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A GENERAL MATHEMATICAL MODEL FOR BEAM AND PLATE VIBRATION 
IN BENDING MODES USING LUMPED PARAMETERS 

SUMMARY 

The analytic method proposed in this paper solves for natural frequencies and 
mode shapes of distributed mass  and stiffness systems such as beams and plates. The 
structure is divided into an equivalent system of discrete masses  and springs. A sche- 
matic diagram can be built up to show the nature of each item affecting the system. 
Increased off-hand evaluation of design changes results. A group of simultaneous 
equations is made up from the discrete schematic system. These equations comprise 
the mathematical model of the system. 

The mathematical model of the beam is completely general. The model is a 
matrix equation which will accept any input, any restraint ,  or any combination of end 
conditions. One model will suffice for all beam problems. Damping can be considered, 
but is not included in the main thesis of the paper. The model is in sufficient detail to 
accept the particulars of a nonuniform beam where mass  and stiffness can be broken 
into lumped discrete but unequal values. The number of masses  limits the eigenvalue 
solutions. Reasonable accuracy is dependent on a minimum of three masses  between nodes. 
This is equivalent to four masses  per modal number, plus one for the end node . Thus 
a system with seventeen masses  would be reasonable for the calculation of the first four 
modes of a beam. 

Flat plates a r e  simulated as two sets  of cross-coupled beams. A nonuniform 
plate model is developed. End conditions of the individual beams may be varied, masses  
may be equated to zero, etc, to set  up a rather complicated model. A s  in the beam model, 
the plate model is very general and only one model is necessary where the size is large 
enough to acc,ept the required detail. Matrix size limits the number of eigenvalue 
solutions available. The model of a cross-coupled plate of sixteen masses  is derived in 
the paper. Actually, practical solutions would require a much larger equation. 

The model does not account for any extensional deformation. Only bending is 
considered. The application of the method to shells and other curved plates is suggested 
when only bending modes need to be considered, 



SECTION I. INTRODUCTION 

Mechanical systems comprised of distributed mass  and distributed stiffness have 
an infinite number of normal modes of vibration. Beams are characteristic of the distri-  
buted systems and have only one set of normal modes per  single direction of deflection. 
They therefore are representative of the simplest approach to distributed system dynamic 
analysis. Other systems such as plates and shells can be represented by a system of 
cross-coupled beams once a suitable system of impedance and coordinate designation is 
selected. 

Systems comprised of uniformly distributed mass and stiffness lend themselves 
to the usual methods of solution, by utilizing some form of the Rayleigh method by equa- 
ting maximum strain to maximum kinetic energy for  each mode. These methods a r r ive  at 
mode shapes and natural frequencies but not finite response amplitudes. The incorpora- 
tion of damping into the calculations, then, allows an approach to finite amplitudes of 
response under steady-state conditions by equating input energy to dissipated energy. 
8ome systems are not truly uniformly distributed but can be simulated by an equivalent 
uniformly distributed system. 
stiffeners. 
close approximation to mode shapes of uniformly constructed plates. 

Typical of this class is a plate with equally spaced like 
The lower numbered modes of this type of stiffened plates will respond in 

Some structures have i r regular  details of mass ,  stiffness, or end conditions that 
do not allow a convenient method of solution by distributed system analysis. They must 
be simulated by a system of lumped masses  influenced by local spring effects. The use 
of these lumped methods is usually limited to a few of the lowest natural frequencies 
because a lumped system has a finite number of degrees of freedom and the deflection of 
each mass reflects a single point on the mode shape curve. Good definition of mode shape 
requires a minimum of about four masses between modes. Practical considerations of 
the problem solutions limits the number of useable lumped masses.  Since design prob- 
lems are usually associated with low numbered modal response, the lumped-mass 
method could be of considerable importance. 

Any solution of a distributed system dynamic problem is of a complicated nature. 
A method that allows a simple subjective comprehension of each of the details has con- 
siderable value to the analyst. It will increase off-hand evaluation of the effect of any 
change, and lead to more effective design considerations. The analytic method proposed 
in this paper takes each specific detail and transforms it into an easily comprehendable 
part  of the system diagram. One 
program could be developed to accept all beam problems. Similarly, one program could 
handle all plate solutions. 

The method is set up so that it is completely general. 

The method will be derived by detailed steps so that this paper can serve as a 
ready reference to users  of dynamic analysis. 

2 



SECTION II. METHOD DERIVATION 

The first step in the method derivation is to review the basic equations relating 
moment to deflection (Fig. I). When the deflection is very small  and there is no net 

FIGURE I. SECTION OF A BENT BEAM 

elongation of the beam, the deflection of the surface of the beam (BB', Fig. I) can be 
considered parallel to the undeflected axis of the beam, and the deflection of the neutral 
axis of the beam (00') may be considered perpendicular to the axis of the beam. If we 
arbitrarily set AL equal to OB, then simple geometric 
00' in amplitude, and that they are 90 degrees apart in 
moment acting on section B'B' is 

A@ 
AL ' *=EI-  

where 

*= moment 

E = Young's Modulus 

A* BB' inradians fo r  this case 

I = moment of inertia 

AL = unit length of beam. 

analysis will show that BB' equals 
direction. The equation for the 

Now the moment is equal to the product of force, F, times a r m  length, AL. Equation 
(1) can be written 
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BB ' 00' 
' F A L = E I -  = E 1  

(AL) 

or  

Since the stiffness of the beam, K, is equal to F divided by the deflection OO', 

K = -  F -  - - E1 
00' (AL)3 (3)  

Equation (3 )  has the restrictions that the deflection be small  and that moments acting on 
the stiffness must be acting through the arm length of AL. Figure I can now be simula- 
ted by a discriptive model (Fig. 2 ) .  

