A Framework for Establishing *Climate Resilient Communities*

Planning for an Uncertain Future

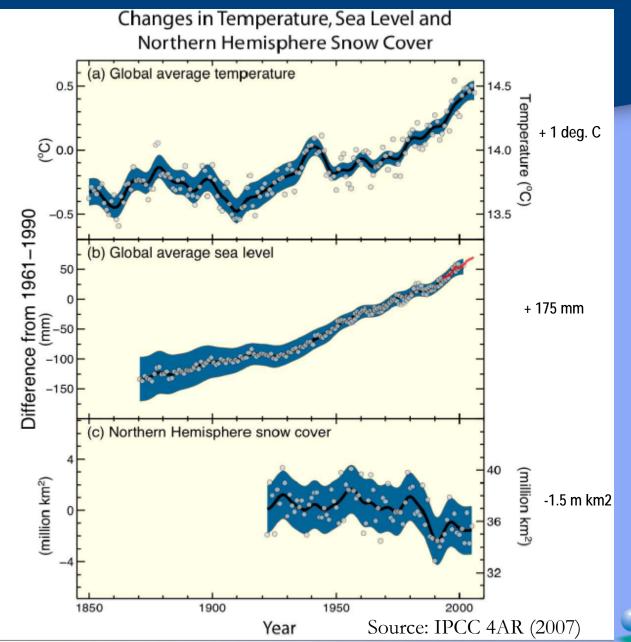
Phil Pasteris Principal Technologist Global Water Resources CH2M HILL Portland, Oregon

Phillip.Pasteris@ch2m.com 503.736.4301 Armin Munévar, P.E. Senior Technologist Global Water Resources CH2M HILL San Diego, CA 92101

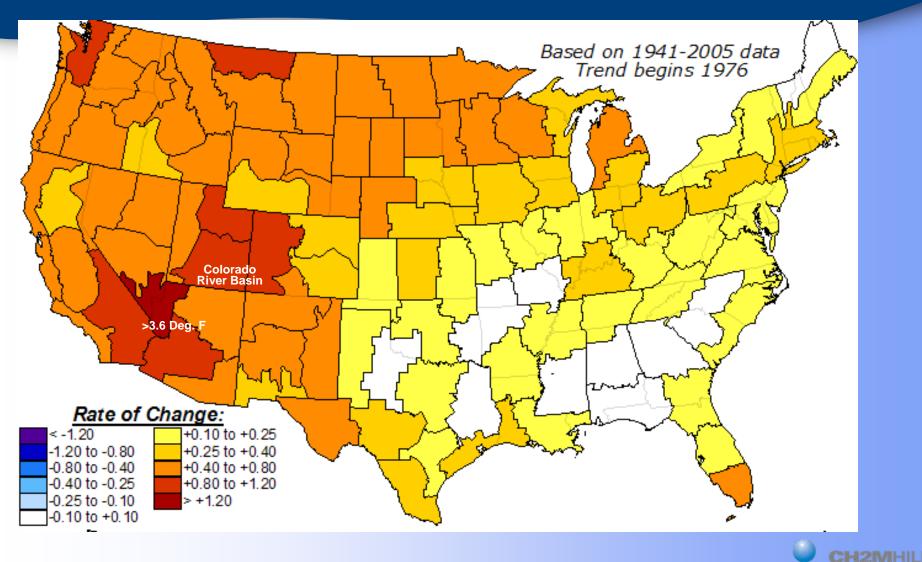
amunevar@ch2m.com 619.687.0120 Ext. 7218

Fundamental Issues – Climate Change

- A planning problem at local, national and global levels
- The degree, nature, and timing of the impacts are potentially large, but uncertain
- "Policymakers look to climate change science to answer two critical questions:
 - What can we do to prepare for the impacts of climate change (adaptation);
 - What steps might be taken to slow it (mitigation)?"
 - Richard Alley, Professor, Penn State University



