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Abstract

In this thesis, we describe a formalization of elementary group theory in dependent type
theory. In particular, we use an implementation of the calculus of inductive constructions
in a proof assistant — Lean — to define the relevant mathematical objects and prove the
relevant results. The documentation here culminates in a presentation of the first group
isomorphism theorem in the formal setting.

We begin by describing features of type theories — first one with simple types, then
one with dependent types after we motivate dependent types. Next, we explain how to
use a type theory with dependent types — as encoded by Lean — to define logical objects
and operations. Then, we describe features of Lean which facilitate the formalization of
mathematical objects. Lastly, after presenting the group theory concepts informally, we
present our definitions of these concepts within the type theory, and we state and prove
results about these formal objects.
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Chapter 1

Introduction

Mathematics is distinguished by the inferences permitted in reasoning for claims. The
reasoning of one mathematician can be checked by another by checking that each inference
is among those permitted.

Mathematics is typically written in natural language; results are stated this way, and
proofs are given this way. Mathematicians use special symbols to denote mathematical
objects and operations, but the reasoning is presented in natural langauge.

Logicians have defined formal languages for writing statements and representing rea-
soning. For these formal languages, the permitted rules of inference are stipulated. Given
such a formal language and the stipulated rules of inference, reasoning is correct if each
step is licensed by a stipulated rule of inference, and we can check the correctness of rea-
soning by checking that each step is licensed by a stipulated rule of inference; so, since the
rules are mechanical, the process of checking correctness is mechanical. However, checking
the correctness of such reasoning by hand is tedious; checking the correctness by hand
introduces the possibility of human error in checking; and further, producing reasoning of
this character is exhausting. Yet, given that (i) it is possible to express reasoning such
that its correctness is checkable by machine and (ii) we wish for our reasoning to be cor-
rect, it is desirable to represent reasoning in this way. This set of circumstances motivates
the development of methods for checking reasoning by machine and for using machines to
assist in producing reasoning.

1.1 Interactive theorem proving

Interactive theorem proving is one method of (i) making mathematical reasoning
machine-checkable and (ii) supporting the production of mathematical reasoning. Given a
formal language on paper, we can translate this into a computer-readable language — we
will call such a language a proof language. And, given such a proof language, we can write
computer programs to check the correctness of reasoning with respect to the stipulated
rules of inference. Software which packages (i) an encoding of a formal language (i.e. a
proof language) and (ii) a program for checking reasoning represented in this language is
called a proof assistant.

Using the formal languages on paper, we can write statements about properties and
relations and reason about them. Further, we can define mathematical objects within the
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language and reason about them. So, once we have translated the formal language from
paper to a computer-readable form, we can define mathematical objects in the computer-
readable language. Further, the proof-checking program now checks reasoning about math-
ematical objects.

We can proceed in the proof language as we do in natural language. That is, we can
proceed to define mathematical objects, properties, functions, and relations; prove things
about them; steadily build up a collection of facts; and, organize the facts into theories.
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Chapter 2

Background on Lean

Lean1 is one proof assistant. The formal language Lean encodes is a version of the
calculus of inductive constructions (CIC).2 CIC is a variety of dependent type theory
extensible by inductive definitions. In addition to encoding the CIC and providing a
method for checking derivations in that language, Lean has features which assist the user
in defining objects, constructing derivations, and organizing theories. These include: (1)
a powerful and fast elaborator which allows the user to leave much information implicit
when writing in the language, (2) automated methods for filling in missing information
in expressions, (3) an object-oriented-programming-like class defining mechanism which
allows the definition of compound data objects and allows such classes to inherit from
other classes, and (4) a type class inference mechanism which allows the user to suppress
information and which facilitates the use of natural notations [9][10][2]. Using this class
definition feature, we can elegantly define algebraic structures.

In the next sections, we discuss features of Lean mentioned above that are essential in
the formalization below. In order to establish a shared vocabulary and give background
for the calculus of inductive constructions, we first discuss formal systems. We distinguish
from these a subset — type theories. Among type theories, we distinguish between those
with simple types and with dependent types. We motivate the use of dependent types
for the purposes of formalizing logical and mathematical reasoning. And we describe
features of the particular type theory with dependent types which Lean encodes, the CIC.
After this, we demonstrate how this type theory can be used to define logical objects (e.g.
propositions, connectives, predicates, quantifiers) and prove statements. We demonstrate
that the CIC is bettter suited to formalize reasoning than a simple type theory, because
the resources of the CIC can be used to define objects which cannot be defined using
the resources of simple type theory. Lastly, we describe specific tools Lean provides to
facilitate the definition of mathematical objects in the formal system.

1http://leanprover.github.io/
2For the original calculus of constructions, see [8]. For the calculus of inductive constructions, see

[7, 16, 19]
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2.1 Dependent type theory

In this section, we describe features of the formal language which Lean encodes. We do
this in steps. First, we introduce the notion of a formal system. Then, we expand this into
the notion of a formal system including simple types. From there, we describe motivations
for developing and using a formal system with dependent types, and we describe features
of such a system — the CIC. It should be noted that the system which Lean encodes is
not discussed until the section titled ‘Calculus of inductive constructions’. The systems
which are presented before this are just examples and are not to be taken as incremental
developments of the CIC.

After we describe features of the CIC, we show how we can encode familiar logi-
cal reasoning in this system using inductive types. We do this by (i) describing the
propositions-as-types interpretation; (ii) using the resources of the CIC to define both log-
ical connectives and quantifiers via inductive types; and (iii) using the resources of the
CIC to define predicates and relations. We note here but will describe more carefully later
that a dependent type theory is a formal system with types where dependent types are
permitted.

2.1.1 Formal systems

Let an alphabet be a collection of distinct symbols.3 Let an expression be a string of
symbols from the alphabet. Let a well-formed expression be an expression which meets
stipulated syntactic criteria. Later, we will distinguish between well-formed expressions
labeled terms, types, and judgments. Let a derivation rule be a means of creating a
judgment from one or more judgments. Let an axiom be a judgment taken as given.

Let a formal system be: (i) an alphabet, (ii) criteria for expressions to be well-formed
expressions, (iii), critera for expressions to be judgments, (iv) a set of derivation rules, and
(v) a set of axioms. Informally stated, a type theory is a formal system in which types are
assigned to terms. In a type theory, there are judgments which assert that, given a term
and a type, the term has the type.

2.1.2 Syntax for terms and types in simply typed lambda
calculus

In this section, we exhibit instances of the concepts defined above. We consider exam-
ples of alphabets along with syntactic criteria for well-formed expressions; first for terms,
then for types. Then, we present examples of derivation rules. In these examples, we
restrict ourselves to discussing a language for defining expressions and for showing that
certain expressions have certain types.

Term expressions

The set of expressions we describe in this example is the set Λ of terms in the untyped

3Many of these definitions and notations follow [15].
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lambda calculus.4 Let V := {x, y, z...}. Let S := {(, ), λ, .}. Let the alphabet be the
set V ∪ S. The following inductive definition provides the syntactic criteria for being a
well-formed term expression (alternately, term):

(i) if u ∈ V , then u ∈ Λ

(ii) if M ∈ Λ and N ∈ Λ, then (MN) ∈ Λ

(iii) if u ∈ V and M ∈ Λ, then (λu.M) ∈ Λ

This inductive definition is expressed equivalently using Backus-Naur Form (BNF) nota-
tion:

Λ := V |(ΛΛ)|(λV.Λ)

V is the set of term variables, and Λ is the set of terms built from the variables in V using
the construction rules and the punctuation symbols in S.

Type expressions

The above is an example of an alphabet along with syntactic criteria for well-formed
term expressions. We continue by describing another set of expressions; we call this set T.
It is the set of type expressions (alternately, types) in the simply typed lambda calculus.5

4For the reader who has not seen the untyped lambda calculus before, we state the following. It is a
formalism for carefully describing the behavior of functions. Thus — though we do not discuss this here
(see, e.g. [5, 15]) — it provides means for describing the notions of variable binding, substitution, and
evaluation, and it can be used to describe concrete functions of interest, encode natural numbers, and
represent computations.

For aid in reading the expressions in the maintext example above, we note the intended interpretation
for the symbols and expressions in the untyped lambda calculus:

In general, an expression represents a function or value.

The intended interpretation of the symbol λ is a function-creating operator; λ binds a variable,
and an expression beginning with a λ is a function. Thus, given a variable x, (λx.x) is the function
which takes an input x and returns x; given variables x and y, (λx.λy.y) is the function which
takes an input and returns the function which takes an input y and returns y.

The intended interpretation of juxtaposing expressions in the lambda calculus is this: the left
expression is a function taking as input the right expression — alternately put, the left expression
is applied to the right expression. Thus, given variables x and y, (λx.λy.yx) takes an input, takes
a second input, then applies the second input to the first. Moreover, (((λx.λy.yx)z) f) reduces to
f z. For more on reductions and the use of the calculus, see [5, 15].

5For the reader who has not seen the syntax for expressions in the simply typed lambda calculus,
we state the following. The simply typed lambda calculus takes as given the term expressions of the
untyped lambda calculus and makes additional stipulations. One stipulation is that term variables are
assigned ‘types’. A second stipulation is that compound term expressions are assigned types in accordance
with rules, where the rules for assigning types to the compound term expressions use the types of the
component term expressions. As an example, suppose that x is a variable and x has type A. Then, the
function λx.x is assigned the type A → A; that is, λx.x is a term of type A → A. The interpretation of
A → A is that it is the type of all functions from terms of type A to terms of type A. Moreover, given
these assignments, the function λx.x can be applied only to inputs of type A.
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Suppose that we have a set V := {α, β, γ, ...} and a set S := {(,), →}. Let the alphabet
for this example be the set V ∪ S. The following inductive defintion provides syntactic
criteria for being a well-formed type expression:

(i) if α ∈ V, then α ∈ T

(ii) if α ∈ T and β ∈ T, then (α→ β) ∈ T

In BNF,

T := V|(T→ T).

The intended interpretation of the arrow type is a function type, so (α → β) is the type
of functions from type α to type β.

Judgments

Thus, we have term expressions and type expressions. So, we have the components
for the sort of assertions foreshadowed above — assertions of the sort ‘this term has that
type’. We now define this third set of well-formed expressions — judgments. Let ‘:’ be a
new symbol.6 Then, a judgment is a string of the form ‘M : σ’ where M ∈ Λ and σ ∈ T.
The judgment ‘M : σ’ asserts that M has type σ. M is called the subject of the judgment;
σ is called the type of the judgment.

In a setting with a set of terms Λ and a set of types T: a declaration is a judgment
of the form w : σ where w ∈ V and σ ∈ T; typed variables can be used in lambda
abstractions; a context is a list of declarations with different subjects. Let ‘`’ be a new
symbol. A judgment (with a context) is a string of the form Γ ` M : σ, where Γ is a
context and M : σ is a judgment. Γ `M : σ is read ‘given context Γ, M has type σ’.

Derivation rules

Thus, we have judgments which assert that given a context a term has a certain type.
Given such judgments and the definition of constructing compound terms, we wish to
derive the type of compound terms. We give rules for deriving judgments from other
judgments; for each of the term construction rules, there is a type derivation rule. Note:
‘M : σ ∈ Γ’ is ‘M : σ is an element of the list Γ’.

M : σ ∈ Γ
var

Γ `M : σ

Γ, w : σ `M : τ
abst

Γ ` λ(w : σ).M : σ → τ

Γ `M : σ → τ Γ ` N : σ
appl

Γ ` (MN) : τ

These rules are read as ‘given what is above the line, we can derive/infer what is below the
line’. In sum, given Λ and T and these rules, we can write judgments, construct contexts,
and derive judgments from other judgments.

We give the following examples of derivations. First, a derivation of the example in
the footnote. Note: (x : A) denotes the list with one element, x : A.

6At this point, our alphabet is V ∪ S ∪ V ∪ S ∪ {:}
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x : A ∈ (x : A)
var

(x : A) ` x : A
abst

` λx.x : A→ A

A more complex derivation. Note: we truncate the contexts for simplicity.

v : B ∈ (v : B)
var

(v : B)` v : B

w : A∈ (w : A)
var

(w : A)` w : A

z : C ∈ (x : A, y : B, z : C)
var

(x : A, y : B, z : C)` z : C
abst

(x : A, z : C)` (λy.z) : (B → C)
abst

(z : C)` (λx.λy.z) : (A→ (B → C))
appl

(w : A, z : C)` ((λx.λy.z)w) : (B → C)
appl

(w : A, v : B, z : C)` (((λx.λy.z)w)v) : C

2.1.3 The need for dependent types

The set of types T is limited; for, the only types permitted are the base types from
V (i.e. α, β, γ, ...) and what can be constructed via the → rule. In a formal system with
types, the types delimit the varieties of objects describable in the language; so, in the
formal system we have given above, the only objects describable in the language are (a)
terms of the types, (b) functions between types, and (c) functionals between types. Using
this language, we can describe some objects and types encountered in mathematics or
computer science. For example, we could add to the set of base types the familiar types
of N or nat, 2 or bool, Z or int, sequences or lists. From these and the type construction
rules, we could describe the types of functions and functionals, e.g. N→ N, nat → bool,
int → int, (N→ N)→ N.

However, in mathematics and logic and computer science, we encounter types which
cannot be described in the system above. Consider the following type: lists of terms,
where the terms are all of type A. In this example, we have a type (i.e. list A), which
depends on a type (i.e A).7 Now, consider vectors of length n, where the terms in the
vector are all of type A and n is a natural number. In this example, we have a type (i.e.
vector A n) which depends on a type (i.e. A) and a term (i.e. n, where there is another
type in play because n has type nat). In this latter example, the type is not in the base set
of types and it cannot be constructed from other types using the → rule since it depends
on a term. The type in this examples differs from the types in T, because the type in the
example depends on (i) other types in a different way than being composed by→, and (ii)
terms.

The formal system with simple types described above has no means for creating the
type in this example, but we wish to define and reason about this and similar types;
so, this system is not sufficient for our purposes. In order to describe types like that in
the example and objects of those types, we need a formal system with types, where that
system has provisions for constructing (a) types which depend on types and (b) types
which depend on terms.8 Types which depend on types and types which depend on terms

7It is possible to describe types dependent on types in simple type theory. See [17]
8For an outline of a series of extensions of the formal system with simple types, see [15] or [4].
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are called dependent types. A formal system with types which depend on terms is called
a dependent type theory.

2.1.4 The calculus of inductive constructions

The formal language Lean encodes is a dependent type theory called the calculus
of inductive constructions. In this section, we give a brief overview of features of this
language.9 To do this, we describe properties of types and terms in the language and then
the intuitions for inductive types.

Types and terms

Types and terms are treated differently in the CIC than they are in the examples in the
preceding section. In the examples of the preceding section, types and terms are distinct.
However, in the CIC, this distinction does not hold. For, in the CIC, all types have a
type; so, since they have a type, types are also terms. We will see later that this allows
the uniform treatment of types, terms, propositions, and proofs – they are all terms.10

The derivation rules in the CIC simultaneously give the means for constructing terms
and for assigning types to those terms. In the example in the preceding section, a new
type could be constructed from two types and an →. The CIC includes a generalization
of this: the Π. Below, to give examples of derivation rules in the CIC, we exhibit rules for
Π. We also indicate how this generalizes →.

In the rules, Type denotes some particular type in the hierarchy. We use the syntax
from the previous section for judgments, contexts, and derivations. In one rule, we use
the notation z[x/y] to denote the expression z with all occurrences of y replaced by x.

x : σ ∈ Γ
var

Γ ` x : σ

Γ ` σ : Type Γ, x : σ ` τ : Type∗
Πform

Γ ` Π(x : σ).τ : Type∗

Γ, x : σ `M : τ Γ ` Π(x : σ).τ : Type
Πabst

Γ ` λ(x : σ).M : Π(x : σ).τ

Γ `M : Π(x : σ).τ Γ ` N : σ
Πappl

Γ ` (MN) : τ [N/x]

Γ `M : τ Γ ` υ : Type
conv. side-condition: τ reduces to υ

Γ `M : υ

In Πform, Πabst, and Πappl, x is a variable and the Π binds its occurrences in the whole
expression. Consider Πform; in cases where τ does not depend on σ (i.e. in cases where
τ contains no occurrences of x), we abbreviate Π(x : σ).τ as σ → τ , and terms of this type
are the functions described in the previous section.

9For specifications of the language, see [8], [7], [19], [16], [6], [18], [15]
10In order to have both (a) all types having a type and (b) a consistent formal system, there is an

infinite universe of types:: Type0, Type1, Type2, .... In different varieties of dependent type theory, different
hierarchies are imposed on this universe; in some, for all i and j, if i < j, then Typei : Typej (this is
referred to as cumulative inclusion); in others, for each i, Typei : Typei+1 and Typei has no other type
(this is referred to as non-cumulative inclusion). Lean implements a non-cumulative hierarchy.
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In conv, we mention reduction; again, for an explanation of reduction/computation
rules, see [5, 15]. In short, expressions in the CIC have a computational interpretation
– expressions can be reduced according to certain rules. Thus, one means of proving
an equality is to reduce two terms to the same term; we will see examples of this in
the formalization — in those cases, the proof term indicating that the proof proceeds by
reduction is rfl.

Inductive Types

The above term expressions, type expressions, universe of types, and derivation rules
are features of the calculus of constructions. The calculus of inductive constructions
contains these and adds a schema for defining new types. A type defined according to
this schema is called an inductive type. The schema allows the user to define types from
the bottom up by stipulating (i) terms in the type and (ii) constructors, i.e. functions
which have as return type the type being defined. When an inductive type is defined, it
comes with a recursor (alternately, eliminator), which is a means for defining functions
with domain type the type being defined.11 Instead of specifying the schema, we give
examples and direct the reader to references (e.g. [7], [16], [11]) for a specification.

Canonical and familiar inductive types include nat and list. nat can be defined by
stipulating that 0 is a nat, and for each nat n, succ n is a nat. So, 0 is a base term,
and succ is a constructor. list can be defined inductively by stipulating that null is a list,
and for each term a and list l, cons a l is a list. So, null is a base term, and cons is a
constructor. bool can be defined inductively by giving two base terms: tt is a bool, and ff
is a bool. Below, we give many examples of inductive types within the formal language.

The implementation of the calculus of inductive constructions in Lean

In addition to this formal system with types, Lean includes three items which are nei-
ther native to the calculus of constructions nor definable via inductive definitions. These
are quotients, propositional extensionality, and a Hilbert choice operator. We discuss quo-
tients below in the ‘The formalization’ section. In short, for the other two: propositional
extensionality states that if two propositions are equivalent, the propositions are equal;
and, the Hilbert choice operator allows the user, given a proposition ∃x, P (x), to extract
a term y such that P (y).12 The Hilbert choice operator is a classical reasoning principle
and allows the derivation of other classical reasoning principles (e.g. the law of excluded
middle, double negation elimination).

2.2 Using dependent type theory

We saw in the previous section that the calculus of inductive constructions consists of:
term expressions, type expressions, a universe of types, a schema for defining new types
(inductive types), and derivation rules which determine the types of compound terms from

11Terms of the inductive type are uniquely decomposable. The inductive definitions are deterministic.
See [1].

12For more information about each of these, see Lean tutorial [2].
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the types of component terms. Using these resources, we define logical and mathematical
objects and reason about them. In this section, we describe how we use these resources to
define in the type theory: propositions, predicates, relations, quantifiers, types dependent
on types (e.g. list A), and types dependent on terms (e.g. vector A n).

2.2.1 Defining propositional connectives and proof rules

Propositions as types

So far, we have seen sketches of how to define in CIC types including nat, list, and
bool. Now, we define propositions — that is the familiar propositions of logic. To encode
propositions in the CIC, one method is to adopt the propositions-as-types interpretation.
This interpretation amounts to making the following stipulations:

(i) there is a new type: Prop

(ii) terms of type Prop are themselves types

(iii) we refer to terms of type Prop as propositions (thus, propositions are types)

(iv) given a term P of type Prop and a term p of type P, p is a proof of P
(i.e. if (P : Prop) and (p : P), then p is a proof of P)

In presentations of the CIC, this interpretation is implemented as follows. Type0 and
Prop are synonomous. In addition to this, Prop has two defining characteristics. (1) Given
a term P of type Prop (recall that this makes P a type), the result of applying the Π-appl
rule to P is a term of type Prop.13 (2) Given a term P of type Prop and given two terms
p1 and p2 both of type P, p1 and p2 are viewed as identical by the system.14

Propositions as types and machine-checkable proofs

Encoding propositions as types has dramatic consequences. For, given a term in the
CIC and a type, checking whether the term has the given type is decidable. So, since proofs
are terms and propositions are types, given a term and a proposition, checking whether
that term is a proof of the given proposition is decidable. In other words, through encoding
propositions as types, whether a proposed term (i.e. argument) is a proof can be decided
by machine.15

Defining logical connectives

As mentioned above, we define logical connectives and quantifiers via inductive defini-
tions. Let’s start with ‘and’. For abitrary (P : Prop) and (Q : Prop), what we want from
the type ‘and P Q’ is the following behavior: (1) we want to be able to construct a term

13This makes Prop impredicative.
14This makes Prop proof irrelevant.
15We note that whether proofs can be checked mechanically depends on the nature of the rules, not

on the variety of formal system used. The above paragraph is intended only to convey how the checking
is done for this formal system, not to suggest that type theory has special status regarding machine-
checkability of proofs.
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of the type ‘and P Q’ from a proof of P and a proof of Q, and (2) given a term of type
‘and P Q’, we want to be able to extract a proof of P and a proof of Q. We get the desired
behavior from this definition.

inductive and (P : Prop) (Q : Prop) : Prop :=

intro : P → Q → and P Q

This is Lean syntax for an inductive definition. inductive is a keyword indicating the
beginning of an inductive definition. and is an identifier. Since

(P : Prop) and (Q : Prop)

appear before the colon, they are arguments for the type that is being defined. So, and
takes two arguments of type Prop. After the colon is the type of the term being defined,
here Prop. So, overall, this definition assigns to the identifier and the type

Π(P : Prop) (Q : Prop), Prop

(alternately, Prop → Prop → Prop). Since this is an inductive definition, to the right of
:= is the list of base terms of the type and the constructors of the type.16

This inductive definition has no base terms, and it has one constructor. The constructor
is referred to by and.intro. As required for inductive definitions, the return type of the
constructor is the type being defined — here, and P Q. The constructor takes as arguments
terms (i.e. proofs) of P and Q. So, using this constructor, we can — as desired — construct
a term of type and P Q from a proof of P and a proof of Q:

given (p : P) and (q : Q), and.intro p q is a term of type and P Q

Since the constructor is the means for creating a term of the type, it corresponds to what
is typically called an introduction rule.

