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Abstract

Linguistic  query systems  are  special  purpose  IR  applications.  We present  a  novel  state-of-the-art  approach  for  the  efficient  

exploitation of very large linguistic corpora, combining the advantages of relational database management systems (RDBMS) with 

the functional MapReduce programming model. Our implementation uses the German DEREKO reference corpus with multi-layer 

linguistic annotations and several types of text-specific metadata, but the proposed strategy is language-independent and adaptable  

to large-scale multilingual corpora.
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1. Introduction

In recent years, the quantitative examination of natural 

language  phenomena  has  become  one  of  the 

predominant  paradigms  within  (computational) 

linguistics.  Both  fundamental  research  on  the  basic 

principles  of  human  language,  as  well  as  the 

development  of  speech  and  language  technology, 

increasingly  rely  on  the  empirical  verification  of 

assumptions,  rules,  and theories.  More data are better 

data (Church, & Mercer, 1993): Consequently, we notice 

a growing number of national initiatives related to the 

building  of  large  representative  datasets  for 

contemporary  world  languages.  Besides  written  (and 

sometimes  spoken)  language  samples,  these  corpora 

usually  contain  vast  collections  of  morphosyntactic, 

phonetic, semantic etc. annotations, plus text- or corpus-

specific  metadata.  The  downside  of  this  trend  is 

obvious: Even with specialized applications, our ability 

to store linguistic data is often bigger than the ability to 

process all this data.

A  lot  of  essential  work  towards  the  querying  of 

linguistic  corpora  goes  into  data  representation, 

integration  of  different  annotation  systems,  and  the 

formulation of query languages (e.g., Rehm et al., 2008; 

Zeldes  et  al.,  2009;  Kepser,  Mönnich  &  Morawietz, 

2010). But the scaling problem still remains: As we go 

beyond corpus sizes of some million words, and at the 

same time increase  the  number of  annotation systems 

and  search  keys,  query  costs  rise  disproportionately. 

This is due to the fact that unlike traditional IR systems, 

corpus retrieval systems not only have to deal with the 

“horizontal”  representation  of  textual  data,  but  with 

heterogeneous  metadata  on  all  levels  of  linguistic 

description.  And,  of  course,  the  exploration  of  inter-

relationships  between  annotations  becomes  more  and 

more challenging as the number of annotation systems 

increases.  Given  this  context,  we  present  a  novel 

approach to scale up to billion-word corpora, using the 

example of the multi-layer annotated German Reference 

Corpus DEREKO. 

2. The Data

The  German  Reference  Corpus  DEREKO  currently 

comprises more than four billion words and constitutes 

the  largest  linguistically  motivated  collection  of 

contemporary German.  It  contains  fictional,  scientific, 

and newspaper texts – as well as several other text types 

– and  is  annotated  morphosyntactically  with  three

competing systems (Connexor, Xerox, TreeTagger). The 

automated  enrichment  with  additional  metadata  is 

underway.
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Figure 1: Response times for nested SQL queries with three search keys (logarithmic scaled axis)

3. Existing Approaches

We empirically evaluated the most prominent existing 

querying  approaches,  and  contrasted  them  with  our 

functional model (the full paper will contain our detailed 

series  of  measurements).  Given  the  reasonable 

assumptions that XML/SGML-based markup languages 

are more suitable for  data exchange than for  efficient 

storing and retrieval, and that traditional file-based data 

storage  is  less  robust  and  powerful  than  database 

management  systems,  we  focused  on  the  following 

strategies:

i. In-Memory  Search:  Due  to  the  fact  that  a

computer’s main memory is still the fastest form of

data  storage,  there  are  attempts  to  implement  in-

memory  databases  even  for  considerably  large

corpora  (Pomikálek,  Rychlý  &  Kilgarriff,  2009).

These indexless systems perform well for unparsed

texts, but are strongly limited in    terms of storage

size and therefore cannot deal  with data-intensive

multi-layer annotations.

ii. N-Gram  Tables:  In  order  to  overcome  physical

limitations,  newer  approaches  use  database

management systems and decompose sequences of 

strings into indexed n-gram tables (Davies, 2005). 

This allows queries over a limited number of search 

expressions, but space requirements for increasing 

values of n are enormous. Sentence-external queries 

with regular expressions or NOT-queries – both are 

crucial  for  comprehensive  linguistic  exploration – 

cannot  use  the  n-gram-based  indexes  and  thus 

perform rather poor.

iii. Advanced SQL: Another strategy is to make use of

the relational power of sub-queries and joins within

a  RDBMS.  Chiarcos  et  al.  (2008)  use  an

intermediate  language  between  query  formulation

and database backend; Bird et al. (2005) present an

algorithm  for  the  direct  translation  of  linguistic

queries into SQL. This approach uses absolute word

positions,  and  therefore  allows  proximity  queries

without  limitation  of  word  distances.  But  again,

even  with  the  aid  of  the  integrated  cost-based

optimizer  (CBO),  response  times  for  increasing

numbers of search keys become extremely long. We

evaluated the proposed strategy on 1, 10, 100, 1000,
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Figure 2: MapReduce processes for a concatenated query with eight search keys

iv. and  4000 million word corpora  with rare-,  low-,

mid-, high-, and top-level search keys and found out 

that concatenated queries soon exceed the capability 

of  our  reference  server  because  nested  loops 

generate an immense workload. Figure 1 shows the 

response  times  in  seconds  for  the  query  “select 

count(t1.co_sentenceid)  from  tb_token  t1,  (select 

co_id,  co_sentenceid  from  tb_token  where 

co_token=token1)  t3,  (select  co_id,  co_sentenceid 

from tb_token where co_token = token2)  t2 where 

co_token  =  token3  and  t1.co_sentenceid  = 

t2.co_sentenceid  and  t1.co_sentenceid  = 

t3.co_sentenceid  and  t1.co_id  >  t2.co_id  and 

t2.co_id  >  t3.co_id;”,  using  three  search  keys  on 

identical metadata types and a single-column index. 

