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Abstract
K-cores are maximal induced subgraphs where all
vertices have degree at least k. These dense pat-
terns have applications in community detection,
network visualization and protein function predic-
tion. However, k-cores can be quite unstable to net-
work modifications, which motivates the question:
How resilient is the k-core structure of a network,
such as the Web or Facebook, to edge deletions?
We investigate this question from an algorithmic
perspective. More specifically, we study the prob-
lem of computing a small set of edges for which
the removal minimizes the k-core structure of a net-
work. This paper provides a comprehensive charac-
terization of the hardness of the k-core minimiza-
tion problem (KCM), including innaproximability
and parameterized complexity. Motivated by these
challenges, we propose a novel algorithm inspired
by Shapley value—a cooperative game-theoretic
concept— that is able to leverage the strong inter-
dependencies in the effects of edge removals in the
search space. We efficiently approximate Shapley
values using a randomized algorithm with proba-
bilistic guarantees. Our experiments show that the
proposed algorithm outperforms competing solu-
tions in terms of k-core minimization while being
able to handle large graphs. Moreover, we illustrate
how KCM can be applied in the analysis of the k-
core resilience of networks.

1 Introduction
K-cores play an important role in revealing the higher-order
organization of networks. A k-core [Seidman, 1983] is a
maximal induced subgraph where all vertices have internal
degree of at least k. These cohesive subgraphs have been ap-
plied to model users’ engagement and viral marketing in so-
cial networks [Bhawalkar et al., 2015]. Other applications in-
clude anomaly detection [Shin et al., 2016], community dis-
covery [Peng et al., 2014], and visualization [Carmi et al.,
2007]. However, the k-core structure can be quite unstable
under network modification. For instance, removing only a
few edges might lead to the collapse of the core structure of
a graph. This motivates the k-core minimization problem:

Given a graph G and constant k, find a small set of b edges
for which the removal minimizes the size of the k-core struc-
ture [Zhu et al., 2018].

We motivate k-core minimization using the following ap-
plications: (1) Monitoring: Given an infrastructure or techno-
logical network, which edges should be monitored for attacks
[Laishram et al., 2018]? (2) Defense: Which communication
channels should be blocked in a terrorist network in order to
destabilize its activities [Perliger and Pedahzur, 2011]? and
(3) Design: How to prevent unraveling in a social or biolog-
ical network by strengthening connections between pairs of
nodes [Bhawalkar et al., 2015]?

Consider a specific application of k-cores in online social
networks (OSNs). OSN users tend to perform activities (e.g.,
joining a group, playing a game) if enough of their friends
do the same [Burke et al., 2009]. Thus, strengthening critical
links between users is key to the popularity, and even sur-
vival, of the network [Farzan et al., 2011]. This scenario can
be modeled using k-cores. Initially, everyone is engaged in
the k-core. The removal of a few links (e.g., unfriending, un-
following) might not only cause a couple of users to leave the
network but produce a mass exodus due to cascading effects.
This process can help us to understand the decline and death
of OSNs such as Friendster [Garcia et al., 2013].
K-core minimization (KCM) can be motivated both from

the perspective of a centralized agent who protects the struc-
ture of a network or an adversary that aims to disrupt it. More-
over, our problem can also be applied to measure network
resilience [Laishram et al., 2018].

There is no polynomial time algorithm that achieves a
constant-factor approximation for KCM. This behavior dif-
fers from more popular problems in graph combinatorial op-
timization, such as submodular optimization, where a sim-
ple greedy algorithm provides constant-factor approximation
guarantees. The algorithm proposed in this paper applies the
concept of Shapley values (SVs), which, in the context of co-
operative game theory, measure the contribution of players in
coalitions [Shapley, 1953]. Our algorithm selects edges with
largest Shapley value to account for the joint effect (or coop-
eration) of multiple edges in the solution set.

Recent papers have introduced the KCM problem [Zhu et
al., 2018] and its vertex version [Zhang et al., 2017], where
the goal is to delete a few vertices such that the k-core struc-
ture is minimized. However, our work provides a stronger
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theoretical analysis and more effective algorithms that can be
applied to both problems. In particular, we show that our
algorithm outperforms the greedy approach proposed by a re-
cent work [Zhu et al., 2018].