When a type is defined inductively, Lean automatically generates a ‘destructor’/‘recursor’;
the ‘destructor’/‘recursor’ allows the user to construct a function, where the argument
type of the function is the inductively defined type. We give the reader a sense of these
automatically generated recursors through examples. In the case of the type and P Q,
the recursor allows us to define a function with argument type and P Q. This recursor
provides the means for defining the desired elimination rules:

definition and.elim_left (H : and P Q) : P := and.rec_on H (λ x y, x)

definition and.elim_right (H : and P Q): Q := and.rec_on H (λ x y, y)

This is Lean syntax for a non-inductive definition. definition is a keyword indicating
the beginning of a non-inductive definition. and.elim_left is an identifier. Since

(H : and P Q)

appears before the colon, and.elim_left is defined to take an argument of type and P Q.
After the colon is the type of the term being defined, here P. So, overall, this defintion
assigns to the identifier and.elim_left the type

16For non-inductive definitions, to the right of the := is the term of the CIC assigned to the identifer
by the definition. We give an example of this shortly.
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Π{P : Prop} {Q : Prop} (H : and P Q), P

(alternately, Π {P : Prop} {Q : Prop}, and P Q → P). The identifier is assigned this
type because the definition assigns to the identifer the term from the CIC after :=. Here,
the term assigned to and.elim_left is

λ (H : and P Q), and.rec_on H (λ x y, x)

The initial λ comes from the arguments to the left of the colon; putting arguments to the
left of the colon in a definition is an implicit lambda abstraction. So, given a term of type
and P Q (e.g. (hyp : and P Q)), and.elim_left hyp is a term of type P.

and.rec_on is the automatically generated recursor. Its type is

Π {P : Prop}{Q : Prop}{C : Type}, and P Q → (P → Q → C) → C

In the definitions above, we take C to be P and Q. Thus, through using the recursor in
the terms assigned to and.elim_left and and.elim_right, we get the other behavior we
want from the and P Q type. Specifically, from a proof of and P Q, we can extract a proof
of P and a proof of Q.

Lastly, we use Lean’s resources for defining notation.

infix ∧ := and

Having given a concrete example of each, we give the general syntax for inductive
definitions and non-inductive definitions.

inductive <identifier><hypotheses/implicit lambda abstractions> <:>

<type expression> :=

| <identifier1> : <identifier>

...

| <identifierN> : <identifier>

| <identifierM> : ... → <identifier>

...

| <identiferNplusM> : ... → <identifier>

definition <identifier><hypotheses/implicit lambda abstractions> <:>

<type expression> :=

<term expression>

Defining ‘or’

For arbitrary (P : Prop) and (Q : Prop), the behavior we want from the type

or P Q

is this: (1) we want to be able to construct a term of type or P Q from a proof of P or
from a proof of Q, (2) if we can (i) construct a term of type C from a term of type P and
(ii) construct a term of type C from a term of type Q, then we can construct a term of type
C from a term of type or P Q. We get the desired behavior from this definition.
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inductive or (P : Prop) (Q : Prop) : Prop :=

|inl : P → or P Q

|inr : Q → or P Q

This inductive definition has no base terms and two constructors: or.inl and or.inr.
or.inl is a function from a proof of P to a proof of or P Q. or.inr is a function from
a proof of Q to a proof of or P Q. The automatically generated recursor is used to define
the elimination rule.

definition or.elim (H : or P Q)(H1 : P → C)(H2 : Q → C) : C :=

or.rec_on H H1 H2

infix ∨:= or

Defining ‘implies’

The connective ‘if...then...’/‘implies’ requires no work; for, we already have in the
formal system a type that has the desired behavior. Instances of the Π type where the
return type does not depend on the input type (i.e. what we represent with the→) provide
what we want. To see that this is the case, let us consider the desired behavior for the
‘implies’ type: (1) we want to be able to construct a term of type Q by applying a term
of type implies P Q to a term of type P, and (2) we want to be able to construct a term
of type implies P Q by taking a term of type P and producing a term of type Q. This is
exactly the behavior of the Π rules where the return type does not depend on the input
term; see the derivation rules for Π above.

Defining ‘false’ and ‘not’

For an arbitrary (P : Prop), the definition for not P takes two steps. First, we define
a type false. Then, we define not P as P → false.

inductive false : Prop

This inductive definition has no base terms and no constructors. The recursor allows us
to construct a function from false to any type. These facts correspond to the desired
behavior of: (1) there is no proof of false, and (2) from a proof of false, we can conclude
anything.

definition not (P : Prop) : Prop := P → false

notation ¬ := not

Observe that we can present the rules as we would in a sequent calculus / natural
deduction setting.

Γ ` p : P Γ ` q : Q

Γ ` and.intro p q : P ∧ Q

Γ ` H : P ∧ Q

Γ ` and.elim_left H : P

Γ ` H : P ∧ Q

Γ ` and.elim_right H : Q
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Γ ` p : P

Γ ` or.inl _ p : P ∨ Q

Γ ` q : Q

Γ ` or.inr _ q : P ∨ Q

Γ ` H : P ∨ Q Γ ` H1 : P → C Γ ` H2 : Q → C

Γ ` or.elim H H1 H2 : C

Γ ` H : P → Q Γ ` p : P

Γ ` H p : Q

Γ, (p : P) `q : Q

Γ `λ p, q : P → Q

Γ, (p : P)` c : false

Γ` λ p, c : not P

Γ `h : false
Γ `false.elim h : C

That concludes the presentation of the propositional connectives.

2.2.2 Defining predicates, relations, and quantifiers

Defining predicates and relations

We now define in CIC predicates and relations. Each is defined as a Prop-valued
function. In the case that the Prop-valued function takes one argument, the function is
called a predicate; in the case of more than one argument, the function is called a relation.

Given (X : Type), the type of predicates on X is

Π (x : X), Prop; alternately, X → Prop

For example, if (P : Π(x : X), Prop) and (z : X), then P z : Prop.
Given (X : Type) and (Y : Type), the type of relations on X and Y is

Π(x : X) (y : Y), Prop; alternately, X → Y → Prop

For example, if (R : Π(x : X) (y : Y), Prop) and (z : X) and (w : Y), then
R z w : Prop.

Defining quantifiers

Given predicates and relations, we define in CIC universal and existential quantifiers.
For the universal quantifier, the situation is similar to the situation for implication above;
there is already an object in the language which has the desired properties: the Π type.
However, this case is different from the implication case above, because for this case the
return type will depend on the input term. Recall that the desired properties of the
universal quantifier are as follows: (1) to introduce a universal quantifier, we take an
arbitrary element of a domain and prove that the predicate holds for that element, and
(2) to use/eliminate a universal quantifier, we apply the universally quantified statement
to an element of the domain, resulting in the statement with the first universal quantifier
removed and the element substituted for the quantified variable throughout the statement.
These are exactly the rules for the Π type; again, see the rules in the previous section.

notation ∀ := Π
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For the existential quantifier, there is work. The behavior we want for the existential
quantifier is this: (1) to introduce an existential quantifier, we must produce an element
of a domain and a proof that the predicate holds of that element, and (2) to use/eliminate
an existential quantifier, if we can (a) take an arbitrary element of the domain, (b) assume
that the predicate holds of that element, and (c) construct a term of type C, then from
the existentially quantified statement we can construct a term of type C. A type with this
behavior is defined in this way:

inductive exists (P : X → Prop): Prop :=

intro : Π (x : X), P x → exists P

notation ∃ := exists

So, given

(X : Type) (x : X) (P : X → Prop) (H : P x)

exists.intro x H is a term of type exists P.
Using the recursor, we define the elimination rule.

definition exists.elim {A : Type} {P : A → Prop} {B : Prop}

(H1 : ∃ x, P x) (H2 : ∀ (a : A), P a → B) : B :=

exists.rec_on H1 H2

Again, we can represent the above rules in the natural deduction / sequent calculus
format.

Γ ` x : A Γ ` H : P x

Γ ` exists.intro x H : ∃ y : A, P y

Γ ` H : Π x : A, P x Γ ` y : A

Γ ` H y : P y

Γ, (x : A) ` H : P x

Γ ` λx : A, H : Πx : A, P x

Γ ` M : ∃ x : A, P x Γ (x : A), (H : P x) ` L : Q

Γ ` exists.elim M (λ x : A,λ H : P x, L) : Q

We could also restate the rules with Π with ∀ to reflect its use as the universal quantifier.

2.2.3 Types dependent on types; types dependent on terms

In a previous section, we demonstrated the need for a formal system with dependent
types by showing that a type theory with simple types could not describe certain objects
of interest — i.e. types dependent on terms (e.g. vector A n). In this section, we define
these in the calculus of inductive constructions.

We define lists of terms of type A exactly as one might expect. nil is a list of terms
of type A, and — given a term a of type A and a list l of terms of type A – cons a l is a
list of terms of type A. Using Lean notation, we define this type as follows.

inductive list (A : Type) : Type :=

| nil {} : list A

| cons : A → list A → list A
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Similarly, we define vectors of n terms of type A. nil is a vector of zero terms of type
A, and — given a term a of type A and a vector v of n terms of type A — cons a v is a
vector of succ n terms of type A. In Lean:

inductive vector (A : Type) : nat → Type :=

| nil {} : vector A zero

| cons : Π {n}, A → vector A n → vector A (succ n)

2.3 Algebraic structures

It is fruitful to isolate and treat specially a certain subset of inductive types. Specifi-
cally, we isolate inductive types with one constructor and provide special means of working
with them.

Lean provides a special syntax for defining inductive types of this sort, and types
defined in this way are called structures. The method of defining a structure shares
features with the method of defining objects in an object-oriented programming language;
structures are like objects the following ways: (1) they store data and functions, (2) one
structure can inherit from one or more other structures.

For example, we define a type of points in an integer-valued grid. We define it by
defining a type x_coordinate which possesses one piece of data, and a type y_coordinate
which also possesses one piece of data. The type point will inherit from each of these.

structure x_coordinate := (x : int)

structure y_coordinate := (y : int)

structure point extends x_coordinate, y_coordinate

Thus, given a term of type x_coordinate or y_coordinate, that term carries an int. To
construct a term of type x_coordinate or y_coordinate, we must provide an int. For
structures, the default name for the single constructor is mk; e.g., suppose z : int, then
x_coordinate.mk z has type x_coordinate. Since it inherits from x_coordinate and
y_coordinate, the type point possesses two pieces of data; so, to construct a term of this
type, we must provide two ints. Given a term pt of type point, the data carried by the
term can be accessed by point.x pt and point.y pt. If the point type possessed a field
with a function, that field could be accessed in the same way. Accessing the fields of the
structure using this ‘.’ is nothing new: it is simply notation for using the automatically
generated recursor to project out the components required to make a term of that type.

2.3.1 Type class inference

Proof assistants like Lean are designed to facilitate the construction of formal axiomatic
derivations. Formal axiomatic derivations include many details. So, one way in which
proof assistants can help users is by providing means through which users can leave out
details, allowing the assistant to provide them. One of these means is referred to as ‘type
class inference’, and Lean supports this.

For the purposes here, it suffices to characterize type class inference in the following
way. It is a method of leaving out information in expressions. The method is invoked by
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labeling certain types as [class]. Then, given a type T that has been labeled in this way,
when writing expressions which require a term of type T, the user omits the term. To fill
in this missing information, Lean consults a list of the terms in the context. We illustrate
this with examples below.

Type class inference and structures can be used together to remarkable effect. We
achieve this as follows. First, a structure is marked as a class. Next, the user introduces
an instance of the structure into the context; this can be done by either adding it as a
hypothesis or proving that the presence of the structure follows from hypotheses in the
context. Then, in any definition/lemma/theorem in which the structure and its fields
are used, the user can forgo mentioning the structure, allowing the type class inference
mechanism to find the relevant structure.

An example will clarify the forgoing paragraphs. Suppose we wish to consider types
with a multiplication operation. We can define a structure with a field that is an operation
in this way.

structure has_mul (A : Type) := (mul : A → A → A)

So, given (X : Type), has_mul X is a type; and, given a term of this type

h : has_mul X

the term has one field (i.e. has_mul.mul h), a function of type X → X → X. Now that we
have this function, we want to use it. With (x : X) (y : X), we can apply the function
with has_mul.mul h x y. This expression is long and untidy. We can make it nicer by
defining notation.

notation * := has_mul.mul

Now, we can apply the function with * h x y. This is an improvement; but, if there is only
one has_mul we are considering, then we may wish to suppress the h and write something
like * x y or change the notation to infix (i.e. x * y). Using type class inference allows
us to do both of these things. To accomplish this, we change the definition of has_mul by
marking the defined type as a class.

structure has_mul [class] (A : Type) := (mul : A → A → A)

Then, with [h : has_mul X] in the context17, we can apply the function with the ex-
pression * x y. Alternately, we could change the notation

infix * := has_mul.mul

and write x * y. By marking the type as a class, the user indicates to Lean to make sense
of expressions by filling in omitted terms with terms from the context. Here, h is omitted
in the expressions and is filled in by Lean as needed.

Further, type class inference can use the information that one type marked as a class
inherits from another type marked as a class. For example, consider the following.

structure has_one [class] (A : Type) := (one : A)

structure monoid [class] extends has_mul A, has_one A :=

(one_mul : ∀ (x : A), mul one x = x)

(mul_one : ∀ (x : A), mul x one = x)

17The hard brackets indicate that this hypothesis is available for use in type class inference.
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Ignore the fields of monoid. Consider only the fact that it inherits has_mul A. Since it
inherits from has_mul A, one of the implicit fields of monoid is (mul : A → A → A).
Given [h : monoid A], we may want to use h’s mul. As desired, we can do so by writing
x * y. Lean makes sense of the expression x * y by invoking type class inference. It find
the instance of monoid (i.e. h). It observes that monoid inherits from has_mul and thus
finds the mul needed to make sense of the expression.

Later, we build complex algebraic structures using these formal structures, and we
reason seamlessly about these using the properties of structures, inheritance, and type
class inference.
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Chapter 3

Background from group theory

In this section, we present elementary concepts from group theory as they are presented
informally. In the next section, we present the concepts formally.

Definition: group Suppose that G is a nonempty set. Suppose that ∗ is a binary
operation; we call ∗ multiplication. Then G is a group iff

· G is closed under multiplication: for all a and b, if a ∈ G and b ∈ G, then a ∗ b ∈ G

· multiplication in G is associative: for all a, b, and c in G, (a ∗ b) ∗ c = a ∗ (b ∗ c)

· there is a unit element for the multiplication: there is an e in G such that for all a
in G, a ∗ e = a and e ∗ a = a.

· G contains inverse elements for the multiplication: for all a in G, there is a b in G
such that a ∗ b = e and b ∗ a = e

We denote the inverse element for a with a−1.

Definition: subgroup Suppose that G is a group with multiplication ∗. Suppose that
H is a nonempty subset of G. Then H is a subgroup of G iff

· H is closed under the multiplication in G: for all a and b, if a ∈ H and b ∈ H, then
a ∗ b ∈ H

· H contains inverse elements for the multiplication in G: for all a in H, there is a b
in H such that a ∗ b = e and b ∗ a = e

Definition: left coset Suppose that G is a group with multiplication ∗. Suppose that
H is a subset of G. Suppose that g is an element of G. Then the left coset of H by g is
{g ∗ h|h ∈ H}.

We denote the left coset of H by g with g ∗H (alternately, gH), reusing the notation ∗.
Similarly, we define the right coset of H by g and denote it with H ∗ g (alternately, Hg).

Definition: normalizer Suppose that G is a group with multiplication ∗. Suppose that
H is a subset of G. Then the normalizer of H is {g ∈ G|g ∗H = H ∗ g}.
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Definition: normal subgroup Suppose that G is a group with multiplication ∗. Suppose
that H is a subgroup of G. Then H is a normal subgroup of G iff for all g ∈ G, g∗H = H∗g.

Given a group G with multiplication ∗ and a subset H of G, we use the notion of left
coset of H to define a relation on the elements of G.

Definition: coset relation Suppose that G is a group with multiplication ∗. Suppose
that H is a subset of G. Then, for all g1 and g2 in G, g1 ∼ g2 iff g1 ∗H = g2 ∗H.

By the reflexivity, symmetry, and transitivity of equality, this relation is an equivalence
relation.

Definition: quotient group Given a group G with multiplication ∗ and a subset H of
G, we can consider the new set {g ∗H|g ∈ G}. We denote this set with G/H. On this new
set, we define a binary operation ?: given g1 and g2 in G, (g1 ∗H)?(g2 ∗H) := (g1 ∗g2)∗H.
For economy of notation, instead of using ?, we reuse ∗; so, (g1∗H)∗(g2∗H) := (g1∗g2)∗H.
Further, if H is a normal subgroup, then — using this operation as the multiplication —
the new set is a group; we call this group the quotient group of G by H.

Given two groups G1 and G2, we consider functions between them. From the functions
between G1 and G2, we distinguish functions with certain behavior with respect to the
multiplications.

Definition: homomorphism Suppose G1 and G2 are groups. Let ∗G1 and ∗G2 be the
multiplications in G1 and G2 respectively. A function f from G1 to G2 is a homomorphism
iff for all a and b in G1, f(a ∗G1 b) = f(a) ∗G2 f(b).

We also define particular sets using functions between groups.

Definition: kernel Suppose that G1 and G2 are groups. Suppose f is a function from
G1 to G2. Let 1G2 denote the multiplicative identity in G2. Then, the kernel of f is the
set {g ∈ G1|f(g) = 1G2}.

The result which is the focus of this formalization is the first isomorphism theorem
which relates the above concepts.

First isomorphism theorem: Suppose that G1 and G2 are groups. Suppose that f is
a homomorphism from G1 to G2. Suppose f is onto from G1 to G2. Suppose K is the
kernel of f . Then, K is a normal subgroup of G1; there is a homomorphism g from G1/K
onto G2; and, g is injective.
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Chapter 4

The formalization

We saw above that the calculus of inductive constructions has two means for defining
new types: (i) using the Π constructor on (a) base types and (b) types defined from base
types and (ii) defining new types via inductive definitions and applying the Π constructor
to these. Through the propositions-as-types interpretation, we defined propositions in the
CIC; further, we defined connectives and quantifiers using inductive definitions. In this
section, we define mathematical objects in the CIC.

Our goal in the formalization is this: find the best representation in type theory for fa-
miliar mathematical objects. For a representation to be acceptable, it must have the same
properties as the familiar object. A representation is preferable to another if, compared
to the other, (i) it is easier to reason about or (ii) it looks more similar to the familiar
object. Throughout, we define notations which mimic familiar informal mathematics.

A couple notes

Because it is used frequently below, we restate the syntax for assigning an identifier to
a term:

definition <identifier> <:> <type expression> :=

<term expression>

In many cases, the system can infer the type, in which cases <:> <type expression> is
optional.

For each of the objects defined, the reader can find the definitions and examples of
their use in the relevant Lean files. For example1:

data.set.basic.lean

algebra.homomorphism.lean

theories.group theory.basic.lean

4.1 Sets

In the standard library of Lean, the set type is defined as follows.

1The directory is here: https://github.com/leanprover/lean/tree/master/library
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definition set := λ (A : Type), A → Prop

By this definition, we have assigned to the string set the term

λ (A : Type), A → Prop

So, set has type Π(A : Type), Type (alternately, Type → Type). Further, given a type
X, set X is the term X → Prop and has type Type.

Since it has type Type, set X is a type. And since set X is X → Prop, terms of type
set X (e.g. S where S : set X) are functions from X to Prop. So, given

(X : Type) (x : X) (S : set X)

S x : Prop. Lastly, we define notation so that x ∈ S is S x.

notation x ∈ S := S x

Recall that Prop is a type, that terms of type Prop (e.g. P : Prop) are types and
are interpreted as propositions, and that terms with type a proposition (e.g. p : P) are
interpreted as proofs of the propositions. Given this and the notation above, a hypothesis
that an element is in a set has the natural representation (h : x ∈ S).

Before proceeding to further definitions, we recall an alternate syntax for the definition
above. The above definition assigns to the identifier set the term λ (A : Type), A →
Prop. We can acheive an identical assignment using this syntax:

definition set (A : Type) := A → Prop

In this alternate syntax, instead of having the explicit λ abstraction over the type variable
A to the right of :=, we have an implicit λ abstraction to the left of :=. This alternate
syntax is used frequently in the Lean library, and we use it below. Also, it is a notational
convention to use one λ followed by multiple variables to abbreviate λ var1, λ var2, ...;
later examples use this convention.

4.1.1 Operations on sets

In the standard library of Lean, operations on sets are defined as follows.

definition intersection :=

λ {A : Type} (S : set A) (T : set A), λ (a : A), a ∈ S ∧ a ∈ T

definition union :=

λ {A : Type} (S : set A) (T : set A), λ (a : A), a ∈ S ∨ a ∈ T

By these definitions, we have assigned to the strings intersection and union the cor-
responding terms. There are squiggly braces around A : Type; the consequence of the
squiggly braces is this: when we write intersection ..., we do not pass as argument
the type of the sets. For example, given (X : Type)(S1 : set X)(S2 : set X), we
write intersection S1 S2, rather than intersection X S1 S2. intersection S1 S2 is
the term λ (a : X), a ∈ S1 ∧ a ∈ S2; so, intersection S1 S2 has type X → Prop;
and so, it has the right type to be a term of set X.

Also, we define notation
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infix ∩ := intersection

infix ∪ := union

Thus, we can introduce the hypothesis that an element is in one of these sets with the
natural notation (ha : x ∈ S1 ∩ S2) or (hb : x ∈ S1 ∪ S2). And Lean can verify the
identity between x ∈ S1 ∩ S2 and x ∈ S1 ∧ x ∈ S2 by reducing them to a common
term.

example {X : Type} (S1 : set X) (S2 : set X) (x : X) :

(x ∈ (S1 ∩ S2)) = ((x ∈ S1) ∧ (x ∈ S2)) := rfl

Lean permits users to set precedences on operators. As a result, users can omit parentheses
as desired.

As we did in the section for sets, we present an alternate syntax for the above def-
initions. In the definitions for intersection and union, we λ-abstract over the type
variable, but we surround this λ-abstraction with squiggly braces because we do not want
to pass the type variable as explicit argument. In a sense, the type is in the background.
We can simultaneously (a) represent that the type is in the background and (b) achieve
the same definitions as above using the following syntax:

section

variable {A : Type}

definition intersection (S : set A) (T : set A) : set A :=

λ (a : A), a ∈ S ∧ a ∈ T

definition union (S : set A) (T : set A) : set A :=

λ (a : A), a ∈ S ∨ a ∈ T

end

Two things changed in the transition between definitions: first, we used the implicit
λ abstraction to the left of := as discussed in the section for sets above; second, we
used a variable declaration (i.e. variable {A : Type}). Variable declarations make
the declared terms available for use in definitions. Definitions which do not use one or
more of the declared variables do not depend on those variables. Here, the definitions of
intersection and union do rely on the type variable, so the definitions assign a term
which includes this; e.g. to intersection is assigned

λ {A : Type} (S : set A) (T : set A), λ (a : A), a ∈ S ∧ a ∈ T

as desired.2

2For more on sections and variable declarations, see tutorial [2].
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Lastly, we exhibit a defined set-builder notation for sets.

section

variable {A : Type}

definition intersection (S : set A) (T : set A) : set A :=

{a : A | a ∈ S ∧ a ∈ T}

definition union (S : set A) (T : set A) : set A :=

{a : A | a ∈ S ∨ a ∈ T}

end

{a : A | a ∈ S ∧ a ∈ T}

is notation for λ (a : A), a ∈ S ∧ a ∈ T.