A Brief Recap of Climate Observations

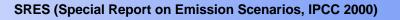

Global Temperatures, Sea Levels, and Snow Cover

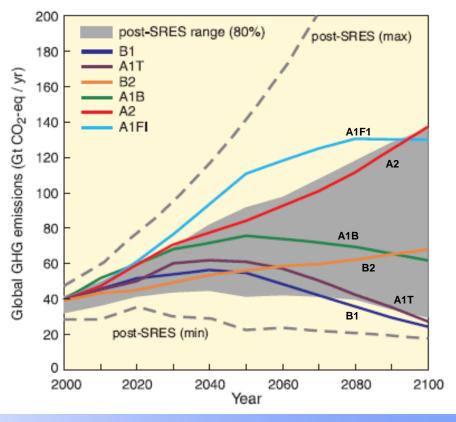
CH2MHILL

Observed U.S. Temperature Trends

Rate of Change Long-Term Temperature Trend Degrees F / Decade, Starting in 1976

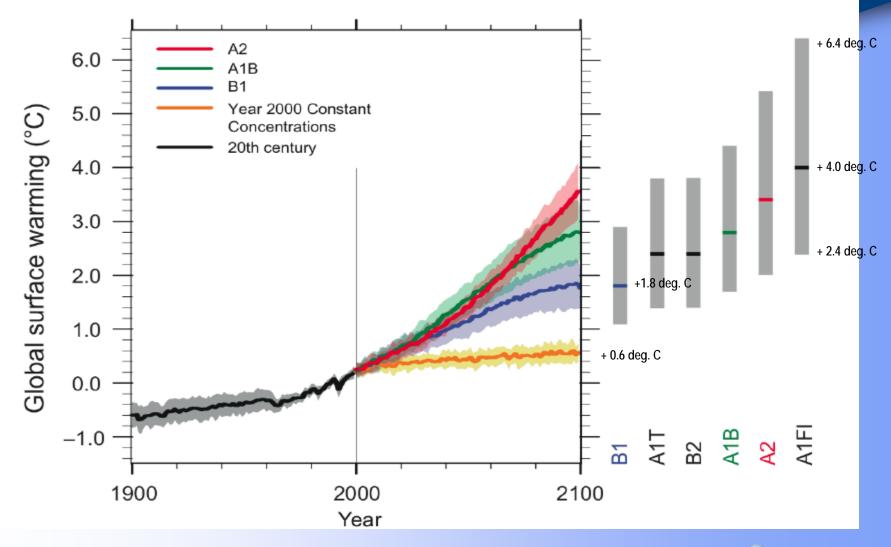
Source: Climate Prediction Center (2008)



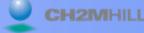

A Brief Recap of Climate Change Projections

Emission Scenarios Developed by Intergovernmental Panel on Climate Change

"Scenario Family"	Description
A1 – Rapid Growth A1F1 - Fossil Intensive	Second Highest Greenhouse Emissions
A1T - Non-fossil	
A1B – Balanced	
A2 – Heterogeneous High Population Growth	Highest Greenhouse Emissions
Slow Economic and Technology Change	
B1 – Convergent World	Lowest Greenhouse Emissions
Same Population as A1, more service and information technology.	
B2 – Intermediate Population growth, local solutions.	Second Lowest Greenhouse Emission



Scenarios for GHG emissions from 2000 to 2100 in the absence of additional climate policies.



Multi-Model Projected Temperature Increases

Multi-model Averages and Assessed Ranges for Surface Warming

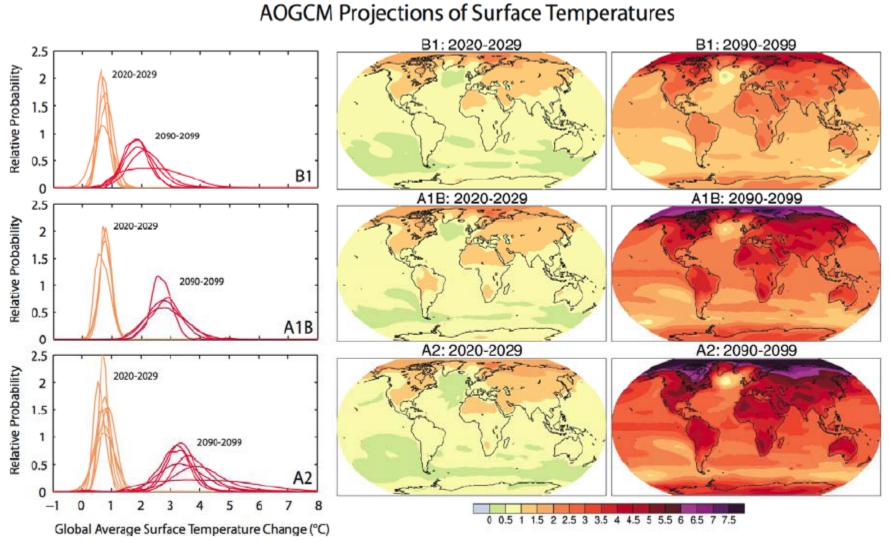
Source: IPCC 4AR (2007)

Multi-Model Projected Temperature & Sea Level Increases

Table SPM.3. Projected global average surface warming and sea level rise at the end of the 21st century. {10.5, 10.6, Table 10.7}

	Temperature °C at 2090-2099 rela		Sea Level Rise (m at 2090-2099 relative to 1980-1999)		
Case	Best estimate	<i>Likely</i> range	Model-based range excluding future rapid dynamical changes in ice flow		
Constant Year 2000 concentrations ^b	0.6	0.3 – 0.9	NA		
B1 scenario	1.8	1.1 – 2.9	0.18 – 0.38		
A1T scenario	2.4	1.4 – 3.8	0.20 - 0.45		
B2 scenario	2.4	1.4 – 3.8	0.20 - 0.43		
A1B scenario	2.8	1.7 – 4.4	0.21 - 0.48		
A2 scenario	3.4	2.0 - 5.4	0.23 - 0.51		
A1FI scenario	4.0	2.4 - 6.4	0.26 - 0.59		

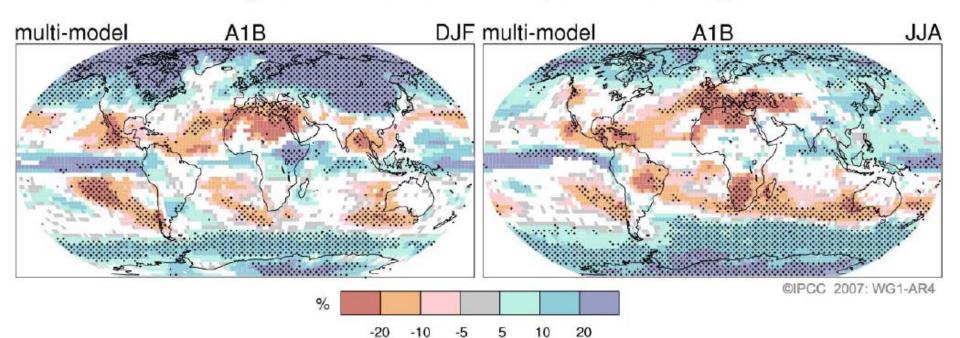
Table notes:


• These estimates are assessed from a hierarchy of models that encompass a simple climate model, several Earth System Models of Intermediate Complexity and a large number of Atmosphere-Ocean General Circulation Models (AOGCMs).