Our main contributions are summarized as follows:
• We study the k-core minimization (KCM) problem, which

consists of finding a small set of edges, removal of which
minimizes the size of the k-core structure of a network.
• We show that KCM is NP-hard, even to approximate by

a constant for k ≥ 3. We also discuss the parameterized
complexity of KCM and show the problem is W [2]-hard
and para-NP-hard for different parameters.

• Given the above inapproximability result, we propose a
randomized Shapley Value based algorithm that efficiently
accounts for the interdependence among the candidate
edges for removal.

• We show the accuracy and efficiency of our algorithm us-
ing several datasets. Moreover, we illustrate how KCM can
be applied to profile the resilience of real networks.
Due to space limitations some details, proofs, and results

are in an extended version [Medya et al., 2019].

2 Problem Definition
We assume G(V,E) to be an undirected and unweighted
graph with sets of vertices V (|V | = n) and edges E
(|E| = m). Let d(G, u) denote the degree of vertex u in
G. An induced subgraph, H = (VH , EH) ⊂ G is such that
if u, v ∈ VH and (u, v) ∈ E then (u, v) ∈ EH . The k-core
[Seidman, 1983] of a network is defined below.
Definition 1. k-Core: The k-core of a graph G, denoted by
Ck(G) = (Vk(G), Ek(G)), is defined as the maximal in-
duced subgraph that has vertices with degree at least k.
K-core decomposition can be performed in time O(m)

by recursively removing vertices with degree lower than k
[Batagelj and Zaveršnik, 2011].

LetGB = (V,E\B) be the modified graph after deleting a
set B of b edges. Deleting an edge reduces the degree of two
vertices and possibly removes other vertices from the k-core.
For instance, the vertices in a simple cycle are in the 2-core
but deleting any edge from the graph moves all the vertices to
the 1-core. Let Nk(G) = |Vk(G)| and Mk(G) = |Ek(G)| be
the number of nodes and edges respectively in Ck(G).
Definition 2. Reduced k-Core: A reduced k-core, Ck(GB)
is the k-core in GB , where GB = (V,E \B).
Example 1. Figures 1 shows an initial graph, G, and modi-
fied graph GB (where B= {(a, c)}). In G, all the nodes are
in the 3-core. Deleting (a, c) brings the vertices a and c to
the 2-core and thus b and d also go to the 2-core.
Definition 3. K-Core Minimization (KCM): Given a candi-
date edge set Γ, find the set, B ⊂ Γ of b edges to be removed
such that Nk(GB) is minimized, or, fk(B) = Nk(G) −
Nk(GB) is maximized.

Fig. 1a shows an initial graph, G, where the nodes are in
the 3-core. Deleting (a, c) and (e, g) brings all the vertices
to the 2-core, whereas deleting (e, c) and (d, f) has no effect
on the 3-core structure (assuming b= 2). Clearly, the impor-
tance of the edges varies in affecting the k-core upon their

a b

c d

e f

g h

(a) Initial

a b

c d

e f

g h

(b) Modi-
fied

Figure 1: Example of the changes in the core structure via deletion
of an edge: (a) All the nodes are in the 3-core. (b) In the modified
graph, the nodes {a, b, c, d} are in the 2-core.

removal. Next, we discuss strong inapproximability results
for the KCM problem along with parameterized complexity.

2.1 Inapproximability
The hardness of the KCM problem stems from the fact that
there is a combinatorial number of choices of edges from the
candidate set, and there might be strong dependencies in the
effects of edge removals. KCM is proved to be NP-hard in
[Zhu et al., 2018]. We show a stronger result: KCM is NP-
hard to approximate within any constant factor.

Theorem 1. The KCM problem is NP-hard to approximate
within a constant-factor for all k ≥ 3.

Proof. We sketch the proof for k=3 (similar for k>3).
Let SK(U,S, P,W, q) be an instance of the Set Union

Knapsack Problem [Goldschmidt et al., 1994], where U =
{u1, . . . un′} is a set of items, S = {S1, . . . Sm′} is a set of
subsets (Si ⊆ U ), p : S → R+ is a subset profit function,
w : U → R+ is an item weight function, and q ∈ R+ is the
budget. For a subset A ⊆ S , the weighted union of set A is
W (A) =

∑
e∈∪t∈ASt

we and P (A) =
∑
t∈A pt. The prob-

lem is to find a subset A∗ ⊆ S such that W (A∗) ≤ q and
P (A∗) is maximized. SK is NP-hard to approximate within
a constant factor [Arulselvan, 2014].