4.1.2 Relations between sets

We define a relation on sets as follows.

section

variable {A : Type}

definition subset (S : set A) (T : set A) : Prop :=

∀ (a : A), a ∈ S → a ∈ T

end

The definition assigns to the string subset the corresponding term. Thus, the type of
subset is

Π {A : Type}, set A → set A → Prop

Again, we write subset S1 S2 rather than subset X S1 S2. subset S1 S2 is

∀ (a : X), a ∈ S1 → a ∈ S2

Hence, subset S1 S2 is a term of Prop.
We define notation:

infix ⊆ := subset

Given this notation, a hypothesis that one set is a subset of another has the natural form:
(h : S1 ⊆ S2).

4.1.3 Example of proof

We have now defined enough logical operations, mathematical objects, relations, and
notation to state and prove the following statement: Given sets A, B, and C, if A ⊆ B
and B ⊆ C, then A ⊆ C.

An informal argument is as follows. Suppose that A ⊆ B. Suppose that B ⊆ C. Take
an arbitrary x. Suppose x ∈ A. Since x ∈ A and A ⊆ B, x ∈ B. Since x ∈ B and B ⊆ C,
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x ∈ C. Thus, if x ∈ A, then x ∈ C. Because x is arbitrary, for all x if x ∈ A then x ∈ C;
that is, A ⊆ C.

This informal argument is represented by the following proof tree:

x ∈ A

A ⊆ B

∀w,w ∈ A→ w ∈ B
x ∈ A→ x ∈ B

x ∈ B

B ⊆ C

∀y, y ∈ B → y ∈ C
x ∈ B → x ∈ C

x ∈ C
x ∈ A→ x ∈ C
∀x, x ∈ A→ x ∈ C

A ⊆ C

The expressions on this proof tree are propositions. In the setting of the CIC, propositions
are types; so, below, we construct a tree in which we represent this. Having a hypothesis
is taking as given a term of the proposition-type. Later terms are built from hypotheses
in accordance with the derivation rules. Let HAB be the hypothesis that A ⊆ B; similarly
HBC for B ⊆ C. With these annotations, the proof tree is as follows:

Hx : x ∈ A

HAB : A ⊆ B

HAB : ∀w,w ∈ A→ w ∈ B x : A

(HAB x) : x ∈ A→ x ∈ B
(HAB x)Hx : x ∈ B

HBC : B ⊆ C

HBC : ∀y, y ∈ B → y ∈ C x : A

(HBC x) : x ∈ B → x ∈ C
(HBC x)((HAB x) Hx) : x ∈ C

λHx, (HBC x)((HAB x) Hx) : x ∈ A→ x ∈ C
λx, λHx, (HBC x)((HAB x) Hx) : ∀x, x ∈ A→ x ∈ C

λx, λHx, (HBC x)((HAB x) Hx) : A ⊆ C

The term on the bottom line of the proof tree is a term of the desired type. We present
the proof in Lean:

example {X: Type} (A : set X) (B : set X) (C : set X) (HAB : A ⊆ B)

(HBC : B ⊆ C) : A ⊆ C :=

λ x Hx, (HBC x)((HAB x) Hx)

In these lines, we have stated that, given

{X: Type} (A : set X) (B : set X) (C : set X) (HAB : A ⊆ B)

(HBC : B ⊆ C)

the term λ x Hx, (HBC x)((HAB x) Hx) has type A ⊆ C. Moreover, since

A ⊆ C : Prop,

λ x Hx, (HBC x)((HAB x) Hx) is a proof of A ⊆ C.
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4.2 Functions

Function types are instances of the Π type, and functions are terms of these types.
In this section, we define relations and predicates involving functions. As examples, we
define the relations of the image of a function on a set and the preimage of a function on
a set and the predicates of injectivity and surjectivity.

section

variables {A B : Type}

definition image (f : A → B) (S : set A) : set B :=

{ y : B | ∃ x : A, x ∈ S ∧ f x = y }

definition preimage (f : A → B) (T : set B) : set A :=

{ x : A | f x ∈ T }

definition injective (f : A → B) : Prop :=

∀ (x : A)(y : A), (f x = f y → x = y)

definition inj_on (f : A → B) (S : set A) : Prop :=

∀ {x : A}{y : A}, (x ∈ S → y ∈ S → f x = f y → x = y)

definition surjective (f : A → B) : Prop :=

∀ (y : B), ∃ (x : A), f x = y

definition surj_on (f : A → B)(S : set A)(T : set B) : Prop :=

∀ (y : B), (y ∈ T → ∃ (x : A), (x ∈ S ∧ f x = y))

end

Given (f : A → B), injective f asserts that f is injective on the whole type A; whereas
given (S : set A), inj_on f S asserts only that f is injective on the set S. Similarly for
surjective and surj_on f S. So, we see that we can state and prove function properties
with respect to the whole type or restricted to a set on the type.

4.3 Operations on a type

In preparation for constructing groups, let us consider defining operations on a type
and constraining the operations.

definition unary_operation (A : Type) := A → A

definition binary_operation (A : Type) := A → A → A

definition is_commutative (A : Type) (op : A → A → A) :=

∀ (a : A)(b : A), (op a b = op b a)

unary_operation and binary_operation are types. Given (X : Type),
(f : unary_operation X) states that f is a unary operation on X — a function from X

to X. Similarly, (g : binary_operation X) states that g is a binary operation on X — a
function from X to X to X.

As stated, f and g are arbitrary functions; we know nothing about their behavior.
However, using other defined terms, we can stipulate behavior. Consider

is_commutative X g;
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it reduces to the term ∀ (a : X)(b : X), (g a b = g b a); its type is Prop. A term
of type is_commutative X g — alternately stated: a term of type

∀ (a : X)(b : X), (g a b = g b a)

— is a proof that g is commutative. Consider (h : is_commutative X g); given

(x : X) (y : X)

h x is a proof that ∀ (b : X), g x b = g b x, and h x y is a proof that

g x y = g y x

4.3.1 Functions interacting with operations

Given a type, an operation on that type, and a function with that type as domain, we
can stipulate the behavior of the function with respect to that operation. For example,

section

variable (A : Type)

definition is_distributive (f : A → A) (op : A → A → A) :=

∀ (x : A)(y : A),(f (op x y) = op (f x) (f y))

end

Thus, given (X : Type) (g : X → X) (op_ex : X → X → X),

is_distributive X g op_ex

reduces to ∀ (x : X)(y : X), (g (op_ex x y) = op_ex (g x) (g y)). So, if we have
a term h of this type, then h is a proof that g distributes over op_ex. And, using h and
terms of type X, we can prove equalities for those terms.

4.4 Groups

We build the type of groups using structures.3 Throughout the construction of the
group type, we mark the structures as type classes (i.e. [class]). We claimed above
and demonstrate below that this combination of structures and type classes facilitates
reasoning with these types and provides means for natural notation. Additional benefits
of defining types incrementally include: (1) we can state and prove results at the exact
level of generality at which they hold — e.g. we can prove results about monoids using
only the facts about them; (2) we can define objects using exactly the hypotheses they
need and no more — e.g. we can define homomorphisms between any two types with
has_muls, the concept does not require groups on each type. These benefits make the
structures general and reusable in other contexts.

3Recall that (1) structures are a special case of an inductive type: an inductive type with one con-
structor and (2) structures can be built incrementally through inheritance.

30



Our goal is to define a group type such that: (1) the group type depends on a type —
with this, we can form groups on arbitrary types (e.g. (A : Type)) or on concrete types
(e.g. (nat : Type)); (2) the group type has a multiplication; (3) it has a unit element
with respect to the multiplication; (4) it has a means for referring to inverse elements;
(5) there is a constraint on the multiplication — it is associative; (6) there is a constraint
on the unit element – given (A : Type) (a : A), multiplying a on the left or right by
the unit element is equal to a; (7) there is a constraint on the inverse elements — given
(A : Type) (a : A), multiplying a on the left or the right by its inverse is equal to the
unit element.

We build this type through a few steps. In the next section, we give an overview of the
steps and provide a picture. In the section after that, we consider each step individually.

4.4.1 Building the group type: overview

Suppose that we have (A : Type). The first structure we define is has_mul A.
has_mul A has one field (mul : A → A → A). Next, we define a structure semigroup A

which inherits from has_mul A. semigroup A has one field

(mul_assoc : ∀ a b c, mul (mul a b) c = mul a (mul b c))

Now, we define a structure separate from has_mul A and semigroup A; we define
has_one A, which has one field (one : A). Next, we define a structure monoid A which
inherits from semigroup A and has_one A. monoid A has two fields:

(mul_one : ∀ (x : A), mul x one = x)

(one_mul : ∀ (x : A), mul one x = x)

Now, we again define a separate structure: we define has_inv A with one field
(inv : A → A). Finally, the structure group A inherits from monoid A and has_inv A.
group A has the new field (mul_left_inv : ∀ (x : A), mul (inv x) x = one).

The picture below depicts the steps described above.
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4.4.2 Building the group type: increments

We now consider each step in the construction of the group type and that step’s relation
to our goal. The first structure we define is has_mul.

structure has_mul [class] (A : Type) := (mul : A → A → A)

The first observation is that the structure depends on a parameter — that is, it takes
an argument. The argument is a type. So, given types (X: Type) (nat : Type), we
can have has_mul X and has_mul nat. The second observation is that the field of this
structure — mul — is a binary operation. For has_mul X, the field is mul : X → X → X,
and similarly for has_mul nat, it is mul : nat → nat → nat.

Next, we define semigroup.

structure semigroup [class] (A : Type) extends has_mul A :=

(mul_assoc : ∀ a b c, mul (mul a b) c = mul a (mul b c))

Again, the structure depends on a parameter. The keyword extends indicates that
semigroup inherits from has_mul. Specifically, inheritance is the following behavior: sup-
pose S1 and S2 are structures; if S2 inherits from S1, then S2 has all the fields of S1 in
addition to the fields specific to S2. So, semigroup has two fields, mul and mul_assoc.
Note that the second field uses the first — mul_assoc uses the mul. We use these two fields
as the desired (a) multiplication and (b) stipulation that the multiplication is associative.

Next, we define has_one.

structure has_one [class] (A : Type) := (one : A)

The field (one : A) provides a term of the type. In monoid, we use this term as the unit
element with respect to the multiplication.

structure monoid [class] (A : Type) extends semigroup A, has_one A :=

(mul_one : ∀ (x : A), mul x one = x)

(one_mul : ∀ (x : A), mul one x = x)

monoid provides an example of a structure inheriting from two separate structures. It
also provides an example of a structure with multiple fields. Its fields — mul_one and
one_mul — provide the desired stipulations on the behavior of one with respect to the
multiplication.

Now, we define has_inv.

structure has_inv [class] (A : Type) := (inv : A → A)

The field of has_inv is a unary operation. We use this operation to represent inverse
elements.

Finally, we define the group type.

structure group [class] (A : Type) extends monoid A, has_inv A :=

(mul_left_inv : ∀ (x : A), mul (inv x) x = one)

group possesses all the fields of has_inv and monoid, and all the fields of the structures
monoid inherits from, recursively. The new field mul_left_inv provides the desired stipu-
lation that left multiplication of an element by its inverse element equals the unit element.
The corresponding constraint on right multiplication is derivable from what we have.
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Consequence of structures and type classes: natural notation

We define notation for the multiplication, inverse, and one.

infix * := has_mul.mul

postfix −1 := has_inv.inv

notation 1 := has_one.one

By relying on type class inference and using these notations, we represent group ele-
ments and group operations with natural expressions. In the example below, we declare
a type, terms of that type, and a term of the group type for the given type. Using these,
we write expressions. In the example, for the declaration of the term of the group type, I
enclose the declaration in hard brackets (i.e. ‘[’ and ‘]’). These hard brackets tell Lean to
use type class inference to find this term.

section

variables {X : Type} [G : group X] (x : X) (y : X)

check x -- x : X

check x−1 -- x−1 : X

check x * y -- x ∗ y : X

check (x * y−1) * y = x -- (x ∗ y−1) ∗ y = x : Prop

end

Notice that the expressions x−1 and x * y do not mention G . We declared as classes
the types related to the notations. In the expressions, the presence of the relevant type
is presupposed. When −1 or * or 1 are used in an expression, Lean invokes class type
inference to look for the presupposed types — in this case, a has_mul or has_inv. Here,
Lean finds a group; and, in the group’s fields, it finds the has_mul and has_inv.

In this example, there is only one term of the group type in the context. Because we
do not use its name and because there is no need to distinguish it from other terms of this
type in the context, we can declare it anonymously.

section

variables {X : Type} [group X] ...

end

In these expressions, the notation and type class inference allow the user to suppress
much information. Without the notation, x * y would be mul x y. Without type class
inference tracing inheritance, the user would have to show Lean where to find the mul in
the fields of group. Without the implicit arguments allowed by type class inference, in
each expression where one of the fields is used, the user would need to state the term the
field’s of which are being accessed.

4.4.3 Example proof

We have now defined enough operations and stipulations to state and prove claims
about group types. For example, we can state and prove claims about terms in a type
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which has a group type. An informally-stated claim of this sort is the following: Suppose
that G is a group. Suppose a and b are elements of G. Then, (a ∗ b−1) ∗ b = a.

An informal argument is as follows.

(a ∗ b−1) ∗ b = a ∗ (b−1 ∗ b) associativity of multiplication

= a ∗ 1 substitution of (b−1 ∗ b) = 1

= a right multiplication by identity

This informal argument is represented in the following proof tree:

∀xyz, (x ∗ y) ∗ z = x ∗ (y ∗ z)

(a ∗ b−1) ∗ b = a ∗ (b−1 ∗ b)

∀{x}, x = x

a ∗ (b−1 ∗ b) = a ∗ (b−1 ∗ b)
∀x, x−1 ∗ x = 1

b−1 ∗ b = 1

a ∗ (b−1 ∗ b) = a ∗ 1

(a ∗ b−1) ∗ b = a ∗ 1

∀x, x ∗ 1 = x

a ∗ 1 = a

(a ∗ b−1) ∗ b = a

As we did in a previous section for the proof regarding sets, we annotate this proof
tree with terms. The term on the bottom line is a proof of the conclusion.

34



m
u

l
a
ss

o
c:
∀x
y
z
,(
x
∗
y
)
∗
z

=
x
∗

(y
∗
z
)

m
u

l.
as

so
c

a
b
−
1

b
:

(a
∗
b−

1
)
∗
b

=
a
∗

(b
−
1
∗
b)

rfl
:
∀{
x
},
x

=
x

rfl
:
a
∗

(b
−
1
∗
b)

=
a
∗

(b
−
1
∗
b)

m
u

l
le

ft
in

v
:
∀x
,x

−
1
∗
x

=
1

m
u

l
le

ft
in

v
b

:
b−

1
∗
b

=
1

eq
.s

u
b

st
(m

u
l

le
ft

in
v

b
)

rfl
:
a
∗

(b
−
1
∗
b)

=
a
∗

1

eq
.t

ra
n

s
(m

u
l

a
ss

o
c

a
b
−
1

b
)

(e
q
.s

u
b

st
(m

u
l

le
ft

in
v

b
)

rfl
)

:
(a
∗
b−

1
)
∗
b

=
a
∗

1

m
u

l
o
n

e
:
∀x
,x
∗

1
=
x

m
u

l
o
n

e
a

:
a
∗

1
=
a

eq
.t

ra
n

s
(e

q
.t

ra
n

s
(m

u
l

as
so

c
a

b
−
1

b
)

(e
q
.s

u
b

st
(m

u
l

le
ft

in
v

b
)

rfl
))

(m
u

l
o
n

e
a
)

:
(a
∗
b−

1
)
∗
b

=
a

35



In Lean, one representation of the proof is:

example : (a * b−1) * b = a :=

eq.trans (eq.trans (mul_assoc a b−1 b) (eq.subst (mul_left_inv b) rfl))

(mul_one a)

Alternately, we can represent this proof using another tool provided by Lean — the
calculation environment. This environment is designed for working with relation sym-
bols which support transitivity reasoning. For proofs involving equality, this environment
provides a means of representing formal proofs exactly like their informal counterparts.

example : (a * b−1) * b = a :=

calc

(a * b−1) * b = a * (b−1 * b) : mul_assoc

... = a * 1 : mul_left_inv

... = a : mul_one

4

4.5 Objects dependent on group structure

With the group type in place, we construct types which depend on some or all of the
attributes of groups. We construct subgroups, cosets, normal sets, and homomorphisms.

4.5.1 Subgroups

Our goal is to define a subgroup predicate such that: (1) a subgroup depends on a
group, (2) a group can have multiple subgroups, (3) subgroups are closed under the group
multiplication, (4) subgroups are closed under the group inverse. To accomplish this,
we construct the subgroup predicate incrementally using structures5, where intermediate
structures have some of the properties we want the subgroup predicate to have. As we did
for groups, we describe the steps, depict the process with a picture, then consider each
step.

Suppose (A : Type) [group A] (S : set A). The first structure we define is
is_mul_closed S. is_mul_closed S has one field:

(mul_mem : ∀ (x : A)(y : A), x ∈ S → y ∈ S → x * y ∈ S)

Next, we define is_inv_closed S. is_inv_closed S has one field:

(inv_mem : ∀ (x : A)(y : A), x ∈ S → x−1 ∈ S)

Then, we define is_one_closed S. is_one_closed S has one field

(one_mem : one ∈ S)

4Another option is rewriting:
example : (a * b−1) * b = a := by rewrite[mul_assoc, mul_left_inv, mul_one]

5Notice that in this use of structures the type defined has type Prop. Previously, we used structures
to define types with type Type.
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Finally, is_subgroup S inherits from these three structures and adds no new fields.
The picture below depicts the steps described above.

We now consider the steps of the construction. The first structure is is_mul_closed.
It takes an implicit argument — a type. In the context where it is defined, A has been
declared as a type (i.e. (A : Type)). Outside this context, this same structure can be
used for different types just as we indicated for groups.

structure is_mul_closed [class] [has_mul A] (S : set A) :=

(mul_mem : ∀ (x : A)(y : A), x ∈ S → y ∈ S → x * y ∈ S)

The structure is marked as a class. Later, is_subgroup inherits from this structure; and
the upshot is that, if we have (T : set A) and [is_subgroup T] in the context, Lean can
find the [is_mul_closed T]. Since this structure does not use inv or one, it only requires
that there is a has_mul in the context, rather than a group. The field of is_mul_closed
stipulates that the set is closed under the multiplication.

Next, we define is_inv_closed.

structure is_inv_closed [class] [has_inv A] (S : set A) : Prop :=

(inv_mem : ∀ (x : A), x ∈ S → x−1 ∈ S)

The field provides the stipulation that the set is closed under the inverse operation.
Next, we define is_one_closed.

structure is_one_closed [class] [has_one A] (S : set A) : Prop :=

(one_mem : one ∈ S)

The field provides the stipulation that the group identity element is in the set.
Finally, we define is_subgroup.

structure is_subgroup [class] [group A] extends is_mul_closed A,

is_inv_closed A, is_one_closed A

All of the above structures take as an argument a set on the type. Because there can be
multiple sets on a type, given a group on the type there can be multiple subgroups of the
group. Between this and the stipulations imposed by the fields is_subgroup inherits, we
have constructed a type that achieves our goal for the subgroup type.
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4.5.2 Cosets

Given {X : Type} (S : set X) [has_mul X] (x : X), we consider left and right
cosets of S by x.

section

variables {X : Type}[has_mul X]

definition lcoset (S : set X) (x : X) := image (mul x) S

definition rcoset (S : set X) (x : X) := image (mul^~ x) S

end

The ^~ in the definition of rcoset is notation for the following procedure: take a binary
operation, reverse the order in which the operands are given. So here, it reverses the
order in which the operands for mul are given; with arg1 and arg2, mul^~ arg1 arg2 is
mul arg2 arg1.

Given a particular set (T : set X) and a particular element y : X, lcoset T y is
the set composed of elements of the form y * t for some t in T. This corresponds with
the informal coset object, as does the notation.

infix * := lcoset

infix * := rcoset

So, y*T and T*y are the left and right coset of T by y. Notice that Lean supports the
overloading used informally.

4.5.3 Normal sets

Given (A : Type) (S : set A) [has_mul A], we consider whether S is normal. In
informal group theory, normal subgroups are considered. In our formalization, we separate
the properties of a set being a subgroup and a set being normal. Again, this allows us to
isolate and prove the results depending on one property but not the other.

section

variables {A : Type} [has_mul A]

definition normalizes (a : A)(S : set A) : Prop := a * S = S * a

definition is_normal [class] (S : set A) : Prop :=

∀ (a : A), normalizes a S

definition normalizer (S : set A) : set A :=

{ a : A | normalizes a S}

end
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4.6 Relations dependent on group structure

Recall that we can consider a relation on an arbitrary type. For example, given
(X : Type), a two-place relation on X is a term of the type X → X → Prop. We can also
consider relations on particular types. For example, a two-place relations on set X is a
term of the type set X → set X → Prop.

One such relation is essential to the formalization. That relation, expressed informally
is this: Given a group G, a subset H of G, and elements a and b in G

a ∼ b ⇐⇒ aH = bH

This is an equivalence relation, and it is the equivalence relation we later use to define
the quotient type and quotient group. In the formalization, we represent this relation as
follows.

section

variables {X : Type} [has_mul X]

definition lcoset_equiv (H : set X) (a : X) (b : X) := a*H = b*H

end

That lcoset_equiv is an equivalence relation follows immediately from the reflexivity,
symmetry, and transitivity of equality. These proofs can be given as:

lemma lcoset_equiv_refl (S : set X): reflexive (lcoset_equiv S) :=

λ x, rfl

lemma lcoset_equiv_symm (S : set X) : symmetric (lcoset_equiv S) :=

λ x y H, eq.symm H

lemma lcoset_equiv_trans (S : set X) : transitive (lcoset_equiv S) :=

λ x y z Hxy Hyz, eq.trans Hxy Hyz

where reflexive, symmetric, and transitive are defined as expected.

section

variables {X: Type} (R : X → X → Prop)

definition reflexive := ∀ x, R x x

definition symmetric := ∀ x y, R x y → R y x

definition transitive := ∀ x y z, R x y → R y z → R x z

definition equivalence :=

(reflexive R) ∧ (symmetric R) ∧ (transitive R)

lemma equivalence_lcoset_equiv (H : set X) :

equivalence (lcoset_equiv H) :=

and.intro (lcoset_equiv_refl H)

(and.intro (lcoset_equiv_symm H) (lcoset_equiv_trans H))

end
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4.7 Homomorphism and kernel

Given two types (X : Type) (Y : Type), we consider functions between them — i.e.
terms of the type X → Y. Further, given ‘structure’ on the types (e.g. operations like
multiplication), we can stipulate the behavior of functions with respect to this ‘structure’.
In the section ‘Functions interacting with operations’, is_distributive is an example of
this.

