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Abstract

This paper introduces a new general model of boundedly rational observational learning: Quasi-Bayesian

updating. The approach is applicable to any environment of observational learning and is rationally

founded. We conduct a laboratory experiment and find strong supportive evidence for Quasi-Bayesian

updating. We analyze the theoretical long run implications of Quasi-Bayesian updating in a model

of repeated interaction in social networks with binary actions. We provide a characterization of the

environment in which consensus and information aggregation is achieved. The experimental evidence

is in line with our theoretical predictions. Finally, we establish that for any environment information

aggregation fails in large networks.
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1 Introduction

Social learning is a crucial component of human interaction. Among the many possible mechanisms

by which individuals learn from others, observational learning describes the process by which an

individual draws inferences on the information held by other people based on the observation of

their behavior. Understanding how individuals make and update their behavior after observing

the behavior of others and which long run aggregate outcomes such learning generates has impor-

tant implications for economic policy. For example, the role of observational learning taking place

over social networks such as Facebook may explain the effectiveness of social advertising relative

to standard display advertising (Mueller-Frank and Pai 2015)1. Also, recently there has been a

substantial interest for observational learning in development economics. In particular, observa-

tional learning taking place over the network of relationships within a rural village may explain the

effectiveness of an information campaign aimed at increasing the adoption of microfinance loans

(Banerjee, Chandrasekhar, Duflo and Jackson 2013) or of a community-based targeting program

aimed at selecting aid beneficiaries (Alatas, Banerjee, Chandrasekhar, Hanna and Olken 2014).

In the literature there are two predominant approaches to study observational learning: one

based on Bayesian updating and one based on boundedly rational updating. In the Bayesian

approach, agents are assumed to learn rationally, i.e. they make inferences about the private

information of all agents based on the interaction structure and the observed decisions. This is

the standard approach in the sequential social learning literature2 and in parts of the literature

on repeated interaction in social networks.3 Despite being a very useful benchmark, the Bayesian

approach has a severe weakness: the rationality assumption is unrealistic due to the computational

sophistication necessary to make inferences. This is especially true in an incomplete network where

agents interact repeatedly. Here every agent has to draw indirect inferences regarding the private

information of all agents, based only on the actions that he observes.4

The boundedly rational approach is particularly common in the literature on repeated interac-

tion in social networks, due to the complexity of inferences. DeGroot (1974) is the standard model

within this approach. The DeGroot model addresses the weakness of the Bayesian approach by

assuming that agents use a simple heuristic (rule of thumb), revising their decision to a weighted av-

erage of their own and their neighbors’ previous decisions. However, the specification of a weighted

average updating function, while making the analysis of the long run evolution of actions tractable,

1In social advertising individuals who purchased a specific product are highlighted to their network friends.
2See Bikhchandani, Hirshleifer and Welch (1992), Banerjee (1992), Smith and Sorensen (2000), Acemoglu, Dahleh,

Lobel and Ozdaglar (2011), Arieli and Mueller-Frank (2014).
3See Bala and Goyal (1998), Gale and Kariv (2003), Rosenberg, Solan and Vieille (2009), and Mueller-Frank

(2013a), Mossel, Sly and Tamuz (2012), Lobel and Sadler (2015). For an excellent survey of the literature see Goyal

(2014).
4Throughout the paper, we use the terms action, choice, and decision as synonyms.
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is somewhat arbitrary. Moreover, it has been shown that DeGroot updating might lead to very

undesirable long run outcomes (Mueller-Frank 2014).5 Finally, the DeGroot model applies only to

infinite real-numbered action spaces.6 Therefore, both the Bayesian approach and the boundedly

rational approach have weaknesses which severely limit their scope. This paper is motivated by

such unresolved weaknesses.

In this paper we propose a new general model of boundedly rational observational learning,

which is based on the concept of Quasi-Bayesian updating. The concept is very simple. When

observing a set of actions being chosen by other agents, the observer assumes that each action is

optimal given (only) the private information of the agent who chose it. This assumption reduces

complexity compared to Bayesian updating because considerations as to how each observed action

might have been affected by other actions, both observed and not observed, are not necessary.

The Quasi-Bayesian approach addresses the weaknesses of the Bayesian and DeGroot ap-

proaches. First, it is applicable to any environment of observational learning, without restrictions

on the nature of the utility functions, state space, action space or signal space.7 Additionally,

for each given environment, Quasi-Bayesian updating is not arbitrary but has a rational founda-

tion. While these advantages might make Quasi-Bayesian updating appealing from a theoretical

standpoint, the key question is whether it can accurately describe how individuals update their ac-

tions. We conduct a laboratory experiment and find strong supportive evidence for Quasi-Bayesian

updating.

We also consider the theoretical long run implications of Quasi-Bayesian updating in a model

of repeated interaction in social networks. We contribute to the existing literature by showing that

under Quasi-Bayesian updating the predictions under coarse (i.e. binary) actions differ substan-

tially from those established in the literature under uncountable actions. First, consensus is hard to

achieve as it requires highly asymmetric environments. Second, consensus and information aggre-

gation generally coincide. Third, information aggregation is achievable in finite networks but not in

infinite networks. Our results are relevant since many real world environments are better described

by binary than by uncountable actions. In our laboratory experiment we find that consensus often

fails to arise, but that when it does occur, it occurs almost always with information aggregation,

in line with our theoretical predictions.

5Mueller-Frank (2014) considers a model in which agents receive initial private information and then repeatedly

announce their conditional probability of an uncertain event to their neighbors. He shows that the long run consensus

probability fails to represent the private information of agents, in any finite network and for any possible weighted

average function of each agent.
6From a technical point of view, real vector spaces are admissible as well.
7Only minimal technical assumptions are required to assure existence of optimal actions, joint and regular condi-

tional probability measures.
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Theoretical model We consider an observational learning model with finitely many agents

who share a common prior over a general state space. Each agent receives an i.i.d. private signal

belonging to a general signal space. The distribution over the signal space depends on the realized

state of the world. After observing his private signal, each agent takes an expected utility maxi-

mizing action out of a compact metrizable action set. The utility of each agent depends only on

his action and the state of the world. We assume that all agents share the same utility function.8

An individual signal strategy for an agent denotes a mapping from his signal realization to

expected utility maximizing actions. The Quasi-Bayesian updating function assigns an action to

any observed subset of agents and all possible corresponding observed action vectors such that the

assigned action is Bayes optimal conditional on the realized set of actions and assuming that each

individual observed action is selected according to the corresponding individual signal strategy.

In other words, Quasi-Bayesian updating is equal to Bayesian updating assuming that each agent

selects an action based only on his private signal.

However, in most observational learning models, agents choose their action based not only on

their private signal but also on information inferred from the actions chosen by others. In the

sequential social learning model, each agent chooses his action based on his private signal and the

history of actions of the agents that decided before him. In the models of repeated interaction

in social networks, each agent considers the history of actions of his neighbors, in addition to

his private signal. Therefore, in observational learning models Quasi-Bayesian updating functions

typically do not coincide with Bayesian updating functions. Nevertheless, Quasi-Bayesian updating

functions are applicable to any observational learning model and have the additional advantage of

being rationally founded.

Theoretical results We analyze the implications of Quasi-Bayesian updating for the model of

repeated interaction in social networks. Here every agent takes an action in each of countable rounds

and observes the history of actions of his neighbors. We allow for a general signal and state space,

but restrict attention to binary actions, which is a common assumption in the observational learning

literature.9 We further assume that the environment satisfies two properties, reverse symmetry and

monotone likelihood, which we show are also satisfied in the setting commonly considered in the

social learning literature. We assume that every agent updates his action according to a Quasi-

Bayesian updating function. That is, in each round he assigns a Quasi-Bayesian action to the action

vector observed in the previous round, which consists of the actions of his neighbors and himself.10

8This assumption is not necessary and is made only to simplify the exposition.
9See for example Bikhchandani, Hirshleifer and Welch (1992), Smith and Sorensen (2000) and Acemoglu, Dahleh,

Lobel and Ozdaglar (2011).
10The focus on Markov revision functions is standard in the analysis of non-Bayesian learning in networks. The

seminal paper by DeGroot (1974) gave rise to parallel literatures in computer science, electrical engineering and
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We provide a characterization of the necessary and sufficient conditions for consensus and

information aggregation. Consensus is defined as the convergence towards agreement on one action

among all agents in the network, for every strongly connected network and for every initial action

vector.11 This notion of consensus coincides with the one established for Bayesian updating in

networks, for DeGroot updating and its generalization.12 Our first theorem establishes that under

Quasi-Bayesian updating consensus holds if and only if there exists an action a′ which is optimal

conditional on every action vector (of all agents) except for the action vector where all agents choose

the other action a′′.13 Therefore, the condition is very strong, since, in order for it to be satisfied,

the environment needs to be highly asymmetric.

Information aggregation is defined as convergence of the actions of all agents towards an action

that is optimal conditional on the vector of first round actions of all agents, for every such vector

and for every strongly connected network. This definition is weaker than the one in the literature on

Bayesian learning in networks, which requires convergence to an action that is optimal conditional

on the realized signals of all agents. Under Quasi-Bayesian updating, the sequence of action vectors

is determined by the first round action vector. If actions fail to reveal the underlying signals, then

the stronger notion of information aggregation is unachievable. Our second theorem establishes that

information aggregation holds if and only if there exists an action a′ which is optimal conditional

on every action vector (of all agents) except for the action vector where all agents choose the other

action a′′. Therefore, under binary actions and Quasi-Bayesian updating consensus and information

aggregation coincide. Our third theorem shows that under Quasi-Bayesian updating and binary

actions the naive learning result of Golub and Jackson (2010) does not hold. That is, for every

environment there exists a finite network size n∗ such that information aggregation (and consensus)

fails for all networks of size larger than n∗.

