
Multilingual Resources and Multilingual Applications - Regular Papers

87

A functional database framework for querying very large multi-layer corpora

Roman Schneider

Institut für deutsche Sprache

R5 6-13, D-68161 Mannheim

schneider@ids-mannheim.de

Abstract

Linguistic query systems are special purpose IR applications. We present a novel state-of-the-art approach for the efficient

exploitation of very large linguistic corpora, combining the advantages of relational database management systems (RDBMS) with

the functional MapReduce programming model. Our implementation uses the German DEREKO reference corpus with multi-layer

linguistic annotations and several types of text-specific metadata, but the proposed strategy is language-independent and adaptable

to large-scale multilingual corpora.

Keywords: corpus storage, multi-layer corpora, corpus retrieval, database systems

1. Introduction

In recent years, the quantitative examination of natural

language phenomena has become one of the

predominant paradigms within (computational)

linguistics. Both fundamental research on the basic

principles of human language, as well as the

development of speech and language technology,

increasingly rely on the empirical verification of

assumptions, rules, and theories. More data are better

data (Church, & Mercer, 1993): Consequently, we notice

a growing number of national initiatives related to the

building of large representative datasets for

contemporary world languages. Besides written (and

sometimes spoken) language samples, these corpora

usually contain vast collections of morphosyntactic,

phonetic, semantic etc. annotations, plus text- or corpus-

specific metadata. The downside of this trend is

obvious: Even with specialized applications, our ability

to store linguistic data is often bigger than the ability to

process all this data.

A lot of essential work towards the querying of

linguistic corpora goes into data representation,

integration of different annotation systems, and the

formulation of query languages (e.g., Rehm et al., 2008;

Zeldes et al., 2009; Kepser, Mönnich & Morawietz,

2010). But the scaling problem still remains: As we go

beyond corpus sizes of some million words, and at the

same time increase the number of annotation systems

and search keys, query costs rise disproportionately.

This is due to the fact that unlike traditional IR systems,

corpus retrieval systems not only have to deal with the

“horizontal” representation of textual data, but with

heterogeneous metadata on all levels of linguistic

description. And, of course, the exploration of inter-

relationships between annotations becomes more and

more challenging as the number of annotation systems

increases. Given this context, we present a novel

approach to scale up to billion-word corpora, using the

example of the multi-layer annotated German Reference

Corpus DEREKO.

2. The Data

The German Reference Corpus DEREKO currently

comprises more than four billion words and constitutes

the largest linguistically motivated collection of

contemporary German. It contains fictional, scientific,

and newspaper texts – as well as several other text types

– and is annotated morphosyntactically with three

competing systems (Connexor, Xerox, TreeTagger). The

automated enrichment with additional metadata is

underway.

Published in: Hedeland, Hanna/Schmidt, Thomas/Wörner, Kai (eds.): Multilingual Resources and Multilingual Applications.
Proceedings of the Conference of the German Society for Computational Linguistics and Language Technology (GSCL) 2011. -

Hamburg: Universität Hamburg, 2011. pp. 87-92. (Working Papers In Multilingualism Series B 96)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver des Instituts für Deutsche Sprache

https://core.ac.uk/display/83653620?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Multilingual Resources and Multilingual Applications - Regular Papers

88

Figure 1: Response times for nested SQL queries with three search keys (logarithmic scaled axis)

3. Existing Approaches

We empirically evaluated the most prominent existing

querying approaches, and contrasted them with our

functional model (the full paper will contain our detailed

series of measurements). Given the reasonable

assumptions that XML/SGML-based markup languages

are more suitable for data exchange than for efficient

storing and retrieval, and that traditional file-based data

storage is less robust and powerful than database

management systems, we focused on the following

strategies:

i. In-Memory Search: Due to the fact that a

computer’s main memory is still the fastest form of

data storage, there are attempts to implement in-

memory databases even for considerably large

corpora (Pomikálek, Rychlý & Kilgarriff, 2009).