FIGURE 2. BEAM ELEMENT MODEL 

To simulate a beam, Figure 2 can be modified to represent a series of linked massless  
t russes  with stiffness and mass lumped arbitrarily and with the basic concepts of Figure 
2 adhered to. Such a system is shown in Figure 3. It must be remembered that all 
effective motion of the spring attachment points is in the horizontal direction, 
of the hinges in the vertical  direction (each related to the oilier). 

and that 
The interrelationship 

K K K K K K 

K = Spring constant 
M = Mass 

FIGURE 3. SIMULATED BEAM 

4 



of these two displacements leads to a defining of the spring deflection in t e rms  of the 
deflection in the vertical axis. Each t russ  is hinged at the base to the adjacent trusses.  
As defined above, this hinge allows motion only in the vertical direction. Each hinge 
deflection is representative of the displacement of the neutral axis of the beam at its 
relative location. The relative displacement of one hinge of a t russ  to the other is equal 
in magnitude to the horizontal displacement of the spring attachment point. Thus all 
spring deflections can be equated to actual beam deflections. Let us  define the net 

+- 
FIGURE 4. SPRING DEFLECTION MODEL 

deflection of spring A B,  Figure 4, by A 
The following equation develops A 

and the displacement of A by A etc. AB’ A’  
AB‘ 

A = A2 - A,, A 

B A = A3 - A2, 

- A = A3 - 2Az + A,. (4 )  
- 

A~ A 

The spring constants and the masses  do not have to be equal for analytic solution. 
However the solution calculations are greatly simplified when all t russes  are of equal 
size,  except for the halves at the ends. This in effect divides the beam into segments 
of equal length between hinges, with the ends being half segments. Figure 5 depicts the 

(A) FREEEND 

( B) HINGED END 

(C)  F m D  END 

FIGURE 5. END CONDITIONS 
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three types of end conditions usually assumed in beam problems. The graphic descrip- 
tion is self evident. 
from the standard end conditions can be simply worked into the solution. 
a few of the possible non-standard end conditions of practical consideration. 
standard impedance values attached to the ends are easily added to the general equations 

Now comes some of the real value of this method. Most deviations 
Figure 6 shows 

The non- 

so that this type of problem is included in the general solution. 

(D) RESTRAINED HINGE 

( E )  FLEXIBLE ATTACHMENT 

(F)  END MASS RESTRAINT 

FIGURE 6. NON-STANDARD END CONDITIONS 

Attachments to the beam also can be accounted for in the general solution. Fig- 
ure  7 shows the diagramatic inclusion of such attachments to the simulated system. 

1 

(G) FIXED ATTACHMENT ( H) SPRING ATTACHMENT (I) MASS ATTACHMEN? 

FIGURE 7. BEAM ATTACHMENTS 

6 



It should be noted that damping has not yet been inserted into the diagram. A 
type of damping simulation is possible but not very practical within the present state-of- 
the-art. I ts  usefulness will depend upon further research. The diagramatic model de- 
scribed up to this point is for free vibration systems. The characteristics of the system 
can be conveniently represented by impedance values. Such representation can lead to 
an understanding of the damping properties of the system. 
into the impedance equation as follows: 

Structural damping is inserted 

K ( i + j  v)  Z = j w M +  
jw 

K 
J W  w 

= j w M + -  +%. (5) 

M = mass 

K = stiffness 

77 = damping loss factor 

w = angular frequency. 

Force,  F ,  is related to displacement, A, by the relation 

F =  ( Z )  (jwA). ifii 

The simulated system shown in Figure 3 can be solved by using the usual equations of con- 
tinuity of force and moment. 
ever when used, it is recommended to solve the reactive portion first without damping, 

Damping can be included in the impedance equation. How- 

and then insert  
damping can be 
are useable but 

damping to calculate amplitudes. Fo r  simple beam and plate models, 
schematically added as in Figure 8. 
here we use a damping symbol that is indicative of slipping or Coulombs' 

Any of the usual damping concepts 

FIGURE 8. SCHEMATIC INCLUSION OF DAMPING 

damping and this type is proportionate to displacement. 
to the same displacement that works on the spring located between each of the trusses.  

Thus the damping is proportionate 

7 



The loss factor is unit length o r  area dependent. 
for a mode the input energy must  equal the output energy, 

Once the mode shape is determined 

where m is representative of forced input locations and n is representative of response 
deflections of the various springs. Equation (7) would be applicable to beams or  plates 
without attachments. By including representative attachment loss factor increments, 
equation (7)  could become 

where N', q' and An, refer to the damping caused by the attachments. The schematic 
inclusion of the damping caused by the attachments is represented in Figure 9. Equation 
(8) will solve for  discrete values of amplitude for each mode. The A deflections are 
dependent on the y displacements. This aspect will be discussed after development of 
the general solution equation. 

FIGURE 9. INCLUSION OF ATTACHMENT DAMPING 

It has been the purpose here to show the possibility of damping analysis by using 
the analytical model. The remainder of the report will deal with undamped systems only. 

SECTION ID. BEAM SOLUTIONS 

Development of a General Beam Matr ix  Equation 

The beam solution uses a set of equations that define the continuity of force and of 
moments. Figure 10 is a typical model of a beam of s ix  elements of m a s s .  A l l  motion 
of the beam is assumed in  the f y  directions only. End restraints may impose a reaction 

8 



FIGURE I O .  MODEL OF A SIX MASS BEAM 
- ~ - _ _ _ _  .- ~ - 

FREE FREE 
f ~ € o = O ,  R o = O  * 7 = 0 ,  R 7 = O  

FIXED FIXED 
Yo = 0, YI = 0 = 0, y7 = 0 

HINGED HINGED 
yo= 0, *=  0 y 7 = 0 ,  * 7 = 0  

Mo, M7 are end moments, in. lbs. 

Roy R7 are end support forces,  lbs. 

K i  etc. is stiffness constant = p-, lbs./in. 

Ai etc. is the net deflection of the spring “K”, in. 

yo etc. is the neutral axis deflection of the beam, in. 

I is the height and base of each full triangle, in. 

Mi etc,  is the lumped mass of the section of the beam. 

E1 

force R andlor a moment of* The end may have a displacement of yo o r  y7. Each 
element of mass  M and stiffness K may have its own assigned quantitative value. In the 
case of a uniformly distributed system, all M values would be equal and all K values 
would be equal. 

The Symbols used in the derivation of the equations are defined below Figure 10. 
The counter-clockwise moment+$,  is considered positive, whereas the clockwise mo- 
ment M7 is considered positive. This is the usual convention used in beam equations. 
The deflection of y in the downward direction is considered positive and the deflections 
of the springs to the right are considered positive. 
considered positive in the upward direction. 

Both support forces,  Ro and R7, are 

9 
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The first set of equations to be evolved are based on the reasoning leading to equa- 
tion (4).  We define A, as the deflection imposed on K i  and A2 as the defleotion imposed 
upon K2, etc. , a positive value of A reflects an elongation of the spring. Remember 
that the moment a rm of the springs is equal in length to the distance between hinges. 

0 = -A4 + y5 - 2y4 + y3 (12) 

In equations 9 through 14 the y's are actual deflections at the locations as indicated by 
the subscript. 