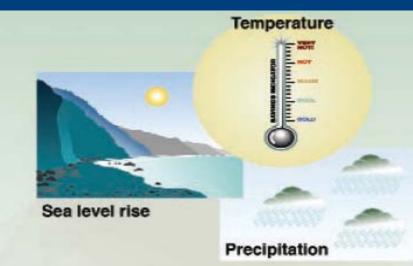
Year 2000 constant composition is derived from AOGCMs only.

Source: IPCC 4AR (2007)

Spatial Temperature Projections (Atmosphere-Ocean GCM)



Source: IPCC 4AR (2007)

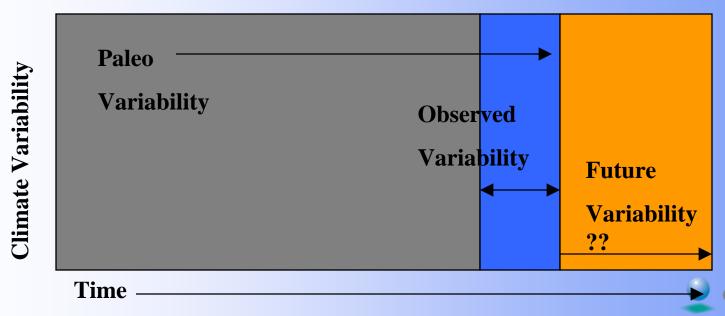

Spatial Precipitation Projections

- Very likely increases at high-latitudes, while decreases are likely in most subtropical areas
- Indications that wet regions will be wetter and dry regions drier
- Prediction is complex and still not consensus for many regions


Projected Patterns of Precipitation Changes

Some Sectors will be Impacted More than Others

Water Resources Sector is Leading Area for Adaptation



Climate Variability and Uncertainty

Climate Variability: Past, Present, Future

- Observed climate and hydrology is only a small piece of the puzzle
- Must recognize that insights to hydroclimatic variability come from paleo, observed, and future views of variability

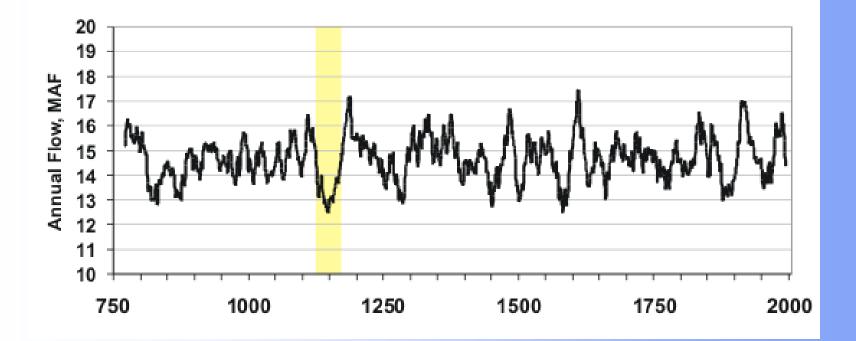
CH2MHILL

Dealing with Time - Climate "Sudden Impact?"

Confluence of Mississippi and Missouri Rivers, August 1993. Extensive floods in the Mississippi River Basin during the spring and summer of 1993 caused \$20 billion in damages. (Photograph, Srenco Photography, St. Louis, Mo.) USGS Kansas

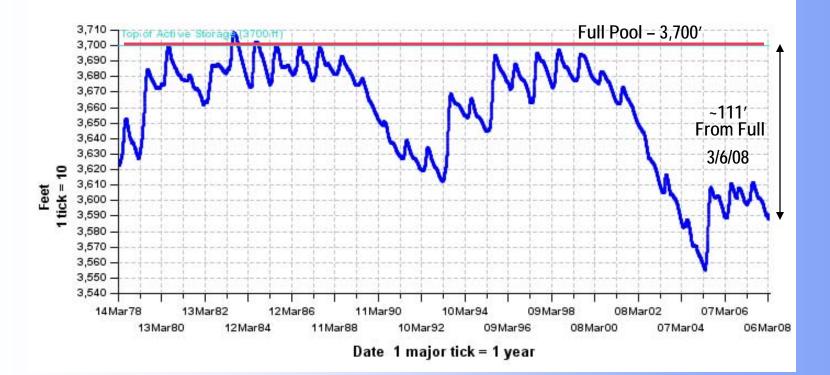
Dealing With Time - Climate "Un-Sudden Impact?"

Muir and Riggs Glaciers, Alaska 1941 - 2004



"An American public that is more informed about global warming isn't necessarily one that is more concerned about it." - Researchers at Texas A&M University

http://www.usatoday.com/weather/climate/globalwarming/2008-04-07climate_N.htm

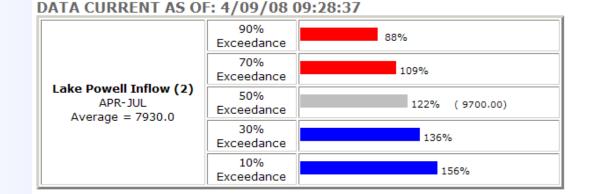

Paleo Climate Record – Colorado River

Meko et al. (2007) reconstruction of annual streamflow for the Colorado River at Lees Ferry, 762-2005, 20-year running mean in black (annual values not shown). The yellow bar highlights the severe and sustained mid-1100s drought.