The theoretical results on Quasi-Bayesian updating display some striking differences compared

to the existing literature on boundedly rational updating. First, we show that under binary actions

consensus is hard to achieve as it requires highly asymmetric environments. In contrast, the existing

literature shows that consensus in the DeGroot model and its generalization requires only that each

agent takes his own previous round action into account when updating. Also, consensus in these

models is robust to changes of the updating functions over time. This difference in result is mainly

driven by the difference in the set of actions, binary in our model while uncountable in the DeGroot

model. Second, we show that information aggregation is achievable in finite networks under Quasi-

economics, all sharing the Markov assumption. For some recent examples see Lobel, Ozdaglar and Feijer (2011),

Blondel, Hendrickx and Tsitsikilis (2009) and Golub and Jackson (2010).
11A network is strongly connected if there exists a directed path from every agent to every other agent.
12See Rosenberg, Solan and Vieille (2009) and Mueller-Frank (2013a) for Bayesian updating, DeMarzo, Vayanos

and Zwiebel (2003) for DeGroot updating and Mueller-Frank (2013b) for a generalization of DeGroot updating.
13To capture indifference case, additional we require the Quasi-Bayesian revision functions of all agents to select

a′ in case of indifference.

4



Bayesian updating. To the best of our knowledge no such result has been established in the literature

on boundedly rational learning in networks.14 Third, while in the DeGroot model information

aggregation in finite networks is not achievable, the conditions for information aggregation in infinite

networks are relatively weak. In contrast, in our model the opposite holds. Information aggregation

might occur in finite but not in infinite networks.

Experimental results The experiment consists of a series of urn-guessing games played by

subjects connected by a network structure. The design is adapted from the urn-guessing experiment,

which is standard in the experimental literature on observational learning, and was previously

applied both to sequential social learning (Anderson and Holt 1997, Hung and Plott 2001, and

Kübler and Weizsäcker 2004) and to social learning in networks (Choi, Gale and Kariv 2005, and

Grimm and Mengel 2014). The game is played with urns, each containing a different composition of

colored balls. After the computer has randomly selected one urn, each agent privately observes one

draw (with replacement) from the selected urn. In each of several decision rounds, every agent is

asked to select the urn that he thinks is more likely to have been used. After observing his neighbors’

decisions in the previous round, each agent is thereafter asked again to select the urn that he thinks

is more likely to have been used. At the end of the experiment each participant earns a positive

payoff if he correctly selected the urn that was used, and nothing otherwise. Within the experiment

we vary network size (5 or 7 agents), choice-set size (2 or 4 urns), and network connections.

We find that the rate at which choice behavior is consistent with the definition of Quasi-Bayesian

updating is extremely high across network size, choice-set size, and network connections, whether we

pool the data of all participants together or allow for heterogeneity across participants. Pooling the

data of all participants together, choice behavior is consistent with Quasi-Bayesian updating in more

than 90 percent of observations. Allowing for heterogeneity across participants, and computing for

each participant an individual score of Quasi-Bayesian updating, the median individual score is

higher than 92 percent. In terms of long-run properties of Quasi-Bayesian updating, we find that

consensus often fails to arise, but that when it arises, it occurs almost always with information

aggregation, which is in line with our theoretical predictions.

Our paper is closely related to Choi, Gale and Kariv (2005), Möbius, Phan and Szeidl (2010),

Chandrasekhar, Larreguy and Xandri (2012), and Grimm and Mengel (2014). Choi, Gale and Kariv

(2005) test the predicted aggregate outcomes of the Bayesian model of Gale and Kariv (2003) in

3-agent networks and find evidence of a strong tendency toward consensus and a high efficiency of

information aggregation. Möbius, Phan and Szeidl (2010) study learning in a field experiment on

Facebook and propose a streams model in which, in contrast to the DeGroot model, agents process

information that originates within the network by tagging its source and thus avoid double-counting

14Recall that we require information aggregation to hold in every strongly connected network.
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information. Chandrasekhar, Larreguy and Xandri (2012) and Grimm and Mengel (2014) perform

an horse-race between the Bayesian model and the DeGroot model in 7-agent network experiments.

Chandrasekhar, Larreguy and Xandri (2012) find evidence supporting the DeGroot model, including

simple majority rules.15 Grimm and Mengel (2014) find that the DeGroot model outperforms the

Bayesian model in explaining individual decisions, but that aggregate properties (consensus and

information aggregation) are only partially consistent with the DeGroot model. They find evidence

that experimental participants use an heuristic, which, differently from the DeGroot model, takes

into account, at least partially, for correlations in neighbors’ actions.

Despite being closely related to the works mentioned above, our paper differs from them in focus

and objective. We aim at proposing Quasi-Bayesian updating as an alternative to DeGroot updating

with the boundedly rational approach, yielding a model which is at the same time theoretically

tractable, rationally founded and empirically relevant.

Organization of the paper The rest of the paper is organized as follows. In Section 2, we

propose a general model of boundedly rational observational learning and introduce the concept

of Quasi-Bayesian updating. In Section 3, we apply the concept of Quasi-Bayesian updating to

repeated interaction in social networks. In Section 4 we describe our experimental design and in

Section 5 we analyze whether the behavior of experiment participants is consistent with Quasi-

Bayesian updating. In Section 6, we characterize the long-run properties of Quasi-Bayesian up-

dating in terms of consensus and information aggregation, and present our theoretical results. In

Section 7 we report experimental evidence on consensus and information aggregation. Finally, Sec-

tion 8 concludes. All proofs are provided in Appendix A. The experiment instructions are reported

in Appendix B. Additional tables and figures are included in Appendix C.

2 A general model of boundedly rational observational learning

In this section we introduce a general approach towards modeling boundedly rational observational

learning. Our approach captures a wide range of environments and structures of decision making.

Among others, it is applicable to repeated interaction as well as to interaction occurring in a strictly

sequential or multi-dimensional order. Consider a countable set of agents N , each of which faces

uncertainty regarding the state of the world ω. The cardinality of N is denoted by n, which might be

finite or infinite. All agents share a common prior p over a Polish state space Ω with Borel σ-algebra

15In a binary action setting, Chandrasekhar, Larreguy and Xandri (2012) and Grimm and Mengel (2014) employ

a DeGroot ‘action model’ in which agents revise their beliefs over the two actions according to a DeGroot rule, then

choose the action whose corresponding belief is higher than 0.5, and finally announce their choice. They distinguish

the ‘action model’ from a ‘communication model’, in which beliefs are directly announced.
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F . The state of the world is drawn according to the common prior and each agent receives a private

signal si ∈ S, where S is a standard Borel space.16 The distribution Fω, according to which the

signal si is drawn, depends on the realized state of the world, Fω ∈ ∆ (S) for ω ∈ Ω.17 We assume

that for any two states ω and ω′ the probability measures Fω and Fω′ are absolutely continuous

with respect to each other but not identical. This implies that signals have some information value

but are not perfectly informative regarding the realized state of the world. Conditional on the

realized state of the world, signals are identically distributed and independent among agents.

All agents i ∈ N need to take an action ai ∈ A, where A is a compact metrizable space of

actions. Suppose that all agents share identical preferences represented by a continuous utility

function u : A × Ω → R. As is the norm in the observational learning literature, we restrict

attention to settings without payoff externalities. Let σsi be the strategy of agent i that assigns the

expected utility maximizing action to each private signal realization si ∈ S,

σsi (si) ∈ arg max
a∈A

∫
u(a, ω) Pr (dω |s)

where Pr (dω |s) is the posterior distribution over the state space based upon the prior p and

conditional on the realized signal si. We use the term individual signal strategy for the strategy σsi
and denote the individual signal strategy profile by σs = 〈σsi 〉i∈N . For a set of agents N ′ ⊆ N let

asN ′ denote the realization of the random action vector of agents in N ′ given that each follows his

individual signal strategy.

Observational learning entails drawing an inference on the realized private information of an

agent from observing the action chosen by that agent. In most models of observational learning

considered in the literature, however, an agent’s action generally is based not only on his signal

realization and the common prior, but also on additional information gained observing the actions

of other agents. As an example, consider the literature on sequential social learning, where agents

act in a strict sequential order. The first agent acts according to his individual signal strategy,

while all subsequent agents update their prior belief based upon the public history of actions and

then form their posterior belief given their signal using Bayes rule. As another example, consider

the literature on repeated interaction in social networks, where each agent takes an action in every

of infinitely many rounds. In the first round all agents follow the individual signal strategy. From

the second round onward, instead, they update their belief based upon the previous actions taken

by their neighbors and select their expected utility maximizing action based upon the computed

posterior distribution.

We now introduce our concept of boundedly rational observational learning. A Quasi-Bayesian

updating function assigns an action to each possible action vector. The central idea of the Quasi-

16Formally, we assume that both Ω and S are Polish spaces with respective Borel σ-algebra.
17We assume that the mapping F that assigns a probability distribution over S to each state of the world generates

a Markov Kernel.
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Bayesian approach is to abstract away from the structure of interaction and from the indirect

inferences the actions of other agents might be based upon.

Definition 1 For an individual signal strategy profile σs, a Quasi-Bayesian updating function

β : An × 2N → A satisfies the following properties

1. β(a,N ′) =β(a′,N ′) for all a′ such that a′N ′ = aN ′, and

2. β(a,N ′) =arg max
a∈A

E
[
u(a, ω)

∣∣asN ′ ] where asN ′ = aN ′ .