Next,in Figure 11, let us look at the moments relative to a section 1, 1 of the 
beam passing through location I. The deflection in spring Ki is induced by equal and 
opposite moments on either side of the section I, I. For convenience let us take the 
moments to the left. Then the continuity of moments at section i, I will be: 

This can be resolved to a more standard form of: 

Note thatMO and Ro resul t  in moments of opposite sign as they resist each other. 

Section 2,2,  Figure 12, now involves more than end conditions in the moment 
equation. Since the springs at locations other than the designated section location only 
transmit moment, they are not involved in  the equation. -Mo and Ro, as external effects, 
do not represent physical characterist ics of the beam. The mss, on the other hand, 
is an impedance value and can be treated as such. The moment about section 2,2 in- 
duced by any impedance, Z i ,  with a net displacement of yi would be: 



1 

FIGURE 11. BEAM SECTION AT LOCATION I 

F'IGURE 12. BEAM SECTION A T  LOCATION 2 
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For Z i  in this case we can substitute j w Mi, then: *(Mi)= - w2 MI y i  I. The moments 
at section 2 ,2  can now be equated as: 

Following the same reasoning as above, equations of moment continuity can be written 
for sections at 3, 4, 5, etc. For a six mass  beam the set of moment equations would be: 

0 = 4 , K 4 - -  *' + 3.5  Ro - 3w2 y i  MI - 2w2 y2 M2 - u2 y3 M3 I 

35 
0 = A6 K6 - 9 + 5.5 Ro - 5w2 yl  MI - 4w2 yz M2 - 30' y3 M3 - 2w2 y4 M4 

- W 2  Y5 M5 

We can also write the moment equation at y7 and it becomes: 

+ 6 Ro - 5.5 W' y i  MI - 4.5 y2 M2 - 3.5 w 2  y3 M3 

If we substitute equation 9 through 14 into equations 15 through 21 as applicable, 
we will end with the following list of unknowns: 

12 



Any choice of end conditions will reduce this group by four, which gives eight unknowns. 
Thus far we have developed seven equations, numbered 15 through 21. We need one 
more to satisfy our simultaneous equation solution. In forced vibration the sum of the 
forces acting in the vertical direction must equal zero. The vertical forces are induced 
by the end forces Ro and R7, and the inertial forces by the masses  or  any other res t ra int  
at the hinges. The eighth equation can now be developed: 

Combining equations 15 through 22 __ prcddces matrix equation (23). 

. 5  0 -P 0 +zKi -3Kt LK.l 0 0 0 0 

1 . 5  0 -I 0 0 +(Kz-w2Mi) -2Kz +KZ 0 0 0 0 

-t 

A 

o =  

+(K, - W ~ M , )  - 2 ~ ~  +K3 0 0 0 

-2w2M2 +( K4- w2M3) -2K4 +K4 0 0 

-3w2M3 -2w2M3 +( K5 -w2M4) -2K5 +K5 0 

-4w2M4 -3w2M3 -2w2M4 +(K6-w2M5) -3K6 +2K 

-4. 5w2M4 -3.5w2M3 -2. 5w2M4 -1. 5w2M5 -. 5U2M, 0 

+w2M2 +w2M3 +w2M4 +w2M5 +W2M6 0 

Matrix Equation, Beam General  Model of Six M a s s e s  Equation (23)  - 

RO 

R ?  

*( 

Hi 

Yo 

Y i  

Yz 

Y3 

Y4 

Y3 

Y6 

Y7 

Equation (23) represents a completely general mamematical model of a beam. 
The rectangular matrix and the right-hand column matrix will reduce to solvable square 
and column matrices of the same order upon selection of the end conditions. Note, from 
the table below Figure 10, that each end condition has two of the possible variables equal 
to zero. 
eque-tion (23) to a square 8 x 8 matrix and the right-hand column matrix will have four 
of its variables equal to zero and therefore cancel out to the 8th order. 

The selection of end conditions would then reduce the rectangular matrix of 

13 



Since any selection of end conditions will reduce the variables by two, the end 
The matrix equation will accept any combination of end conditions need not be alike. 

conditions. This is a distinct advantage of this type of approach. Once the computer is 
programed to solve the Eigenvalue and Eigenvector problems of full, non-symmetrical, 
matrices the analytical model will produce solutions not convenient by other methods. 
Since the matrix is not dependent on uniform constants, a non-symmetrical physical con- 
figuration may be solved. In a formal sense of application this method would apply only 
to stepped structures with uniform constants between steps. In a loose sense the triang- 
ular segments may represent a lumping of the variable constants into equivalent values. 
For  instance if  the mass  of the beam is equatable to a function of position on the beam. 

. 5  -L +2K - 3K +K 0 
-1 

+K -1 I. 5 -1 0 (K - w2M) -2K 

2 .5  -1 0 -2w2M + ( K  - w2M) -K -1 O =  

3.5 -1 0 -33’M +(K - 2w2M) - ( K  -I- w2M) -1 

where M = M a s s  of the nth segment of the beam n 

Ro, P 

7 

Yo, ‘I 

y1,6 

p = Mass density of the beam in mass  per unit length 

X = distance along the neutral axis of the beam. 

The deflection of the beam must be considered linear and estimates made must be 
for  the spring constant of each segment of an irregular beam. 

Equation (24)shows the reduction of equation (23 )  to represent a uniform syinme- 
trical beam of six masses.  
conditions of 

This specific model is used to illustrate the 3 usual beam 

I. Fixed-Fixed 
2. Hinged-Hinged 
3. Free-Free 

14 
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allowed reasonable (4 by 4) hand solution to show examples of problem solution. 
order solutions are recommended for the practical use of the mathematical model. 

Higher 

The solution of matrix equations such as equation (23)  is somewhat involved. 
When the rectangular matrix is reduced to a square matrix it represents the impedance 
of the system. A t  each resonant frequency the reactive portion of the impedance is equal 
to zero. Since only reactive impedance has been inserted into the rectangular matrix, 
the values of w that equate it to zero are solutions of the natural frequencies. 
values of w are known as Eigenvalues. 

These 

The variables in the column matrix represent system response. Each natural 
frequency will have a finite set of response values. Solutions of the column matrix are 
known as Eigenvectors. Even after the insertion of a natural frequency into the square 
matrix, equation (23) is not solvable. However, if we normalize the response values to 
one of the Eigenvectors, e. g. , yl, then the insertion of unity into the column 
matrix makes the equation solvable. 
be determined from an Eigenvalue - Eigenvector solution. 
scribe a mode shape for each natural frequency. 