Suppose that X and Y have multiplication operations. That is, suppose [has_mul X]

[has_mul Y]. One stipulated behavior is of special interest — the behavior of a function
being homomorphic with respect to the multiplications.

section

variables {X Y : Type} [has_mul X] [has_mul Y]

structure is_hom [class] (f : X → Y): Prop :=

(hom_mul : ∀ a b, f (a * b) = f a * f b)

end

There is a subtlety in this definition. The objects a and b are terms in X, and a * b is
an application of the multiplication in X. The objects f a and f b are terms in Y, and
f a * f b is an application of the multiplication in Y. The use of the same * hides this
difference, but it reflects informal notation. Lean supports this reuse of notation; that it
can is another consequence of type class inference.

A second object dependent on ‘structure’ and a function is the kernel. The relevant
‘structure’ is a unit element on the target type.

section

variables {X Y : Type} [has_one Y]

definition ker (f : X → Y) : set X := {x : X | f x = 1}

end

4.8 Quotient types and quotient groups

In informal mathematics, the procedure of forming quotients can be described as fol-
lows. Suppose that we have a collection of objects S. Suppose that we define a binary
relation ≈ on S. Suppose that ≈ is reflexive, symmetric, and transitive. Then we do the
following:

· for each x in S, consider [x]; where [x] := {s ∈ S | s ≈ x}
· define a new collection of objects T , where the objects in T are exactly the [x] for x

in S (i.e. T := { [x] | x ∈ S})
· given a function f with domain S, if we prove

for all a b in S, if a ≈ b, then f a = f b
then we can construct a function g with domain T s.t. g [x] = f x, for all x in S.
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· Given a predicate P , to prove a statement of the form
for all t in T, P t

it suffices to prove
for all s in S, P [s]

4.8.1 Quotients in Lean: introducing constants

The calculus of inductive constructions does not have a builtin notion of quotient.
Moreover, there is no way to define quotients using the resources of CIC. So, to get the
feature of quotients, we must add them. In Lean, we do this by adding constants — that is,
we do this by stipulating that certain identifers have certain types. These constants allow
us to do in the formal setting what we do informally. Specifically, we add the constants
quot, quot.mk, quot.sound, quot.lift, and quot.ind .6

Setoids

These constants make use of a structure we define: setoid. We have not yet discussed
setoids; so, we first discuss these then present the constants. Given (A : Type), a
setoid A is a compound object which contains a relation on A and a proof that the relation
is an equivalence relation.

structure setoid [class] (A : Type) :=

(r : A → A → Prop) (iseqv : equivalence r)

Just as in the informal case, the data for the formal quotient construction are: a collection
(here, a type), a relation on the collection (here, the relation on the type), and a proof
that the relation is an equivalence. In the formal setting, we bundle this data in a setoid.

Quotient constants

Given this, we present the constants:

constant quot.{l} : Π{A : Type.{l}}, setoid A → Type.{l}

constant quot.mk : Π {A : Type} [s : setoid A], A → quot s

constant sound : Π {A : Type} [s : setoid A] {a b : A},
a ≈ b → [a] = [b]

constant lift : Π {A B : Type} [s : setoid A] (f : A → B),

(∀ a b, a ≈ b → f a = f b)→ quot s → B

constant ind : ∀ {A : Type} [s : setoid A] {B : quot s → Prop},

(∀ a, B [a]) → ∀ q, B q

6From these we can derive others, e.g. quot.lift2, quot.ind2. In short, these others are extensions
of the constants, the purpose of which extensions is defining relations and proving statements about them.
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These constants correspond to the actions from informal mathematics listed above.

quot constructs the new collection of objects. From the data of (i) a type and (ii) a
setoid on the type, quot constructs a new type.7 Since a setoid is simply a packaged
equivalence relation, we see concretely that the data for this formal version is the
same as the data for the informal case.

quot.mk takes an element in the base type to its corresponding element in the
quotient type. Applying quot.mk to an element corresponds to making [x] from an
x in the original collection.

quot.sound encodes the principle that two elements which are related in the base
type are equal in the quotient type.

quot.lift encodes the principle that, if there is a function f on the original type and
we prove that f respects the relation, then we can use this function f to construct a
function g on the quotient type. That the two functions are such that g [a] = f a

for all a : A is stipulated.8

Finally, quot.ind encodes the principle that to show that a property holds for all
elements of the quotient type, it suffices to show that the property holds of all
equivalence classes.

Together, these constants stipulate how to construct the new type, stipulate how the
elements of the new type are related to the old type, and provide the means of reasoning
about the new type as we reason about it informally.

4.8.2 Quotient groups overview: informal and formal

Recall that in informal group theory, there is a construction referred to as a quotient
group. In this construction, we take a group G with multiplication ∗ and a subset H of
G; we consider the new set G/H := {g ∗H|g ∈ G}; on this new set, we define a particular
multiplication operation and inverse operation, and we distinguish a particular element;
and, if H is a normal subgroup of G, then the new set G/H is a group with the defined
multiplication, inverse, and element. In that case, G/H is referred to as the quotient of
G by H.

In the formal setting, the construction is similar. One aspect of our formal construction
which is of interest is the part that corresponds to considering the new set G/H :=
{g ∗H|g ∈ G}. Informally, this is a new collection of objects constructed from the givens.
Correspondingly in the formal case, we define a new collection of objects from the givens.
This new collection is a new type; we call it the quotient type.

7The indices (i.e. the {l} on quot and Type) refer to hierarchy-levels in the hierarchy on the universe
of types, and they constrain the position of the quotient type in the hierarchy. We can ignore them here.

8This stipulation is recorded in the library as lift_beta in quot.lean. That these two expressions
(i.e. g [a] and f a) are reduced to the same term by the Lean kernel is a consequence of the command
init_quotient in quot.lean. This command instructs the kernel to reduce them to the same term; it is
a stipulation.
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In the description of the informal construction above, H is a normal subgroup. That
is, H is normal and H is a subgroup. In the formal setting, we separate the properties
of being normal and being a subgroup. Because of this, there is room for two separate
constructions of the quotient type. In one construction of the quotient type, we suppose
H is normal, and we do not suppose that it is a subgroup. The second construction uses
the first but begins with a different supposition. Using this alternate supposition, we
construct a normal set for use in the first. More specifically, in the second construction:

(1) we suppose that H is a subgroup, but we do not suppose it is normal;

(2) we consider the normalizer of H;

(3) we construct a new type using the normalizer of H9;

(4) there is a function from the original type to the type constructed using the
normalizer of H;

(5) under that function, the image of H is a normal in the new type;

(6) so, now we have a type (i.e. the type constructed from normalizer H) and a
normal set in that type (i.e. the image of H under the function from base type to
new type), and we can proceed as we do in the first construction.

Below, we discuss each construction more slowly. Further, once we have the quotient
type, we define a multiplication, an inverse, and a one on this type. Then we show that
these operations and one form a group on the quotient type. The quotient type with this
group is the formal version of the quotient group, the quotient of the group by H.

4.8.3 Quotient type and quotient group: the first construction

Because the second construction of the quotient type (i) requires a tool we have not
yet discussed (i.e. subtype) and (ii) uses the first construction, we discuss it after the
first construction. Moreover, after we discuss the first construction of the quotient type,
we construct the group on this type, prove lemmas about these objects, and discuss the
first isomorphism theorem.

First construction of quotient type

Suppose that {A : Type} [group A] (H : set A) [is_normal G]. Given the first
three suppositions10, we can prove that we have an equivalence relation; in particular,
equivalence (lcoset_equiv H) (see section on relations). So, we have a type (i.e. A)
and an equivalence relation on this type (i.e. lcoset_equiv H). Thus, we have the data
for making a setoid A. With a setoid A, we can construct the desired quotient type
using quot.

section

variables {A : Type} [group A] (H : set) [is_normal H]

9We construct a new type using this set using subtype which we discuss shortly.
10To construct the quotient type, we do not need the assumption that H is normal. However, to define

the desired multiplication and inverse on the quotient type, we need this assumption.
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definition lcoset_setoid [instance] : setoid A :=

setoid.mk (lcoset_equiv H) (equivalence_lcoset_equiv H)

definition quotient := quot (lcoset_setoid H)

end

Since quotient is defined in a section with an explicit variable of type set, quotient
takes an argument of type set. By inspecting the type of quot, we see that (quotient

H : Type). quotient H is the quotient type.

Constructing the group on the quotient type

In order to construct a group on the quotient type, we need to

define an element which will serve as a one

define an operation which will serve as an inverse

define an operation which will serve as a multiplication, and

prove that this element and these operations satisfy the fields of the group structure.

We proceed through these steps.

Defining the one

Recall that quot.mk is a function from the base type to the type formed by quot. We
define the notation [x] for the application of quot.mk to an x. With this, we define the
element which will serve as a one as [1], where this is the 1 from the base type.11

Defining the inverse and multiplication

Recall that quot.lift and quot.lift2 are terms used to construct one-place or two-
place operations on the quotient type. For each of these, the term takes as argument
an operation on the base type and a proof that the operation respects the equivalence
relation. For example, consider the case of a one-place operation. We restate quot.lift:

constant quot.lift : Π {A B : Type} [setoid A] (f : A → B),

(∀ a b, a ≈ b → f a = f b) → quot s → B

So, with {A B : Type} [s: setoid A] available, quot.lift takes as arguments some
(f : A → B) and a proof that ∀ a b, a ≈ b → f a = f b. The result is a function
of type quot s → B.

In our case, we have {A : Type} [lcoset_setoid H : setoid A] and ≈ is
lcoset_equiv H. So, to define an inverse operation on the quotient type, we apply
quot.lift to

11One of the assumptions is [group A]; so, such a 1 is available.
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λ a, [a−1]12

and a proof that ∀ a b, lcoset_equiv H a b → [a−1] = [b−1]. And, to define a
multiplication on the quotient type, we apply quot.lift2 to (λ a b, [a * b]) and a
proof that

∀ a1 a2 b1 b2, lcoset_equiv H a1 b1 → lcoset_equiv H a2 b2 →
[a1 * a2] = [b1 * b2]

This is accomplished as follows.

section

variables {A : Type} [group A] (H : set A) [is_normal H]

definition qone : quotient H := [1]

definition qinv : quotient H → quotient H :=

quot.lift

(λ a, [a−1])

(λ a1 a2 e, quot.sound (lcoset_equiv_inv H e))

definition qmul : quotient H → quotient H → quotient H :=

quot.lift2
(λ a b, [a * b])

(λ a1 a2 b1 b2 e1 e2, quot.sound (lcoset_equiv_mul H e1 e2))

end

Note that, since the quotient type depends explicitly on a set (here, H), we refer to the
above by qone H, qinv H, qmul H. Thereby, the distinguished element and the operations
for the quotient group are parameterized by the set by which the group is quotiented.
Thus, for our quotient type (quotient H), we have a distinguished element (qone H), a
one-place operation (qinv H), and a two-place operation (qmul H).

Proving that the one, inverse, and multiplication satisfy the fields of the group structure

Recall the definition of the group structure. In total, it depends on (A : Type), and
it has the fields mul, inv, one, mul_assoc, mul_one, one_mul, and mul.left_inv. Thus,
in order to demonstrate that we have a group on the quotient type (i.e. quotient H), we
need to construct a structure with each of these fields. So, far we have qmul for mul, qinv
for inv, and qone for one. It remains to demonstrate that these operations and element
behave as required by mul_assoc, mul_one, one_mul, and mul.left_inv.

We prove each of these using two consequences (quot.induction_on and
quot.induction_on2) of one of the quotient constants above (quot.ind).13

quot.induction_on has the form

12the −1 is notation for the inverse operation from the [group A]
13To see the statement and derivation of these consequences, see quot.lean. Each is an immediate

consequence of quot.ind.

45



definition quot.induction_on {A : Type} [s : setoid A]

{B : quot s → Prop} (q : quot s) (H : ∀ a, B [a]) : B q :=

quot.ind H q

That is, given a type, a setoid on the type, and a predicate on the type
{A : Type} [s : setoid A] {B : quot s→ Prop}

to show that the predicate holds of an element in the quotient type (i.e. to show B q for a
(q : quot s)), it suffices to show that the predicate holds for all equivalence classes (i.e.
it suffices to show ∀ a, B [a]).

For example, consider the claim that the operations and the one satisfy mul_one.
That is, consider the claim that ∀ q, qmul H q (qone H) = q. This claim is about all
elements in the quotient type. Using quot.induction_on, we prove the claim by proving
that the claim holds for all equivalence classes (i.e. ∀ a, qmul H [a] [one] = [a]).14

By the definition of qmul, qmul H [a] [1] = [a * 1]. And, by the mul_one from the
group on the base type, a * 1 = a. With this sketch, the reader can see how the proof
proceeds. The other proofs are similar.

section

variables {A : Type} [group A] (H : set A)

proposition qmul_one (a : quotient H) : qmul H a (qone H) = a :=

quot.induction_on a (λ a’, show [a’ * 1] = [a’], by rewrite mul_one)

proposition qone_qmul (a : quotient H) : qmul H (qone H) a = a :=

quot.induction_on a (λ a’, show [1 * a’] = [a’], by rewrite one_mul)

proposition qmul_left_inv (a : quotient H) :

qmul H (qinv H a) a = qone H :=

quot.induction_on a

(λ a’, show [a’−1 * a’] = [1], by rewrite mul.left_inv)

proposition qmul_assoc (a b c : quotient H) :

qmul H (qmul H a b) c = qmul H a (qmul H b c) :=

quot.induction_on2 a b

(λ a b, quot.indution_on c

(λ c,

have H : [(a * b) * c] = [a * (b * c)], by rewrite mul.assoc,

H))

end

14In this expression, the a is implicitly typed. qmul H takes as argument elements of the quotient type;
and [a] takes a to the quotient type. From these constraints, Lean infers that a is an element of the base
type.
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Defining the quotient group

We establish that there is a group on the quotient type by filling in each of the fields
of the group structure.15

definition group [instance] : group (quotient H) :=

{ group,

mul := qmul H,

inv := qinv H,

one := qone H,

mul_assoc := qmul_assoc H,

mul_one := qmul_qone H,

one_mul := qone_qmul H,

mul_left_inv := qmul_left_inv H

}

Thus, under the assumptions
{A : Type} [group A] (H : set A) [is_normal H]

we have constructed a quotient type (i.e. quotient H); and on the quotient type we have
constructed a quotient group (i.e. quotient_group.group H : group (quotient H))).

Characterizing the quotient group: general lemmas

In the general setting of
{A : Type} [group A] (H : set A) [is_normal H]

we prove lemmas about the quotient type, quotient group, and its features. With these
general lemams in place, in any setting where we have (i) a type, (ii) a group on the type,
(iii) a set, and (iv) a proof that the set is normal, we can apply the lemmas in that setting.
In particular, for the first isomorphism theorem, we have — among other hypotheses —
(i) a type, (ii) a group on the type, (iii) a set (i.e. the kernel of a homomorphism), and
(we prove that) (iv) the kernel of a homomorphism is normal. So, given those hypotheses,
we will be able to apply these general lemmas to that case.

In the next section, we prove general lemmas about creating functions on the quotient
type using functions on the base type. Again, with the hypotheses of the first isomorphism
theorem, we have the data for applying these lemmas. From these applications and those of
the previous paragraph, we see that the constructions of the quotient type and the quotient
group, along with the associated lemmas, constitute a reusable interface for creating and
reasoning about group quotients.

Preliminaries: notation

Recall that one of the general quotient constants we added is a function (quot.mk,
with notation []) which takes an element from the base type to the quotient type. In

15In this definition, we use the identifier group for the quotient group being defined. This appears
to clash with our previous use of the identifier group. For the above, I transcribe the definition from
the library; and the reason group is a permissible identifier in this definition is that in the library this
definition occurs within a namespace such that the full name of the identifier is quotient_group.group,
rather than just group. So, there is no conflict, despite appearances.
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order to distinguish this general function from its use in our particular setting, we give it
a new name.

definition qproj (a : A) : quotient H := [a]

Also, we add notation for an operation and a set. First, the operation: given (i) a type,
(ii) a group on the type, (iii) an element in the base type, (iv) a set on the base type,
and (v) a proof that the set is normal, we consider the result of applying to that element
the base-type-to-quotient-type function (qproj) for that set’s quotient type. And, the set:
instead of applying the function (qproj) to an element, we apply it to a set to obtain the
image. We denote the operation with ’* and the set with /.

infix ’* := λ {A’ : Type} [group A’] a H’ [is_normal H’], qproj H’ a

infix / := λ {A’ : Type} [group A’] G H’ [is_normal H’], qproj H’ ’ G

For example, consider the setting
{A : Type} [group A] (H : set A) [is_normal H]

Given an element (a : A), the corresponding element in the quotient group
(group_quotient.group H) is a ’* H. And, given a set (K : set A), the image of K

under the base-type-to-quotient-type function (qproj) is K / H.

Lemmas

First, we prove that the base-type-to-quotient-type function (qproj) is a homomor-
phism. Due to how we defined the multiplication on the quotient group, this is immediate.

proposition is_hom_qproj [instance] : is_hom (qproj H) :=

is_mul_hom.mk (λ a b, rfl)

The simplicity of this proof is made possible by type class inference and structures. That
qproj H is well-defined depends on Lean finding a proof of is_normal H — a procedure
we have flagged for type class inference. That there is a group on the domain type (A) and
the target type (group_quotient.group H) is determined by type class inference. Then,
since what is required to construct a multiplicative homomorphism is a has_mul on the
domain type and target type, Lean traces the class inheritances to find within each group

the appropriate has_mul and the behavior of its multiplication. Lastly, and unrelated
to type class inference and structures, Lean’s reduction engine allows the proof of the
equality

qproj H (a * b) = qmul (qproj H a) (qproj H b)

to be generated by rfl. The kernel automatically reduces the terms using our definitions
and checks that the terms reduce to the same term, establishing the equality.

Next, we show that the base-type-to-quotient-type function is surjective. This depends
only on the properties of the quotient constants.

proposition surjective_qproj : surjective (qproj H) :=

take y, quot.induction_on y (λ a, exists.intro a rfl)

Also, using only the quotient constants and their consequences16, we prove the lemmas
that two elements in the base type are related iff their images under the base-type-to-
quotient-type function are equal.

16For a defintion of quot.exact, see quot.lean.
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proposition qproj_eq_qproj {a b : A} (h : a * H = b * H):

a ’* H = b ’* H :=

quot.sound h

proposition lcoset_eq_lcoset_of_qproj_eq_qproj {a b : A}

(h : a ’* H = b ’* H) : a * H = b * H :=

quot.exact h

Using these facts and a new hypothesis that is_subgroup H, we prove:

the kernel of the base-type-to-quotient-type function is the set used to define the
quotient (i.e. proposition ker_proj : ker (qproj H) = H)

the image of an element in the base type under qproj is the one in the quotient type
iff the element is in the set used to define the quotient
(i.e. proposition qproj_eq_one_iff : a ’* H = 1 ↔ a ∈ H)

the image under qproj of the set used to define the quotient is the singleton con-
taining the one in the quotient type
(i.e. proposition image_qproj_self : H / H = ’{1},
where ’{x} denotes the set containing only x)

Characterizing the quotient group:
extending functions from base type to quotient type

The results in the previous section are restricted to relations (i) between elements on
the base type and quotient type and (ii) between sets on the base type and quotient type.
In this section, we extend the results to relations between functions on the base type and
functions on the quotient type. In particular, we exhibit how to use a function on the base
type to construct a function on the quotient type. We have done this before in defining
qinv and qmul via quot.lift and quot.lift2. However, in those cases, we applied
quot.lift or quot.lift2 to a function for which both the domain type and return type
were the base type. In this section, we consider functions for which the return type is not
the base type.

To obtain the results, we introduce the new hypotheses

{B : Type} {f : A → B} (respf : ∀ a1 a2, a1 * H = a2 * H → f a1 = f a2)

By these, we introduce a new type B, a function from A to B, and a stipulation that the
function respects the lcoset_equiv H relation. In the previous section, we noted that
we first prove results with general hypotheses and later apply the results to situations in
which we can satisfy the hypotheses, e.g. when given the hypotheses of the first isomor-
phism theorem. Here too, we prove results with general hypotheses and later apply them.
Specifically, the hypotheses of the first isomorphism theorem give us a B and an f, and we
prove that f satisfies the equivalence relation lcoset_equiv (ker f).

Under these new general hypotheses, we extend this function f on the base type to a
function on the quotient type similarly to how we extended mul and inv: we use
quot.lift, passing (a) the proposed function and (b) a proof that the function respects
the equivalence relation.
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definition extend : quotient H → B := quot.lift f respf

extend depends on respf, so in future uses (extend respf : quotient H → B).
Recall that the quotient constants are added to the CIC. Consequently, their behavior

is stipulated rather than defined. One of the stipulations about quotient constants regards
the relationship between a function f and a function constructed from this by
quot.lift. Suppose that we have an equivalence relation ≈ and a proof that f respects
this relation (i.e. (c : ∀ a b, a ≈ b → f a = f b)). The relationship between f and
its extension is this: for an element a in the domain type of f, f a = lift f c [a]. That
is, the output of f on a is the same as the output of quot.lift f c on the equivalence
class of a.17 In the setting of this section, this fact gives us the behavior of extend.

proposition extend_qproj (a : A) : extend respf (a ’* H) = f a := rfl

proposition extend_comp_qproj : extend respf ◦ (qproj H) = f := rfl

proposition image_extend (G : set A) : (extend respf) ’ (G / H) = f ’ G :=

by rewrite [-image_comp]

extend_qproj is the stipulated behavior mentioned above: the result of applying f to an
element a of the base type is the same as the result of applying the extended version of
f to the equivalence class (i.e. the element in the quotient type which corresponds to the
element in the base type) of a. extend_comp_qproj says that applying f to an element
of the base type is the same as (i) applying to an element of the base type the base-type-
to-quotient-type function then (ii) applying the extended version of f to the result of (i).
image_extend is extend_qproj as applied to sets instead of to an element: the image of
f on a set G on the base type is the same as the image of the extended version of f on the
set of equivalence classes of elements in G.

Under additional hypotheses, additional behavior of extend respf follows immedi-
ately from the behavior of f. In particular, suppose that there is a group on B

(i.e. [group B]) and f is a homomorphism from A to B (i.e. [is_hom f]). Then,
extend respf is a homomorphism.

section

variable [group B]

proposition is_hom_extend [instance] [is_hom f] :

is_hom (extend respf) :=

is_mul_hom.mk (take a b,

show (extend respf (a * b)) = (extend respf a) * (extend respf b),

from quot.induction_on2 a b (take a b, hom_mul f a b)

end

Keeping the assumption that [group B] but dropping the assumption that
[is_hom f], we prove a lemma about the kernel of extend respf. The lemma is that

17See quot.lean; in particular, lift.beta. And, in the tutorial, see the documentation for the command
init_quotient on line 28.
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two sets are the same: (i) the kernel of extend respf and (ii) the image of ker f under
the base-type-to-quotient-type function. That is,

proposition ker_extend : ker (extend respf) = ker f / H := ...

That concludes our characterization of the quotient group under general hypotheses.
In the next section, we use these results to prove the first isomorphism theorem for this
construction of the quotient type and quotient group.