A Quasi-Bayesian updating function treats the observed actions of a group of individuals as if

each action were based only on the private signal realization of each agent. That is, for an observed

action vector aN ′ , the observed action of each agent i in N ′ is treated as if it resulted from the

individual signal strategy σsi . This approach departs from Bayesian learning and, in doing so,

drastically reduces the complexity of observational learning.18

The crucially appealing feature of Quasi-Bayesian updating functions is that they are generally

applicable to any environment of observational learning, whether in sequential or repeated interac-

tion settings, and that they have a limited rational foundation.19 Naturally, the specific functional

form of the Quasi-Bayesian updating function as well as its general properties vary among envi-

ronments. In order to further the understanding of Quasi-Bayesian updating functions we analyze

their implications for aggregate behavior in a model of repeated interaction in social networks.

We are aware that the proposed Quasi-Bayesian approach needs to be assessed not only in terms

of its theoretical appeal but also in terms of its empirical relevance. In Section 5 we report evidence

from a laboratory experiment which supports the relevance of Quasi-Bayesian updating.

3 Quasi-Bayesian updating and repeated interaction in social net-

works

A finite set of agents V is organized in a strongly connected graph G = (V,E).20 A graph is a

pair of sets (V,E) such that E ⊂ [V ]2. The elements of V are nodes of the graph, representing

18For example, observational learning in a network environment might require to draw indirect inferences on the

private information of unobserved neighbors of neighbors from the observed actions of neighbors.
19Note that in general a Quasi-Bayesian function need not be unique for a given environment, in particular if the

image of the individual signal strategies is not equal to A. This paper considers only settings where the image of the

individual signal strategies is equal to A.
20In the following the terms graph and network are used interchangeably.
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the agents, and the elements of E are the edges of the graph, representing the direct connections

between agents. Let Ni(G) denote the neighborhood of agent i in network G

Ni(G) = {j ∈ V : ij ∈ E}.

A directed graph is strongly connected if there exists a directed path among every pair of agents.

All agents face uncertainty exactly as described in the general model of Section 2. That is,

they share a common prior p over (Ω,F). The state of the world is drawn according to the prior

in time t = 0 and all agents observe a private signal si ∈ S that is independently drawn according

to Fω ∈ ∆ (Ω), at the beginning of round t = 1.21 In each round t ∈ N every agent i takes an

action ati ∈ A where A is a compact metrizable set. The vector of actions taken in period t is

denoted as at ∈ Av. All agents share identical preferences represented by a stage utility function

u : A × Ω → R. Each agent i follows his individual signal strategy in the first round, i.e. his first

period action maximizes his expected utility conditional on his signal. Each agent observes only

the history of actions of each of his neighbors. Stage utility realizations are not observed.

The above model has been analyzed for the case of Bayesian agents who draw fully rational

inferences on the private information of all agents based on the history of actions they observe.22

As we argue in the introduction, a fully Bayesian model is a useful benchmark but not a good

representation of the real world, due to the complexity of indirect inferences in large networks.

We now introduce an alternative approach to action updating based upon our definition of Quasi-

Bayesian updating functions. Following the non-Bayesian literature on learning in networks, we

restrict attention to local Markov updating functions.23 To be more precise, let G denote the set of

all strongly connected graphs on the set of nodes V . The Markov updating function fi : Av×G → A

of agent i assigns an action ati to each possible pair of action vector at−1 and network structure

G. Under a local updating function the updated action of agent i depends only on the last round

actions of his neighbors and himself and not also on the structure of the network as a whole.24

Formally, the updating function fi is local if, for all pairs (a,G), (a′, G′) such that Ni(G) = Ni(G
′)

and aj = a′j for all j ∈ Ni(G) ∪ {i}, we have fi(a,G) = fi(a
′, G′). For expositional purposes the

term ‘local’ is omitted in the remainder of the paper.

Consider a mapping f : Av × G → Av such that

f(a,G) = (f1(a,G), ..., fv(a,G))

where the updating functions fi are the components of f . The mapping f is denoted as an updating

system. For a given network G, the sequence of action vectors {at}t∈N can be recursively defined:

21Where Fω, Fω′ are absolutely continuous with respect to each other but not identical.
22See for example Gale and Kariv (2003), Rosenberg, Solan and Vieille (2009), and Mueller-Frank (2013a).
23See for example DeMarzo, Vayanos and Zwiebel (2003), Golub and Jackson (2010), and Mueller-Frank (2013b)
24This condition is naturally satisfied under the assumption that agents know only the identity of their neighbors,

and not the structure of the network as a whole, which is the case in our experiment.

9



for all t = 2, 3, ...

at = f(at−1, G) = (f1(at−1, G), ..., fv(a
t−1, G)).

Hence, the process {at}t∈N is a (deterministic) stationary Markov process. A Quasi-Bayesian

Markov updating function is defined as follows.25

Definition 2 A local Markov updating function fi : Av × G → A is Quasi-Bayesian if for all

(a, G) ∈ Av × G we have

fi (a, G) = β (a, Ni(G) ∪ i) .

Under a Quasi-Bayesian updating function, an agent updates his action in every round in a

Bayesian manner, but assumes that the last round actions of each of his neighbors and himself

are based only on the respective private signal realization. Hence, the Quasi-Bayesian updating

function reduces the complexity of indirect inferences by treating the action vector in each round

as if it were the first.

In Section 4 we present the design of a laboratory experiment that fits within the network-based

observational learning model described above. In Section 5 we report evidence of Quasi-Bayesian

updating among the participants in the experiment.

4 Experimental design

The experimental task consists of an urn-guessing game played by subjects connected by a network

structure. The design is adapted from the urn-guessing experiment, which is standard in the

experimental literature on observational learning, and was previously applied both to sequential

social learning (Anderson and Holt 1997, Hung and Plott 2001, and Kübler and Weizsäcker 2004)

and to social learning in networks (Choi, Gale and Kariv 2005, and Grimm and Mengel 2014). The

instructions are reported in Appendix B.

We conducted three sessions with networks with 5 agents and three sessions with networks with

7 agents. In total, 198 subjects participated: 100 in 5-agent networks and 98 in 7-agent networks.

Each subject participated in only one session.26 The experiment starts with the computer randomly

25To define such Quasi-Bayesian Markov updating functions, the individual signal strategies of agents need to be

known, or the posterior distributions need to induce unique optimal actions.
26The three 5-agent-network sessions had 35, 30, and 35 participants, respectively. The three 7-agent-network

sessions had 35, 28, and 35 participants, respectively. The sessions were conducted in December 2012 at the Decision

Science Lab at ETH Zürich. The experiment was programmed and conducted with the software z-Tree (Fischbacher

2007). Recruitment was implemented using the Online Recruitment System ORSEE (Greiner 2004) among the

university student community and achieved a number of participants per session equal to either a multiple of 5 or a

multiple of 7. The Decision Science Lab at ETH Zürich can accommodate up to 36 participants.
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assigning a label to each participant in the laboratory. The labels are {A, B, C, D, E} in the 5-

agent-network treatment and {A, B, C, D, E, F, G} in the 7-agent-network treatment. An equal

number of participants is assigned to each label. Then the computer randomly forms groups such

that each member of a group has a different label. Each participant’s label and the composition

of each group remained constant throughout the experiment. In the course of the experiment,

participants become informed (via a table displayed on the computer screen) of the choices made

by some or all members of their group; if agent i is informed of the choice of agent j, then j is

informed of i’s choice.27 In other words, i and j are connected (i.e. neighbors). The choices of

non-connected group members are displayed instead as N/A (not available).

Within each group, participants play an urn-guessing game. The game is played with 2 or 4

urns containing colored balls, and each participant is always informed of whether the 2-urn game or

the 4-urn game is played. Figure B.1 depicts the urns and their composition in both the 2-urn game

and the 4-urn game. In the 2-urn game, there are a White Urn and a Black Urn, each containing

3 colored balls. The White Urn has 2 white and 1 black balls. The Black Urn has 2 black and 1

white balls. In the 4-urn game, the urns are Red, Yellow, Green and Blue. Each urn contains 7

colored balls. The Red Urn has 4 red, 1 yellow, 1 green, and 1 blue balls. The Yellow Urn has 4

yellow, 1 red, 1 green, and 1 blue balls. The Green Urn has 4 green, 1 red, 1 yellow, and 1 blue

balls. The Blue Urn has 4 blue, 1 red, 1 yellow, and 1 green balls. The 2-urn game and the 4-urn

game follow the same rules and differ only in the number and composition of the urns.

The computer starts by randomly selecting an urn, each of which is equally likely to be selected.

Group members are not informed of which urn is selected; however, they each receive a piece of

private information. Independently for each member, the computer draws a ball from the selected

urn and informs each member about the color of their particular ball. Private draws are done with

replacement, keeping the composition of balls in the urn constant. The game then proceeds over

several decision rounds, with the urn selected by the computer and each member’s private draw

staying the same. In the 1st round, after learning the color of one’s own privately drawn ball, each

participant is asked to indicate the urn that he thinks is more likely to have been used.28 Next, as

the 2nd round starts, each participant is informed of the choices made in the previous round by the

agents to whom he is connected, after which he is asked to indicate again the urn that he thinks is

more likely to have been used. This process is repeated for 6 rounds in 5-agent networks and for 8

rounds in 7-agent networks.29

27This is explained to participants in the instructions.
28Participants need to choose one and only one urn, i.e. they cannot express probabilistic beliefs over all existing

urns.
29Choi, Gale and Kariv (2005) implement 3-agent networks, binary choice set, and repeated choices over 6 rounds.