This means that only relative displacements can 
These relative values de- 

The physical reason finite values of response amplitude cannot be had from a 
solution of equation (25)  is that response amplitudes of a steady state forced system 
are damping dependent. Equation (25)  contains no damping values. 

Equation (8) equates input energy to dissipated energy. Each deflection y is 
equated as 

Y n = K  Y 
n Y 7  

Where y is the normalization factor. A l l  Kn'S must be determined. Then the substitu- 
tion of equation (25)  into equation (9)  through ( 14) and the resultants into equation ( 8) will 
lead to solutions of f in i t e  deflection values for each mode. Usually, at the first few of the 
lowest natural frequencies such as those suitable for this method of analysis, these de- 
flections will be representative of total deflections at the natural frequencies. This is 
true because modes other than the resonant mode will have very little amplitude when 
only low frequencies are being considered. 

Y 

Examples - 4 x 4 Matrix Eigenvalue Solutions of Uniform Beams 

The general solution, equation ( 2 3 ) ,  can very often be reduced in scope. This 
is especially true when the beam is symmetrical and uniform. In fact, equation (24) is 
the first step in reduction to account for uniformity. When the beam is symmetrical it 
has an even number of masses  and the odd modes only are considered. Each deflection 
on the right of center should have an  equal deflection on the left side. Also the moment 
and reaction force at the ends are equal. By substitution of one set into the other, 

15 



equation (24) can be reduced to half size. Equations 26, 27, and 28 represent uniform 
symmetrical beams of six masses  that reduce to a 4 by 4 system. 
are easily calculated by hand and will be used to check out the accuracy of this analytic 
method by general comparison with standard solutions. 

These 4 by 4 matrices 

Matrix Equations, Symmetrical Uniform Beam , Specific CaSes 

I .  Fixed - Fixed: 

O =  

0 -1 
. 5  -1 +K 

-1 
I. 5 -1 -2K +K 

2 . 5  -1 -1 + ( K - w 2 M )  -K 

3. 5 -1 -1 + ( K  - 2w2M) -(K + 02M) 

2. Hinged - Hinged: 

. 5  -3K +K 0 

I. 5 +(K - w2M) -2K' +K 

I 3 . 5  -3w2M +(K - 2w2M) -(K + w2M) 

3. Free - Free: 

2K -3K +K 0 

0 (K - w2M) -2K +K 
O =  

0 -2w2M +(K - w2M) -K 

0 -30 2 M +(K - 2w2M) -(K + w2M) 

Roy : 

yi, 6 

y2,5 

Y394 

Yo, 7 

Yl,  6 

y2,5 

Y3,4 

(26 ) 

(27) 

16 



Equation (29) is a longhand solution of a four by four matrix. The calculation 
will be based upon this solution in tabular form. It should be noted that when A, B, C 
or  D is equal to zero, a portion of the tabulation need not be performed. 
D equals zero in the solution of the fixed-fixed beam , equation (25) .  

For example, 

4 by 4 Matrix Expansion Model 

I " " " "  I 

= AFKQ + AGLN + AHJP - A F P L  - AJGQ - ANKH 

- BEKQ - BGLM - BHIP + BEPL + BIGQ + BMKH 

+ CEJQ + CFLM + CHIN - CENL - CIFQ - CMJH 

- DEJP - DFKM - DGIN + DENK + DIFP + DMJG 

TABLE I. MATRIX EXPANSION OF EQUATION (26) 

AFKQ= . 5  (-1-')(K-w2M)(-K-w2M) = + . 5 P W 1 K 2  

AGLN = . 5  (-2K) (-K) (-1 -I) 

AHJP = . 5  (K) (-1-I) (K - 2w2M) 

-. 51 -'w4M2 

= -1 -1 K2 

= - . 5 !  -1 K2 +I -'w2MK 

-1 +1 U ~ M K  

+I-' JMK 

-1 
-AFPL = -. 5( -1-I) (K - 2w2M) (-K) 

-AJGQ = -. 5( -1 -I) (-2K) ( -K -w2M) 

= - .51  K2 

-1 
=+I K2 

-1 
-ANKH = -. 5(-1-') (K - w2M) (K) = +  . 5 1  K2 - . 5  1-I w2MK 

-BEKQ = +1 ( 1.5) (K - w2M) (-K - w2M) = - 1.5 1 K2 + I. 5e-iw4M 

-1 
-BGLM = + 1 (-2K) (-K) ( 3.5) s i -  7 1  K2 _ ~ _  I -__ _-- - 

17 



I I1 I 1  I 111111ll1l1l111l IIM Ill I 

-BHIP = + 1-l (K)  (2.5) (K - 2w2M) 

+BEPL = -1 
-1 

(1.5) (K - 2o2M)( -K) 

(2.5) (-2K) (-K -W2M) 

(3.5) (K - w2M) (K) 

-1. 
+BIGQ = -8 

+BMKH = - 8 

+CEJQ = +K( i. 5) ( - 8  -I) (-K - w2M) 

+CFLM = +K( -8 -I) (-K) (3.5) 

-1 

+CHIN = +K(K) (2.5) ( - 1 - 3  

-CENL = -K( i. 5) (4-l) (-K) 

-CIFQ = -K(2.5) ( - 8 - I )  (-K - w2M) 

-CMJH = -K( 3.5) (-8 -I) (K) 

Table I (Cont'd) 

- 5 8 % ~ M K  
-1 = +  2.58 K2 

= t i. 51-'K2 

-1 
= - 5 1  K2 

= - 3.5 P -iK2 

- 38-'w2MK 

- 5 .I u2MK 

+ 3.58-I w2MK 

= +  1.58 K2 + 1. 51-'w2MK 

-1 2 = +  3.51 K 

= -  2.58 K2 

= - i. 58-'K2 

-1 

-1 

-1 
= - 2. 58-'K2 - 2.58 JMK 

= + 3.58 -'K2 

Equation (26) represents the solution of a uniform symmetrical fixed-fixed ended 
beam. The square matrix equals zero for any natural frequency that can be calculated 
from the mathematical model. First the matrix has to be expanded to a single equation. 
By using equation (29) as a model, Table I is constructed. 
set to zero is 

The summation of Table I 

u4 M2 - 8w2 M K + 3K2 = 0. 