We reduce a version of SK with equal profits and weights
(also NP-hard to approximate) to the KCM problem. The
graph G′ is constructed as follows. For each uj ∈ U , we cre-
ate a cycle of m′ vertices Yj,1, Yj,2, . . . , Yj,m′ in V and add
(Yj,1, Yj,2), (Yj,2, Yj,3), . . . , (Yj,m′−1 , Yj,m′), (Yj,m′ , Yj,1)
as edges between them. We also add 5 vertices Zj,1 to Zj,5
with eight edges where the four vertices Zj,2 to Zj,5 form a
clique with six edges. The other two edges are (Zj,1, Zj,2)
and (Zj,1, Zj,5). Moreover, for each subset Si we create a
set of O((m′)3) vertices (sets Xi,∗ are red rectangles in Fig-
ure 2), such that each node has exactly degree 3, and add one
more node Xi,1 with two edges incident to two vertices in
Xi,∗ from Xi,1. In the edge set E, an edge (Xi,1, Yj,i) will
be added if uj ∈ Si. Additionally, if uj /∈ Si, the edge
(Yj,i, Zj,1) will be added to E. Figure 2 illustrates our con-
struction for a set S1 = {u1, u2}, S2 = {u1, u3}, S3 = {u2}.

In KCM, the number of edges to be removed is the budget,
b. The candidate set of edges, Γ is the set of all the edges
with form (Yj,1, Yj,2). Initially all the nodes in G′ are in the
3-core. Our claim is that, for any solutionA of an instance of
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Figure 2: Example construction for hardness reduction from SK
where U = {u1, u2, u3}, S = {S1, S2, S3}, S1 = {u1, u2}, S2 =
{u1, u3}, S3 = {u2}.

SK there is a corresponding solution set of edges, B (where
|B| = b) in G′ of the KCM problem, such that f3(B) =
P (A) + b(m′ + 1) if the edges in A are removed.

The m′ nodes in any Yj and the node Zj,1 will be in the
2-core if the edge (Yj,1, Yj,2) is removed. So, the removal of
any b edges from Γ moves b(m′+ 1) nodes to the 2-core. But
the node Xi,1 and each node in Xi,∗ (O((m′)3) nodes) will
be in the 2-core iff all its neighbours in Yj,is go to the 2-core.
Thus, an optimal solution B∗ will be f3(B∗) = P (A∗) +
b(m′ + 1) where A∗ is the optimal solution for SUKP. For
any non-optimal solution B, f3(B) = P (A) + b(m′ + 1)
whereA is also non-optimal solution for SUKP. As P (A∗) is
at least O((m′)3) by construction (i.e. P (A∗)� b(m′+ 1)),
and P (A∗)

P (A) cannot be within a constant factor, f3(B∗)
f3(B) will also

not be within any constant factor.

Theorem 1 shows that there is no polynomial-time
constant-factor approximation for KCM when k ≥ 3. This
contrasts with well-known NP-hard graph combinatorial
problems in the literature [Kempe et al., 2003].

2.2 Parameterized Complexity
There are several NP-hard problems (e.g. Vertex Cover) with
exact solutions via algorithms that run in time that grows ex-
ponentially with the size of the parameter. Thus, if we are
only interested in a constant value of the parameter, we can
solve the problem in polynomial time. A parameterized prob-
lem instance is comprised of an instanceX in the usual sense,
and a parameter b. The problem is called fixed parameter
tractable (FPT) if it is solvable in time g(b)×p(|X|), where g
is an arbitrary function of b and p is a polynomial in the input
size |X|. We show that KCM is W[2]-hard and para-NP-hard
when parameterized by the budget and the core respectively.
For details about parameterized complexity classes and re-
duction techniques, please refer to [Cygan et al., 2015].
Theorem 2. The KCM problem is W [2]-hard parameterized
by the budget b.

We show a parameterized reduction from Set Cover, which
is known to be W [2]-hard [Bonnet et al., 2016].
Theorem 3. The KCM problem is para-NP-hard parameter-
ized by k.

This can be proven from the fact that our problem KCM
is NP-hard even for constant k. These parameterized com-
plexity results ensure that the problem KCM is also hard for
either parameter b or k. Motivated by these strong hardness

Algorithm 1: Greedy Cut (GC)
Input: G, k, b
Output: B: Set of edges to delete

1 B ← ∅,max← −∞,G ← Ck(G)
2 while |B| < b do
3 e∗ ← arg maxe∈G (Ek)\B |computeV S(e =

(u, v),G , k)|
4 B ← B ∪ {e∗}
5 LocalUpdate(e,G , k)

6 return B

and inapproximability results, we next consider some practi-
cal heuristics for the KCM problem.