Chandrasekhar, Larreguy and Xandri (2012) implement 7-agent networks, binary choice set, and repeated choices

over a random number of rounds (on average 6). Grimm and Mengel (2014) implement 7-agent networks, binary

choice set, and repeated choices over 20 rounds. As Table C.2 shows, in our experiment participants update their
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Each group plays in a series of independent periods, and each period corresponds to an indepen-

dent game, i.e. the initial random selection of an urn is independent across periods. Participants

in 5-agent networks played 18 periods, while participants in 7-agent networks played 14 periods.30

As the experiment proceeds, each participant can observe on the screen a table which reports, for

each previous game (period), whether his choice in each decision round was correct.31 The set of

periods is divided in two halves: the 2-urn game is played in one half and the 4-urn game in the

other half. The order is determined randomly by the computer at the beginning of the session and

is communicated to the participants.

While the matching of participants into groups does not change across periods, connections

among group members (i.e. the number of connections and who is connected to whom) do. Each

participant is informed about his own connections to other agents at the beginning of each period,

but not about the connections among other agents. Participants, therefore, do not know the entire

network structure, only the links connecting them to their own neighbors, a key feature of both our

experimental design and our theoretical model.32 Many real-world social networks (e.g. Facebook)

reflect this feature. When each individual has a large number of connections and the network

structure is highly complex, it is unrealistic to assume that individuals consider the structure of

the entire network in their decision-making.33

Table C.1 reports the connections implemented for each group member.34 In 5-agent networks,

network structures included a complete network, three star networks, and five linked-circle networks,

with each subject thus having between 1 and 4 neighbors.35 In 7-agent networks, network structures

choices few times and mostly in early rounds. This evidence justifies the relatively low number of rounds implemented

in our design.
30The numbers of periods and rounds per-period were chosen in order to allow the participants of larger networks

to experience more decision rounds per period, as information may take longer to spread in larger networks, while

keeping the total number of decision rounds and the duration of the experiment similar across all sessions.
31The table simply displays ‘correct’ or ‘incorrect’, without reference to the color of the correct urn.
32Choi, Gale and Kariv (2005) and Chandrasekhar, Larreguy and Xandri (2012) implement common knowledge of

the network structure. Grimm and Mengel (2014) include treatments with complete, incomplete and no information

of network structure. The DeGroot model is found to outperform the Bayesian model at explaining individual

behavior, whether agents have complete information about the network structure or not. Chandrasekhar, Larreguy,

and Xandri (2012) find that the uniform-weighting DeGroot model performs the best, and that both the uniform-

and the degree-weighting DeGroot model outperform the Bayesian model. Grimm and Mengel (2014) find that the

uniform-weighting DeGroot model outperforms the Bayesian model. Hence, the assumption of common knowledge

of network structure does not seem to be crucial.
33The typical (median) teenage Facebook user has 300 friends, according to a recent Pew Research Center study

(2013).
34Each network structure reported in Table C.1 was implemented twice, once in a 2-urn game and once in a 4-

urn game. Figure C.1 offers a visual representation of the connections. No visualization was provided during the

experiment.
35For 5-agent networks, in a complete network, each subject has 4 neighbors; in a star network, one subject has

4 neighbors and other subjects have 1; in a linked-circle network, two subjects have 3 neighbors and other subjects
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consisted of six linked-circle networks and one connected complete-components network, with each

subject having between 2 and 4 neighbors.36 We chose networks of 5 or 7 subjects to study a

richer set of structures compared to what would be possible with less subjects.37 The specific

network structures were chosen because they either represent benchmark situations (complete and

star network) or allow different nodes in the network to have different characteristics, such as degree

and clustering coefficient (linked circle and connected complete components)38. To sum up, within

the experiment we vary network size (5 or 7 agents), choice-set size (2 or 4 urns), and network

connections.39 Table 1 summarizes the experimental design.

Table 1: Participants

network size No. subjects groups rounds/period periods obs.

5 100 20 6 18 10800

7 98 14 8 14 10976

all 198 34 21776

Participants were paid for their performance in every period, but only for one randomly selected

round in each period.40 At the end of the experiment, the computer randomly selected one round

for each period. For each period, participants received CHF 2 (in sessions with 5-subject networks)

or CHF 2.5 (in sessions with 7-subject networks) if their decision in the selected round was correct.41

have 2.
36These networks exhibit small-world characteristics, having a relatively small diameter, a short average path

length, and high clustering (compared to an independent random network). In 7-agent networks, network structures

included: four networks in which four subjects have 3 and other subjects have 2 neighbors; two networks in which

two subjects have 3 and other subjects have 2 neighbors; one network in which one subject has 4, four subjects have

3, and two subjects have 2 neighbors.
37For example, consider the 3-agent networks in Choi, Gale and Kariv (2005).
38The degree of a node is the number of neighbors that the node has. The clustering coefficient of a node is the

fraction of pairs of a node’s neighbors who are neighbors to each other. If a node has only one neighbor, the clustering

coefficient is set to 0. For the 5-agent networks we implement, in the complete network all subjects have a clustering

coefficient equal to 1, in the star networks all subjects have a clustering coefficient equal to 0, in the linked circle

networks the clustering coefficient equals 0, 1/3 or 1. Also for the 7-agent networks we implement, the clustering

coefficient ranges between 0, 1/3 and 1.
39The design is between-subject for the network size and within-subject for the choice-set size and the network

connections. The sample of 198 participants is divided into two network size treatments, with approximately 100

subjects in each cell of a between-subjects design. Within each cell, choice-set size and network connections are varied

in random order. Then, we have 198 observations in a within design with order effects controlled for, and two between

comparisons with approximately 100 observation in each cell. For a discussion on between- and within-subject design,

see Charness, Gneezy and Kuhn (2012).
40Each session included an initial practice period, which did not count for the determination of earnings nor was

included in the analysis.
41The difference in payment per correct-decision (CHF 2 versus CHF 2.5) was gauged to attain similar expected

earnings for subjects irrespective of the session they participated in, in order to comply with the ETH Decision
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Otherwise they received nothing. Participants’ earnings ranged between CHF 22 and CHF 42.5,

with an average of CHF 34 (including a CHF 10 show-up fee).42

5 Experimental evidence: Quasi-Bayesian updating

In this section we analyze the experimental data in the light of the theoretical framework presented

in Section 3. We begin by describing agents’ behavior in the first round. As one might expect, in the

first round agents choose an action based on their private signal. Table 2 reports the distribution

across individuals of the frequency with which first-round choices coincide with private signals.

The mean is 0.97 in 5-agent networks and 0.95 in 7-agent networks, and the median is 1 for both

network sizes.

Table 2: Frequency of 1st-round choice equal to private signal. Distribution across individuals.

obs mean median std

5-agent networks

all games 100 0.97 1 0.10

2-urn games 100 0.97 1 0.11

4-urn games 100 0.97 1 0.12

7-agent networks

all games 98 0.95 1 0.13

2-urn games 98 0.94 1 0.14

4-urn games 98 0.96 1 0.13

We then inspect agents’ behavior in rounds following the first, when agents have the opportunity

to revise their choice after observing their neighbors’ choices. Table 3 reports the percentage of

observations (across rounds t = 2, 3, ...) in which choice behavior is consistent with Quasi-Bayesian

updating. At least 90 percent of observations across network size, network types, and choice sets,

are consistent with Quasi-Bayesian updating.

Figure 1 shows the empirical distribution of the individual rates at which participants’ choice

behavior is consistent with Quasi-Bayesian updating. For each participant, the individual score

of Quasi-Bayesian updating is defined as the fraction of choices that satisfy Definition 2. Median

individual rates of consistency are extremely high both in 5-agent networks (0.96 and 0.96 in 2-

and 4-urn games, respectively) and in 7-agent networks (0.96 and 0.92 in 2- and 4-urn games,

respectively).43

Science Lab rules.
42In sessions with 5-subject networks, the range was CHF 22-42 (average CHF 35). In sessions with 7-subject

networks, the range was CHF 22.5-42.5 (average CHF 33).
43Mean individual scores are extremely high both in 5-agent networks (0.93 and 0.91 in 2- and 4-urn games,

respectively) and in 7-agent networks (0.91 and 0.89 in 2- and 4-urn games, respectively). Kolmogorov-Smirnov test

finds no significant difference in the distribution of individual scores in 2-urn games (5-agent networks versus 7-agent

14



Table 3: Percentage of observations in which choice behavior is consistent with Quasi-Bayesian updating.

5-agent networks 7-agent networks

star linked circle complete small world connected complete

2-urn 0.95 0.92 0.91 0.91 0.90

4-urn 0.94 0.90 0.90 0.89 0.91

Figure 1: Empirical distribution of participants’ individual consistency with Quasi-Bayesian updating. A kernel

density estimate is also reported, using an Epanechnikov kernel function with optimal half-width.
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networks p = 0.408) but finds a significant difference in 4-urn games (5-agent networks versus 7-agent networks

p = 0.016).
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6 Long-run properties of Quasi-Bayesian updating in social net-

works

The two main questions addressed by the literature on learning in social networks concern the

conditions on the environment and the network structure under which consensus (i.e. asymptotic

agreement in actions) and information aggregation (i.e. optimality of long-run actions conditional

on the pooled private information of all agents) occur.44 We address both questions within the

framework of Quasi-Bayesian updating presented in Section 3. To do so, let us formally define

consensus and information aggregation. Let a∗ ∈ Av denote a vector such that a∗i = a∗ for all

i ∈ V and some action a∗.

Definition 3 An updating system f yields consensus if for every (a1, G) ∈ Av × G there exists

an action a∗ and a time t∗ such that at = a∗ for all t ≥ t∗.

Thus an updating system yields consensus, if consensus is reached in finite time in every strongly

connected network, and persists from that time onward. Our definition requires consensus to occur

in all strongly connected networks for any initial action profile. Therefore, we are concerned with

the class of updating functions that yield consensus independently of the actual structure of the

strongly connected network. While a strong requirement, it mirrors the approach to (asymptotic)

consensus of the literature on non-Bayesian and Bayesian learning in networks, where consensus

refers also to consensus in all strongly connected networks.