The first isomorphism theorem

Recall the informal statement of the first isomorphism theorem:

Suppose that G1 and G2 are groups. Suppose that f is a homomorphism from G1

to G2. Suppose f is onto from G1 to G2. Suppose K is the kernel of f . Then, K is
a normal subgroup of G1; there is a homomorphism g from G1/K onto G2; and, g
is injective.

We state an equivalent version.

Suppose that G1 and G2 are groups. Suppose that f is a homomorphism from G1

to G2. Suppose K is the kernel of f . Then, K is a normal subgroup of G1; there is
a homomorphism g from G1/K onto the image of f ; and, g is injective.

Using this equivalent version, we alter the variable names to align with the variable names
used in previous examples.

Suppose that A and B are groups. Suppose that f is a homomorphism from A to
B. Suppose K is the kernel of f . Then, K is a normal subgroup of A; there is a
homomorphism f from A/K onto the image of f ; and, f is injective.

We display the informal and formal representations side-by-side.

informal formal

A is a group
{A : Type}

[group A]

B is a group
{B : Type}

[group B]

f : A→ B f : A → B

f is a homomorphism [is_hom f]

kernel of f ker f

kernel of f
is a normal subgroup of A

[is_subgroup (ker f)]

[is_normal (ker f)]

A/(kernel f) quotient (ker f)

f : A/(kernel f) → B
is a homomorphism
onto the image of f

bar f : quotient (ker f) → B

[is_hom (bar f)]

surj_on_bar f : surj_on (bar f) univ (f ’ univ)

f is injective injective_bar f : injective (bar f)
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There are idenifiers in the table above that we have not yet defined; e.g.
univ, bar f, surj_on_bar , injective_bar

univ is the name of the set on a type which set contains all the elements on the type.18

Constructing the terms assigned to the latter three identifiers is the work of proving the
first isomorphism theorem for this construction of the quotient type.

The first observation about the theorem quoted above is that it discusses the quotient
A/K; so, in the formal setting, we need to construct the quotient type
quotient (ker f). A second observation is that there is a homomorphism, the domain
of which is the quotient. For a homomorphism to be defined, there must be a binary
operation on the domain; so, in the formal setting, we need to construct such a binary
operation on the quotient type. As foreshadowed, both the desired quotient type and
the binary operation on that type are consequences of applying the general quotient type
construction and quotient group construction to the data of the theorem’s hypotheses. In
short, we get the desired type and the operation from the general lemmas of the previous
section.

Constructing the function on the quotient type

In order to extend the function f from the base type to the quotient type, we prove
that f respects the lcoset_equiv (ker f) equivalence relation.19 After this, we apply a
general lemma from the previous section in order to extend f to the quotient type.

definition bar : quotient (ker f) → B :=

extend (eq_of_lcoset_equiv_ker f)

In the expression quotient (ker f), there is an implicit requirement that ker f is a
normal subgroup. This is represented by an implicit argument that is filled in by Lean
automatically.

Let’s consider how this is done. Before we write the above definition in the library,

(i) we have proven [is_normal (ker f)]20

(ii) in the general quotient type construction, we have marked for type class inference
the proof that the relevant set is normal (i.e. (H : set A) [is_normal H] — note
the hard brackets indicating that this hypothesis should be found by type class
inference)

(iii) in the general quotient type construction, we have marked as an instance the
setoid21

In the definition of bar, we apply extend. In the definition of extend, we apply
quot.lift. quot.lift depends on — among other things — the presence of a setoid on
the base type. In the definition of quot.lift, this setoid is marked for type class inference.
Thus, given the entire scenario just described, when extend uses quot.lift, Lean searches

18definition univ {X : Type} : set X := λ x, true
19proposition eq_of_lcoset_equiv_ker
20And Lean has access to this proof because, in the file where bar is defined, we have imported the file

in which the proof appears
21Recall that, when something is marked as an instance, it can be found via type class inference.
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for a setoid; it can find this setoid by finding the proof that [is_normal (ker f)] and
constructing the setoid. Given the setoid, the quotient type can be constructed. Further
— though we don’t use it in the defnition of bar — there is a group on the quotient type
since the group defined on the quotient type is marked as an instance.

Proving the properties of the function

In the section about characterizing the quotient group, we proved that extend is a
homomorphism (i.e. see is_hom_extend). Since bar f is extend on the data from the
hypotheses in this section, that bar f is a homomorphism follows from the result in the
previous section.

proposition is_hom_bar [instance] : is_hom (bar f) := is_hom_extend _

The _ indicates to Lean to find the required argument (here, [is_hom f]) automatically.
Also in the section characterizing the quotient group, we exhibited the stipulations

relating the behavior of the function on the base type to the extended function on the
quotient type. Here, we use these stipulations and the results we proved in the last section
to prove that the extended function bar f is surjective on the image of f.22

Lastly, to prove that bar is injective, we again use the general results from the previous
section. Before this, we prove that: if the kernel of a homomorphism is the singleton con-
taining the identity element, the homomorphism is injective.23 Then, we use the previous
results to show that the kernel of the homomorphism (i.e. ker (bar f)) is the single-
ton containing the identity element; that is, we use the previous results ker_extend and
image_qproj_self to show that (ker (bar f)) is ’{1}.

proposition ker_bar_eq : ker (bar f) = ’{1} :=

by rewrite [↑bar, ker_extend, image_qproj_self]

So, combining the above, we get the result that injective (bar f).

proposition injective_bar : injective (bar f) :=

injective_of_ker_eq_singleton_one (ker_bar_eq f)

This concludes the proof of the first isomorphism theorem for this construction of the
quotient type. In the next section, we proceed with the second construction of the quotient
type.

4.8.4 Quotient type and quotient group:
the second construction

In the first construction of the quotient type, the hypotheses were

{A : Type} [group A] (H : set A) [is_normal H]

We can construct the quotient type in a second way using different hypotheses. In partic-
ular, suppose

22See surj_on_bar.
23We call this injective_of_ker_eq_singleton_one. It is in group theory.basic.lean.
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{A : Type} [group A] (H : set A) [is_subgroup H]

Note that any set H is normal in the normalizer of H. Suppose that:

(i) we can make a type from normalizer H

(ii) we can construct a group on this new type

(iii) in the new type, we can construct a normal set using H

Then, we have the hypotheses for the first construction of the quotient type: a type, a
group on the type, and a normal set on the type. So, using the first construction on this
data, we get a quotient type and quotient group. Below, we proceed in this way, thereby
giving a means to take a quotient by an arbitrary subgroup.

Supposition (i): creating a type from a set

The first of the three suppositions above is that we can construct a new type from
normalizer H. We can do this. In fact, we can construct a new type from any predicate
on a type. In this section, we describe a tool (i.e. subtype) and use the tool to construct
the desired type.

Description of subtype

subtype is an inductive type.24

structure subtype {A : Type} (P : A → Prop) :=

tag :: (elt_of : A) (has_property : P elt_of)

Given a type (X : Type) and a predicate on the type (S : X → Prop), subtype S is
a new type. Terms of the new type have two components: the first component is a term
of the base type, and second component is a proof that the first component satisfies the
predicate. To construct a term of subtype S, we need a term of type X and a proof that
the term satifies the predicate. Given a term of type of subtype S, we can extract a term
of type X and a proof that the element satisfies S.

Using subtype to construct a type from normalizer H

Recall that we have defined sets as predicates. So, since normalizer H is a set, we
can use subtype to construct a new type: subtype (normalizer H) : Type. Terms on
this new type are bundled objects — a bundle of (i) term from base type and (ii) proof that

24In previous structure definitions, after the := is a sequence of type decalarations; for example, in
the definition of has_mul, after := is (mul : A→ A→ A). And, for other structures, to make a term of
the inductive type, we write <structure_name>.mk and provide arguments for the required components.
For example, suppose that we have (X : Type) and (op : X→ X→ X); then,
(has_mul.mk op : has_mul X).

However, the structure definition for subtype differs in one way from these previous definitions. In
it, before the type declarations appears tag ::. The effect of tag :: is simply to rename the default
subtype.mk to subtype.tag. Hence, with

(X : Type) (S : X→ Prop) (w : X) (y : S w)

we have (subtype.tag w y : subtype S)

54



the element is a member of normalizer H. We can use subtype.tag and subtype.elt_of

as functions to move back and forth between the base type and the subtype.

Supposition (ii): constructing a group on the new type

Using subtype, we construct a new type. Next, we wish to construct a group on this
new type. Since

1. elements on the new type are a bundle including a term from the base type;

2. we have a multiplication, inverse, and one for terms on the base type from the
assumption that there is a group on the base type; and,

3. we can move between elements on the base type and elements on the subtype
using subtype.tag and subtype.elt_of,

it is straightforward to define a multiplication, inverse, and one for the subtype in terms
of those on the base type. In short, we project from the subtype to the base type, apply
the desired operation, and then project back. Further, the proofs that these operations
and distinguished term have the desired properties are immediate consequences of the
properties of the group on the base type.25 The fact that is_subgroup H is required in
these steps.

Supposition (iii): creating a normal set on the new type

The final hypothesis of the first construction is that there is a normal set on the type.
In this second construction, we construct such a set in two steps.

1. use subtype.tag to define a function (i.e. to_group_of (normalizer H)) from
base type to subtype

2. consider the image of H under this function

The image of H under this function (i.e. to_group_of (normalizer H) ’H) is normal in
subtype (normalizer H).

Thus, we have a type (i.e. subtype (normalizer H))), a group on the type (see
immediately previous section), and a normal set on the type
(i.e. to_group_of (normalizer H) ’H). So, we have the requisite hypotheses for using
the first construction of the quotient type. Using that construction, we construct a quotient
type (i.e. quotient (to_group_of (normalizer H) ’H)).

Note that now we have three types: the base type, the subtype, and the quotient
type. We construct functions from the base type to the quotient type by composing (a)
functions from base type to subtype with (b) functions from subtype to quotient type.
The development of the first isomorphism theorem for this construction is parallel to that
for the other construction, with the following divergences:

we state and prove a general lemma about homomorphisms and extending functions
from one type to another (see results for gen_extend), and we obtain from this
lemma the function for the isomorphism theorem.

25Both the definitions and proofs are in subgroup to group.lean

55



the results are ‘local’ in the sense that the results hold for sets on the type rather
than the whole type; for example, rather than proving that the homomorphism is
injective on the type, we prove that it is injective on a certain set.

This concludes the description of the second construction of the quotient type.

4.9 Other formalizations

There are other formalizations of group theory using proof assistants. These include
one in Isabelle and one in the SSReflect extension of Coq.[12, 13, 14, 3] We point to a few
of the similarities and disimilarities.

The formal language Isabelle encodes is simple type theory. As a result of this, the
features of the formal language differ from those in Lean, and mechanisms are introduced
to Isabelle to provide features native to dependent type theory and consequently Lean.
For example, in dependent type theory variables can range over structures, and much
information in expressions can be left implicit and inferred from the context. In Isabelle,
the mechanism of locales is introduced to assist with these tasks. Locales share features
with sections in Lean. For, locales provide ‘arbitrary but fixed’ objects for use in defini-
tions, statements, theorems, and proofs; inside the locales, information can be left implicit
because the relevant objects can be inferred from the stated locale objects; and, outside
the locales, the definitions, statements, theorems, and proofs that use the objects are pa-
rameterized by inputs of the relevant types – i.e. the locale objects provide the behavior
of variables ranging over structures.

The formal language Coq encodes is the calculus of inductive constructions. So, it is
possible for our formalization to be very similar to the formalization in SSReflect. In fact,
we use ideas from that formalization.26 The sizes of the two projects differ: the goal of our
formalization is the group isomorphism theorems; the goal of the SSReflect formalization
is the Feit-Thompson theorem. Also, aspects of the approaches of the two projects dif-
fer: the SSReflect formalization is concerned with being constructive and computational
throughout, and consequently it restricts to finite sets. In our formalization, we do not
restrict to finite sets; and, for example, in cases where we want a definition to depend
on whether an element is a member of some set, we use classical reasoning. Our results
hold for arbitrary sets and so can be applied to finite sets.27 A second difference concerns
the tools used to handle implicit information in expressions. In order to suppress infor-
mation in expressions, define natural notation, and mimic informal mathematics we use
type classes and type class inference. In order to accomplish the same ends, the SSReflect
formalization uses a similar mechanism called canonical structures.

26In particular, the second construction of the quotient type follows a construction in the SSReflect
formalization. As there, for an arbitrary subgroup, we consider the normalizer of the subgroup, a type
constructed from the normalizer, and quotient groups on this type. Further, for the second construction
of the quotient type, we prove the same general morphism property as they do in order to obtain the
isomorphism for the first isomorphism theorem.

27In the standard library of Lean, there is a predicate which asserts that a set is finite. The results
can be applied to sets for which this prediate holds. Also, there is a formalization in Lean based on a
rendering of finite sets called finsets. For that, see the directories data.finset and finite group theory.
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Our formalization provides a library of group theoretic results to Lean. It exhibits the
tools available in that proof assistant, and it serves as an assessment of those tools – it can
be used to assess the degree to which the system permits natural, convenient representa-
tions of mathematical objects and the degree to which it provides support for reasoning
about these objects. In particular, we feel that the formalization shows how the language
of the calculus of inductive constructions along with the tools of sections, structures, type
class inference, calculation environments, rewriting, and defined notation permit natural,
convenient representations and provide support for machine-verified reasoning.
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The appendices contain the files comprising the bulk of the formalization. At the date
of writing, these files can be accessed here:

https://github.com/leanprover/lean/blob/master/library/theories/group_theory/

basic.lean

https://github.com/leanprover/lean/blob/master/library/theories/group_theory/

subgroup_to_group.lean

https://github.com/leanprover/lean/blob/master/library/theories/group_theory/

quotient.lean
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/-

Copyright (c) 2016 Andrew Zipperer. All rights reserved.

Released under Apache 2.0 license as described in the file LICENSE.

Authors: Andrew Zipperer, Jeremy Avigad

Basic group theory: subgroups, homomorphisms on a set, homomorphic images, cosets,

normal cosets and the normalizer, the kernel of a homomorphism, the centralizer, etc.

For notation a * S and S * a for cosets, open the namespace "coset_notation".

For notation a^b and S^a, open the namespace "conj_notation".

TODO: homomorphisms on sets should be refactored and moved to algebra.

-/

import data.set algebra.homomorphism theories.move

open eq.ops set function

namespace group_theory

variables {A B C : Type}

/- subgroups -/

structure is_one_closed [class] [has_one A] (S : set A) : Prop :=

(one_mem : one ∈ S)

proposition one_mem [has_one A] {S : set A} [is_one_closed S] : 1 ∈ S :=

is_one_closed.one_mem _ S

structure is_mul_closed [class] [has_mul A] (S : set A) : Prop :=

(mul_mem : ∀0 a ∈ S, ∀0 b ∈ S, a * b ∈ S)

proposition mul_mem [has_mul A] {S : set A} [is_mul_closed S] {a b : A} (aS : a ∈ S) (bS : b ∈ S) :

a * b ∈ S :=

is_mul_closed.mul_mem _ S aS bS

structure is_inv_closed [class] [has_inv A] (S : set A) : Prop :=

(inv_mem : ∀0 a ∈ S, a−1 ∈ S)

proposition inv_mem [has_inv A] {S : set A} [is_inv_closed S] {a : A} (aS : a ∈ S) : a−1 ∈ S :=

is_inv_closed.inv_mem _ S aS

structure is_subgroup [class] [group A] (S : set A)

extends is_one_closed S, is_mul_closed S, is_inv_closed S : Prop

section groupA

variable [group A]
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proposition mem_of_inv_mem {a : A} {S : set A} [is_subgroup S] (H : a−1 ∈ S) : a ∈ S :=

have (a−1)−1 ∈ S, from inv_mem H,

by rewrite inv_inv at this; apply this

proposition inv_mem_iff (a : A) (S : set A) [is_subgroup S] : a−1 ∈ S ↔ a ∈ S :=

iff.intro mem_of_inv_mem inv_mem

proposition is_subgroup_univ [instance] : is_subgroup (@univ A) :=

{| is_subgroup,
one_mem := trivial,

mul_mem := λ a au b bu, trivial,

inv_mem := λ a au, trivial |}

proposition is_subgroup_inter [instance] (G H : set A) [is_subgroup G] [is_subgroup H] :

is_subgroup (G ∩ H) :=

{| is_subgroup,
one_mem := and.intro one_mem one_mem,

mul_mem := λ a ai b bi, and.intro (mul_mem (and.left ai) (and.left bi))

(mul_mem (and.right ai) (and.right bi)),

inv_mem := λ a ai, and.intro (inv_mem (and.left ai)) (inv_mem (and.right ai)) |}
end groupA

/- homomorphisms on sets -/

section has_mulABC

variables [has_mul A] [has_mul B] [has_mul C]

-- in group theory, we can use is_hom for is_mul_hom

abbreviation is_hom := @is_mul_hom

definition is_hom_on [class] (f : A → B) (S : set A) : Prop :=

∀0 a1 ∈ S, ∀0 a2 ∈ S, f (a1 * a2) = f a1 * f a2

proposition hom_on_mul (f : A → B) {S : set A} [H : is_hom_on f S] {a1 a2 : A}

(a1S : a1 ∈ S) (a2S : a2 ∈ S) : f (a1 * a2) = (f a1) * (f a2) :=

H a1S a2S

proposition is_hom_on_of_is_hom (f : A → B) (S : set A) [H : is_hom f] : is_hom_on f S :=

forallb_of_forall2 S S (hom_mul f)

proposition is_hom_of_is_hom_on_univ (f : A → B) [H : is_hom_on f univ] : is_hom f :=

is_mul_hom.mk (forall_of_forallb_univ2 H)

proposition is_hom_on_univ_iff (f : A → B) : is_hom_on f univ ↔ is_hom f :=
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iff.intro (λH, is_hom_of_is_hom_on_univ f) (λ H, is_hom_on_of_is_hom f univ)

proposition is_hom_on_of_subset (f : A → B) {S T : set A} (ssubt : S ⊆ T) [H : is_hom_on f T] :

is_hom_on f S :=

forallb_of_subset2 ssubt ssubt H

proposition is_hom_on_id (S : set A) : is_hom_on id S :=

have H : is_hom (@id A), from is_mul_hom_id,

is_hom_on_of_is_hom id S

proposition is_hom_on_comp {S : set A} {T : set B} {g : B → C} {f : A → B}

(H1 : is_hom_on f S) (H2 : is_hom_on g T) (H3 : maps_to f S T) : is_hom_on (g ◦ f) S :=

take a1, assume a1S, take a2, assume a2S,

have f a1 ∈ T, from H3 a1S,

have f a2 ∈ T, from H3 a2S,

show g (f (a1 * a2)) = g (f a1) * g (f a2), by rewrite [H1 a1S a2S, H2 ‘f a1 ∈ T‘ ‘f a2 ∈ T‘]

end has_mulABC

section groupAB

variables [group A] [group B]

proposition hom_on_one (f : A → B) (G : set A) [is_subgroup G] [H : is_hom_on f G] : f 1 = 1 :=

have f 1 * f 1 = f 1 * 1, by rewrite [-H one_mem one_mem, *mul_one],

eq_of_mul_eq_mul_left’ this

proposition hom_on_inv (f : A → B) {G : set A} [is_subgroup G] [H : is_hom_on f G]

{a : A} (aG : a ∈ G) :

f a−1 = (f a)−1 :=

have f a−1 * f a = 1, by rewrite [-H (inv_mem aG) aG, mul.left_inv, hom_on_one f G],

eq_inv_of_mul_eq_one this

proposition is_subgroup_image [instance] (f : A → B) (G : set A)

[is_subgroup G] [is_hom_on f G] :

is_subgroup (f ’ G) :=

{| is_subgroup,
one_mem := mem_image one_mem (hom_on_one f G),

mul_mem := λ a afG b bfG,

obtain c (cG : c ∈ G)(Hc : f c = a), from afG,

obtain d (dG : d ∈ G)(Hd : f d = b), from bfG,

show a * b ∈ f ’ G, from mem_image (mul_mem cG dG) (by rewrite [hom_on_mul f cG dG, Hc, Hd]),

inv_mem := λ a afG,

obtain c (cG : c ∈ G)(Hc : f c = a), from afG,

show a−1 ∈ f ’ G, from mem_image (inv_mem cG) (by rewrite [hom_on_inv f cG, Hc]) |}
end groupAB
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/- cosets -/

definition lcoset [has_mul A] (a : A) (N : set A) : set A := (mul a) ’N

definition rcoset [has_mul A] (N : set A) (a : A) : set A := (mul^~ a) ’N

-- overload multiplication

namespace coset_notation

infix * := lcoset

infix * := rcoset

end coset_notation

open coset_notation

section has_mulA

variable [has_mul A]

proposition mul_mem_lcoset {S : set A} {x : A} (a : A) (xS : x ∈ S) : a * x ∈ a * S :=

mem_image_of_mem (mul a) xS

proposition mul_mem_rcoset [has_mul A] {S : set A} {x : A} (xS : x ∈ S) (a : A) :

x * a ∈ S * a :=

mem_image_of_mem (mul^~ a) xS

definition lcoset_equiv (S : set A) (a b : A) : Prop := a * S = b * S

proposition equivalence_lcoset_equiv (S : set A) : equivalence (lcoset_equiv S) :=

mk_equivalence (lcoset_equiv S) (λ a, rfl) (λ a b, !eq.symm) (λ a b c, !eq.trans)

proposition lcoset_subset_lcoset {S T : set A} (a : A) (H : S ⊆ T) : a * S ⊆ a * T :=

image_subset _ H

proposition rcoset_subset_rcoset {S T : set A} (H : S ⊆ T) (a : A) : S * a ⊆ T * a :=

image_subset _ H

proposition image_lcoset_of_is_hom_on {B : Type} [has_mul B] {f : A → B} {S : set A} {a : A}

{G : set A} (SsubG : S ⊆ G) (aG : a ∈ G) [is_hom_on f G] :

f ’ (a * S) = f a * f ’ S :=

ext (take x, iff.intro

(assume fas : x ∈ f ’ (a * S),

obtain t [s (sS : s ∈ S) (seq : a * s = t)] (teq : f t = x), from fas,

have x = f a * f s, by rewrite [-teq, -seq, hom_on_mul f aG (SsubG sS)],

show x ∈ f a * f ’ S, by rewrite this; apply mul_mem_lcoset _ (mem_image_of_mem _ sS))

(assume fafs : x ∈ f a * f ’ S,

obtain t [s (sS : s ∈ S) (seq : f s = t)] (teq : f a * t = x), from fafs,

have x = f (a * s), by rewrite [-teq, -seq, hom_on_mul f aG (SsubG sS)],

show x ∈ f ’ (a * S), by rewrite this; exact mem_image_of_mem _ (mul_mem_lcoset _ sS)))
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proposition image_rcoset_of_is_hom_on {B : Type} [has_mul B] {f : A → B} {S : set A} {a : A}

{G : set A} (SsubG : S ⊆ G) (aG : a ∈ G) [is_hom_on f G] :

f ’ (S * a) = f ’ S * f a :=

ext (take x, iff.intro

(assume fas : x ∈ f ’ (S * a),

obtain t [s (sS : s ∈ S) (seq : s * a = t)] (teq : f t = x), from fas,

have x = f s * f a, by rewrite [-teq, -seq, hom_on_mul f (SsubG sS) aG],

show x ∈ f ’ S * f a, by rewrite this; exact mul_mem_rcoset (mem_image_of_mem _ sS) _)