These indexless systems perform well for unparsed

texts, but are strongly limited in terms of storage

size and therefore cannot deal with data-intensive

multi-layer annotations.

ii. N-Gram Tables: In order to overcome physical

limitations, newer approaches use database

management systems and decompose sequences of

strings into indexed n-gram tables (Davies, 2005).

This allows queries over a limited number of search

expressions, but space requirements for increasing

values of n are enormous. Sentence-external queries

with regular expressions or NOT-queries – both are

crucial for comprehensive linguistic exploration –

cannot use the n-gram-based indexes and thus

perform rather poor.

iii. Advanced SQL: Another strategy is to make use of

the relational power of sub-queries and joins within

a RDBMS. Chiarcos et al. (2008) use an

intermediate language between query formulation

and database backend; Bird et al. (2005) present an

algorithm for the direct translation of linguistic

queries into SQL. This approach uses absolute word

positions, and therefore allows proximity queries

without limitation of word distances. But again,

even with the aid of the integrated cost-based

optimizer (CBO), response times for increasing

numbers of search keys become extremely long. We

evaluated the proposed strategy on 1, 10, 100, 1000,

Multilingual Resources and Multilingual Applications - Regular Papers

89

Figure 2: MapReduce processes for a concatenated query with eight search keys

iv. and 4000 million word corpora with rare-, low-,

mid-, high-, and top-level search keys and found out

that concatenated queries soon exceed the capability

of our reference server because nested loops

generate an immense workload. Figure 1 shows the

response times in seconds for the query “select

count(t1.co_sentenceid) from tb_token t1, (select

co_id, co_sentenceid from tb_token where

co_token=token1) t3, (select co_id, co_sentenceid

from tb_token where co_token = token2) t2 where

co_token = token3 and t1.co_sentenceid =

t2.co_sentenceid and t1.co_sentenceid =

t3.co_sentenceid and t1.co_id > t2.co_id and

t2.co_id > t3.co_id;”, using three search keys on

identical metadata types and a single-column index.

This query simply counts the number of sentences

that contain three specified tokens (token1, token2,

token3) in a fixed order. Compared to a similar

query on the 4000 Mio corpus with one search key

(5s for a top-level search) or two search keys (56s),

the increase of response time is obviously

disproportional (301s). It gets remarkably less

performant for searches on different metadata types

(token, lemma, part-of-speech etc.) using multi-

column indexes. Furthermore, by adding text-

specific metada restrictions like text type or

publication year, this querying strategy produces

response times of several hours and thereby

becomes fully unacceptable for real-time

applications.

4. Design and Implementation

As our evaluation shows, existing approaches do not

handle queries with complex metadata on very large

datasets sufficiently. In order to overcome bottlenecks,

we propose a strategy that allows the distribution of data

and processor-intensive computation over several

processor cores – or even cluster of machines – and

facilitates the partition of complex queries at runtime

into independent single queries that can be executed in

parallel. It is based on two presuppositions:

i. Mature relational DBMS can be used effectively to

maintain parsed texts and linguistic metadata. We

intensively evaluated different types of tables (heap

tables, partitioned tables, index organized tables) as

well as different index types (B-tree, bitmap,

concatenated, functional) for the distributed storing

and retrieval of linguistic data.

Multilingual Resources and Multilingual Applications - Regular Papers

90

Figure 3: Web-based retrieval form with our sample query

ii. The MapReduce programming model supports

distributed programming and tackles large-data

problems. Though MapReduce is already in use in a

wide range of data-intensive applications (Lin &

Dyer, 2010), its principle of “divide and conquer”

has not been employed for corpus retrieval yet.

In order to prove the feasibility of our approach, we

implemented our corpus storage and retrieval framework

on a commodity low-end server (quad-core

microprocessor with 2.67 GHz clock rate, 16GB RAM).

For the reliable measurement of query execution times,

and especially to avoid caching effects, we always used

a cold-started 64-bit database engine.)