Next we define our notion of information aggregation. It is useful to note that a deterministic

updating system yields a unique process of actions
{
at
}
t∈N for each initial action vector a1. There-

fore, the best possible information aggregation outcome is one in which all agents, from some time

onward, select an action that is optimal conditional on the first round action vector. In settings

with a rich signal space this notion of information aggregation is typically weaker than one which

requires the long-run actions of all agents to be optimal conditional on the realized signals of all

agents.

Definition 4 A updating system f yields information aggregation if for every (a1, G) ∈ Av×G
there exists a time t∗ such that for all agents i ∈ V and times t ≥ t∗ we have

ati ∈ arg max
a∈A

E
[
u(a, ω)

∣∣a1
]
.

44For an analysis of consensus see DeMarzo, Vayanos and Zwiebel (2003) and Mueller-Frank (2014) for non-

Bayesian models, and Gale and Kariv (2003), Rosenberg, Solan and Vieille (2009), and Mueller-Frank (2013a) for

Bayesian models. For an analysis of learning see Golub and Jackson (2010), Mueller-Frank (2013a,2014), Arieli and

Mueller-Frank (2014), and Mossel, Sly and Tamuz (2015).
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As in the definition of consensus, we require information aggregation to occur in any strongly

connected network. This approach mirrors the one taken in the literature on Bayesian learning

in social networks. Mueller-Frank (2013a) and Arieli and Mueller-Frank (2014) provide sufficient

conditions such that perfect information aggregation generically occurs in any strongly connected

network.

Compared to the environment in which Quasi-Bayesian updating in networks was introduced

in Section 3, we impose three additional conditions. First, we restrict attention to the case of

binary actions. This is a standard approach in the social learning literature.45 The restriction to

binary actions allows us to make a first step towards better understanding the long run properties

of boundedly rational repeated interaction in environments with finitely many actions. Previous

theoretical studies of boundedly rational learning restricted attention to the DeGroot model or

extensions thereof, all of which require the action space to be infinite. While many real world

applications of repeated interaction in networks are well modeled with an infinite action space,

many others are clearly not. For such finite environments there is no understanding in the non-

Bayesian learning literature of the long run properties of repeated interaction. Second, we assume

that reverse symmetry is satisfied.

Definition 5 The utility function u : A×Ω→ R satisfies reverse symmetry if for any ω, ω̂ such

that u(a′, ω) > u(a′, ω̂) we have u(a′′, ω) < u(a′′, ω̂).

In words, reverse symmetry states that if action a′ achieves strictly higher utility in state ω

than in state ω̂, then a′′ achieves strictly higher utility in state ω̂ than in state ω. For example,

reverse symmetry holds in the setting commonly considered in the literature on social learning,

which features binary states and binary actions, A = Ω = {0, 1}. Here agents achieve a utility of

1 if their action matches the state of the world, and a utility of 0 otherwise. Reverse symmetry is

satisfied as

1 = u(1, 1) > u(1, 0) = 0

0 = u(0, 1) < u(0, 0) = 1.

Note that for every state ω ∈ Ω, the state conditional signal distribution and the strategy of

agent i induce a probability distribution over the set of actions A = {0, 1}. To simplify the analysis

we make the following assumption on the signal generating distributions in relation to the utility

function. Let SI be the set of signals such that

SI =

{
s ∈ S :

∫
u(0, ω) Pr (dω |s) =

∫
u(1, ω) Pr (dω |s)

}
.

45For models that restrict attention to binary states and actions, see Smith and Sorensen (2000) and Acemoglu,

Dahleh, Lobel and Ozdaglar (2011) for sequential social learning, and Mossel, Sly and Tamuz (2012) for Bayesian

learning in social networks.
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We assume that the state dependent signal generating distribution Fω assigns probability zero to

SI , for every state ω.46 Third, we impose a monotone likelihood property on the environment.

Definition 6 The environment satisfies the monotone likelihood property if for any ω, ω̂ and

a ∈ A such that u(a, ω) > u(a, ω̂) then

Pr (a |ω ) > Pr (a |ω̂ ) .

This property states that if a achieves higher utility in state ω than in state ω̂, then the

probability of action a being taken in state ω is higher than in state ω̂. In order for the analysis

of consensus and information aggregation to be non-trivial, we assume that for each action there

exists a positive prior probability set of states such that either action is uniquely optimal under the

utility function u. Then, monotone likelihood, together with the direct assumption on the signal

generating distributions, implies that with positive probability in Ω× Sv either action is uniquely

optimal in expected utility terms, conditional on the realized signal.

Note that the environment we consider is a generalization of the standard model considered

in the social learning literature which features binary actions and satisfies reverse symmetry and

the monotone likelihood property.47 In the network literature, Mossel, Sly and Tamuz (2012)

analyze repeated interaction of Bayesian agents in social networks with an informational structure

and utility function as in the standard social learning model. The main difference between our

approach and the above-mentioned papers is that we allow for a general state space rather than

restricting attention to the binary case. Theorem 1 provides a characterization of consensus. Recall

that a
′′

denotes a vector with all entries equal to a
′′
.

Theorem 1 Consider an environment that satisfies reverse symmetry and monotone likelihood.

Consensus occurs if and only if the there exists an action a′ such that for all a 6= a′′, a′′ 6= a′,

a′ ∈ arg max
a∈A

E [u(a, ω) |a ] ,

and the Quasi-Bayesian updating functions of all agents is identical and satisfies β(a,N ′) = a′ for

all N ′ ⊆ N and aN ′ 6= a′′N ′ .

Theorem 1 provides a necessary and sufficient condition on the environment such that consen-

sus occurs in all strongly connected networks, and for all initial action vectors a1. This condition

46Note that if Fω(SI) = 0 for some ω, then it follows from equivalence of measures that Fω′(SI) = 0 for all ω′.

This assumption makes the distribution over actions the same for all agents as the strategies assign the same action

with probability one.
47See for example Bikhchandani, Hirshleifer and Welch (1992), Smith and Sorensen (2000) and Acemoglu, Dahleh,

Lobel and Ozdaglar (2011). Lemma 1 in A.4 establishes that the social learning model satisfies monotone likelihood.
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requires the Quasi-Bayesian updating function to assign one action, say a′, for all possible obser-

vation vectors other than consensus in the other action a′′. For the condition to be satisfied the

environment needs to be highly asymmetric and as such the condition is very strong.48 Theorem 2

provides a characterization of information aggregation.

Theorem 2 Consider an environment that satisfies reverse symmetry and monotone likelihood.

Information aggregation occurs if and only if there exists an action a′ such that for all a 6= a′′,

a′′ 6= a′,

a′ ∈ arg max
a∈A

E [u(a, ω) |a ] .

Very similar to Theorem 1, our second theorem provides a necessary and sufficient condition

for information aggregation. The necessary condition for consensus and information aggregation is

identical. Instead, the sufficient condition of Theorem 1 is stronger. The sufficient conditions are

identical only in the case where action a′ is uniquely optimal conditional on all action vectors but

the consensus vector in a′′. In case there is indifference among both actions conditional on a vector

where all but one agent select a′′, then, in order to achieve consensus, the Quasi-Bayesian updating

functions of all agents need to select action a′ in the indifference case.

We emphasize two main differences between our results on consensus and information aggrega-

tion for binary action spaces and the literature. First, consensus occurs in all strongly connected

networks under weak conditions both in the DeGroot model and in the Bayesian model. For ex-

ample, in the weighted-average DeGroot model the updating functions of agents need neither be

identical nor constant over time for consensus to occur.49 In our setting with binary actions and

Quasi-Bayesian updating, however, consensus requires a highly asymmetric environment and is, as

a result, harder to achieve. Second, under Quasi-Bayesian updating information aggregation might

occur in finite networks. This result markedly differs from the existing results on non-Bayesian

learning where information aggregation either requires infinite networks (Golub and Jackson 2010)

or holds only for specific network structures (DeMarzo, Vayanos and Zwiebel 2003). Finally, under

Quasi-Bayesian updating information aggregation and consensus generally coincide, while the same

is not true in the DeGroot model in finite networks nor in the Bayesian model with binary actions

in finite networks.

To conclude our analysis of Quasi-Bayesian updating in social networks, we contrast our result

to the naive learning result established by Golub and Jackson (2010). They consider DeGroot

updating in an environment with conditional i.i.d. signals. They show that the eventual consensus

opinion of agents converges to the true state as the network size grows to infinity, if the influence

48See Appendix A.5 for an example.
49See DeMarzo, Vayanos and Zwiebel (2003).
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of the most influential agent converges to zero. Theorem 3 establishes that their result does not

carry forward to Quasi-Bayesian updating with binary actions.

Theorem 3 Consider an environment that satisfies the monotone likelihood property and reverse

symmetry. Then there exists a finite network size n∗ such that consensus and information aggre-

gation fail for all network sizes greater than n∗.

7 Experimental evidence: consensus and information aggregation

In this section we analyze the experimental data in light of the long-run properties of Quasi-

Bayesian updating presented in Section 6: consensus and information aggregation. Table 4 reports

the fraction of groups in 5-agent networks and 7-agent networks that, by the last updating round,

reach consensus. Table 4 also reports separately (in italics) the fraction of groups that reach

consensus with information aggregation. Recall that consensus with information aggregation means

that all agents choose an action that is optimal conditional on the first round actions of all agents.

The results are aggregated according to the type of network structure (star, linked-circle and

complete networks for 5-agent networks, and small-world and connected complete networks for

7-agent networks). We highlight two main results.