Recent Data – Colorado River

Reservoir storage in Lake Powell and Lake Mead has decreased during the past 8 years. Reservoir storage in Lake Powell is 45 percent of capacity. Storage in Lake Mead is 50 percent of capacity.

April 1, 2008 WSF – Colorado River


United States Department of Agriculture NRCS Natural Resources Conservation Service

NWCC Home About Us Products Publications News Partnerships Contact Us

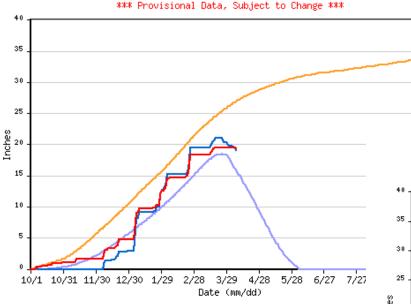
April, 2008 Streamflow Forecast Probability Chart for California

COLORADO RIVER BASIN Percent Exceedance Forecasting Charts

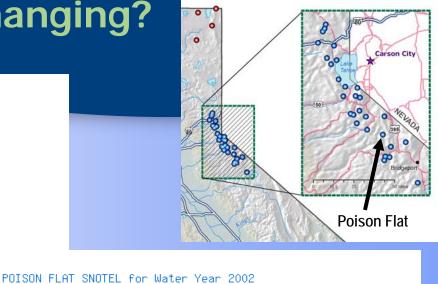
Potentially the Highest Inflow Since 1997 (142%)

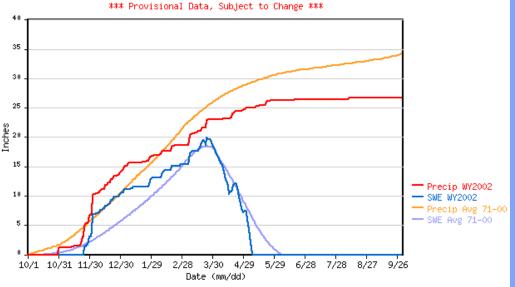
These forecasts are coordinated between NRCS and other State and Federal agencies. Forecast values are in 1,000s acre feet unless otherwise noted.

The average is computed for the 1961-1990 base period.


- The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural volume actual volume may be affected by upstream water management.

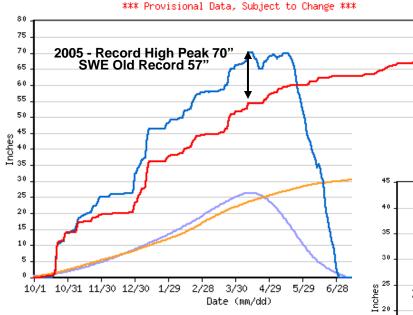
A Closer Look at the West

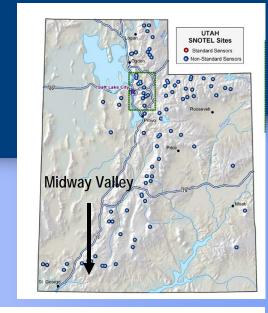


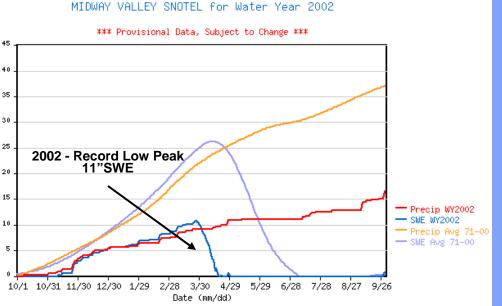

Is Western Snowpack Changing?

POISON FLAT SNOTEL for Water Year 2008

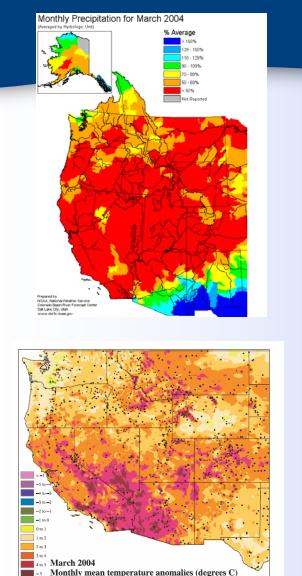
What happened to the "smooth" snowpack accumulation?






Is Western Snowpack Changing?

MIDWAY VALLEY SNOTEL for Water Year 2005


Wide variations in peak snowpacks.

Rapid Intra-Annual Changes? – March 2004

Lp. 1. March 2004 observed monthly mean temperature anomalies in degrees Celsius NRCS SNOTEL sites are shown as triangles, and NWS sites are shown as circles. Contours are derived using the PRISM system (http://uxuo.co.snt.edu/nrsmn/).