If we use the quadratic solution equation of 

18 



and set 

a = M~ 

b = - 8 M K  

c = 3 K2, 

then u2 can be solved as follows: 

w2 = + 8 M K k 4 6 4  M 2 K 2 -  12 M2K2 
2 MZ- , 

0 2  
+ 8 M K d 5 2  M2K2 

2M2 7 

+ 8 M K f 7.2111 M K ,2 = 
2 M2 Y 

.394 K 7.605 K a2 = I 

M '  M '  

E1 Since we have shown K = 7, 

. 394 E I 
I M I 3  ' 

w2 = 

The standard equation for the first natural frequency of a fixed-fixed beam is 

22.4) E I 
w 2 =  ( 

i Mt L3 * 

In this equation Mt = 6 M and L = 6 I. These, when substituted in,yield 

a2 = .386 E I 
i M I 3  
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The e r r o r  in using 

394 - 386 
386 

E r r o r  = 

the mathematical model of equation '( 26) would be 

x 100 = 2.170, 

when w2 is considered. Actually the e r r o r  in te rms  of w would be 

19.85 - 19.65 
- 2o = 1.0470. 

19.65 19.65 
= 100 x dziz-- m 

m 
100 x 

Since the second value of w 2  as calculated is about 20 t imes the f i rs t ,  it is obvious that 
it does not represent the third mode. We can conclude that the four by four matrix can 
be good only for the one lowest natural frequency calculation. If an eight by eight ma- 
tr ix were used the accuracy of the first mode would be increased and the third mode 
made available. Figure 13 is the diagram for equation ( 2 6 ) .  It is noticeable that only 
two masses  are in oscillation. This is not sufficient freedom to simulate a good third 

FIGURE 13. FOLDED MODEL FOR FIXED-FIXED BEAM 

mode. That is why the third mode can not be calculated by this small  size matrix. 
It should be remembered that the symmetrical method eliminates the second mode. 

For  the first mode the column m a t r k  of equation (26)  can not be determined in 
absolute values. A solution can be performed in the following manner by using equation 
(26)  : 

Substitute in the calculated value of w 2  
I 

Divide the column matrix by y,. 

20 



Solve the set of simultaneous equations for  Rdy3, Wdy3 and ydy3. 

Note that Rdy3  is the reaction force for the first mode at the beam attachment location 
per unit deflection of the beam at y3 and thatfhRdy3 is the moment resulting from the 
first mode at the beam attachment per unit deflection at y3. 

Other aspects of the system can be calculated. The average slope of the beam 
for the first mode between yz  and y3 is 

or  

in radians per unit deflection at y3. The maximum stress in the beam is 

where C is the distance from the neutral axis to the extreme fiber. 
eulated*/ye we get 

Since we have cal- 

Y3 Y3 1 

as the maximum stress pe r  unit deflection of y3. 
calculated by equation (31) is for  one mode of vibration. The total normalized stress 
resulting from all modes would be the complex summation of 

It must be remembered that stress 

* s  
n 

’3 M=I Y 

where S d y  is the normalized maximum stress of the ntri mode. 

Hinged-Himd Beam Sample Solution 

Equation 27 is a matrix solution for a uniform symmetrical beam with both ends 
hinged, o r  simply supported. 
II is a tabulation of the calculations. 

Equation 27 is solved using equation 29 as a model. Table 
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TABLE 11. EQUATION (21)  MATRIX EXPANSION 

AFKQ = . 5 (  K - w’M) (K  - w’M) (-K - W’MI) . 5u6M3 +. 5w4M2K +. 5w2MK2 -. 5K3 

AGLN = .5(  -2K) (-K) (-30‘M) 

AHJP = .5(K) (-2w‘M) (K -2w’M) +2.0 -1.0 

-AFPL = -. 5(K - w’M) (K - 2w’M) (-K) 

-AJGQ = -. 5( -2w’M) (-2K) (-K - w‘M) 

-3.0 

+I. 0 -1.5 

+2.0 +2.0 

+. 5 

-ANKH = -. 5( -3w2M) (K - O’M) (K) 

-BEKQ = 3K( 1.5) (K - W’M) (-K - W’M) 

-BGLM = 3K( -2K) (-K) (3.5) 

-BHIP = 3K(K) (2.5( (K  - 2JM) 

+BEPL = -3K( I. 5) (K -2W’M) (-K) 

+BIGQ = -3K( 2.5) (-2K) (-K - W’M) 

+BMKH = -3K( 3.5) (K - w’M) (K) 

+CEJQ = K( 1.5) (-2w’M) (-K - w’M) 

+CFLM = K(K - w’M) (-K) (3.5) 

+CHIN = K(K) (2.5) ( -3dM) 

-CENL = -K( 1.5) (-3w’M) (-K) 

-CIFQ = -K(2.5) (K - w’M) (-K - o’M) 

-CMJH = -K( 3.5) (-2w’M) (K) 

-1.5 +I. 5 

4.5 

-15.0 

-9.0 

- 15. 

+IO. 5 

+3.0 +3. 0 

+3. 5 

-7.5 

-4.5 

-2.5 

+7. 0 

-4.5 

+21.0 

+7.5 

+4.5 

-15.0 

-10.5 

-3.5 

+2.5 

The summation of Table 11 yields: 

0 = . k 6 M 3  + 9w4M2K - 28. 5w2MK2 + 2K3 
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If we set u2 = the above equation becomes M 

0 = .5  x3 + 9 x2 - 28.5 x + 2. 

We know that x will be a small  number in the order  of 0. I. 
equation can be neglected. U s e  the quadratic equation general solution to get 

Therefore the x3 term in the 

28.5 f 4 (28. 5 ) 2  - 72 = . 0718, x = -  
18 

then 

2 - ,0718 K - .0718 E I - 
1 3 M  ' 

w -  
M 

The equation for  a uniform symmetrical hinged beam is 

w2 = 2 0752 E I 
1 l3  M 

The e r r o r  fo r  wi is 

0752 - .0718 
100 x -- - 4. 5%. .0752 

The e r r o r  for w is 

= 2.370. 
d 752 - 4 7 1 8  

100 x 
a 2  

As stated in the fixed-fixed beam example, the 4 by 4 matrix is in reality too 
small  for  good problem solution. 
ized moment, end resultant force and deflections for  the first mode can be calculated as 
well as the average slope between hinges. 

The third mode solution is not available. The normal- 

TABLE 111, MATRIX EXPANSION OF EQUATION (28) 

2 K ( K - ~  M) ( K - W ~  M) (-K-w~M) = -2K4 + 2K3w2 M + 2K2 w4 M2 - 2Kw6M3 

2 K(-2K) (-K) ( - 3 ~ ~  M) - - - 12 K3 w2 M 

2 K(-2u2 M) (K -2w2 M) (+K) - - - 4K3 w2 M + 8 K2 w4 M2 



. II , , ....... 