5-agent networks 7-agent networks

star linked circle complete small world connected complete

2-urn

no consensus 0.52 0.41 0.30 0.71 0.50

consensus 0.48 0.59 0.70 0.29 0.50

of which

with information aggregation 0.97 0.98 1 0.96 1

4-urn

no consensus 0.57 0.53 0.35 0.64 0.71

consensus 0.43 0.47 0.65 0.36 0.29

of which

with information aggregation 0.96 0.96 1 1 1

Table 4: Fraction of groups reaching consensus by the last updating round. Averages across 20 groups for 5-agent

networks (100 participants) and across 14 groups for 7-agent networks (98 participants).

First, consensus often fails to arise. The fraction of groups not reaching consensus ranges

between 0.30 and 0.57 in 5-agent networks, and between 0.5 and 0.71 in 7-agent networks.50 Second,

50In 5-agent networks, consensus occurs more often in complete networks and less so in linked-circle and star

networks. In 7-agent networks, however, there is no evidence of differences across the employed network structures.
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when consensus does occur, it occurs almost always with information aggregation, which is in line

with our theoretical result. Among the groups reaching consensus, the fraction of those achieving

information aggregation ranges between 0.96 and 1 both in 5-agent and 7-agent networks. Thus,

the empirical evidence is consistent with the results of Theorem 1 and 2: in an environment that

satisfies the monotone likelihood property and reverse symmetry, Quasi-Bayesian updating achieves

information aggregation if it achieves consensus.

Our results are similar to those in Grimm and Mengel (2014), who find that in 7-agent networks

with no information of the network structure the fraction of groups reaching consensus ranges

between 0.16 and 0.66, depending on the network structure.51 Our results instead differ from those

in Choi, Gale and Kariv (2005), who find that in 3-agent networks under common knowledge of

network structure the fraction of groups reaching consensus is 0.71.52 We interpret their result as

following from a smaller sized network with common knowledge of network structure, which does

not generalize to larger networks with lack of common knowledge of the network structure.

8 Conclusion

In this paper we propose a new general model of boundedly rational observational learning, which

is based on the concept of Quasi-Bayesian updating. The Quasi-Bayesian approach addresses the

weaknesses of the Bayesian and the DeGroot models. It reduces the complexity of the inferences

drawn by decision makers, it is applicable to any environment of observational learning, and it is not

arbitrary but is instead rationally founded. We also consider the theoretical long run implications

of Quasi-Bayesian updating in a model of repeated interaction in social networks, investigating

under which conditions Quasi-Bayesian updating yields consensus and information aggregation.

We combine our theoretical model with the analysis of data collected in a laboratory experiment.

We find that Quasi-Bayesian updating is strongly supported by the data and that the occurrence

of consensus and information aggregation is in line with our theoretical predictions.

We are aware that this paper, by focusing on the analysis of Quasi-Bayesian updating in a

51Grimm and Mengel (2014) implement a 3x3 design varying the network structure (circle, star and kite) and the

amount of information about the network structure available to players (no information, incomplete information, or

complete information). In our comparison, we consider the circle and the star network structure treatment and the

no information treatment, as these treatments closely reflect our experimental design.
52They implement three network structure treatments (complete, star and circle), and three information treatments,

full, high, and low, in which agents receive an informative private signal with probability 1, 2/3, or 1/3, respectively.

Our comparison is limited to the full information treatment. We are aware that the comparison is weakened by the

difference in experimental design. In our design all participants play in all network structures and with all numbers

of urns, but the composition of groups never changes. In Choi, Gale and Kariv (2005) participants instead play

in groups whose composition changes randomly in each period, but in network structures and with number of urns

which never change.
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model of repeated interaction in social networks, does not offer a conclusive answer to whether

Quasi-Bayesian updating provides a good description of behavior in other observational learning

environments and in more complex settings. We certainly consider an analogous analysis of Quasi-

Bayesian updating in a sequential social learning model an interesting topic for further research.
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Appendices

A Proofs

A.1 Proof of Theorem 1

Proof. First we establish three properties of Quasi-Bayesian updating that are implied by reverse

symmetry and the monotone likelihood property. Consider any partition P∗= {P1, P2, ..., Pm} of Ω

such that

min
ω∈Pi

u(a′, ω) > max
ω∈Pi+1

u(a′, ω) (1)

for all i = 1, ...,m − 1. The cardinality m of the partition is an arbitrary natural number m ≥ 3

bounded above by the cardinality of Ω (if Ω is finite). Let q be any prior probability measure over

Ω that is equivalent to the prior p.53

1. As a first step, we show that the expected utility of action a
′

is strictly greater under the

posterior distribution conditional on observing a′ than under the prior. We establish that for

any i = 1, ...,m− 1

Pr(Pi+1

∣∣a′, q) ≥ Pr(Pi+1 |q) ⇒ Pr(Pi
∣∣a′, q) > Pr(Pi |q) .

and we denote this property as Property A. Note that

Pr(Pi+1

∣∣a′, q) ≥ Pr(Pi+1 |q)

is equivalent to

Pr (a′ |Pi+1, q ) Pr(Pi+1 |q)
Pr(a′ |q)

≥ Pr(Pi+1 |q)

Pr
(
a′ |Pi+1, q

)
≥ Pr(a′ |q) .

But monotone likelihood and by property (1) we have Pr (a′ |Pi, q ) > Pr (a′ |Pi+1, q ) estab-

lishing the validity of Property A. Note that Property A implies that for any partition P∗

and cell Pi 6= Pm we have

Pr
(
i
j=1Pj

∣∣a′, q ) > Pr
(
i
j=1Pj |q

)
.

This implies that the induced distribution on u(a′, ω) conditional on observing a′ first order

stochastically dominates the induced distribution on u(a′, ω) under the prior distribution q.

53Two priors are equivalent if they are absolutely continuous with respect to each other.
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Hence the expected utility of a′ under the posterior distribution is higher than under the

prior distribution. Analogous reasoning and weak symmetry implies that expected utility of

action a′′ is lower under the posterior conditioning on a′ than under the prior q. Hence, for

any prior distribution it holds that if a′ is optimal under the prior q, then a′ remains optimal

under the posterior conditional on observing a′.

2. As a second step, we show that whenever all observed actions are identical and equal to a′,

then the conditional expected utility maximizing action is a′. That is, if only a′ is observed,

then the Quasi-Bayesian updating function selects a′. To see this, note that the first round

agent acting on his signal and the observer share the same prior. If a first round agent selects

a′, it implies that he observed a signal s ∈ S′ such that the expected utility of a′ under the

conditional distribution given s is greater or equal to the expected utility of a′′ 6= a′ under

the conditional distribution given s, i.e.∫
u(a′, ω) Pr (dω |s) ≥

∫
u(a′′, ω) Pr (dω |s)

for all s ∈ S′. This implies∫
s∈S′

(∫
u(a′, ω) Pr (dω |s)

)(
Pr
(
ds
∣∣S′ )) ≥ ∫

s∈S′

(∫
u(a′′, ω) Pr (dω |s)

)
Pr
(
ds
∣∣S′ ) .

Since

E
[
u(a′, ω)

∣∣a′ ] =

∫
s∈S′

(∫
u(a′, ω) Pr (dω |s)

)(
Pr
(
ds
∣∣S′ ))

and

E
[
u(a′′, ω)

∣∣a′ ] =

∫
s∈S′

(∫
u(a′′, ω) Pr (dω |s)

)
Pr
(
ds
∣∣S′ )

conditional on observing one action a′, the Quasi-Bayesian revision function assigns action

a′. The claim then follows by induction. Suppose that the observation vector a consists of n

observations of a′ and assume that the Quasi-Bayesian revision function assigns a′. We need

to show that if the observation vector consists of n + 1 observations of a′, then the Quasi-

Bayesian revision function assigns a′ as well. The induction basis is already established. The

inductive step follows from step 1 as observing one more action a′ increases the expected

utility of a′ while decreasing the expected utility of a′′.

3. Next we establish a monotonicity property of the Quasi-Bayesian updating function. Suppose

that fi is Quasi-Bayesian. We establish the following monotonicity property: if fi (a,G) = a′

holds, then fi (a′,G′) = a′ holds for any (a′,G′) such that (i) the number of by agent i observed

a′ actions is at least as large as under (a,G), and (ii) the number of by agent i observed a′′

actions is at most as large as under (a,G). To see this, consider a graph G and an action vector

a such that fi (a,G) = a′. In particular, assume that the observed vector aNi(G)∪i features k′

observations of a′ and k′′ observations of a′′, the number of the respective observed a′ and a′′
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actions is denoted by (k′, k′′). By assumption we have that (k′, k′′) induces a Quasi-Bayesian

choice of a′. For monotonicity we have to show that for l′, l′′ ≥ 0 an observation vector with

(k′ + l′, k′′ − l′′) still induces a Quasi-Bayesian choice of a′. We do this in two minor steps.

(a) Step 1 above provides the case l′′ = 0 and l′ > 0.

(b) Suppose now that both l′ and l′′ are greater than 0. Consider an observation vector such

that (k′+ l′, k′′− l′′) and the corresponding expected utilities of a′ and a′′. Note that by

step 2 the expected utility of a′ for an observation vector (k′+ l′, k′′− l′′+ l) is decreasing

in l. Similarly, the expected utility of a′′ for an observation vector (k′+ l′, k′′− l′′+ l) is

increasing in l. Hence, optimality of a′ under (k′ + l′, k′′) implies optimality of a′ under

(k′ + l′, k′′ − l′′).