3 Algorithms
In this section, we propose efficient heuristics for KCM.

3.1 Baseline: Greedy Cut
For KCM, only the current k-core of the graph, G (Vk, Ek) =
Ck(G) (|Vk| = Nk,|Ek| = Mk), has to be taken into account.
Remaining nodes will already be in a lower-than-k-core and
can be removed. We define a vulnerable set V Sk(e,G ) as
those nodes that would be demoted to a lower-than-k-core
if edge e is deleted from the current core graph G . Algo-
rithm 1 (GC) [Zhu et al., 2018] is a greedy approach for
selecting an edge set B (|B| = b) that maximizes the k-
core reduction, fk(B). In each step, it chooses the edge that
maximizes |V Sk(e,G )| (step 3-4) among the candidate edges
Γ. The specific procedure for computing V Sk(e,G ) (step 3),
LocalUpdate and their running times (O(Mk +Nk)) are de-
scribed in the extended version of this paper [Medya et al.,
2019]. The overall running time of GC isO(b|Γ|(Mk+Nk)).

3.2 Shapley Value Based Algorithm
The greedy algorithm discussed in the last section is unaware
of some dependencies between the candidates in the solution
set. For instance, in Figure 1a, all the edges have same im-
portance (the value is 0) to destroy the 2-core structure. In
this scenario, GC will choose an edge arbitrarily. However,
removing an optimal set of seven edges can make the graph
a tree (1-core). To capture these dependencies, we adopt
a cooperative game theoretic concept named Shapley Value
[Shapley, 1953]. Our goal is to take into account a coalition
of edges (players) and divide the total gain by this coalition
equally among the edges inside it.

Shapley Value
The Shapley Value of an edge e in KCM is defined as follows.
Let the value of a coalition P be V (P ) = fk(P ) = Nk(G)−
Nk(GP ). Given an edge e ∈ Γ and a subset P ⊆ Γ such that
e /∈ P , the marginal contribution of e to P is:

V (P ∪ {e})− V (P ), ∀P ⊆ Γ. (1)

Let Ω be the set of all |Γ|! permutations of all the edges in Γ
and Pe(π) be the set of all the edges that appear before e in
a permutation π. The Shapley Value of e is the average of its
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Algorithm 2: Shapley Value Based Cut (SV)
Input: G, k, b,Γ
Output: B: Set of edges to delete

1 Initialize all Φ′e as 0, ∀e ∈ Γ

2 Generate S = O( log Γ
ε2 ) random permutations of edges

3 B ← ∅,G ← Ck(G)
4 for π ∈ S do
5 for e = (u, v) ∈ Γ do
6 Φ′e ← Φ′e + (V (Pe(π) ∪ {e})− V (Pe(π)))

7 Φ′e ←
Φ′e
|S| , ∀e ∈ Γ

8 Select top b Φ′e edges from B
9 return B

marginal contributions to the edge set that appears before e in
all the permutations:

Φe =
1

|Γ|!
∑
π∈Ω

V (Pe(π) ∪ {e})− V (Pe(π)). (2)

Shapley Values capture the importance of an edge inside
a set (or coalition) of edges. However, computing Shapley
Value requires considering O(|Γ|!) permutations. Next we
show how to efficiently approximate the Shapley Value for
each edge via sampling.

Approximate Shapley Value Based Algorithm
Algorithm 2 (Shapley Value Based Cut, SV) selects the best b
edges according to their approximate Shapley Values based
on a sampled set of permutations, S. For each permuta-
tion in S, we compute the marginal gains of all the edges.
These marginal gains are normalized by the sample size,
s. In terms of time complexity, steps 4-6 are the domi-
nating steps and take O(s|Γ|(Nk + Mk)) time, where Nk
and Mk are the number of nodes and edges in Ck(G), re-
spectively. Note that similar sampling based methods have
been introduced for different applications [Castro et al., 2009;
Maleki et al., 2013] (details are in Section 5).