(assume fafs : x ∈ f ’ S * f a,

obtain t [s (sS : s ∈ S) (seq : f s = t)] (teq : t * f a = x), from fafs,

have x = f (s * a), by rewrite [-teq, -seq, hom_on_mul f (SsubG sS) aG],

show x ∈ f ’ (S * a), by rewrite this; exact mem_image_of_mem _ (mul_mem_rcoset sS _)))

proposition image_lcoset_of_is_hom {B : Type} [has_mul B] (f : A → B) (a : A) (S : set A)

[is_hom f] :

f ’ (a * S) = f a * f ’ S :=

have is_hom_on f univ, from is_hom_on_of_is_hom f univ,

image_lcoset_of_is_hom_on (subset_univ S) !mem_univ

proposition image_rcoset_of_is_hom {B : Type} [has_mul B] (f : A → B) (S : set A) (a : A)

[is_hom f] :

f ’ (S * a) = f ’ S * f a :=

have is_hom_on f univ, from is_hom_on_of_is_hom f univ,

image_rcoset_of_is_hom_on (subset_univ S) !mem_univ

end has_mulA

section semigroupA

variable [semigroup A]

proposition rcoset_rcoset (S : set A) (a b : A) : S * a * b = S * (a * b) :=

have H : (mul^~ b) ◦ (mul^~ a) = mul^~ (a * b), from funext (take x, !mul.assoc),

calc

S * a * b = ((mul^~ b) ◦ (mul^~ a)) ’S : image_comp

... = S * (a * b) : by rewrite [↑rcoset, H]

proposition lcoset_lcoset (S : set A) (a b : A) : a * (b * S) = (a * b) * S :=

have H : (mul a) ◦ (mul b) = mul (a * b), from funext (take x, !mul.assoc−1),

calc

a * (b * S) = ((mul a) ◦ (mul b)) ’S : image_comp

... = (a * b) * S : by rewrite [↑lcoset, H]

proposition lcoset_rcoset [semigroup A] (S : set A) (a b : A) : a * S * b = a * (S * b) :=

have H : (mul^~ b) ◦ (mul a) = (mul a) ◦ (mul^~ b), from funext (take x, !mul.assoc),

calc

a * S * b = ((mul^~ b) ◦ (mul a)) ’S : image_comp

64



... = ((mul a) ◦ (mul^~ b)) ’S : H

... = a * (S * b) : image_comp

end semigroupA

section monoidA

variable [monoid A]

proposition one_lcoset (S : set A) : 1 * S = S :=

ext (take x, iff.intro

(suppose x ∈ 1 * S,

obtain s (sS : s ∈ S) (eqx : 1 * s = x), from this,

show x ∈ S, by rewrite [-eqx, one_mul]; apply sS)

(suppose x ∈ S,

have 1 * x ∈ 1 * S, from mem_image_of_mem (mul 1) this,

show x ∈ 1 * S, by rewrite one_mul at this; apply this))

proposition rcoset_one (S : set A) : S * 1 = S :=

ext (take x, iff.intro

(suppose x ∈ S * 1,

obtain s (sS : s ∈ S) (eqx : s * 1 = x), from this,

show x ∈ S, by rewrite [-eqx, mul_one]; apply sS)

(suppose x ∈ S,

have x * 1 ∈ S * 1, from mem_image_of_mem (mul^~ 1) this,

show x ∈ S * 1, by rewrite mul_one at this; apply this))

end monoidA

section groupA

variable [group A]

proposition lcoset_inv_lcoset (a : A) (S : set A) : a * (a−1 * S) = S :=

by rewrite [lcoset_lcoset, mul.right_inv, one_lcoset]

proposition inv_lcoset_lcoset (a : A) (S : set A) : a−1 * (a * S) = S :=

by rewrite [lcoset_lcoset, mul.left_inv, one_lcoset]

proposition rcoset_inv_rcoset (S : set A) (a : A) : (S * a−1) * a = S :=

by rewrite [rcoset_rcoset, mul.left_inv, rcoset_one]

proposition rcoset_rcoset_inv (S : set A) (a : A) : (S * a) * a−1 = S :=

by rewrite [rcoset_rcoset, mul.right_inv, rcoset_one]

proposition eq_of_lcoset_eq_lcoset {a : A} {S T : set A} (H : a * S = a * T) : S = T :=

by rewrite [-inv_lcoset_lcoset a S, -inv_lcoset_lcoset a T, H]

proposition eq_of_rcoset_eq_rcoset {a : A} {S T : set A} (H : S * a = T * a) : S = T :=

by rewrite [-rcoset_rcoset_inv S a, -rcoset_rcoset_inv T a, H]
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proposition mem_of_mul_mem_lcoset {a b : A} {S : set A} (abaS : a * b ∈ a * S) : b ∈ S :=

have a−1 * (a * b) ∈ a−1 * (a * S), from mul_mem_lcoset _ abaS,

by rewrite [inv_mul_cancel_left at this, inv_lcoset_lcoset at this]; apply this

proposition mul_mem_lcoset_iff (a b : A) (S : set A) : a * b ∈ a * S ↔ b ∈ S :=

iff.intro !mem_of_mul_mem_lcoset !mul_mem_lcoset

proposition mem_of_mul_mem_rcoset {a b : A} {S : set A} (abSb : a * b ∈ S * b) : a ∈ S :=

have (a * b) * b−1 ∈ (S * b) * b−1, from mul_mem_rcoset abSb _,

by rewrite [mul_inv_cancel_right at this, rcoset_rcoset_inv at this]; apply this

proposition mul_mem_rcoset_iff (a b : A) (S : set A) : a * b ∈ S * b ↔ a ∈ S :=

iff.intro !mem_of_mul_mem_rcoset (λ H, mul_mem_rcoset H _)

proposition inv_mul_mem_of_mem_lcoset {a b : A} {S : set A} (abS : a ∈ b * S) : b−1 * a ∈ S :=

have b−1 * a ∈ b−1 * (b * S), from mul_mem_lcoset b−1 abS,

by rewrite inv_lcoset_lcoset at this; apply this

proposition mem_lcoset_of_inv_mul_mem {a b : A} {S : set A} (H : b−1 * a ∈ S) : a ∈ b * S :=

have b * (b−1 * a) ∈ b * S, from mul_mem_lcoset b H,

by rewrite mul_inv_cancel_left at this; apply this

proposition mem_lcoset_iff (a b : A) (S : set A) : a ∈ b * S ↔ b−1 * a ∈ S :=

iff.intro inv_mul_mem_of_mem_lcoset mem_lcoset_of_inv_mul_mem

proposition mul_inv_mem_of_mem_rcoset {a b : A} {S : set A} (aSb : a ∈ S * b) : a * b−1 ∈ S :=

have a * b−1 ∈ (S * b) * b−1, from mul_mem_rcoset aSb b−1,

by rewrite rcoset_rcoset_inv at this; apply this

proposition mem_rcoset_of_mul_inv_mem {a b : A} {S : set A} (H : a * b−1 ∈ S) : a ∈ S * b :=

have a * b−1 * b ∈ S * b, from mul_mem_rcoset H b,

by rewrite inv_mul_cancel_right at this; apply this

proposition mem_rcoset_iff (a b : A) (S : set A) : a ∈ S * b ↔ a * b−1 ∈ S :=

iff.intro mul_inv_mem_of_mem_rcoset mem_rcoset_of_mul_inv_mem

proposition lcoset_eq_iff_eq_inv_lcoset (a : A) (S T : set A) : (a * S = T) ↔ (S = a−1 * T) :=

iff.intro (assume H, by rewrite [-H, inv_lcoset_lcoset])

(assume H, by rewrite [H, lcoset_inv_lcoset])

proposition rcoset_eq_iff_eq_rcoset_inv (a : A) (S T : set A) : (S * a = T) ↔ (S = T * a−1) :=

iff.intro (assume H, by rewrite [-H, rcoset_rcoset_inv])

(assume H, by rewrite [H, rcoset_inv_rcoset])

proposition lcoset_inter (a : A) (S T : set A) [is_subgroup S] [is_subgroup T] :
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a * (S ∩ T) = (a * S) ∩ (a * T) :=

eq_of_subset_of_subset

(image_inter_subset _ S T)

(take b, suppose b ∈ (a * S) ∩ (a * T),

obtain [s [smem (seq : a * s = b)]] [t [tmem (teq : a * t = b)]], from this,

have s = t, from eq_of_mul_eq_mul_left’ (eq.trans seq (eq.symm teq)),

show b ∈ a * (S ∩ T),

begin

rewrite -seq,

apply mul_mem_lcoset,

apply and.intro smem,

rewrite this, apply tmem

end)

proposition inter_rcoset (a : A) (S T : set A) [is_subgroup S] [is_subgroup T] :

(S ∩ T) * a = (S * a) ∩ (T * a) :=

eq_of_subset_of_subset

(image_inter_subset _ S T)

(take b, suppose b ∈ (S * a) ∩ (T * a),

obtain [s [smem (seq : s * a = b)]] [t [tmem (teq : t * a = b)]], from this,

have s = t, from eq_of_mul_eq_mul_right’ (eq.trans seq (eq.symm teq)),

show b ∈ (S ∩ T) * a,

begin

rewrite -seq,

apply mul_mem_rcoset,

apply and.intro smem,

rewrite this, apply tmem

end)

end groupA

section subgroupG

variables [group A] {G : set A} [is_subgroup G]

proposition lcoset_eq_self_of_mem {a : A} (aG : a ∈ G) : a * G = G :=

ext (take x, iff.intro

(assume xaG, obtain g [gG xeq], from xaG,

show x ∈ G, by rewrite -xeq; exact (mul_mem aG gG))

(assume xG, show x ∈ a * G, from mem_image

(show a−1 * x ∈ G, from (mul_mem (inv_mem aG) xG)) !mul_inv_cancel_left))

proposition rcoset_eq_self_of_mem {a : A} (aG : a ∈ G) : G * a = G :=

ext (take x, iff.intro

(assume xGa, obtain g [gG xeq], from xGa,

show x ∈ G, by rewrite -xeq; exact (mul_mem gG aG))

(assume xG, show x ∈ G * a, from mem_image

(show x * a−1 ∈ G, from (mul_mem xG (inv_mem aG))) !inv_mul_cancel_right))
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proposition mem_lcoset_self (a : A) : a ∈ a * G :=

by rewrite [-mul_one a at {1}]; exact mul_mem_lcoset a one_mem

proposition mem_rcoset_self (a : A) : a ∈ G * a :=

by rewrite [-one_mul a at {1}]; exact mul_mem_rcoset one_mem a

proposition mem_of_lcoset_eq_self {a : A} (H : a * G = G) : a ∈ G :=

by rewrite [-H]; exact mem_lcoset_self a

proposition mem_of_rcoset_eq_self {a : A} (H : G * a = G) : a ∈ G :=

by rewrite [-H]; exact mem_rcoset_self a

variable (G)

proposition lcoset_eq_self_iff (a : A) : a * G = G ↔ a ∈ G :=

iff.intro mem_of_lcoset_eq_self lcoset_eq_self_of_mem

proposition rcoset_eq_self_iff (a : A) : G * a = G ↔ a ∈ G :=

iff.intro mem_of_rcoset_eq_self rcoset_eq_self_of_mem

variable {G}

proposition lcoset_eq_lcoset {a b : A} (H : b−1 * a ∈ G) : a * G = b * G :=

have b−1 * (a * G) = b−1 * (b * G),

by rewrite [inv_lcoset_lcoset, lcoset_lcoset, lcoset_eq_self_of_mem H],

eq_of_lcoset_eq_lcoset this

proposition inv_mul_mem_of_lcoset_eq_lcoset {a b : A} (H : a * G = b * G) : b−1 * a ∈ G :=

mem_of_lcoset_eq_self (by rewrite [-lcoset_lcoset, H, inv_lcoset_lcoset])

proposition lcoset_eq_lcoset_iff (a b : A) : a * G = b * G ↔ b−1 * a ∈ G :=

iff.intro inv_mul_mem_of_lcoset_eq_lcoset lcoset_eq_lcoset

proposition rcoset_eq_rcoset {a b : A} (H : a * b−1 ∈ G) : G * a = G * b :=

have G * a * b−1 = G * b * b−1,

by rewrite [rcoset_rcoset_inv, rcoset_rcoset, rcoset_eq_self_of_mem H],

eq_of_rcoset_eq_rcoset this

proposition mul_inv_mem_of_rcoset_eq_rcoset {a b : A} (H : G * a = G * b) : a * b−1 ∈ G :=

mem_of_rcoset_eq_self (by rewrite [-rcoset_rcoset, H, rcoset_rcoset_inv])

proposition rcoset_eq_rcoset_iff (a b : A) : G * a = G * b ↔ a * b−1 ∈ G :=

iff.intro mul_inv_mem_of_rcoset_eq_rcoset rcoset_eq_rcoset

end subgroupG
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/- normal cosets and the normalizer -/

section has_mulA

variable [has_mul A]

abbreviation normalizes [reducible] (a : A) (S : set A) : Prop := a * S = S * a

definition is_normal [class] (S : set A) : Prop := ∀ a, normalizes a S

definition normalizer (S : set A) : set A := { a : A | normalizes a S }

definition is_normal_in [class] (S T : set A) : Prop := T ⊆ normalizer S

abbreviation normalizer_in [reducible] (S T : set A) : set A := T ∩ normalizer S

proposition lcoset_eq_rcoset (a : A) (S : set A) [H : is_normal S] : a * S = S * a := H a

proposition subset_normalizer (S T : set A) [H : is_normal_in T S] : S ⊆ normalizer T := H

proposition lcoset_eq_rcoset_of_mem {a : A} (S : set A) {T : set A} [H : is_normal_in S T]

(amemT : a ∈ T) :

a * S = S * a := H amemT

proposition is_normal_in_of_is_normal (S T : set A) [H : is_normal S] : is_normal_in S T :=

forallb_of_forall T H

proposition is_normal_of_is_normal_in_univ {S : set A} (H : is_normal_in S univ) :

is_normal S :=

forall_of_forallb_univ H

proposition is_normal_in_univ_iff_is_normal (S : set A) : is_normal_in S univ ↔ is_normal S :=

forallb_univ_iff_forall _

proposition is_normal_in_of_subset {S T U : set A} (H : T ⊆ U) (H’ : is_normal_in S U) :

is_normal_in S T :=

forallb_of_subset H H’

proposition normalizes_of_mem_normalizer {a : A} {S : set A} (H : a ∈ normalizer S) :

normalizes a S := H

proposition mem_normalizer_iff_normalizes (a : A) (S : set A) :

a ∈ normalizer S ↔ normalizes a S := iff.refl _

proposition is_normal_in_normalizer [instance] (S : set A) : is_normal_in S (normalizer S) :=

subset.refl (normalizer S)
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end has_mulA

section groupA

variable [group A]

proposition is_normal_in_of_forall_subset {S G : set A} [is_subgroup G]

(H : ∀0 x ∈ G, x * S ⊆ S * x) :

is_normal_in S G :=

take x, assume xG,

show x * S = S * x, from eq_of_subset_of_subset (H xG)

(have x * (x−1 * S) * x ⊆ x * (S * x−1) * x,

from rcoset_subset_rcoset (lcoset_subset_lcoset x (H (inv_mem xG))) x,

show S * x ⊆ x * S,

begin

rewrite [lcoset_inv_lcoset at this, lcoset_rcoset at this, rcoset_inv_rcoset at this],

exact this

end)

proposition is_normal_of_forall_subset {S : set A} (H : ∀ x, x * S ⊆ S * x) : is_normal S :=

begin

rewrite [-is_normal_in_univ_iff_is_normal],

apply is_normal_in_of_forall_subset,

intro x xuniv, exact H x

end

proposition subset_normalizer_self (G : set A) [is_subgroup G] : G ⊆ normalizer G :=

take a, assume aG, show a * G = G * a,

by rewrite [lcoset_eq_self_of_mem aG, rcoset_eq_self_of_mem aG]

end groupA

section normalG

variables [group A] (G : set A) [is_normal G]

proposition lcoset_equiv_mul {a1 a2 b1 b2 : A}

(H1 : lcoset_equiv G a1 a2) (H2 : lcoset_equiv G b1 b2) : lcoset_equiv G (a1 * b1) (a2 * b2) :=

begin

unfold lcoset_equiv at *,

rewrite [-lcoset_lcoset, H2, lcoset_eq_rcoset, -lcoset_rcoset, H1, lcoset_rcoset,

-lcoset_eq_rcoset, lcoset_lcoset]

end

proposition lcoset_equiv_inv {a1 a2 : A} (H : lcoset_equiv G a1 a2) : lcoset_equiv G a1
−1 a2

−1 :=

begin

unfold lcoset_equiv at *,

have a1
−1 * G = a2

−1 * (a2 * G) * a1
−1, by rewrite [inv_lcoset_lcoset, lcoset_eq_rcoset],

rewrite [this, -H, lcoset_rcoset, lcoset_eq_rcoset, rcoset_rcoset_inv]
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end

end normalG

/- the normalizer is a subgroup -/

section semigroupA

variable [semigroup A]

proposition mul_mem_normalizer {S : set A} {a b : A}

(Ha : a ∈ normalizer S) (Hb : b ∈ normalizer S) : a * b ∈ normalizer S :=

show a * b * S = S * (a * b),

by rewrite [-lcoset_lcoset, normalizes_of_mem_normalizer Hb, -lcoset_rcoset,

normalizes_of_mem_normalizer Ha, rcoset_rcoset]

end semigroupA

section monoidA

variable [monoid A]

proposition one_mem_normalizer (S : set A) : 1 ∈ normalizer S :=

by rewrite [↑normalizer, mem_set_of_iff, one_lcoset, rcoset_one]

end monoidA

section groupA

variable [group A]

proposition inv_mem_normalizer {S : set A} {a : A} (H : a ∈ normalizer S) : a−1 ∈ normalizer S :=

have a−1 * S = S * a−1,

begin

apply iff.mp (rcoset_eq_iff_eq_rcoset_inv _ _ _),

rewrite [lcoset_rcoset, -normalizes_of_mem_normalizer H, inv_lcoset_lcoset]

end,

by rewrite [↑normalizer, mem_set_of_iff, this]

proposition is_subgroup_normalizer [instance] (S : set A) : is_subgroup (normalizer S) :=

{| is_subgroup,
one_mem := one_mem_normalizer S,

mul_mem := λ a Ha b Hb, mul_mem_normalizer Ha Hb,

inv_mem := λ a H, inv_mem_normalizer H|}
end groupA

section subgroupG

variables [group A] {G : set A} [is_subgroup G]

proposition normalizes_image_of_is_hom_on [group B] {a : A} (aG : a ∈ G) {S : set A}

(SsubG : S ⊆ G) (H : normalizes a S) (f : A → B) [is_hom_on f G] :
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normalizes (f a) (f ’ S) :=

by rewrite [-image_lcoset_of_is_hom_on SsubG aG, -image_rcoset_of_is_hom_on SsubG aG,

↑normalizes at H, H]

proposition is_normal_in_image_image [group B] {S T : set A} (SsubT : S ⊆ T)

[H : is_normal_in S T] (f : A → B) [is_subgroup T] [is_hom_on f T] :

is_normal_in (f ’ S) (f ’ T) :=

take a, assume afT,

obtain b [bT (beq : f b = a)], from afT,

show normalizes a (f ’ S),

begin rewrite -beq, apply (normalizes_image_of_is_hom_on bT SsubT (H bT)) end

proposition normalizes_image_of_is_hom [group B] {a : A} {S : set A}

(H : normalizes a S) (f : A → B) [is_hom f] :

normalizes (f a) (f ’ S) :=

by rewrite [-image_lcoset_of_is_hom f a S, -image_rcoset_of_is_hom f S a,

↑normalizes at H, H]

proposition is_normal_in_image_image_univ [group B] {S : set A}

[H : is_normal S] (f : A → B) [is_hom f] :

is_normal_in (f ’ S) (f ’ univ) :=

take a, assume afT,

obtain b [buniv (beq : f b = a)], from afT,

show normalizes a (f ’ S),

begin rewrite -beq, apply (normalizes_image_of_is_hom (H b) f) end

end subgroupG

/- conjugation -/

definition conj [reducible] [group A] (a b : A) : A := b−1 * a * b

definition set_conj [reducible] [group A] (S : set A)(a : A) : set A := a−1 * S * a

-- conj^~ a ’ S

namespace conj_notation

infix ‘^‘ := conj

infix ‘^‘ := set_conj

end conj_notation

open conj_notation

section groupA

variables [group A]

proposition set_conj_eq_image_conj (S : set A) (a : A) : S^a = conj^~ a ’S :=
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eq.symm !image_comp

proposition set_conj_eq_self_of_normalizes {S : set A} {a : A} (H : normalizes a S) : S^a = S :=

by rewrite [lcoset_rcoset, ↑normalizes at H, -H, inv_lcoset_lcoset]

proposition normalizes_of_set_conj_eq_self {S : set A} {a : A} (H : S^a = S) : normalizes a S :=

by rewrite [-H at {1}, ↑set_conj, lcoset_rcoset, lcoset_inv_lcoset]

proposition set_conj_eq_self_iff_normalizes (S : set A) (a : A) : S^a = S ↔ normalizes a S :=

iff.intro normalizes_of_set_conj_eq_self set_conj_eq_self_of_normalizes

proposition set_conj_eq_self_of_mem_normalizer {S : set A} {a : A} (H : a ∈ normalizer S) :

S^a = S := set_conj_eq_self_of_normalizes H

proposition mem_normalizer_of_set_conj_eq_self {S : set A} {a : A} (H : S^a = S) :

a ∈ normalizer S := normalizes_of_set_conj_eq_self H

proposition set_conj_eq_self_iff_mem_normalizer (S : set A) (a : A) :