We can now establish the claim of the theorem. We prove sufficiency for consensus first. Con-

sider a network G and an initial action vector a1. If a1 is a consensus vector, then by step 2 above

the updated second period action of all agents remains the same. Hence consensus remains to

hold in every subsequent period. Suppose instead that a1 is not a consensus vector. Denote by

i∗ an agent that selected a∗ in the first round, a1
i∗ = a∗. Monotonicity as established in step 3

together with the assumption on a∗, implies that a∗ is conditional expected utility maximizing for

any observed vector aNi(G)∪i with at least one entry being equal to a∗. Hence i∗ selects a∗ in every

round t ∈ N. Consider the set of agents N1
→i∗(G) whose longest path to i∗ is equal to one,

N1
→i∗(G) = {j ∈ V : dG(j, i∗) = 1}.

All agents at distance one from i∗ select action a∗ from round t = 2 onward, i.e. we have atj = a∗

for all j ∈ N1
→i∗(G) and t ≥ 2. By the same reasoning we have atj = a∗ for all j ∈ Nk

→i∗(G) and

t ≥ k+ 1. Since the graph G is strongly connected we have atj = a∗ for all j ∈ V and t ≥ d∗i + 1 we

d∗i equals the longest shortest path connecting any agent j to i∗.

Finally, we establish necessity of the condition on a∗ for consensus in three steps.

1. First we show that consensus, reverse symmetry and the monotone likelihood property imply

that a two dimensional action vector aNi(G)∪i = (a′, a′′) induces a unique optimal action

conditional on (a′, a′′), i.e.

E
[
u(a′, ω)

∣∣a =(a′, a′′)
]
6= E

[
u(a′′, ω)

∣∣a =(a′, a′′)
]
.

Suppose not. Then by step 1 above we have

E
[
u(a′, ω)

∣∣a =(a′, a′, a′′)
]

> E
[
u(a′′, ω)

∣∣a =(a′, a′, a′′)
]

E
[
u(a′′, ω)

∣∣a =(a′, a′′, a′′)
]

> E
[
u(a′, ω)

∣∣a =(a′, a′′, a′′)
]
.
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Now consider an undirected line network and order the agents along the line. Let a be such

that the initial action of agents from 1 to k is a′ while all remaining agents select a′′, and

where 2 ≤ k ≤ v− 2. But then agent k updates his action to a′ while agent k+ 1 updates his

action to a′′. All other agents observe only identical actions and hence remain with their first

period action. Hence the second period action vector is identical to the first and consensus

fails. In the following, let a′ be the action that is preferred conditional on observing (a′, a′′).

2. Now suppose that the condition on a∗ fails. This implies that there exists some non-consensus

action vector â ∈{0, 1}v such that fi(â,G) = a′′ and where Ni(G) = V r {i} . Let k′ be the

number of a′ actions under â. Consider a network G′ where v − k′ agents form a complete

subgraph, that is they all directly link to each other, while each of the remaining k′ agents has

one undirected edge towards agent ı̃ who belongs to the complete subgraph. Hence agent ı̃

observes every agent and is observed by every agent. Let (â,G′) be such that all agents in the

complete subgraph select action a′′ and the remaining agents select a′. By step 1, all agents

that do not form part of the complete subgraph remain at action a′. Agent ı̃, remains at

action a′′ as fı̃(â,G) = a′′. All remaining agents belonging to the complete subgraph observe

only action a′′ and hence remain at a′′. Therefore, consensus fails.�

A.2 Proof of Theorem 2

Proof. Sufficiency follows along the same lines as in the proof of Theorem 1. We prove necessity

of the condition as follows. First assume that for all realizations a ∈Av there exists a unique

conditional expected utility (given a) maximizing action. This directly implies that information

aggregation requires consensus. Hence Theorem 1 applies and there needs to exist an action a′ such

that for all a 6= a′′, a′′ 6= a′,

a′ ∈ arg max
a∈A

E [u(a, ω) |a ] .

Next suppose that for some realizations â ∈Av both actions are maximizing the conditional expected

utility. We show information aggregation implies that any such vector â has the property that all

but one agent agree on one action, i.e. there exist an action that is taken by exactly one agent while

all others take the remaining action. First note that similar arguments as in the proof of Theorem 1

imply that conditional on a two-dimensional action vector aNi(G)∪i = (a′, a′′) there exists a unique

conditional expected utility maximizing action which we denote by a′. Suppose there exists a vector

â ∈Av such that conditional on â ∈Av both actions are maximizing the conditional expected utility

given â and there exist at least two observations of either action in â, i.e. using the notation from

the proof of Theorem 1 we have (k′, k′′) such that k′, k′′ ≥ 2. Monotonicity as established in the

proof of Theorem 1, then shows that conditional on any vector ǎ ∈Av such that (k′ + 1, k′′ − 1)

action a′ is the unique expected utility maximizing action and similarly, that conditional on any

vector ã ∈Av such that (k′ − 1, k′′ + 1) action a′′ is the unique expected utility maximizing action.
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Now consider the vector ã ∈Av such that (k′−1, k′′+1) with k′, k′′ ≥ 2. By the arguments above

we know that a′′ is the unique expected utility maximizing action conditional on ã. Information

aggregation requires that for an initial action vector ã in the first period, all agents converge to a′′ in

finite time and in any strongly connected network G. Consider the following network G̃ where k′′+1

agents form a complete subgraph. One of the agents belonging to the complete subgraph, agent ı̃,

also has an undirected link to the remaining k′− 1 agents each of which is uniquely connected with

agent ı̃. Now suppose that in the first period action vector ã all agents in the complete subgraph

select action a′′, while all remaining agents select action a′. By the reasoning above, every agent

remains at his initial action in all periods, hence contradicting information aggregation.

Monotonicity as established in Theorem 1 then implies that a′ is an expected utility maximizing

action for all a 6= a′′, a′′ 6= a′ concluding the proof.�

A.3 Proof of Theorem 3

Proof. Consider a partition
{
P1, P

C
1

}
of Ω such that

u(a′, ω′) + δ > u(a′′, ω′)

for all ω′ ∈ P1 and some δ > 0, and

u(a′, ω′) > u(a′, ω′′)

for all ω′ ∈ P1 and ω′′ ∈ PC1 which by the monotone likelihood property implies

Pr
(
a′
∣∣ω′ ) > Pr(a′

∣∣ω′′ ).
By the non-triviality assumption there exists such a closed set P1 with prior probability strictly

between 0 and 1. Let

α = inf
ω∈P1

Pr
(
a′ |ω

)
and note that by construction of P1 and the monotone likelihood property we have

(∗) Pr
(
a′
∣∣ω′′ ) < α

for all ω′′ ∈ PC1 . Further, let a′n denote an action vector with all but the first entry being equal

to a′. Let pn be the posterior probability distribution over Ω conditional on a′n. By the proof of

Theorem 1, we have

pn+1 (P1) > pn (P1)

for all n which implies that pn(P1) converges to a limit l ∈ (0, 1]. The theorem is now established

in two steps.
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1. First, we show that the limit l equals 1. Using Bayes rule, we have that

pn (P1) =
1

1 +

∫
Pc
1

Pr(a′|ω )dpn−1∫
P1

Pr(a′|ω )dpn−1

.

As Pr (a′ |ω ) < α for all ω ∈ PC1 , we have∫
P c
1

Pr
(
a′ |ω

)
dpn < α

∫
P c
1

dpn

and ∫
P1

Pr
(
a′ |ω

)
dpn ≥ α

∫
P1

dpn

for all n. Further we have

lim
n→∞

∫
P1

Pr
(
a′ |ω

)
dpn ≥ lim

n→∞
α

∫
P1

dpn,

and

lim
n→∞

∫
P c
1

Pr
(
a′ |ω

)
dpn = lim

n→∞
α

∫
P c
1

dpn

if and only if l = 1. Next note that

l =
1

1 +
limn→∞

∫
Pc
1

Pr(a′|ω )dpn

limn→∞
∫
P1

Pr(a′|ω )dpn

≥ 1

1 + α(1−l)
αl

and holding with strict inequality iff l < 1. First, consider the case l < 1, here we have

l >
1

1 + (1−l)
l

which is equivalent to

1 > 1

establishing a contradiction. This concludes the proof of l = 1.

2. By step 1, we have lim
n→∞

pn(P1) = 1. By construction, we have

u(a′, ω′) + δ > u(a′′, ω′)

for all ω′ ∈ P1. Therefore,

lim
n→∞

∫
Ω
u(a′, ω)dpn > lim

n→∞

∫
Ω
u(a′′, ω)dpn

which in turn implies that there exists an n∗ ∈ N such that for all n > n∗∫
Ω
u(a′, ω)dpn >

∫
Ω
u(a′′, ω)dpn.

Without loss of generality, suppose that∫
Ω
u(a′, ω)dp2 <

∫
Ω
u(a′′, ω)dp2

Hence the necessary and sufficient condition for information aggregation of Theorem 2 fails

for all n > n∗ concluding the proof.�
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A.4 Social Learning and the Monotone Likelihood Property

Lemma 1 The environment of the social learning literature satisfies the monotone likelihood prop-

erty.

Proof. Recall that the social learning literature considers a setting with binary states and binary

actions, A = Ω = {0, 1} and where agents achieve a utility of 1 if their action matches the realized

state, and a utility of 0 otherwise. Denote by S1 the set of signals for which the posterior probability

of state 1 conditional on the signal is greater than half. Hence, S1 is precisely the set of signals for

which action 1 is uniquely optimal. The monotone likelihood property is satisfied if

Pr (S1 |ω = 1) > Pr (S1 |ω = 0)

which under a uniform common prior is equivalent to

F1(S1) > F0(S1).