Analysis
We have introduced a fast sampling algorithm (SV) for k-
core minimization using Shapley Values. Here, we study the
quality of the approximation provided by SV as a function of
the number of samples. We show that our algorithm is nearly
optimal with respect to each Shapley Value with high proba-
bility. More specifically, given ε > 0 and δ < 1, SV takes
p( 1
ε ,

1
δ ) samples, where p is a polynomial in 1

ε ,
1
δ , to approxi-

mate the Shapley Values within ε error with probability 1−δ.
We sample uniformly with replacement, a set of permu-

tations S (|S| = s) from the set of all permutations, Ω.
Each permutation is chosen with probability 1

|Ω| . Let Φ′e
be the approximate Shapley Value of e based on S. Xi is
a random variable that denotes the marginal gain in the i-
th sampled permutation. So, the estimated Shapley Value is
Φ′e = 1

s

∑s
i=1Xi. Note that E[Φ′e] = Φe.

Theorem 4. Given ε (0 < ε < 1), a positive integer `, and
a sample of independent permutations S, |S| = s, where s ≥

Dataset Name |V | |E| kmax Type
email-Enron (EE) 36K 183K 42 Email

Facebook (FB) 60K 1.5M 52 OSN
web-Stanford (WS) 280K 2.3M 70 Webgaph

DBLP (DB) 317K 1M 113 Co-authorship
Erdos-Renyi (ER) 60K 800K 19 Synthetic

Table 1: Dataset descriptions and statistics. The value of kmax (or
degeneracy) is the largest k among all the values of k for which there
is a k-core in the graph.
(`+1) log |Γ|

2ε2 ; then ∀e ∈ Γ:

Pr(|Φ′e − Φe| < ε ·Nk) ≥ 1− 2|Γ|−`

where Nk denotes the number of nodes in Ck(G).
To prove this, we use Hoeffding’s inequality [Hoeffding,

1963] and the union bound. The parameter l further enhances
the trade-off between number of samples and the correspond-
ing probability. The next result is stronger as it shows a simi-
lar bound for a set of edges.

Next, we apply Theorem 4 to analyze the quality of a setB
produced by Algorithm 2 (SV), compared with the result of
an exact algorithm (without sampling). Let the Shapley Val-
ues of the top b edges be ΦoB = {ΦO1,ΦO2,ΦO3, ...,ΦOb}
where ΦO1 ≥ ΦO2 ≥ ... ≥ ΦOb. The set pro-
duced by Algorithm 2 (SV) has Shapley Values ΦaB =
{ΦA1,ΦA2,ΦA3, ...,ΦAb}, where ΦA1 ≥ ΦA2 ≥ ... ≥ ΦAb.
We prove the following result regarding the SV algorithm.
Corollary 5. For any i,ΦOi ∈ ΦoB and ΦAi ∈ ΦaB , ε
(0 < ε < 1), positive integer `, and a sample of indepen-
dent permutations S, |S| = s, where s ≥ (`+1) log |Γ|

2ε2 :

Pr(|ΦOi − ΦAi| < 2ε ·Nk) ≥ 1− 2|Γ|−`

where Nk denotes the number of nodes in Ck(G).

Proof. For all edges e ∈ Γ, Theorem 4 shows that Pr(|Φ′e −
Φe| < ε ·Nk) ≥ 1− 2|Γ|−`. So, with probability 1− 2|Γ|−`,
|Φ′Oi − ΦOi| < ε ·Nk and |Φ′Ai − ΦAi| < ε ·Nk. As Φ′Ai >
Φ′Oi, |ΦOi − ΦAi| < 2ε ·Nk with the same probability.

At this point, it is relevant to revisit the hardness of ap-
proximation result from Theorem 1 in the light of Corollary 5.
First, SV does not directly minimize the KCM objective func-
tion (Definition 3). Instead, it provides a score for each can-
didate edge e based on how different permutations of edges
including e minimize the KCM objective under the assump-
tion that such scores are divided fairly among the involved
edges. Notice that such assumption is not part of KCM,
and thus Shapley Values play the role of a heuristic. Corol-
lary 5, which is a polynomial-time randomized approxima-
tion scheme (PRAS) type of guarantee instead of a constant-
factor approximation, refers to the exact Shapley Value of the
top b edges, and not the KCM objective. We evaluate how SV
performs regarding the KCM objective in our experiments.

4 Experiments
In this section, we evaluate the proposed Shapley Value Based
Cut (SV) algorithm for k-core minimization against baseline
solutions. In Sec. 4.3, we show how k-core minimization can
be applied in analyzing the structural resilience of networks.
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Figure 3: K-core minimization (DN(%)) varying the number of
edges in the budget: The Shapley Value based Cut (SV) algorithm
outperforms the best baseline (LD) by up to 6 times.
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Figure 4: K-core minimization (DN(%)) varying (a) the core param-
eter k; (b) and the sampling error ε.