Table 111 (Cont'd) 

-2 K(-3w2 M) (K - w2 M) (K) - - 6 K3 u2 M - 6 K2 u4 M2 

2 K4 - 6 K3 u2 M + 4 K2 w4 M2 

+ 8 K3 u2 M + 8 K2 w4 M2 

- - -2 K(K-u2 M) (K -2u2M) (-K) 

-2 K(-2 M) (-2 K) (-K -0' M) = 

_ _  - 

- 6 K3 w2 M + 162 K2 w4 M2 - 2 K o6 M3 

Free - Free Be am Sample-Solution 

Equation (28) is the matrix solution for a uniform symmetrical beam with both 
ends free. The square matrix of equation (28) reduces to: 

K - W ~ M  - 2 K  + K  

- 20' M + K - w 2 M  - K  

- 3 u 2 M  + K -20'  M - K - w 2 M  

2 K  

The solution of this matrix when set equal to zero is from Table III and is 

0 = - 2 w6 M3 K + 16 w4 M2 K2 - 6 w2 M K3. 

x K  
If we let w 2  = y , then the above equation reduces to 

0 = + 2 x2  - 16 x + 6 = .395. 

Then, 

2 - ,395 K 
0 -  I 

- . 3 9 5  E I - 
M 1 3 M  ' 

The first natural frequency of the free-free beam should be 

.386 E I = 
I M 1 3  ' 

The e r r o r  in terms of w: will be 
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I 

The e r r o r  in te rms  of w will be 

= I. 1%. d 395 d 386 
100 x 

Cantilever Beam Sample Solution 

The cantilever beam is a special case of the beam equation. It has one end fixed 
Figure 14 represents a diagra- 

This particular model is used because it utilizes 
Moments a re  taken at the 

and one end free. 
matic model that fits a 4 by 4 matrix. 
the same model configurations of equations 26 through 28. 
hinge locations. Equation (32 )  represents the summation of moments about the first 
mass,  Mi, by using the left input to  balance the moment of spring Kl.  
the summation of moments that a r e  to the left of inass AI2 and reacting on spring K,. 
Equation (34) represents the summation of the moments acting to the right of mass  M, 
and acting on spring K,. 
cording to this model, has no deflection. Equation (35) is the summation of forces acting 
in the vertical direction. 
placements. 
solution of the square matrix of equation (38 ) .  

Thus it is not a symmetrical beam. 

Equation (33 )  lists 

This switching of sides is convenient because spring K,, ac- 

Equations 36 and 37 equate the spring deflections to hinge dis- 
Equation 38 follows from equations (32)  through (38). Table IV is the 

FIGURE 14. MODEL OF A CANTILEVER BEAM 
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Cantilever equations 

I 1-i -. 5 -K 0 

- 1 . 5  +2K -K 

O =  
+2K - K +  w2M 0 0 

0 -1 W2M W2M 

0 = -A2K2 + w2M3y3 

0 = -Ro + w 2 M ~ 2  + w2M3y3 

Ai  = Y2 

A2 = Y3 - 2Yz 

*O 

RO 

yz 

Y3 

TABLE IV. MATRIX EXPANSION OF EQUATION (38)  

-3 w2  K M - l'i (-1.5)  (2K) (W2M) - 

2K2 -2 w2 K M 1-1 - (2K) (-1) (-K + w2M) 

(0 )  - 

- 

0 - 

-2 K2 I'i - -1'' ( -1)  (2K) (-K) - 

-I" ( -1 .5 )  (w2M) (-K + w2M) 

-l-i (0)  - 

. 5  (I-') (+2 K) ( w 2  M )  

- 1 . 5  w 2  K M 

0 

+I. 5 w4 M2 - - 

- 

+ w2 K M - - 

0 - - * 5  (0) 
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-1 

Total of Table IV K2 1 - I  -6 u2 K M 1 - I  +w4 M2 1 - I  

Setting the square matrix equal to zero we get 

0 = u4 M2 - 6 u2 K M + K2. 

Let 

then 

0 = x2 - 6 x + I, 

- 6 * d 3 2  - 6 f 4 3 6  - 4 
2 2 X' Y 

6 - 5.67 . 3 3  - 

2 2 - - . 165, X =  

then 
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. 165 K - .165 E I w2 = - 
1 M l3  M ' 

The standard solution for the f i r s t  mode of 'a cantilever beam will give 

2 - . 153 E I 
M l3 w -  

I 

The e r r o r  in te rms  

. 165 - . 153 
. 1 5 3  

The e r r o r  in t e rms  

of w 2  is 

x 100 .= 7.970 . 

of w is 

x 100 = 3.2%. 4 1 6 3  - d 153 

d-zE 

Since there are only two displacement values in this example, y2 and y3, good accuracy 
can not be expected. 

Summary of the Worked Examples 

The four examples worked here are algebraic with the end resultant in a form 
that could be compared to the general beam natural frequency equation. For an example 
where the masses ,  stiffnesses , and length dimensions can be determined, the Eigenvalue 
solution of the square matrix will find the natural frequencies directly without the substi- 

E 1  tution of 3 in for  K at the end of the problem. Actually this substitution will be made I 
when determining the initial values of stiffness to inser t  into the matrix. I t  need only be 
made once. 

Although a 4 by 4 matrix is obviously too small  to assure enough input detail, 
the accuracy of the four problems is good enough to point out the validity of the method. 

Non-Uniform Beam Solutions 

The mathematical mbdel put forth in this paper is adaptable to beams of non- 
uniform stiffness and/or mass  as well as beams with a curved neutral axis. 
lems can be developed to f i t  a standard Eigenvalue solution to a square matrix but the 

These prob- 
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matrix itself i s ,  of course,  not standard in form. 
have a special set of equations developed. 
method. For  an example, consider Figure 15 as typical of a special beam base. 

Each of these special situations must 
First we must examine the limitations of the 

FIGURE 15. NON-UNIFORM, NON SYMMETRICAL BEAM 

Each link of the simulated model, Figure 16, must have like dimensions but the indivi- 
dual values of M and K can vary. 
net deflection of the beam hinge can be considered a net deflection of the spring. 
will be proportionate to the relative angle mode by the bases of adjacent trusses. 
angle will increase as the length r c l r l  is increased, and decrease 
creased. 
on the minimum number of trusses.  