Figure 2 illustrates the map/reduce processes for a

complex query, using eight dictinct search keys on

different metadata types: Find all sentences containing a

determiner immediately followed by a proper noun

ending on “er”, immediately followed by a noun,

immediately follwed by the lemma “oder”, followed by

a determiner (any distance), immediately followed by a

plural noun, followed by the lemma “sein” (any

distance). Within a “map” step, the original query is

partitioned into eight separate key-value pairs. Keys

represent linguistic units (position, token, lemma, part-

of-speech, etc.), values may be the actual content. Thus,

we can simulate regular expressions (a feature that is

often demanded for advanced corpus retrieval systems,

but difficult to implement for very large datasets).

The queries can be processed in parallel and pass their

results (sentence/position) to temporary tables. The

Multilingual Resources and Multilingual Applications - Regular Papers

91

subsequent “reduce” processes filter out inappropriate

results step by step. Usually, this cannot be executed in

parallel, because each reduction produces the basis for

the next step. But our framework, implemented with the

help of stored procedures within the RDBMS,

overcomes this restriction by dividing the process tree

into multiple sub-trees. The reduce processes for each

sub-tree are scheduled simultaneously, and aggregate

their results after they are finished. So the seven reduce

steps of our example can be executed within only four

parallel stages.

Our concatenated sample query with eight muti-type

search keys on a four billion word corpus took less than

four minutes, compared with several hours when

employing SQL joins as in 3 (iii). The parallel

MapReduce framework is invoked by an extensible

web-based retrieval form (see figure 3) and stores the

search results within the RDBMS, thus making it easy to

reuse them for further statistical processing. Additional

metadata restrictions (genre, topic, location, date) are

translated into separate map processes and

reduced/merged in parallel to the main search.

5. Summary

The results of our study demonstrate that the joining of

relational DBMS technology with a functional/parallel

computing framework like MapReduce combines the

best of both worlds for linguistically motivated large-

scale corpus retrieval. On our reference server, it clearly

outperforms other existing approaches. For the future,

we plan some scheduling refinements of our parallel

framework, as well as support for additional levels of

linguistic description and metadata types.

6. References

Church, K., Mercer, R. (1993): Introduction to the

Special Issue on Computational Linguistics Using

Large Corpora. Computational Linguistics 19:1,

pp. 1-24.

Rehm, G., Schonefeld, O., Witt, A., Chiarcos, C.,

Lehmberg, T. (2008): A Web-Platform for Preserving,

Exploring, Visualising and Querying Linguistic

Corpora and other Resources. Procesamiento del

Lenguaje Natural 41, pp. 155-162.

Zeldes, A., Ritz, J., Lüdeling, A., Chiarcos, C. (2009):

ANNIS: A Search Tool for Multi-Layer Annotated

Corpora. Proceedings of Corpus Linguistics 2009.

July 20-23, Liverpool, UK.

Kepser, S., Mönnich, U., Morawietz, F. (2010): Regular

Query Techniques for XML-Documents. Metzing, D.,

Witt, A. (Eds): Linguistic modeling of information

and Markup Languages, Springer, pp. 249-266.

Pomikálek, J., Rychlý, P., Kilgarriff, A. (2009): Scaling

to Billion-plus Word Corpora. Advances in

Computational Linguistics 41, pp. 3-13.

Davies, M. (2005): The advantage of using relational

databases for large corpora. International Journal of

Corpus Linguistics 10 (3), pp. 307-334.

Chiarcos, C., Dipper, S., Götze, M., Leser, U., Lüdeling,

A., Ritz, J., Stede, M. (2008): A Flexible

Framework for Integrating Annotations from

Different Tools and Tag Sets. Traitement Automatique

des Langues 49(2), pp. 271-293.

Bird, S., Chen, Y., Davidson, S., Lee, H., Zhen, Y.

(2005): Extending Xpath to Support Linguistic

Queries. Workshop on Programming Language

Technologies for XML (Plan-X).

Lin, J., Dyer, C. (2010): Data-Intensive Text Processing

with MapReduce. Morgan & Claypool Synthesis

Lectures on Human Language Technologies.