This query simply counts the number of sentences 

that contain three specified tokens (token1, token2, 

token3)  in  a  fixed  order.  Compared  to  a  similar 

query on the 4000 Mio corpus with one search key 

(5s for a top-level search) or two search keys (56s), 

the  increase  of  response  time  is  obviously 

disproportional  (301s).  It  gets  remarkably  less 

performant for searches on different metadata types 

(token,  lemma,  part-of-speech  etc.)  using  multi-

column  indexes.  Furthermore,  by  adding  text-

specific  metada  restrictions  like  text  type  or 

publication  year,  this  querying  strategy  produces 

response  times  of  several  hours  and  thereby 

becomes  fully  unacceptable  for  real-time 

applications.

4. Design and Implementation

As our  evaluation  shows,  existing  approaches  do  not 

handle  queries  with  complex  metadata  on  very  large 

datasets sufficiently. In order to overcome bottlenecks, 

we propose a strategy that allows the distribution of data 

and  processor-intensive  computation  over  several 

processor  cores  –  or  even  cluster  of  machines  –  and 

facilitates  the  partition  of  complex  queries  at  runtime 

into independent single queries that can be executed in 

parallel. It is based on two presuppositions:

i. Mature relational DBMS can be used effectively to

maintain parsed texts  and linguistic  metadata.  We

intensively evaluated different types of tables (heap

tables, partitioned tables, index organized tables) as

well  as  different  index  types  (B-tree,  bitmap,

concatenated, functional) for the distributed storing

and retrieval of linguistic data.
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Figure 3: Web-based retrieval form with our sample query

ii. The  MapReduce  programming  model  supports

distributed  programming  and  tackles  large-data

problems. Though MapReduce is already in use in a

wide  range  of  data-intensive  applications  (Lin  &

Dyer, 2010), its principle of “divide and conquer”

has not been employed for corpus retrieval yet.

In  order  to  prove the  feasibility of  our  approach,  we 

implemented our corpus storage and retrieval framework 

on  a  commodity  low-end  server  (quad-core 

microprocessor with 2.67 GHz clock rate, 16GB RAM). 

For the reliable measurement of query execution times, 

and especially to avoid caching effects, we always used 

a cold-started 64-bit database engine.)

Figure  2  illustrates  the  map/reduce  processes  for  a 

complex  query,  using  eight  dictinct  search  keys  on 

different metadata types: Find all sentences containing a 

determiner  immediately  followed  by  a  proper  noun 

ending  on  “er”,  immediately  followed  by  a  noun, 

immediately follwed by the lemma “oder”, followed by 

a determiner (any distance), immediately followed by a 

plural  noun,  followed  by  the  lemma  “sein”  (any 

distance).  Within  a  “map”  step,  the  original  query  is 

partitioned  into  eight  separate  key-value  pairs.  Keys 

represent linguistic units (position, token, lemma, part-

of-speech, etc.), values may be the actual content. Thus, 

we can simulate regular  expressions (a  feature that  is 

often demanded for advanced corpus retrieval systems, 

but difficult to implement for very large datasets).

The queries can be processed in parallel and pass their 

results  (sentence/position)  to  temporary  tables.  The 
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subsequent  “reduce”  processes  filter  out  inappropriate 

results step by step. Usually, this cannot be executed in 

parallel, because each reduction produces the basis for 

the next step. But our framework, implemented with the 

help  of  stored  procedures  within  the  RDBMS, 

overcomes this restriction by dividing the process tree 

into multiple sub-trees.  The reduce processes for each 

sub-tree  are  scheduled  simultaneously,  and  aggregate 

their results after they are finished. So the seven reduce 

steps of our example can be executed within only four 

parallel stages.

Our  concatenated  sample  query  with  eight  muti-type 

search keys on a four billion word corpus took less than 

four  minutes,  compared  with  several  hours  when 

employing  SQL  joins  as  in  3  (iii).  The  parallel 

MapReduce  framework  is  invoked  by  an  extensible 

web-based retrieval form (see figure 3) and stores the 

search results within the RDBMS, thus making it easy to 

reuse them for further statistical processing. Additional 

metadata  restrictions  (genre,  topic,  location,  date)  are 

translated  into  separate  map  processes  and 

reduced/merged in parallel to the main search.

5. Summary

The results of our study demonstrate that the joining of 

relational DBMS technology with a functional/parallel 

computing  framework  like  MapReduce  combines  the 

best  of  both worlds for  linguistically motivated large-

scale corpus retrieval. On our reference server, it clearly 

outperforms other  existing approaches.  For the future, 

we  plan  some  scheduling  refinements  of  our  parallel 

framework, as well  as support  for additional levels of 

linguistic description and metadata types.
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