4.1 Experimental Setup
All the experiments were conducted on a 2.59 GHz Intel Core
i7-4720HQ machine with 16 GB RAM running Windows 10.
Algorithms were implemented in Java.

Datasets: The real datasets are available online and
are mostly from SNAP1. The Facebook dataset is from
[Viswanath et al., 2009]. Table 1 shows dataset statistics, in-
cluding the largest k-core (a.k.a. degeneracy). We also apply
a random graph (ER) generated using the Erdos-Renyi model.

Algorithms: Our algorithm, Shapley Value Based Cut (SV)
is described in Section 3.2. Besides the Greedy Cut (GC)
algorithm [Zhu et al., 2018] (Section 3.1), we also consider
three more baselines in our experiments. Low Jaccard Coef-
ficient (JD) removes the k edges with lowest Jaccard coeffi-
cient. Similarly, Low-Degree (LD) deletes k edges for which
adjacent vertices have the lowest degree. We also apply Ran-
dom (RD), which simply deletes k edges from the candidate
set Γ uniformly at random. Notice that while LD and JD are
quite simple approaches for KCM, they often outperform GC.

Quality evaluation metric: Percentage DN(%) of ver-
tices from the initial graph G that leave the k-core after the
deletion of edges in B: DN(%) = Nk(G)−Nk(GB)

Nk(G) × 100.

Default parameters: We set the candidate edge set Γ to
those edges (Mk(G)) between vertices in the k-core Ck(G).

1https://snap.stanford.edu
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Figure 5: Running times by SV in FB while varying (a) the sampling
error ε and (b) the core parameter k

Unless stated otherwise, the value of the approximation pa-
rameter for SV (ε) is 0.05 and the number of samples is log |Γ|

ε2 .

4.2 Quality Evaluation
KCM algorithms are compared in terms of quality (DN(%))
for varying budget (b), core value k, and the error of the sam-
pling scheme applied by the SV algorithm (ε).

Figure 3 presents the k-core minimization results for k =
5—similar results were found for k= 10—using four differ-
ent datasets. SV outperforms the best baseline by up to six
times. This is due to the fact that our algorithm can capture
strong dependencies among sets of edges that are effective at
breaking the k-core structure. On the other hand, GC, which
takes into account only marginal gains for individual edges,
achieves worse results than simple baselines such as JD and
LD.

We evaluate the impact of k over quality for the algorithms
using WS in Fig. 4a. The budget (b) is set to 400. As in
the previous experiments, SV outperforms the competing ap-
proaches. However, notice that the gap between LD (the best
baseline) and SV decreases as k increases. This is due to
the fact that the number of samples decreases for higher k as
the number of candidate edge also decreases, but it can be
mended by a smaller ε. On the other hand, a large value of k
leads to a less stable k-core structure that can often be broken
by the removal of edges with low-degree endpoints. LD is a
good alternative for such extreme scenarios. Similar results
were found for other datasets.

The parameter ε controls the sampling error of the SV algo-
rithm according to Thm. 4. We show the effect of ε over the
quality results for WS in Fig. 4b. The values of b and k are set
to 400 and 12 respectively. As expected, DN(%) is inversely
proportional to the value of ε for SV. The trade-off between ε
and the running time of our algorithm enables both accurate
and efficient selection of edges for k-core minimization.

Running Time: Running times for SV varying the sam-
pling error (ε) and the core parameter (k) using the FB dataset
are given in Figures 5a and 5b, respectively. Even for small
error, the algorithm is able to process graphs with tens of
thousands of vertices and millions of edges in, roughly, one
minute. Running times decay as k increases due to two fac-
tors: (1) the size of the k-core structure decreases (2) pruning
gets boosted by a less stable core structure.

4.3 Application: k-core Resilience
We show how KCM can be applied to profile the resilience of
networks. A profile provides a visualization of the resilience
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(a) DB (b) WS

(c) FB (d) ER

Figure 6: Core resilience for four different networks: (a) DB (co-
authorship), (b) WS (Webgraph), (c) FB (social), (d) ER (random).
ER and DB are the most and least stable networks, respectively. Tip-
ping points are found for ER and DB.

of the k-core structure of a network for different combina-
tions of k and budget. We apply DN(%) as a measure of
the percentage of the k-core removed by a certain amount of
budget—relative to the immediately smaller budget value.