Lack of precipitation

Warm temperatures

Perfect storm for snowpack reduction

(Pagano, Pasteris, Dettinger, Redmond EOS 2004)

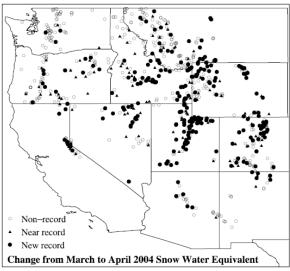
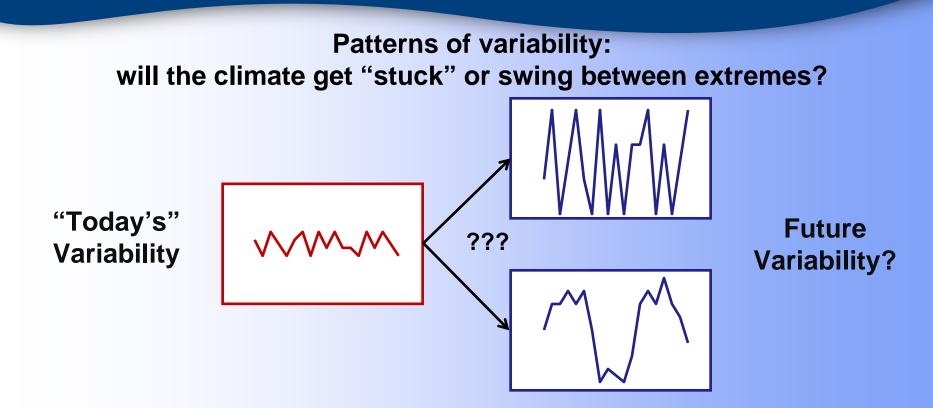


Fig. 2. The 1 March to 1 April 2004 change in SWE at NRCS snow course and SNOTEL sites. Sites that set new records for the greatest decrease or smallest increase are shown as filled circles. Sites that had the second largest change on record are shown as filled triangles, and all remaining sites are shown as hollow circles.

Table 1. Summary of Mountain Snowpack (Snow Water Equivalent) Changes

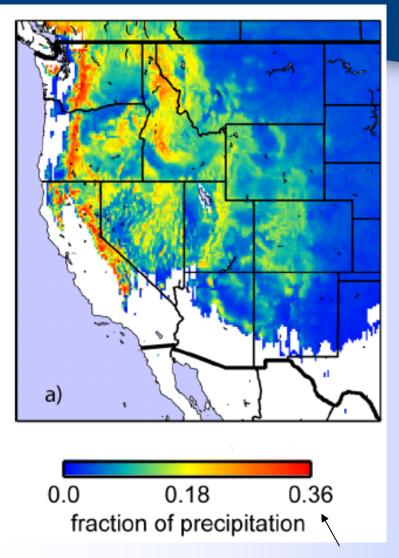

Between 1 March and 1 April 2004.

		na r opin i	
	Statewide	Statewide	Statewide
	% of	% of	% of
State/Area	Average,	Average,	Average,
	1 March	1 April	Change
	2004	2004	
Arizona	74	22	-51
Sierra/Tahoe	113	70	-35
Colorado	90	64	-26
Idaho	105	81	-25
Montana	93	78	-16
Nevada	118	64	-54
New Mexico	80	37	-43
Oregon	126	96	-30
Utah	109	70	-39
Washington	93	86	-7
Wyoming	91	71	-19

21/11/12

Many things are still unknown, hard if not impossible to project

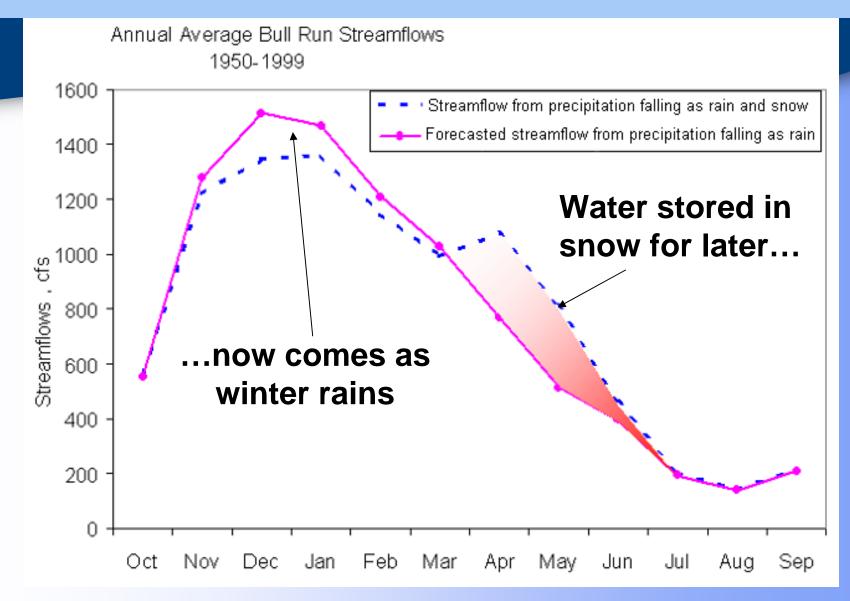
Precipitation: will there be more or less?



Are there thresholds, tipping points, surprises?

(Pagano, Garen 2005)

Annual fraction of snow + rain that would fall as rain instead of snow

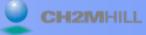

A +3°C change (+5.4°F... as soon as 2060-2100?) in average temperature means less snow (red areas mean more vulnerable)

Pagano, 2008; Maurer et al, 2002

Most vulnerable

Bull Run Study: Streamflow impacts from snow changes

Pagano, 2008 From Stickel, WGA/WSWC Water Policy Conf, 2007, based on Palmer et al



Integrating GCC With Water Resources

Global Climate Change Integration A Continuous Process With Water Managers

1. Establish Climate Access

- Observed historical datasets (station data)
- Observed gridded datasets (PRISM, GCM)
- Projected climate change datasets (GCMs)
- Applications that integrate observed and projected data to produce client-driven scenarios

ACIS Daily/Monthly Data (NOAA Regional Climate Centers)