S^a = S ↔ a ∈ normalizer S :=

iff.intro mem_normalizer_of_set_conj_eq_self set_conj_eq_self_of_mem_normalizer

proposition conj_one (a : A) : a ^ (1 : A) = a :=

by rewrite [↑conj, one_inv, one_mul, mul_one]

proposition conj_conj (a b c : A) : (a^b)^c = a^(b * c) :=

by rewrite [↑conj, mul_inv, *mul.assoc]

proposition conj_inv (a b : A) : (a^b)−1 = (a−1)^b :=

by rewrite[mul_inv, mul_inv, inv_inv, mul.assoc]

proposition mul_conj (a b c : A) : (a * b)^c = a^c * b^c :=

by rewrite[↑conj, *mul.assoc, mul_inv_cancel_left]

end groupA

/- the kernel -/

definition ker [has_one B] (f : A → B) : set A := { x | f x = 1 }

section hasoneB

variable [has_one B]

proposition eq_one_of_mem_ker {f : A → B} {a : A} (H : a ∈ ker f) : f a = 1 := H

proposition mem_ker_iff (f : A → B) (a : A) : a ∈ ker f ↔ f a = 1 := iff.rfl
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proposition ker_eq_preimage_one (f : A → B) : ker f = f ’- ’{1} :=

ext (take x, by rewrite [mem_ker_iff, -mem_preimage_iff, mem_singleton_iff])

definition ker_in (f : A → B) (S : set A) : set A := ker f ∩ S

proposition ker_in_univ (f : A → B) : ker_in f univ = ker f :=

!inter_univ

end hasoneB

section groupAB

variables [group A] [group B]

variable {f : A → B}

proposition eq_of_mul_inv_mem_ker [is_hom f] {a1 a2 : A} (H : a1 * a2
−1 ∈ ker f) :

f a1 = f a2 :=

eq_of_mul_inv_eq_one (by rewrite [-hom_inv f, -hom_mul f]; exact H)

proposition mul_inv_mem_ker_of_eq [is_hom f] {a1 a2 : A} (H : f a1 = f a2) :

a1 * a2
−1 ∈ ker f :=

show f (a1 * a2
−1) = 1, by rewrite [hom_mul f, hom_inv f, H, mul.right_inv]

proposition eq_iff_mul_inv_mem_ker [is_hom f] (a1 a2 : A) : f a1 = f a2 ↔ a1 * a2
−1 ∈ ker f :=

iff.intro mul_inv_mem_ker_of_eq eq_of_mul_inv_mem_ker

proposition eq_of_mul_inv_mem_ker_in {G : set A} [is_subgroup G] [is_hom_on f G]

{a1 a2 : A} (a1G : a1 ∈ G) (a2G : a2 ∈ G) (H : a1 * a2
−1 ∈ ker_in f G) :

f a1 = f a2 :=

eq_of_mul_inv_eq_one (by rewrite [-hom_on_inv f a2G, -hom_on_mul f a1G (inv_mem a2G)];

exact and.left H)

proposition mul_inv_mem_ker_in_of_eq {G : set A} [is_subgroup G] [is_hom_on f G]

{a1 a2 : A} (a1G : a1 ∈ G) (a2G : a2 ∈ G) (H : f a1 = f a2) :

a1 * a2
−1 ∈ ker_in f G :=

and.intro

(show f (a1 * a2
−1) = 1,

by rewrite [hom_on_mul f a1G (inv_mem a2G), hom_on_inv f a2G, H, mul.right_inv])

(mul_mem a1G (inv_mem a2G))

proposition eq_iff_mul_inv_mem_ker_in {G : set A} [is_subgroup G] [is_hom_on f G]

{a1 a2 : A} (a1G : a1 ∈ G) (a2G : a2 ∈ G) :

f a1 = f a2 ↔ a1 * a2
−1 ∈ ker_in f G :=

iff.intro (mul_inv_mem_ker_in_of_eq a1G a2G) (eq_of_mul_inv_mem_ker_in a1G a2G)

-- Ouch! These versions are not equivalent to the ones before.

proposition eq_of_inv_mul_mem_ker [is_hom f] {a1 a2 : A} (H : a1
−1 * a2 ∈ ker f) :

74



f a1 = f a2 :=

eq.symm (eq_of_inv_mul_eq_one (by rewrite [-hom_inv f, -hom_mul f]; exact H))

proposition inv_mul_mem_ker_of_eq [is_hom f] {a1 a2 : A} (H : f a1 = f a2) :

a1
−1 * a2 ∈ ker f :=

show f (a1
−1 * a2) = 1, by rewrite [hom_mul f, hom_inv f, H, mul.left_inv]

proposition eq_iff_inv_mul_mem_ker [is_hom f] (a1 a2 : A) : f a1 = f a2 ↔ a1
−1 * a2 ∈ ker f :=

iff.intro inv_mul_mem_ker_of_eq eq_of_inv_mul_mem_ker

proposition eq_of_inv_mul_mem_ker_in {G : set A} [is_subgroup G] [is_hom_on f G]

{a1 a2 : A} (a1G : a1 ∈ G) (a2G : a2 ∈ G) (H : a1
−1 * a2 ∈ ker_in f G) :

f a1 = f a2 :=

eq.symm (eq_of_inv_mul_eq_one (by rewrite [-hom_on_inv f a1G, -hom_on_mul f (inv_mem a1G) a2G];

exact and.left H))

proposition inv_mul_mem_ker_in_of_eq {G : set A} [is_subgroup G] [is_hom_on f G]

{a1 a2 : A} (a1G : a1 ∈ G) (a2G : a2 ∈ G) (H : f a1 = f a2) :

a1
−1 * a2 ∈ ker_in f G :=

and.intro

(show f (a1
−1 * a2) = 1,

by rewrite [hom_on_mul f (inv_mem a1G) a2G, hom_on_inv f a1G, H, mul.left_inv])

(mul_mem (inv_mem a1G) a2G)

proposition eq_iff_inv_mul_mem_ker_in {G : set A} [is_subgroup G] [is_hom_on f G]

{a1 a2 : A} (a1G : a1 ∈ G) (a2G : a2 ∈ G) :

f a1 = f a2 ↔ a1
−1 * a2 ∈ ker_in f G :=

iff.intro (inv_mul_mem_ker_in_of_eq a1G a2G) (eq_of_inv_mul_mem_ker_in a1G a2G)

proposition eq_one_of_eq_one_of_injective [is_hom f] (H : injective f) {x : A}

(H’ : f x = 1) :

x = 1 :=

H (by rewrite [H’, hom_one f])

proposition eq_one_iff_eq_one_of_injective [is_hom f] (H : injective f) (x : A) :

f x = 1 ↔ x = 1 :=

iff.intro (eq_one_of_eq_one_of_injective H) (λ H’, by rewrite [H’, hom_one f])

proposition injective_of_forall_eq_one [is_hom f] (H : ∀ x, f x = 1 → x = 1) : injective f :=

take a1 a2, assume Heq,

have f (a1 * a2
−1) = 1, by rewrite [hom_mul f, hom_inv f, Heq, mul.right_inv],

eq_of_mul_inv_eq_one (H _ this)

proposition injective_of_ker_eq_singleton_one [is_hom f] (H : ker f = ’{1}) : injective f :=

injective_of_forall_eq_one

(take x, suppose x ∈ ker f, by rewrite [H at this]; exact eq_of_mem_singleton this)
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proposition ker_eq_singleton_one_of_injective [is_hom f] (H : injective f) : ker f = ’{1} :=

ext (take x, by rewrite [mem_ker_iff, mem_singleton_iff, eq_one_iff_eq_one_of_injective H])

variable (f)

proposition injective_iff_ker_eq_singleton_one [is_hom f] : injective f ↔ ker f = ’{1} :=

iff.intro ker_eq_singleton_one_of_injective injective_of_ker_eq_singleton_one

variable {f}

proposition eq_one_of_eq_one_of_inj_on {G : set A} [is_subgroup G] [is_hom_on f G]

(H : inj_on f G) {x : A} (xG : x ∈ G) (H’ : f x = 1) :

x = 1 :=

H xG one_mem (by rewrite [H’, hom_on_one f G])

proposition eq_one_iff_eq_one_of_inj_on {G : set A} [is_subgroup G] [is_hom_on f G]

(H : inj_on f G) {x : A} (xG : x ∈ G) [is_hom_on f G] :

f x = 1 ↔ x = 1 :=

iff.intro (eq_one_of_eq_one_of_inj_on H xG) (λ H’, by rewrite [H’, hom_on_one f G])

proposition inj_on_of_forall_eq_one {G : set A} [is_subgroup G] [is_hom_on f G]

(H : ∀0 x ∈ G, f x = 1 → x = 1) : inj_on f G :=

take a1 a2, assume a1G a2G Heq,

have f (a1 * a2
−1) = 1,

by rewrite [hom_on_mul f a1G (inv_mem a2G), hom_on_inv f a2G, Heq, mul.right_inv],

eq_of_mul_inv_eq_one (H (mul_mem a1G (inv_mem a2G)) this)

proposition inj_on_of_ker_in_eq_singleton_one {G : set A} [is_subgroup G] [is_hom_on f G]

(H : ker_in f G = ’{1}) : inj_on f G :=

inj_on_of_forall_eq_one

(take x, assume xG fxone,

have x ∈ ker_in f G, from and.intro fxone xG,

by rewrite [H at this]; exact eq_of_mem_singleton this)

proposition ker_in_eq_singleton_one_of_inj_on {G : set A} [is_subgroup G] [is_hom_on f G]

(H : inj_on f G) : ker_in f G = ’{1} :=

ext (take x,

begin

rewrite [↑ker_in, mem_inter_iff, mem_ker_iff, mem_singleton_iff],

apply iff.intro,

{intro H’, cases H’ with fxone xG, exact eq_one_of_eq_one_of_inj_on H xG fxone},

intro xone, rewrite xone, split, exact hom_on_one f G, exact one_mem

end)

variable (f)
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proposition inj_on_iff_ker_in_eq_singleton_one (G : set A) [is_subgroup G] [is_hom_on f G] :

inj_on f G ↔ ker_in f G = ’{1} :=

iff.intro ker_in_eq_singleton_one_of_inj_on inj_on_of_ker_in_eq_singleton_one

variable {f}

proposition conj_mem_ker [is_hom f] {a1 : A} (a2 : A) (H : a1 ∈ ker f) : a1^a2 ∈ ker f :=

show f (a1^a2) = 1,

by rewrite [↑conj, *(hom_mul f), hom_inv f, eq_one_of_mem_ker H, mul_one, mul.left_inv]

variable (f)

proposition is_subgroup_ker_in [instance] (S : set A) [is_subgroup S] [is_hom_on f S] :

is_subgroup (ker_in f S) :=

{| is_subgroup,
one_mem := and.intro (hom_on_one f S) one_mem,

mul_mem := λ a aker b bker,

obtain (fa : f a = 1) (aS : a ∈ S), from aker,

obtain (fb : f b = 1) (bS : b ∈ S), from bker,

and.intro (show f (a * b) = 1, by rewrite [hom_on_mul f aS bS, fa, fb, one_mul])

(mul_mem aS bS),

inv_mem := λ a aker,

obtain (fa : f a = 1) (aS : a ∈ S), from aker,

and.intro (show f (a−1) = 1, by rewrite [hom_on_inv f aS, fa, one_inv])

(inv_mem aS)

|}

proposition is_subgroup_ker [instance] [is_hom f] : is_subgroup (ker f) :=

begin

rewrite [-ker_in_univ f],

have is_hom_on f univ, from is_hom_on_of_is_hom f univ,

apply is_subgroup_ker_in f univ

end

proposition is_normal_in_ker_in [instance] (G : set A) [is_subgroup G] [is_hom_on f G] :

is_normal_in (ker_in f G) G :=

is_normal_in_of_forall_subset

(take x, assume xG, take y, assume yker,

obtain z [[(fz : f z = 1) zG] (yeq : x * z = y)], from yker,

have y = x * z * x−1 * x, by rewrite [yeq, inv_mul_cancel_right],

show y ∈ ker_in f G * x,

begin

rewrite this,

apply mul_mem_rcoset,

apply and.intro,

show f (x * z * x−1) = 1,
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by rewrite [hom_on_mul f (mul_mem xG zG) (inv_mem xG), hom_on_mul f xG zG, fz,

hom_on_inv f xG, mul_one, mul.right_inv],

show x * z * x−1 ∈ G, from mul_mem (mul_mem xG zG) (inv_mem xG)

end)

proposition is_normal_ker [instance] [H : is_hom f] : is_normal (ker f) :=

begin

rewrite [-ker_in_univ, -is_normal_in_univ_iff_is_normal],

apply is_normal_in_ker_in,

exact is_hom_on_of_is_hom f univ

end

end groupAB

section subgroupH

variables [group A] [group B] {H : set A} [is_subgroup H]

variables {f : A → B} [is_hom f]

proposition subset_ker_of_forall (hyp : ∀ x y, x * H = y * H → f x = f y) : H ⊆ ker f :=

take h, assume hH,

have h * H = 1 * H, by rewrite [lcoset_eq_self_of_mem hH, one_lcoset],

have f h = f 1, from hyp h 1 this,

show f h = 1, by rewrite [this, hom_one f]

proposition eq_of_lcoset_eq_lcoset_of_subset_ker {x y : A} (hyp0 : x * H = y * H)

(hyp1 : H ⊆ ker f) :

f x = f y :=

have y−1 * x ∈ H, from inv_mul_mem_of_lcoset_eq_lcoset hyp0,

eq.symm (eq_of_inv_mul_mem_ker (hyp1 this))

variables (H f)

proposition subset_ker_iff : H ⊆ ker f ↔ ∀ x y, x * H = y * H → f x = f y :=

iff.intro (λ h1 x y h0, eq_of_lcoset_eq_lcoset_of_subset_ker h0 h1) subset_ker_of_forall

end subgroupH

section subgroupGH

variables [group A] [group B] {G H : set A} [is_subgroup G] [is_subgroup H]

variables {f : A → B} [is_hom_on f G]

proposition subset_ker_in_of_forall (hyp0 : ∀0 x ∈ G, ∀0 y ∈ G, x * H = y * H → f x = f y)

(hyp1 : H ⊆ G) :

H ⊆ ker_in f G :=

take h, assume hH,

have hG : h ∈ G, from hyp1 hH,

and.intro

(have h * H = 1 * H, by rewrite [lcoset_eq_self_of_mem hH, one_lcoset],
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have f h = f 1, from hyp0 hG one_mem this,

show f h = 1, by rewrite [this, hom_on_one f G])

hG

proposition eq_of_lcoset_eq_lcoset_of_subset_ker_in {x : A} (xG : x ∈ G) {y : A} (yG : y ∈ G)

(hyp0 : x * H = y * H) (hyp1 : H ⊆ ker_in f G) :

f x = f y :=

have y−1 * x ∈ H, from inv_mul_mem_of_lcoset_eq_lcoset hyp0,

eq.symm (eq_of_inv_mul_mem_ker_in yG xG (hyp1 this))

variables (H f)

proposition subset_ker_in_iff :

H ⊆ ker_in f G ↔ (H ⊆ G ∧ ∀0 x ∈ G, ∀0 y ∈ G, x * H = y * H → f x = f y) :=

iff.intro

(λ h1, and.intro

(subset.trans h1 (inter_subset_right _ _))

(λ x xG y yG h0, eq_of_lcoset_eq_lcoset_of_subset_ker_in xG yG h0 h1))

(λ h, subset_ker_in_of_forall (and.right h) (and.left h))

end subgroupGH

/- the centralizer -/

section has_mulA

variable [has_mul A]

abbreviation centralizes [reducible] (a : A) (S : set A) : Prop := ∀0 b ∈ S, a * b = b * a

definition centralizer (S : set A) : set A := { a : A | centralizes a S }

abbreviation is_centralized_by (S T : set A) : Prop := T ⊆ centralizer S

abbreviation centralizer_in (S T : set A) : set A := T ∩ centralizer S

proposition mem_centralizer_iff_centralizes (a : A) (S : set A) :

a ∈ centralizer S ↔ centralizes a S := iff.refl _

proposition normalizes_of_centralizes {a : A} {S : set A} (H : centralizes a S) :

normalizes a S :=

ext (take b, iff.intro

(suppose b ∈ a * S,

obtain s [ains (beq : a * s = b)], from this,

show b ∈ S * a, by rewrite[-beq, H ains]; apply mem_image_of_mem _ ains)

(suppose b ∈ S * a,

obtain s [ains (beq : s * a = b)], from this,
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show b ∈ a * S, by rewrite[-beq, -H ains]; apply mem_image_of_mem _ ains))

proposition centralizer_subset_normalizer (S : set A) : centralizer S ⊆ normalizer S :=

λ a acent, normalizes_of_centralizes acent

proposition centralizer_subset_centralizer {S T : set A} (ssubt : S ⊆ T) :

centralizer T ⊆ centralizer S :=

λ x xCentT s sS, xCentT _ (ssubt sS)

end has_mulA

section groupA

variable [group A]

proposition is_subgroup_centralizer [instance] [group A] (S : set A) :

is_subgroup (centralizer S) :=

{| is_subgroup,
one_mem := λ b bS, by rewrite [one_mul, mul_one],

mul_mem := λ a acent b bcent c cS, by rewrite [mul.assoc, bcent cS, -*mul.assoc, acent cS],

inv_mem := λ a acent c cS, eq_mul_inv_of_mul_eq

(by rewrite [mul.assoc, -acent cS, inv_mul_cancel_left])|}
end groupA

/- the subgroup generated by a set -/

section groupA

variable [group A]

inductive subgroup_generated_by (S : set A) : A → Prop :=

| generators_mem : ∀ x, x ∈ S → subgroup_generated_by S x

| one_mem : subgroup_generated_by S 1

| mul_mem : ∀ x y, subgroup_generated_by S x → subgroup_generated_by S y →
subgroup_generated_by S (x * y)

| inv_mem : ∀ x, subgroup_generated_by S x → subgroup_generated_by S (x−1)

theorem generators_subset_subgroup_generated_by (S : set A) : S ⊆ subgroup_generated_by S :=

subgroup_generated_by.generators_mem

theorem is_subgroup_subgroup_generated_by [instance] (S : set A) :

is_subgroup (subgroup_generated_by S) :=

{| is_subgroup,
one_mem := subgroup_generated_by.one_mem S,

mul_mem := λ a amem b bmem, subgroup_generated_by.mul_mem a b amem bmem,

inv_mem := λ a amem, subgroup_generated_by.inv_mem a amem |}

theorem subgroup_generated_by_subset {S G : set A} [is_subgroup G] (H : S ⊆ G) :
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subgroup_generated_by S ⊆ G :=

begin

intro x xgenS,

induction xgenS with a aS a b agen bgen aG bG a agen aG,

{exact H aS},

{exact one_mem},

{exact mul_mem aG bG},

exact inv_mem aG

end

end groupA

end group_theory
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/-

Copyright (c) 2016 Jeremy Avigad. All rights reserved.

Released under Apache 2.0 license as described in the file LICENSE.

Authors: Jeremy Avigad

Turn a subgroup into a group on the corresponding subtype. Given

variables {A : Type} [group A] (G : set A) [is_subgroup G]

we have:

group_of G := G, viewed as a group

to_group_of G a := if a is in G, returns the image in group_of G, or 1 otherwise

to_subgroup a := given a : group_of G, return the underlying element

-/

import .basic

open set function subtype classical

variables {A B C : Type}

namespace group_theory

definition group_of (G : set A) : Type := subtype G

definition subgroup_to_group {G : set A} {|a : A|} (aG : a ∈ G) : group_of G := tag a aG

definition to_subgroup {G : set A} (a : group_of G) : A := elt_of a

proposition to_subgroup_mem {G : set A} (a : group_of G) : to_subgroup a ∈ G := has_property a

variables [group A] (G : set A) [is_subgroup G]

definition group_of.group [instance] : group (group_of G) :=

{| group,
mul := λ a b, subgroup_to_group (mul_mem (to_subgroup_mem a) (to_subgroup_mem b)),

mul_assoc := λ a b c, subtype.eq !mul.assoc,

one := subgroup_to_group (@one_mem A _ G _),

one_mul := λ a, subtype.eq !one_mul,

mul_one := λ a, subtype.eq !mul_one,

inv := λ a, tag (elt_of a)−1 (inv_mem (to_subgroup_mem a)),

mul_left_inv := λ a, subtype.eq !mul.left_inv

|}

proposition is_hom_group_to_subgroup [instance] : is_hom (@to_subgroup A G) :=

is_mul_hom.mk

(take g1 g2 : group_of G,
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show to_subgroup (g1 * g2) = to_subgroup g1 * to_subgroup g2,

by cases g1; cases g2; reflexivity)

noncomputable definition to_group_of (a : A) : group_of G :=

if H : a ∈ G then subgroup_to_group H else 1

proposition is_hom_on_to_group_of [instance] : is_hom_on (to_group_of G) G :=

take g1, assume g1G, take g2, assume g2G,

show to_group_of G (g1 * g2) = to_group_of G g1 * to_group_of G g2,

by rewrite [↑to_group_of, dif_pos g1G, dif_pos g2G, dif_pos (mul_mem g1G g2G)]

proposition to_group_to_subgroup : left_inverse (to_group_of G) to_subgroup :=

begin

intro a, rewrite [↑to_group_of, dif_pos (to_subgroup_mem a)],

apply subtype.eq, reflexivity

end

-- proposition to_subgroup_to_group {a : A} (aG : a ∈ G) : to_subgroup (to_group_of G a) = a :=

-- by rewrite [↑to_group_of, dif_pos aG]

-- curiously, in the next version, "by rewrite [↑to_group_of, dif_pos aG]" doesn’t work.

proposition to_subgroup_to_group : left_inv_on to_subgroup (to_group_of G) G :=

λ a aG, by xrewrite [dif_pos aG]

variable {G}

proposition inj_on_to_group_of : inj_on (to_group_of G) G :=

inj_on_of_left_inv_on (to_subgroup_to_group G)

variable (G)

proposition surj_on_to_group_of_univ : surj_on (to_group_of G) G univ :=

take y, assume yuniv, mem_image (to_subgroup_mem y) (to_group_to_subgroup G y)

proposition image_to_group_of_eq_univ : to_group_of G ’ G = univ :=

image_eq_of_maps_to_of_surj_on (maps_to_univ _ _) (surj_on_to_group_of_univ G)

proposition surjective_to_group_of : surjective (to_group_of G) :=

surjective_of_has_right_inverse (exists.intro _ (to_group_to_subgroup G))

variable {G}

proposition to_group_of_preimage_to_group_of_image {S : set A} (SsubG : S ⊆ G) :

(to_group_of G) ’- (to_group_of G ’ S) ∩ G = S :=

ext (take x, iff.intro

(assume H,
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obtain Hx (xG : x ∈ G), from H,

have to_group_of G x ∈ to_group_of G ’ S, from mem_of_mem_preimage Hx,

obtain y [(yS : y ∈ S) (Heq : to_group_of G y = to_group_of G x)], from this,

have y = x, from inj_on_to_group_of (SsubG yS) xG Heq,

show x ∈ S, by rewrite -this; exact yS)

(assume xS, and.intro

(mem_preimage (show to_group_of G x ∈ to_group_of G ’ S, from mem_image_of_mem _ xS))

(SsubG xS)))

end group_theory
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/-

Copyright (c) 2016 Jeremy Avigad. All rights reserved.

Released under Apache 2.0 license as described in the file LICENSE.

Authors: Andrew Zipperer, Jeremy Avigad

We provide two versions of the quoptient construction. They use the same names and notation:

one lives in the namespace ’quotient_group’ and the other lives in the namespace

’quotient_group_general’.

The first takes a group, A, and a normal subgroup, H. We have

quotient H := the quotient of A by H

qproj H a := the projection, with notation a’ * G

qproj H ’ s := the image of s, with notation s / G

extend H respf := given f : A → B respecting the equivalence relation, we get a function

f : quotient G → B

bar f := the above, G = ker f)

The definition is constructive, using quotient types. We prove all the characteristic properties.

As in the SSReflect library, we also provide a construction to quotient by an *arbitrary subgroup*.