The trussed links must be small  enough so that the 
E r r o r  
This 

as the length r l B r r  is de- 
The allowable e r r o r  puts a limitation on the model truss size and therefore 

R9Y 
I x  

FIGURE 16. NON-UNIFORM BEAM MODEL 

The deflection at Mi will have a resultant with both an "x" and a "y" component. 
However, if  a single coordinate system of response relative to location is worked out, 
a smaller matrix results. 
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In this particular model there is no moment on spring K,. The motion of each 
mass concentrated at the hinge is considered to be in the direction of a ray  that bisects 
the angle between the adjacent t russ  bases. The moment a rm about Mi will then be a 
perpendicular struck through the location of MI to the directional ray.  By using this 
method a set of moment equations can be developed in the same manner .as for the straight 
beam. The force summation must equal zero in both the x and the y direction. A set of 
equations can be developed to set up a matrix equation that will solve for Eigenvalues and 
Eigenvectors. 

The use of the mathematical model presented herein probably has its greatest  
value in helping to solve the more complicated situations by reducing the specifics to 
a model that can be solved. 

SECTION IV. VARIATIONS ON THE ANALYTICAL BEAM MODEL 

Initial Displacement 

If an initial displacement is known, it replaces the appropriate y. For  example: 
if y4 has an initial displacement of .005 inches, this value will replace y4 in the column 
matrix of equation ( 2 3 ) .  

Mode Shape 

The maximum displacement is given an initial displacement of unity. A plot 
of the values of y versus  location on the beam will  describe the mode shape. Curve 
fitting procedure wiIl equate y to x. 

Forced Oscillation 

Forced oscillations will enter the matrix equation (23)  as  a column matrix on the 
left side. The procedure is illustrated by Figure 17. 

A A A 

FIGURE 17. FORCED EXCITATION EXAMPLE 
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=0 

w O  

0 = - AiKi +I - . 5R0 

- 1.5 R, = - A2K2 +? 

0 
= - A3K3 +p 

+ .5Fi 

'RI- 
- 2 . 5  Ro + U 2  M2 y2 + 1.5 Fi 

'RI- 
+ 2.5 Fi = - A4K4 +a - 3.5 .Ro + 2w2 M2 y2  + u2 MS, 

+ . 5  F2 = - A4K4 

A, = Y, 

A, = Y3 - 2Y, 

A3 = Y4 - 2Yg + Y z  

A4 = 2Y 5 - 3Y4 + Y3 

0 0 0 - . 5  44-1 - K ,  

-1.5 +I-' +2K2 -K, 0 0 

-2.5 +I-, (-K3 + u2 M2) +2K3 -K3 0 

-3.5 +I-* + 2 0 2 M  (-K4 + w 2  M) + 3K4 -2K4 

0 0  0 -K4 +3K4 - 2K4 

- 1  0 w2M2 w2M3 w2Mq 0 

Mixed End Conditions 

When the end of the beam is anchored to a flexible member, 1 A0 KO is sub- 
stituted in equation (23) for M0 and A. = 2y,; y, is then a variable and replaces+%o in the 
right side column matrix. 
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When the end condition has a rotational oscillation, f(xo) is then a known input 
f ( x  ) = 2yi and its function is substituted into the right hand column matrix for yl. 

0 

When the end is oscillating in the y direction, f(yo) is a known function and is 
substituted into the right hand column matrix (Fig. 18). 

FIGURE 18. EXAMPLE OF FLEXIBLE END ATTACHMENT 

Multi-Supported Beams 

For  a multi supported beam, Rn must eliminate yn in the matrix equation. Thus 
Rn will replace u2 Mn yn in the basic equations and Rn will replace yn in the right hand 
column matrix as an  unknown (Fig. 19) .  

FIGURE 19. EXAMPLE OF MULTI SUPPORTED BEAM 
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In the non-rigid supported beam, as illustrated, the support must be at a hinge 
between triangles. In each instance of support, for example where w2 Mi yi and 
u2 M5 y5 are in the matrix (23) , the quantities (w2 Mi - K;) and ( w 2  M5 - Ki)  are re- 
spectively substituted since the spring will resist motion at the support. If the springs 
are initially not at rest, the respective forces must be inserted (Fig. 20) .  

K K K K K K K 

FIGURE 20. EXAMPLE OF FLEXIBLE SUPPORTED BEAM 

SECTION V. ADAPTION OF A BEAM ANALYTICAL MODEL 
TO A PLATE ANALYTICAL MODEL 

The beam of Figure 3 is simulated by a model that is most convenient for all of 
The the beam problems. Other models may be constructed to meet specific purposes. 

beam of Figure 3 is not readily adaptable to plate configurations. Therefore, it is 
necessary to modiiy our approach and construct a basically new model as shown in 
Figure 21. 
the coupling of mass  to the column matrix of variables. 

This new model represents a change in mass  attachment that complicates 

K3 

FIGURE 21. MODIFIED ANALYTICAL MODEL 
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The displacements of Mi,M2 and M3 are the average of the two adjacent hinge 

Thus the dynamic force of Mi may be represented by u2 Mi displacements. 

In order  to expand the beam to a two dimensional model, the triangle concept is 
replaced with a massless  rectangular pyramid as shown in Figure 22 and Figure 23. 

m 
(3 

BOTTOM VIEW 

FIGURE 22. PYRAMID CONFIGURATION 

In the development of the matrix equation for this beam the mass displacement 
may be taken as average of two diagonal adjacent hinges; for convenience, the top left 
and bottom right of each pyramid base are taken. The displacement of spring Kal is 

A = (y21f2y22) -3 ( yi2 + yii ) + 2 (  yo, + yo2 ) 
ai 

and the displacement of K,, is 

'32 '31 y22 + y2i Yi,  + yii 
A a2 = (  2 > - 2 (  2 ) + (  2 ) 
The,first  six lines of matrix equation (39)  is the analytical model of the two- 

dimensional, four-spring beam. 
equation 23 and is more complicated; but the corner hinges allow for modal coupling of 
a plate problem. 

This model has no advantages for beam problems over 
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Equation (39) 

0 0 +iK +(R a4 -&M 4 a4 ) 0 0 0 2 a 4  2 a 4  u 4 a q  + i K  -'K +(K k I b l  ) 0 +' 0 -I-' 
2 a4 

o =  0 

01 1 21 31 

"480 

MaS 

Four Mass Beam Modiiied Model 

I 





i 

w 
en 

01 1. 1 J l  I 1  1 

Four M a s s  Beam Modifled M o r l d  

Equation (39) 

When one equation is to be omitted, line ( 6 )  is deleted and line (7) I S  substituted lor line (5) 



These pyramids are linked at the corners  to farm a beam as in Figure .23 

GENERAL VIEW 

$-SPRING BEAM 
2-DIME NSIONA L 

CONCEPT 

GENERAL VIEW 

\ / I /  $-SPRING BEAM 

TOP VIEW 

ATTACHMENT 
TO APEX 

K3 K4 

SIDE VIE'JJ FOR 
NOMENCLATURE 

Y :ll; 02 Iz L-- Iz a iz 

R5 TOP VIEW FOR 
NOMENCLATURE 

RO 

Yo1 Y i 1  y21 y31 y41 J'51 

FIGURE 23. PYRAMIDIC MODEL SUITABLE FOR PLATE ADAPTION 
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The plate made up of four-spring beams may be represented as in Figure 24. 