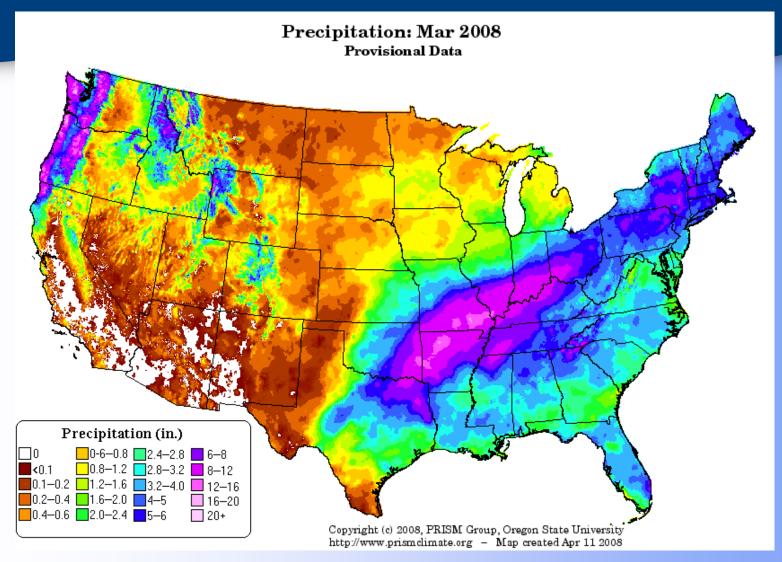
http://climod.nrcc.com	mell.edu/r	unClimoo	l/e7957fc242	2434a33/4 - Mic	ĸ
<u>File E</u> dit <u>V</u> iew F <u>a</u> vori	ites <u>T</u> ools	<u>H</u> elp			
🚱 Back 🝷 💮 👻 🙎) 🛛 🔎 Sea	rch 🛛 📩 F	avorites 🥝	🕜 🎓 🖏	
Address 🙆 http://climod.n	rcc.cornell.e	edu/runClir	nod/e7957fc24	2434a33/4	
				🔁 GCC 🛅 GHG	
		ougin 5	f lavontes [-
Daily Lister					
Station: PINNACL	E PEAK				
State: AZ					
ID: 026603					
Latitude: 33.73					
Longitude: -111. Elevation: 2565		ees			
Station period of		1: 04/2	2/2002-03	3/23/2008	
CLIMOD product: 1					
Creation Time: 03		08 13:1	L9 EDT		
Column Delimiter	: tab				
Date Max Temp		Min Te	amo	Precip	
	degF	deaF	inch	ricorp	
01/01/2008	63	40	0.00		
01/02/2008	64	51	0.00		
01/03/2008	63	48	0.00		
01/04/2008	67	49	0.01		
01/05/2008	64	53	0.04		
01/06/2008	55 51	49 45	0.08		
01/07/2008 01/08/2008	58	38	0.00		
01/09/2008	56	41	0.00		
01/10/2008	58	39	0.00		
01/11/2008	58	42	0.00		
01/12/2008	62	42	0.00		
01/13/2008	63	43	0.00		
01/14/2008	62	45	0.00		
01/15/2008 01/16/2008	60 58	42 40	0.00		
01/17/2008	54	31	0.00		
01/18/2008	54	31	0.00		
01/19/2008	59	36	0.00		
01/20/2008	61	41	0.00		
01/21/2008	55	38	0.00		
01/22/2008	60	42	0.00		
01/23/2008	62	43	0.00		
01/24/2008 01/25/2008	59 58	40 40	0.05		
01/25/2008	58 64	40	0.09		
01/27/2008	56	44	0.85		
01/28/2008	56	46	1.71		
01/29/2008	53	36	0.00		
01/30/2008	54	35	0.00		
01/31/2008	51	32	0.00		

	c.cornell	.edu/runC	limod/e79	957fc242	434a33/3	- Micros	oft Intern	et Explore	er						
<u>File Edit View</u> F			ielp												
 C Back - 🕤 - 💌	_	Search	- ·	ites 🔗	1	- 🛍 🖏									
Address Address						ve									
ACIS CH2M						а сно 🕞	Google	🗁 Hydro	🕞 Me 🧃	🖰 Mkt	🗀 Ref			⊖ Wy	🔊 сна
		brough	in Minu	ionico [1000		_ coogie		(Pince				— …	(e) chi
Monthly Time	e Serie	s													
Station: PINNA						e: AZ			026603						
Latitude: 33.73	degrees	5 Longitu	de: -111	.86 degi	rees Elev	vation: 2	2565 feet								
Station period o	f recor	d: 04/22/	2002 - 0	3/23/200	08										
					-					_					
CLIMOD Prod								24/2008	13:17 ED	Т					
Element: Precip			ıch		Ana	lysis: St	m								
Max allowable	-	•													
Lowest Accepta	ıble Qu	ality of I	Data: Ra	w data											
Year(s)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annua	վ	
2002	-999z	-999z	-999z	-999u	0.00	0.00	1.30	0.46	1.66	0.57	0.45	0.70	-9990	1	
2003	0.60	4.33	2.27	0.25	0.00	0.00	0.65	1.67	0.05	1.34	1.38	0.53a	13.07		
2004	0.74	1.54	2.69	2.15	0.00	0.00	0.22	0.63	0.73	1.38	1.35	3.78	15.21		
2005	4.00	6.64	0.67	0.51	0.00	0.00	2.09	2.50	0.04	0.95	0.00	0.00	17.40)	
2006	0.00	0.00	2.04	0.09	0.43	0.11	2.48	1.20	3.19	0.86	0.00	0.37	10.77		
2007	1.49	0.46	1.62	0.56	0.00	0.00	0.57	1.58	0.20	0.21	0.52	4.72b	11.93		
2008	3.62	0.41	-999h	-999z	-999z	-999z	-999z	-999z	-999z	-999z	-999z	-999z	-999	i	
Normals	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999	-999		
Max value	4.00	6.64	2.69	2.15	0.43	0.11	2.48	2.50	3.19	1.38	1.38	4.72	17.40)	
Min value	0.00	0.00	0.67	0.09	0.00	0.00	0.22	0.46	0.04	0.21	0.00	0.00	10.77		
Mean	1.74	2.23	1.86	0.71	0.07	0.02	1.22	1.34	0.98	0.89	0.62	1.68	13.68	3	
Median	1.12	1.00	2.04	0.51	0.00	0.00	0.98	1.39	0.47	0.91	0.49	0.62	13.07	,	
Std Dev	1.68	2.67	0.77	0.83	0.18	0.04	0.91	0.75	1.25	0.45	0.62	2.02	2.65		
Skewness	0.66	1.13	-0.95	1.94	2.45	2.45	0.49	0.40	1.40	-0.41	0.46	1.00	0.56		
# years	6	6	5	5	6	6	6	6	6	6	6	6	5		