Now we have

quotient H := the quotient of normalizer H by H

qproj H a := still denoted a ’* H, the projection when a is in normalizer H,

arbitrary otherwise

qproj H G := still denoted G / H, the image of the above

extend H G respf := given a homomorphism on G with ker_in G f ⊆ H, extends to a

homomorphism G / H

bar G f := the above, with H = ker_in f G

This quotient H is defined by composing the first one with the construction which turns

normalizer H into a group.

-/

import .subgroup_to_group theories.move

open set function subtype classical quot

namespace group_theory

open coset_notation

variables {A B C : Type}

/- the quotient group -/

namespace quotient_group
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variables [group A] (H : set A) [is_normal H]

definition lcoset_setoid [instance] : setoid A :=

setoid.mk (lcoset_equiv H) (equivalence_lcoset_equiv H)

definition quotient := quot (lcoset_setoid H)

private definition qone : quotient H := J 1 K

private definition qmul : quotient H → quotient H → quotient H :=

quot.lift2
(λ a b, J a * b K)
(λ a1 a2 b1 b2 e1 e2, quot.sound (lcoset_equiv_mul H e1 e2))

private definition qinv : quotient H → quotient H :=

quot.lift

(λ a, J a−1 K)
(λ a1 a2 e, quot.sound (lcoset_equiv_inv H e))

private proposition qmul_assoc (a b c : quotient H) :

qmul H (qmul H a b) c = qmul H a (qmul H b c) :=

quot.induction_on2 a b (λ a b, quot.induction_on c (λ c,

have H : J a * b * c K = J a * (b * c) K, by rewrite mul.assoc,

H))

private proposition qmul_qone (a : quotient H) : qmul H a (qone H) = a :=

quot.induction_on a (λ a’, show J a’ * 1 K = J a’ K, by rewrite mul_one)

private proposition qone_qmul (a : quotient H) : qmul H (qone H) a = a :=

quot.induction_on a (λ a’, show J 1 * a’ K = J a’ K, by rewrite one_mul)

private proposition qmul_left_inv (a : quotient H) : qmul H (qinv H a) a = qone H :=

quot.induction_on a (λ a’, show J a’−1 * a’ K = J 1 K, by rewrite mul.left_inv)

protected definition group [instance] : group (quotient H) :=

{| group,
mul := qmul H,

inv := qinv H,

one := qone H,

mul_assoc := qmul_assoc H,

mul_one := qmul_qone H,

one_mul := qone_qmul H,

mul_left_inv := qmul_left_inv H

|}

-- these theorems characterize the quotient group
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definition qproj (a : A) : quotient H := J a K

infix ‘ ’* ‘:65 := λ {A’ : Type} [group A’] a H’ [is_normal H’], qproj H’ a

infix ‘ / ‘ := λ {A’ : Type} [group A’] G H’ [is_normal H’], qproj H’ ’ G

proposition is_hom_qproj [instance] : is_hom (qproj H) :=

is_mul_hom.mk (λ a b, rfl)

variable {H}

proposition qproj_eq_qproj {a b : A} (h : a * H = b * H) : a ’* H = b ’* H :=

quot.sound h

proposition lcoset_eq_lcoset_of_qproj_eq_qproj {a b : A} (h : a ’* H = b ’* H) : a * H = b * H :=

quot.exact h

variable (H)

proposition qproj_eq_qproj_iff (a b : A) : a ’* H = b ’* H ↔ a * H = b * H :=

iff.intro lcoset_eq_lcoset_of_qproj_eq_qproj qproj_eq_qproj

proposition ker_qproj [is_subgroup H] : ker (qproj H) = H :=

ext (take a,

begin

rewrite [↑ker, mem_set_of_iff, -hom_one (qproj H), qproj_eq_qproj_iff,

one_lcoset],

show a * H = H ↔ a ∈ H, from iff.intro mem_of_lcoset_eq_self lcoset_eq_self_of_mem

end)

proposition qproj_eq_one_iff [is_subgroup H] (a : A) : a ’* H = 1 ↔ a ∈ H :=

have H : qproj H a = 1 ↔ a ∈ ker (qproj H), from iff.rfl,

by rewrite [H, ker_qproj]

variable {H}

proposition qproj_eq_one_of_mem [is_subgroup H] {a : A} (aH : a ∈ H) : a ’* H = 1 :=

iff.mpr (qproj_eq_one_iff H a) aH

proposition mem_of_qproj_eq_one [is_subgroup H] {a : A} (h : a ’* H = 1) : a ∈ H :=

iff.mp (qproj_eq_one_iff H a) h

variable (H)

proposition surjective_qproj : surjective (qproj H) :=

take y, quot.induction_on y (λ a, exists.intro a rfl)
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variable {H}

proposition quotient_induction {P : quotient H → Prop} (h : ∀ a, P (a ’* H)) : ∀ a, P a :=

quot.ind h

proposition quotient_induction2 {P : quotient H → quotient H → Prop}

(h : ∀ a1 a2, P (a1 ’* H) (a2 ’* H)) :

∀ a1 a2, P a1 a2 :=

quot.ind2 h

variable (H)

proposition image_qproj_self [is_subgroup H] : H / H = ’{1} :=

eq_of_subset_of_subset

(image_subset_of_maps_to

(take x, suppose x ∈ H,

show x ’* H ∈ ’{1},

from mem_singleton_of_eq (qproj_eq_one_of_mem ‘x ∈ H‘)))

(take x, suppose x ∈ ’{1},

have x = 1, from eq_of_mem_singleton this,

show x ∈ H / H, by rewrite this; apply mem_image_of_mem _ one_mem)

-- extending a function A → B to a function A / H → B

section respf

variable {H}

variables {f : A → B} (respf : ∀ a1 a2, a1 * H = a2 * H → f a1 = f a2)

definition extend : quotient H → B := quot.lift f respf

proposition extend_qproj (a : A) : extend respf (a ’* H) = f a := rfl

proposition extend_comp_qproj : extend respf ◦ (qproj H) = f := rfl

proposition image_extend (G : set A) : (extend respf) ’ (G / H) = f ’ G :=

by rewrite [-image_comp]

variable [group B]

proposition is_hom_extend [instance] [is_hom f] : is_hom (extend respf) :=

is_mul_hom.mk (take a b,

show (extend respf (a * b)) = (extend respf a) * (extend respf b), from

quot.induction_on2 a b (take a b, hom_mul f a b))
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proposition ker_extend : ker (extend respf) = ker f / H :=

eq_of_subset_of_subset

(quotient_induction

(take a, assume Ha : qproj H a ∈ ker (extend respf),

have f a = 1, from Ha,

show a ’* H ∈ ker f / H,

from mem_image_of_mem _ this))

(image_subset_of_maps_to

(take a, assume h : a ∈ ker f,

show extend respf (a ’* H) = 1, from h))

end respf

end quotient_group

/- the first homomorphism theorem for the quotient group -/

namespace quotient_group

variables [group A] [group B] (f : A → B) [is_hom f]

lemma eq_of_lcoset_equiv_ker {|a b : A|} (h : lcoset_equiv (ker f) a b) : f a = f b :=

have b−1 * a ∈ ker f, from inv_mul_mem_of_lcoset_eq_lcoset h,

eq.symm (eq_of_inv_mul_mem_ker this)

definition bar : quotient (ker f) → B := extend (eq_of_lcoset_equiv_ker f)

proposition bar_qproj (a : A) : bar f (a ’* ker f) = f a := rfl

proposition is_hom_bar [instance] : is_hom (bar f) := is_hom_extend _

proposition image_bar (G : set A) : bar f ’ (G / ker f) = f ’ G :=

by rewrite [↑bar, image_extend]

proposition image_bar_univ : bar f ’ univ = f ’ univ :=

by rewrite [↑bar, -image_eq_univ_of_surjective (surjective_qproj (ker f)),

image_extend]

proposition surj_on_bar : surj_on (bar f) univ (f ’ univ) :=

by rewrite [↑surj_on, image_bar_univ]; apply subset.refl

proposition ker_bar_eq : ker (bar f) = ’{1} :=

by rewrite [↑bar, ker_extend, image_qproj_self]

proposition injective_bar : injective (bar f) :=

injective_of_ker_eq_singleton_one (ker_bar_eq f)
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end quotient_group

/- a generic morphism extension property -/

section

variables [group A] [group B] [group C]

variables (G : set A) [is_subgroup G]

variables (g : A → C) (f : A → B)

noncomputable definition gen_extend : C → B := λ c, f (inv_fun g G 1 c)

variables {G g f}

proposition eq_of_ker_in_subset {a1 a2 : A} (a1G : a1 ∈ G) (a2G : a2 ∈ G)

[is_hom_on g G] [is_hom_on f G] (Hker : ker_in g G ⊆ ker f) (H’ : g a1 = g a2) :

f a1 = f a2 :=

have memG : a1
−1 * a2 ∈ G, from mul_mem (inv_mem a1G) a2G,

have a1
−1 * a2 ∈ ker_in g G, from inv_mul_mem_ker_in_of_eq a1G a2G H’,

have a1
−1 * a2 ∈ ker_in f G, from and.intro (Hker this) memG,

show f a1 = f a2, from eq_of_inv_mul_mem_ker_in a1G a2G this

proposition gen_extend_spec [is_hom_on g G] [is_hom_on f G] (Hker : ker_in g G ⊆ ker f)

{a : A} (aG : a ∈ G) : gen_extend G g f (g a) = f a :=

eq_of_ker_in_subset (inv_fun_spec’ aG) aG Hker (inv_fun_spec aG)

proposition is_hom_on_gen_extend [is_hom_on g G] [is_hom_on f G] (Hker : ker_in g G ⊆ ker f) :

is_hom_on (gen_extend G g f) (g ’ G) :=

have is_subgroup (g ’ G), from is_subgroup_image g G,

take c1, assume c1gG : c1 ∈ g ’ G,

take c2, assume c2gG : c2 ∈ g ’ G,

let ginv := inv_fun g G 1 in

have Hginv : maps_to ginv (g ’ G) G, from maps_to_inv_fun one_mem,

have ginvc1 : ginv c1 ∈ G, from Hginv c1gG,

have ginvc2 : ginv c2 ∈ G, from Hginv c2gG,

have ginvc1c2 : ginv (c1 * c2) ∈ G, from Hginv (mul_mem c1gG c2gG),

have HH : ∀0 c ∈ g ’ G, g (ginv c) = c,

from λ a aG, right_inv_on_inv_fun_of_surj_on _ (surj_on_image g G) aG,

have eq1 : g (ginv c1) = c1, from HH c1gG,

have eq2 : g (ginv c2) = c2, from HH c2gG,

have eq3 : g (ginv (c1 * c2)) = c1 * c2, from HH (mul_mem c1gG c2gG),

have g (ginv (c1 * c2)) = g ((ginv c1) * (ginv c2)),

by rewrite [eq3, hom_on_mul g ginvc1 ginvc2, eq1, eq2],

have f (ginv (c1 * c2)) = f (ginv c1 * ginv c2),

from eq_of_ker_in_subset (ginvc1c2) (mul_mem ginvc1 ginvc2) Hker this,

show f (ginv (c1 * c2)) = f (ginv c1) * f (ginv c2),
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by rewrite [this, hom_on_mul f ginvc1 ginvc2]

end

/- quotient by an arbitrary group, not necessarily normal -/

namespace quotient_group_general

variables [group A] (H : set A) [is_subgroup H]

lemma is_normal_to_group_of_normalizer [instance] :

is_normal (to_group_of (normalizer H) ’ H) :=

have H1 : is_normal_in (to_group_of (normalizer H) ’ H)

(to_group_of (normalizer H) ’ (normalizer H)),

from is_normal_in_image_image (subset_normalizer_self H) (to_group_of (normalizer H)),

have H2 : to_group_of (normalizer H) ’ (normalizer H) = univ,

from image_to_group_of_eq_univ (normalizer H),

is_normal_of_is_normal_in_univ (by rewrite -H2; exact H1)

section quotient_group

open quotient_group

noncomputable definition quotient : Type := quotient (to_group_of (normalizer H) ’ H)

noncomputable definition group_quotient [instance] : group (quotient H) :=

quotient_group.group (to_group_of (normalizer H) ’ H)

noncomputable definition qproj : A → quotient H :=

qproj (to_group_of (normalizer H) ’ H) ◦ (to_group_of (normalizer H))

infix ‘ ’* ‘:65 := λ {A’ : Type} [group A’] a H’ [is_subgroup H’], qproj H’ a

infix ‘ / ‘ := λ {A’ : Type} [group A’] G H’ [is_subgroup H’], qproj H’ ’ G

proposition is_hom_on_qproj [instance] : is_hom_on (qproj H) (normalizer H) :=

have H0 : is_hom_on (to_group_of (normalizer H)) (normalizer H),

from is_hom_on_to_group_of (normalizer H),

have H1 : is_hom_on (quotient_group.qproj (to_group_of (normalizer H) ’ H)) univ,

from iff.mpr (is_hom_on_univ_iff (quotient_group.qproj (to_group_of (normalizer H) ’ H)))

(is_hom_qproj (to_group_of (normalizer H) ’ H)),

is_hom_on_comp H0 H1 (maps_to_univ (to_group_of (normalizer H)) (normalizer H))

proposition is_hom_on_qproj’ [instance] (G : set A) [is_normal_in H G] :

is_hom_on (qproj H) G :=

is_hom_on_of_subset (qproj H) (subset_normalizer G H)

proposition ker_in_qproj : ker_in (qproj H) (normalizer H) = H :=
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let tg := to_group_of (normalizer H) in

begin

rewrite [↑ker_in, ker_eq_preimage_one, ↑qproj, preimage_comp, -ker_eq_preimage_one],

have is_hom_on tg H, from is_hom_on_of_subset _ (subset_normalizer_self H),

have is_subgroup (tg ’ H), from is_subgroup_image tg H,

krewrite [ker_qproj, to_group_of_preimage_to_group_of_image (subset_normalizer_self H)]

end

end quotient_group

variable {H}

proposition qproj_eq_qproj_iff {a b : A} (Ha : a ∈ normalizer H) (Hb : b ∈ normalizer H) :

a ’* H = b ’* H ↔ a * H = b * H :=

by rewrite [lcoset_eq_lcoset_iff, eq_iff_inv_mul_mem_ker_in Ha Hb, ker_in_qproj,

-inv_mem_iff, mul_inv, inv_inv]

proposition qproj_eq_qproj {a b : A} (Ha : a ∈ normalizer H) (Hb : b ∈ normalizer H)

(h : a * H = b * H) :

a ’* H = b ’* H :=

iff.mpr (qproj_eq_qproj_iff Ha Hb) h

proposition lcoset_eq_lcoset_of_qproj_eq_qproj {a b : A}

(Ha : a ∈ normalizer H) (Hb : b ∈ normalizer H) (h : a ’* H = b ’* H) :

a * H = b * H :=

iff.mp (qproj_eq_qproj_iff Ha Hb) h

variable (H)

proposition qproj_mem {a : A} {G : set A} (aG : a ∈ G) : a ’* H ∈ G / H :=

mem_image_of_mem _ aG

proposition qproj_one : 1 ’* H = 1 := hom_on_one (qproj H) (normalizer H)

variable {H}

proposition mem_of_qproj_mem {a : A} (anH : a ∈ normalizer H)

{G : set A} (HsubG : H ⊆ G) [is_subgroup G] [is_normal_in H G]

(aHGH : a ’* H ∈ G / H): a ∈ G :=

have GH : G ⊆ normalizer H, from subset_normalizer G H,

obtain b [bG (bHeq : b ’* H = a ’* H)], from aHGH,

have b * H = a * H, from lcoset_eq_lcoset_of_qproj_eq_qproj (GH bG) anH bHeq,

have a ∈ b * H, by rewrite this; apply mem_lcoset_self,

have a ∈ b * G, from lcoset_subset_lcoset b HsubG this,

show a ∈ G, by rewrite [lcoset_eq_self_of_mem bG at this]; apply this
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proposition qproj_eq_one_iff {a : A} (Ha : a ∈ normalizer H) : a ’* H = 1 ↔ a ∈ H :=

by rewrite [-hom_on_one (qproj H) (normalizer H), qproj_eq_qproj_iff Ha one_mem, one_lcoset,

lcoset_eq_self_iff]

proposition qproj_eq_one_of_mem {a : A} (aH : a ∈ H) : a ’* H = 1 :=

iff.mpr (qproj_eq_one_iff (subset_normalizer_self H aH)) aH

proposition mem_of_qproj_eq_one {a : A} (Ha : a ∈ normalizer H) (h : a ’* H = 1) : a ∈ H :=

iff.mp (qproj_eq_one_iff Ha) h

variable (H)

section

open quotient_group

proposition surj_on_qproj_normalizer : surj_on (qproj H) (normalizer H) univ :=

have H0 : surj_on (to_group_of (normalizer H)) (normalizer H) univ,

from surj_on_to_group_of_univ (normalizer H),

have H1 : surj_on (quotient_group.qproj (to_group_of (normalizer H) ’ H)) univ univ,

from surj_on_univ_of_surjective univ (surjective_qproj _),

surj_on_comp H1 H0
end

variable {H}

proposition quotient_induction {P : quotient H → Prop} (hyp : ∀0 a ∈ normalizer H, P (a ’* H)) :

∀ a, P a :=

surj_on_univ_induction (surj_on_qproj_normalizer H) hyp

proposition quotient_induction2 {P : quotient H → quotient H → Prop}

(hyp : ∀0 a1 ∈ normalizer H, ∀0 a2 ∈ normalizer H, P (a1 ’* H) (a2 ’* H)) :

∀ a1 a2, P a1 a2 :=

surj_on_univ_induction2 (surj_on_qproj_normalizer H) hyp

variable (H)

proposition image_qproj_self : H / H = ’{1} :=

eq_of_subset_of_subset

(image_subset_of_maps_to

(take x, suppose x ∈ H,

show x ’* H ∈ ’{1},

from mem_singleton_of_eq (qproj_eq_one_of_mem ‘x ∈ H‘)))

(take x, suppose x ∈ ’{1},

have x = 1, from eq_of_mem_singleton this,

show x ∈ H / H,

by rewrite [this, -qproj_one H]; apply mem_image_of_mem _ one_mem)
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section respf

variable (H)

variables [group B] (G : set A) [is_subgroup G] (f : A → B)

noncomputable definition extend : quotient H → B := gen_extend G (qproj H) f

variables [is_hom_on f G] [is_normal_in H G]

private proposition aux : is_hom_on (qproj H) G :=

is_hom_on_of_subset (qproj H) (subset_normalizer G H)

local attribute [instance] aux

variables {H f}

private proposition aux’ (respf : H ⊆ ker f) : ker_in (qproj H) G ⊆ ker f :=

subset.trans

(show ker_in (qproj H) G ⊆ ker_in (qproj H) (normalizer H),

from inter_subset_inter_left _ (subset_normalizer G H))

(by rewrite [ker_in_qproj]; apply respf)

variable {G}

proposition extend_qproj (respf : H ⊆ ker f) {a : A} (aG : a ∈ G) :

extend H G f (a ’* H) = f a :=

gen_extend_spec (aux’ G respf) aG

proposition image_extend (respf : H ⊆ ker f) {s : set A} (ssubG : s ⊆ G) :

extend H G f ’ (s / H) = f ’ s :=

begin

rewrite [-image_comp],

apply image_eq_image_of_eq_on,

intro a amems,

apply extend_qproj respf (ssubG amems)

end

variable (G)

proposition is_hom_on_extend [instance] (respf : H ⊆ ker f) : is_hom_on (extend H G f) (G / H) :=

by unfold extend; apply is_hom_on_gen_extend (aux’ G respf)

variable {G}

proposition ker_in_extend [is_subgroup G] (respf : H ⊆ ker f) (HsubG : H ⊆ G) :

ker_in (extend H G f) (G / H) = (ker_in f G) / H :=
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begin

apply ext,

intro aH,

cases surj_on_qproj_normalizer H (show aH ∈ univ, from trivial) with a atemp,

cases atemp with anH aHeq,

rewrite -aHeq,

apply iff.intro,

{ intro akerin,

cases akerin with aker ain,

have a ’* H ∈ G / H, from ain,

have a ∈ G, from mem_of_qproj_mem anH HsubG this,

have a ’* H ∈ ker (extend H G f), from aker,

have extend H G f (a ’* H) = 1, from this,

have f a = extend H G f (a ’* H), from eq.symm (extend_qproj respf ‘a ∈ G‘),

have f a = 1, by rewrite this; assumption,

have a ∈ ker_in f G, from and.intro this ‘a ∈ G‘,

show a ’* H ∈ (ker_in f G) / H, from qproj_mem H this},

intro aHker,

have aker : a ∈ ker_in f G,

begin

have Hsub : H ⊆ ker_in f G, from subset_inter respf HsubG,

have is_normal_in H (ker_in f G),

from subset.trans (inter_subset_right (ker f) G) (subset_normalizer G H),

apply (mem_of_qproj_mem anH Hsub aHker)

end,

have a ∈ G, from and.right aker,

have f a = 1, from and.left aker,

have extend H G f (a ’* H) = 1,

from eq.trans (extend_qproj respf ‘a ∈ G‘) this,

show a ’* H ∈ ker_in (extend H G f) (G / H),

from and.intro this (qproj_mem H ‘a ∈ G‘)

end

end respf

attribute quotient [irreducible]

end quotient_group_general

/- the first homomorphism theorem for general quotient groups -/

namespace quotient_group_general

variables [group A] [group B] (G : set A) [is_subgroup G]

variables (f : A → B) [is_hom_on f G]
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noncomputable definition bar : quotient (ker_in f G) → B :=

extend (ker_in f G) G f

proposition bar_qproj {a : A} (aG : a ∈ G) : bar G f (a ’* ker_in f G) = f a :=

extend_qproj (inter_subset_left _ _) aG

proposition is_hom_on_bar [instance] : is_hom_on (bar G f) (G / ker_in f G) :=

have is_subgroup (ker f ∩ G), from is_subgroup_ker_in f G,

have is_normal_in (ker f ∩ G) G, from is_normal_in_ker_in f G,

is_hom_on_extend G (inter_subset_left _ _)

proposition image_bar {s : set A} (ssubG : s ⊆ G) : bar G f ’ (s / ker_in f G) = f ’ s :=

have is_subgroup (ker f ∩ G), from is_subgroup_ker_in f G,

have is_normal_in (ker f ∩ G) G, from is_normal_in_ker_in f G,

image_extend (inter_subset_left _ _) ssubG

proposition surj_on_bar : surj_on (bar G f) (G / ker_in f G) (f ’ G) :=

by rewrite [↑surj_on, image_bar G f (@subset.refl _ G)]; apply subset.refl

proposition ker_in_bar : ker_in (bar G f) (G / ker_in f G) = ’{1} :=

have H0 : ker_in f G ⊆ ker f, from inter_subset_left _ _,

have H1 : ker_in f G ⊆ G, from inter_subset_right _ _,

by rewrite [↑bar, ker_in_extend H0 H1, image_qproj_self]

proposition inj_on_bar : inj_on (bar G f) (G / ker_in f G) :=

inj_on_of_ker_in_eq_singleton_one (ker_in_bar G f)

end quotient_group_general

end group_theory
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