Figure 6 shows the results for co-authorship (DB), Web
(WS), social network (FB) and a random (ER) graph. Each
cell corresponds to a given k-b combination and the color of
cell (X,Y ) shows the difference in DN(%) between b= Y
and b = Y −100 for k = X . As colors are relative, we also
show the range of values associated to the color scheme. We
summarize our main findings as follows:
Stability: ER (Figure 6d) is the most stable graph, as can
be noticed by the range of values in the profile. The majority
of nodes in ER are in the 19-core. DB (Figure 6a) is the
least stable, but only when k > 5, which is due to its large
number of small cliques. The high-core structure of DB is
quite unstable, with less than 1% of the network in the 20-
core structure after the removal of 500 edges.
Tipping points: We also look at large effects of edge re-
movals within small variations in budget—for a fixed value
of k. Such a behavior is not noticed for FB and WS (Figures
6b and 6c, respectively), for which profiles are quite smooth.
This is mostly due to the presence of fringe nodes at different
levels of k-core structure. On the other hand, ER produced
the most prominent tipping points (k=15 and k=20).

5 Previous Work
The k-core decomposition algorithms were introduced in
[Seidman, 1983; Batagelj and Zaveršnik, 2011; Bonnet et al.,
2016] for different settings. K-cores are applied in commu-
nity detection [Peng et al., 2014], characterizing the Internet
topology [Carmi et al., 2007] and user engagement [Malliaros
and Vazirgiannis, 2013]. Bhawalkar et al. [Bhawalkar et al.,
2015] and Chitnis et al. [Chitnis et al., 2013] studied the
problem of increasing the size of k-core by anchoring a few
vertices initially outside of the k-core.

Understanding the behavior of a complex system (e.g. the
Internet, a power grid) under different types of attacks and

failures has been a popular topic in network science [Cohen
et al., 2000]. An overview of different metrics for assessing
robustness/resilience is given by [Ellens and Kooij, 2013].
Stability/resilience of k-core: A recent paper [Zhu et
al., 2018] proposing the k-core minimization problem is the
previous work most related to ours. Compared to the ref-
ereed work we: (1) prove stronger inaproximability results
for KCM; (2) propose a more effective heuristic based on
Shapley Values; and (3) provide a more extensive evalua-
tion of algorithms for KCM using several datasets. Adiga et
al. [Adiga and Vullikanti, 2013] studied the stability of high
cores in noisy networks. A few studies [Laishram et al., 2018;
Zhou et al., 2019] recently introduced a notion of resilience
in terms of the stability of k-cores against deletion of ran-
dom nodes/edges. Another related paper [Zhang et al., 2017]
studied the node version of KCM.
Shapley Value (SV) and combinatorial problems: A
Shapley Value based algorithm was previously introduced
for influence maximization (IM) [Narayanam and Narahari,
2011]. However, notice that IM can be approximated within
a constant-factor by a simple greedy algorithm [Kempe et al.,
2003]. We apply Shapley Values to solve KCM, which has
stronger inapproximability results than IM. Sampling tech-
niques have been for the efficient computation of SV’s have
also been studied [Castro et al., 2009; Maleki et al., 2013].
Castro et al. [Castro et al., 2009] introduced SV sampling in
the context of symmetric and non-symmetric voting games.
Maleki et al. [Maleki et al., 2013] provided analyses for strat-
ified sampling specially when the marginal contributions of
players are similar. We are able to prove stronger sampling
results, bounding the error for the top k edges in terms of
Shapley Value (Cor. 5), for KCM.

6 Conclusion
We have studied the k-core minimization (KCM) problem,
which consists of finding a set of edges, removal of which
minimizes the size of the k-core of a graph. KCM was shown
to be NP-hard, even to approximate within a constant. The
problem is also W[2]-hard and para-NP-hard parameterized
by budget and k, respectively. Given such hardness and in-
approximability results, we have proposed an efficient ran-
domized heuristic based on Shapley Value to account for the
interdependence in the impact of candidate edges to be re-
moved. We have evaluated our algorithm against baseline ap-
proaches using several real graphs, showing that the proposed
solution is scalable and outperforms its competitors in terms
of quality. We have also illustrated how KCM can be used for
profiling the structural resilience of networks.
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