Flags:

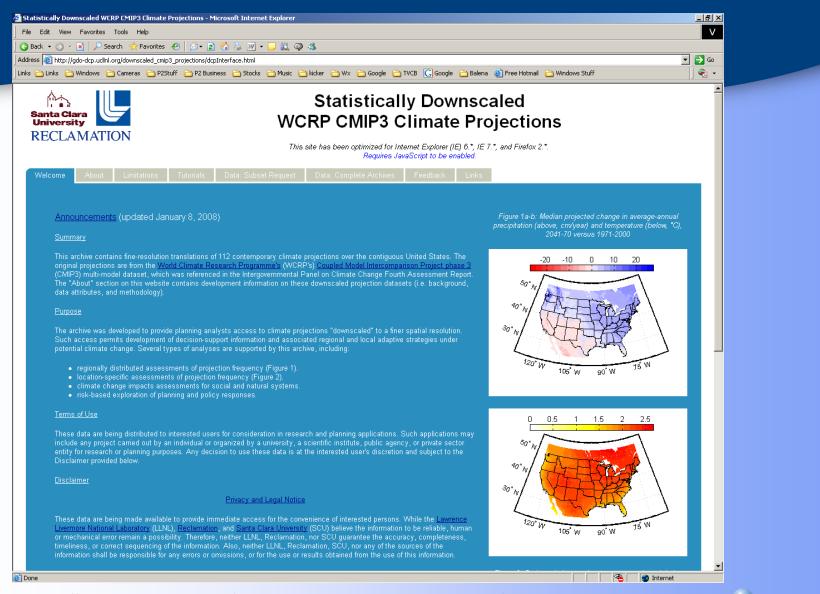
a = 1, b = 2, c = 3, ..., or z = 26 or more missing days in a month or missing months in a year.

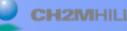
A = Accumulation over more than one day, S = Subsequent


Notes:

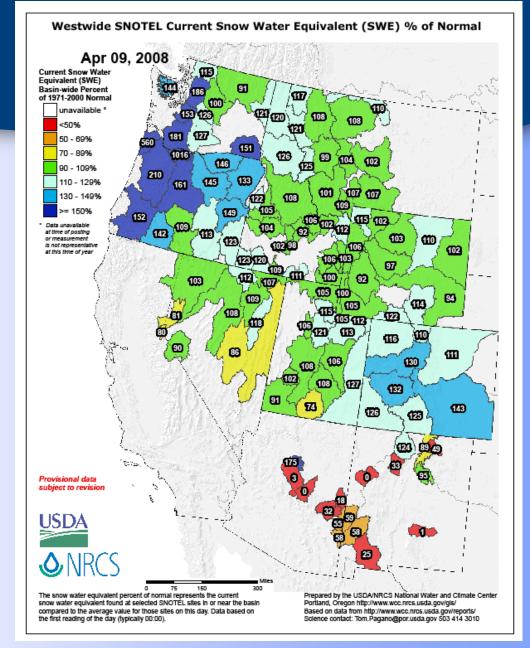
Long-term means based on columns. Thus, the sum (or average) of the monthly values may not equal the annual value.

http://www.rcc-acis.org/


Gridded Climate Information The PRISM Group

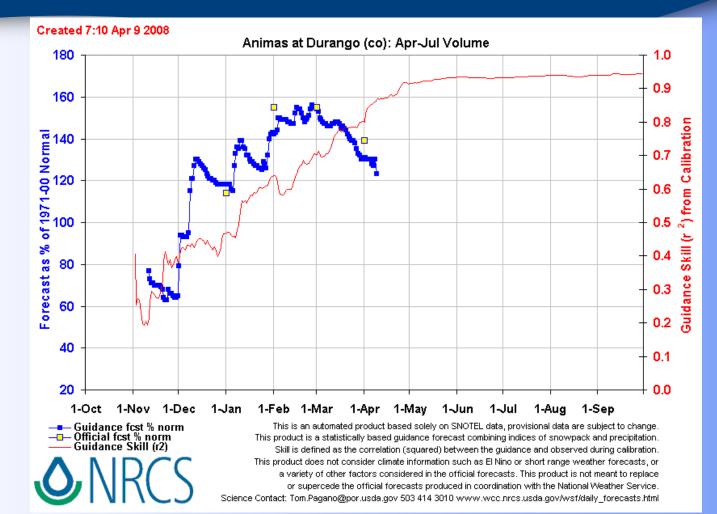

http://www.prism.oregonstate.edu/

Statistically Downscaled Climate Projections Ed Maurer, et al.



http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/dcpInterface.html

Westwide Snowpack Map (NRCS, NWCC)


http://www.wcc.nrcs.usda.gov/

Daily WSF Guidance Update - NRCS

- Uses the SNOTEL data network
- Captures intra-month trends
- Answers the questions
 "how has this
 'big storm' or
 'extended dry
 period'
 affecting my
 WSF?

