	Waianae, Oahu
J. B. Castle High School	Kaneoke, Oahu
Kalani High School	Honolulu

Illinois
Warren Township High School
University of Illinois High School
(11ino
Gurnee
Urbana

Melbourne
Idyllwild
San Diego

Storrs

Honolulu

Appendix E (continued)

Illinois

Pekin High School
Dwight D. Eisenhower High School
York High School
Willowbrook High School
Barrington High School
G. E. Thompson High School

Pekin
Blue Island
Elmhurst
Villa Park
Barrington
St. Charles

Hammond
Indianapolis
Elkhart

Chestnut Hill
Sheffield
Newton Centre
Newtonville

Michigan
Oak Park High School
Ferndale High School
Oak Park
Ferndale

Minnesota

Owatonna High School
St. Paul Academy

Missouri

Principia High School
St. Louis Prep Seminary

Owatonna
St. Paul

Appendix E (continued)

New Jersey

A. L. Johnson High School	Clark
Hackensack High School .	Hackensack
North Plainfield High School	North Plainfield
Pascack Valley High School	Hillsdale

Ohio

Mariemont High School
Talawanda High School

Oklahoma

University of Oklahoma High School

Oregon
Franklin High School

Pennsylvania

Cheltenham High Schock
Council Rock High School
St. Casimer High School
St. George High School
Villa Maria Academy
Altoona Catholic High School
Sacred Heart High School
St. Basil High School
St. Benedict High School

West Virginia

Kingwood High School

Wyncote
Newton, Books County
Pittsburgh
Pittsburgh
Erie
Altoona
Pittsburgh
Pittsburgh
Pittsburgh

Appendix F

The combined distribution of respondents and nonrespondents in a questionnaire survey of UICSM 1962 and 1963 high school graduates.

The coinbined distribution of respondents and nonrespondents in a questionnaire survey of UICSM students; 11411963 graduates, and 4001962 graduates.*

State or Country	No. of S	udents	No. of	olleges
of College Study	$\underline{1962}$	1963	$\underline{1962}$	1963
Alabama				
Alaska				
Arizona	6	22	2	2
Arkansas				
California	15	34	6	18
Colorado	1	19	1	8
Connecticut	11	26	3	7
Delaware	2	2	1	1
Florida	2	9	2	5
Georgia		4		3
Hawaii	4	89	1	4
Idaho				
Illinois	63	181	17	25
Indiana	39	66	11	17
Iowa	10	24	6	8
Kansas	1	10	1	5
Kentuckv		4		3
Louisian.	2		2	
Maine	10	8	4	4
Maryland	2	6	2	3
Massachusetts	46	97	15	21
Michigan	16	110	4	17
Minnesota	4	16	3	6
Mississippi				
Missouri	3	25	3	11
Montana				
Nebraska				
Nevada				

[^5]| State or Country | No. of Students | | No. of Colleges | |
| :---: | :---: | :---: | :---: | :---: |
| of College Study | 1962 | 1963 | $\underline{1962}$ | $\underline{1963}$ |
| New Hampshire | 7 | 6 | 2 | 2 |
| New Jersey | 13 | 46 | 7 | 11 |
| New Mexico | 1 | 1 | 1 | 1 |
| New York | 18 | 27 | 15 | 18 |
| North Carolina | 1 | 6 | 1 | 3 |
| North Dakota | | | | |
| Ohio | 13 | 63 | 9 | 21 |
| Oklahoma | | 3 | | 1 |
| Oregon | 12 | 11 | 6 | 7 |
| Pennsylvania | 63 | 138 | 25 | 37 |
| Rhode Island | 3 | 11 | 2 | 4 |
| South Carolina | 1 | 1 | 1 | 1 |
| South Dakota | | | | |
| Tennessee | | 3 | | 2 |
| Texas | 1 | 5 | 1 | 4 |
| Utah | 1 | 4 | 1 | 2 |
| Vermont | 7 | 13 | 4 | 5 |
| Virginia | 2 | 6 | 1 | 5 |
| Wa shington | 4 | 8 | 2 | 7 |
| West Virginia. | 2 | 3 | 1 | 2 |
| Wisconsin | 12 | 25 | 3 | 9 |
| Wyoming | | | | |
| Washington, D.C. | 2 | 7 | 2 | 4 |
| Belgium | 1 | 1 | | 1 |
| Canada | | 1 | | 1 |
| | 400 | 1141 | 168 | 316 |

The 11411963 graduates were distributed among 38 states, the District of Columbia, Belgium, and Canada in 316 institutions of higher learning.

The 4001962 graduates were distributed among 36 states and the District of Columbia, in 160 colleges and universities.

[^0]: *The initial analysis of the data for this 1958 sample was carried out by Judith Boyle, and was included in a preliminary report published in 1963.

[^1]: *The total number of terms listed (741) exceeds the total number of students (728) because some students recorded numbers of terms for more than one type of college term.

[^2]: * These occupational classifications were found in Classified Index of Occupation and Industry, U.S. Bureau of Census, 1961), pp. XIX-XXIV.

[^3]: * A scale ranging from 10 to 70 (left to right) was used to quantify the responses to the questionnaire items related to attitudes (Appendix B), in order that the scores could be analyzed statistically.

[^4]: * 1962 and 1963 refer to the years of graduation from high school.

[^5]: *Of the 1141 students, 728 responded to the questionnaire; the 400 total for the 1962 graduates is comprised only of respondents.