BEAM 

BE 
d 

e 

f 

Y o 9 0  Y o - 1  t Y0,2 t t 
FIGURE 24. FOUR SPRING PLATE MODEL 

There a re  three horizontal beams and three vertical beams. 
plate are not a part  of any beam. 
rigid is applied, the three hinges of the corner segments that a r e  attached to beams will 
determine the displacement of the corners. 

The four corners of the 
However, when the assumption that the pyramids are 

Because of the coupling, the number of displacement variables of the plate is 

Each beam model 
not equal to the sum of the s ix  beams and the four corners.  This fact reduces the 
number of required equations to make up a plate matrix equation. 
must include all of the variables of that beam. When fewer equations are required, the 
fifth and sixth lines of the equation may be deleted and line seven substituted as the fifth 
equation of the beam set. The plate of Figure 24 will require a rectangular matrix of 
60 by 36 which reduces to 36 by 36 when the end conditions a r e  inserted. Equation 40 
gives the analytical model of the plate. The end conditions are selected in the same 
manner as the single beams and all the variations as described for the beams may be 
applied to the plate matrix. 

BEAM 
!I 

The stiffness constant of the two dimensional beam model is 
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YO2 Yr2 Y22 Y32 Y n 2  Y 2 

01 1. 21 31 

Four M a s s  Beam Modified Model 

, >  4 2  +%I +-&I + "ZM 
2 a3 2 a 4  2 a o  

0 + g M  + 5 I  
2 ai 2 a2 

0 + d M  
2 a0 

2 

0 0 0 - ( K  ai -*-?*I 4 30 1 ' 0  - (K - " a M  ) + ? K  
ai 4 ao 2 ai  - z K a i  

0 + 3 W 2 M  ' + ( K  +$M ) - $ K a 2  0 0 c 3 d 2 M  4 ao 4 a0 - z K a 2  a2 4 ai 

0 +'d2M 
4 aG 

2 ar q d  Ma2' 2 a4 d d  -Ka4 4 ao 

0 -(LK - ?w2M ) +(+K +"2M ) - i K a 3  
2 a3 4 ai  a3 4 a2 

4 ai 

2 ai 

_(iK -3  2 +('K +1 2 + 5 M  0 + 5 W 2 M  

0 +'M +uJ2 M au 
+A d2 M 0 c 2 d M  

a2 2 a3 

i When one equation is to be omitted, line ( 6 )  i s  deleted and line ( 7 )  is substituted for line (5) 

Equation (39) 



These pyramids are linked at the corners to form a beam as in Figure .23 
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FIGURE 23.  PYRAMIDIC MODEL SUITABLE FOR PLATE ADAPTION 
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The plate made up of four-spring beams may be represented 

BEAM 

BE 
d 

e 

f 

as in Figure 24. 

BEAM 

FIGURE 24. FOUR SPRING PLATE MODEL 

There are three horizontal beams and three vertical beams. 
plate a r e  not a par t  of any beam. However, when the assumption that the pyramids are 
rigid is applied, the three hinges of the corner segments that a r e  attached to beams will 
determine the displacement of the corners. 

The four corners  of the 

Because of the coupling, the number of displacement variables of the plate is 

Each beam model 
not equal to the sum of the six beams and the four corners.  
number of required equations to make up a plate matrix equation. 
must include all of the variables of that beam. When fewer equations a re  required, the 
fifth and sixth lines of the equation may be deleted and line seven substituted as the fifth 
equation of the beam set. The plate of Figure 24 will require a rectangular matrix of 
60 by 36 which reduces to 36 by 36 when the end conditions are inserted. Equation 40 
gives the analytical model of the plate. 
manner as the single beams and all the variations as described for the beams may be 
applied to the plate matrix. 

This fact reduces the 

The end conditions are selected in the same 

The stiffness constant of the two dimensional beam model is 
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where v is Poissmls  Ratio and the other nomenclature is the same as in the beam. 

The 4 by 4 spring plate solutions will be accurate for  only the first mode of the 
Practical considerations would dictate a matrix up to the capacity of the available 

For example a plate with 13 by 13 springs and good for  3 modes in each 
. plate. 

computer. 
direction would require a 169 by 169 matrix; a plate good for 4 modes in each direction 
would require a 289 by 289 matrix. 

Since maximum amplitudes will be encountered in  the lower modes, there is 
practical value from the use of the model. 
computed for a limited number of the lowest frequencies. 
would have little meaning. 

The Eigenvalue problems need only to be 
Higher frequency solutions 

SECTION VI. VARIATIONS OF THE PLATE MODEL 

There are two major variations of the plate model that have significance. 
are adaptations of the model to allow the inclusion of stiffening beams, and the simula- 
tion of a cut-out plate for  a complex beam structure. Both represent a use of additions 
o r  subtractions of springs and masses  to the plate model. The matrix equation can be 
modified to meet the specific applications. 

There 

Shell Model 

The analytical model can be modified to simulate a thin cylindrical shell struc- 
ture. With r 4 substituted into the 
matrix equation for  1 of the wraparound beam, the wraparound beams are continuous 
and therefore have no end conditions. 
character of available equations to set up a suitable matrix. 

The deflection is assumed in a radial direction. 

This changes the number of unknowns and also the 

The adaptation of analytical principles used in this paper will be extended to 
cylinders and published at a later date. 



FIGURE 2 5 .  CYLINDRICAL S m L L  MODEL 

SECTION VII. CONCLUSIONS 

The dynamics of a beam o r  plate can be simulated by a model made up of mass- 
less constraints , springs , and concentrated masses.  
mechanical elements, a mathematical model may be produced for structures not gener- 
ally solvable by usual techniques. The analytical approach has been derived and the re- 
sults proven by the use of simple hand-solvable models. Extension to more complicated 
structures is possible using digital computers for matrix Eigenvalue and Eigenvector 
solutions. 
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