2. Develop Risk Analysis and Scenario Planning

- "Preparing for Climate Change: A Guidebook for Local, Regional, and State Governments"
- Establishing *"Climate Resilient Communities"*
- Focuses on the process to assess climate impacts and risk.
- Designing a response
- Workbook-style with checklists, milestones

PREPARING FOR CLIMATE CHANGE A Guidebook for Local, Regional, and State Governments

Written by Center for Science in the Earth System (The Climate Impacts Group) Joint Institute for the Study of the Atmosphere and Ocean University of Washington

King County, Washington

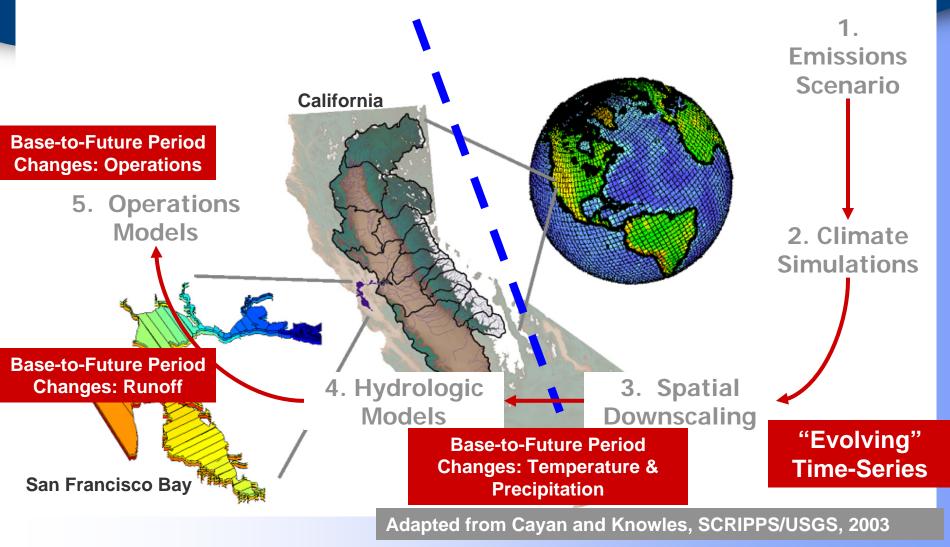
With an Introduction by King County Executive Ron Sims

What is a "Climate Resilient Community?"

- One that takes proactive steps to prepare for (i.e. reduce the vulnerabilities and risks associated with) climate change impacts
- Creates preparedness plans that examine sectors that may be impacted by climate change
- King County, WA (water supply, floods)
- Olympia, WA (sea level rise / stormwater)

3. Develop Adaptive Strategies

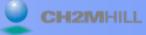
- 1. Initiate a climate resiliency effort (scope, sectors, and resources)
- 2. Conduct a climate resiliency study (sensitivity, adaptive capacity, vulnerability, risk, thresholds, and prioritization)
- 3. Set preparedness goals and develop your preparedness plan (vision and principles)
- 4. Implement your preparedness plan (make sure you have the right tools and information)
- 5. Measure your progress and update your plan (track resilience measures)


3. Adaptive Strategies Planning Process

- Identify local climate vulnerabilities by "sector"
- Develop and implement preparedness plan

2. Plan-	3. Current and	7. Projected	VU	ULNERABILITY ASSESSMENT			
ning Area	Expected Stresses to Systems in This Planning Area	This Impacts to Sensitivity of		10&11. Adaptive Capacity of Systems in This Planning Area (see Table 8.2)	12. Vulnerability of Systems In this Planning Area		
Water supply	Managing summer drought (current and expected)	More drought, summer water stress likely due to lower winter snowpack and warmer, drier summers. Population growth will compound this problem.	High – water supply is very sensitive to changes in snowpack.	Low – numerous regulatory constraints on reallocating water, options for expanding supply limited, summer demand already greater than supply.	High		
Stormwa- ter man-	Combined sewer overflows (CSOs)	More localized flooding,	High – CSO events are	Medium – can upgrade the	Medium		

4. Implementing an Adaptive Strategy – Example Water Supply


5. Assess Effectiveness, Update and Manage Operations

- Periodically review your basic assumptions
 - Vulnerability and risk based on recent events
 - Goals and sectors affected by recent events
- Update the data used for your risk model using observed and new GCC model information
- Review action plan based on recent events and potential GCC projections
- Educate those affected by your plan about necessary changes based on recent events or new GCC projections

Global Climate Change Integration A Continuous Process With Water Managers

Summary

- The data, technology, and expertise are now available to help create "Climate Resilient Communities."
- A process and framework can be implemented that can provide water managers with realistic steps to
 - Assess climate risk and vulnerabilities
 - Develop resilient climate change preparedness plans.
 - Manage resources
- A significant amount of work remains
- Never been an opportunity of this magnitude to meet customer's needs.

Thank You!