Consider the posterior probability of state 1 conditional on the set S1. As for each s ∈ S1 the

posterior probability of state 1 is greater than half, we have that

Pr (ω = 1 |S1 ) >
1

2

which under a uniform common prior is equivalent to

F1(S1) > F0(S1)

establishing the monotone likelihood property.�

A.5 Example for Consensus and Information Aggregation

Consider the following example with binary states, binary actions and binary signals, Ω = A = S =

{0, 1}. Both states are a priori equally likely. Agents achieve a utility of 1 if his action matches the

realized state and 0 otherwise. This implies that an action is uniquely optimal if and only if the

conditional probability of its corresponding state is greater than half. Conditional on the state of

the world, signals are distributed as follows

Pr(s = 1 |ω = 1) = p11 =
1

4

Pr(s = 0 |ω = 0) = p00 =
9

10
.

Note that conditional on signal s = 1 the posterior probability of state ω = 1 is equal to

p11

p11 + (1− p00)
=

1
4

1
4 + 1

10

=
40

56
>

1

2
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and hence observing the signal s = 1 induces an optimal action equal to 1. Similarly, the posterior

probability of state ω = 0 conditional on s = 0 is equal to

p00

p00 + (1− p11)
=

9
10

9
10 + 3

4

=
36

66
>

1

2

and hence a signal of zero induces an optimal action of 0. Suppose that the network contains three

agents. Hence there needs to be an action that is optimal for all but consensus in the other action.

Note that a = 1 is optimal conditional on k signal’s equal to s = 0 and one signal s = 1 if

p11 (1− p11)k

p11 (1− p11)k + (p00)k (1− p00)
>

1

2

which is equivalent to

5

2
>

(
6

5

)k
.

The inequality is satisfied for k = 0, 1, 2 and hence is the necessary and sufficient condition for

consensus and information aggregation.
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B Instructions

Instructions (sessions with 5-subject networks)

This is an experiment on decision-making. If you follow these instructions and make careful decisions, you may earn

a considerable amount of money. Please do not talk with anyone during the experiment.

Participants As the experiment begins, the computer randomly assigns to each participant in the room one of

the following 5 labels: A, B, C, D, or E. An equal number of participants is assigned with each label. Then the

computer randomly forms 5-person groups. Within a group, each member has a different label. The label assigned

to each participant and the members of each group don’t change throughout the experiment.

During the experiment, you are informed of the choices made by some or all members of your group. If you are

informed of the choice of another member, then he is in turn informed of your choice. In other words, you and the

other member are connected. A table displays the choices of members connected to you. The choices of members not

connected to you are displayed as N/A (not available).

Task You play a guessing game together with the members of your group. The game is played with 2 or 4 urns

containing colored balls. Figure B.1 depicts the urns and their composition in the 2-urn game and in the 4-urn game.

In the 2-urn game there are a White Urn and a Black Urn, each containing 3 colored balls:

• the White Urn has 2 white and 1 black ball.

• the Black Urn has 2 black and 1 white ball.

In the 4-urn game there are a Red Urn, a Yellow Urn, a Green Urn and a Blue Urn, each containing 7 colored balls:

• the Red Urn has 4 red, 1 yellow, 1 green and 1 blue ball

• the Yellow Urn has 4 yellow, 1 red, 1 green and 1 blue ball

• the Green Urn has 4 green, 1 red, 1 yellow and 1 blue ball

• the Blue Urn has 4 blue, 1 red, 1 yellow and 1 green ball.

You are always informed of which game is played. The games differ only in the number and composition of the urns.

They follow the same rules.

The computer starts by randomly selecting an urn. Every urn is equally likely. You are not informed of which urn

is selected. The computer then draws a ball from the selected urn and you are informed of the color of the ball. The

draw is your private information and is not shared with anyone else. A draw is made independently for each group

member. After being drawn, a ball is returned to the urn, keeping the composition of balls in the urn constant.

The game is divided in 6 decision turns. In the 1st turn, after learning about your own draw, you are asked to indicate

the urn that you think is more likely to have been used. Next, as the 2nd turn starts, you are informed of the choices
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made in the previous turn by the group members connected to you. You are then asked again to indicate the urn

that you think is more likely to have been used. This process is repeated for 6 turns. Note that the urn selected by

the computer and each member’s private draw don’t change across turns.

Repetition of the task You play 18 rounds like the one described above. A table displays whether your

guess in each turn of each previous round was correct. In 9 consecutive rounds you play the 2-urn game and in other

9 consecutive rounds you play the 4-urn game. Whether you play the 2-urn game before or after the 4-urn game is

determined randomly at the beginning of the experiment. This information is displayed on the screen.

While the members of your group don’t change, how many and which members are connected to you may

change from one round to the next. In other words, connections among group members may change. Even when

your connections don’t change, the connections among other members may change.

Earnings At the end of the experiment, the computer randomly selects one turn for each round. For every round,

you earn CHF2 if your guess in the selected turn was correct (i.e. if the urn you indicated was the urn selected by

the computer), otherwise you earn nothing. It’s in your interest to do your best in every turn of every round.

The experiment starts with a practice round, which doesn’t count for the determination of earnings.

Instructions (sessions with 7-subject networks)

This is an experiment on decision-making. If you follow these instructions and make careful decisions, you may earn

a considerable amount of money. Please do not talk with anyone during the experiment.

Participants As the experiment begins, the computer randomly assigns to each participant in the room one of

the following 7 labels: A, B, C, D, E, F or G. An equal number of participants is assigned with each label. Then the

computer randomly forms 7-person groups. Within a group, each member has a different label. The label assigned

to each participant and the members of each group don’t change throughout the experiment.

During the experiment, you are informed of the choices made by some or all members of your group. If you are

informed of the choice of another member, then he is in turn informed of your choice. In other words, you and the

other member are connected. A table displays the choices of members connected to you. The choices of members not

connected to you are displayed as N/A (not available).

Task You play a guessing game together with the members of your group. The game is played with 2 or 4 urns

containing colored balls. Figure B.1 depicts the urns and their composition in the 2-urn game and in the 4-urn game.

In the 2-urn game there are a White Urn and a Black Urn, each containing 3 colored balls:

• the White Urn has 2 white and 1 black ball.

• the Black Urn has 2 black and 1 white ball.

In the 4-urn game there are a Red Urn, a Yellow Urn, a Green Urn and a Blue Urn, each containing 7 colored balls:

• the Red Urn has 4 red, 1 yellow, 1 green and 1 blue ball
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• the Yellow Urn has 4 yellow, 1 red, 1 green and 1 blue ball

• the Green Urn has 4 green, 1 red, 1 yellow and 1 blue ball

• the Blue Urn has 4 blue, 1 red, 1 yellow and 1 green ball.

You are always informed of which game is played. The games differ only in the number and composition of the urns.

They follow the same rules.

The computer starts by randomly selecting an urn. Every urn is equally likely. You are not informed of which urn

is selected. The computer then draws a ball from the selected urn and you are informed of the color of the ball. The

draw is your private information and is not shared with anyone else. A draw is made independently for each group

member. After being drawn, a ball is returned to the urn, keeping the composition of balls in the urn constant.

The game is divided in 8 decision turns. In the 1st turn, after learning about your own draw, you are asked to indicate

the urn that you think is more likely to have been used. Next, as the 2nd turn starts, you are informed of the choices

made in the previous turn by the group members connected to you. You are then asked again to indicate the urn

that you think is more likely to have been used. This process is repeated for 8 turns. Note that the urn selected by

the computer and each member’s private draw don’t change across turns.

Repetition of the task You play 14 rounds like the one described above. A table displays whether your

guess in each turn of each previous round was correct. In 7 consecutive rounds you play the 2-urn game and in other

7 consecutive rounds you play the 4-urn game. Whether you play the 2-urn game before or after the 4-urn game is

determined randomly at the beginning of the experiment. This information is displayed on the screen.

While the members of your group don’t change, how many and which members are connected to you may

change from one round to the next. In other words, connections among group members may change. Even when

your connections don’t change, the connections among other members may change.

Earnings At the end of the experiment, the computer randomly selects one turn for each round. For every round,

you earn CHF2.50 if your guess in the selected turn was correct (i.e. if the urn you indicated was the urn selected by

the computer), otherwise you earn nothing. It’s in your interest to do your best in every turn of every round.

The experiment starts with a practice round, which doesn’t count for the determination of earnings.
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Figure B.1: Urn composition
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C Tables and Figures

Table C.1: Network structures: who’s neighbor to whom?

(a) 5-agent networks

network neighbors

structure for each subject in the network

A B C D E

complete B,C,D,E A,C,D,E A,B,D,E A,B,C,E A,B,C,D

linked circle (A-C) B,C,E A,C A,B,D C,E A,D

linked circle (A-D) B,D,E A,C B,D A,C,E A,D

linked circle (B-D) B,E A,C,D B,D B,C,E A,D

linked circle (B-E) B,E A,C,E B,D C,E A,B,D

linked circle (C-E) B,E A,C B,D,E C,E A,C,D

star (A center) B,C,D,E A A A A

star (B center) B A,C,D, E B B B

star (C center) C C A,B,D,E C C

(b) 7-agent networks

network neighbors

structure for each subject in the network

A B C D E F G

linked circle (A-C,D-F) B,C,G A,C A,B,D C,E,F D,F D,E,G A,F

linked circle (B-D,E-G) B,G A,C,D B,D B,C,E D,F,G E,G A,E,F

linked circle (C-E,F-A) B,F,G A,C B,D,E C,E C,D,F A,E,G A,F

linked circle (A-D,B-G) B,D,G A,C,G B,D A,C,E D,F E,G A,B,F

linked circle (A-D) B,D,G A,C B,D A,C,E D,F E,G A,F

linked circle (A-D,A-E,B-G) B,D,E,G A,C,G B,D A,C,E A,D,F E,G A,B,F

conn. complete comp. B,C,D A,C A,B A,E D,F,G E,G E,F
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Figure C.1: Network structures
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Table C.2: Choice revisions. Number of observations pooling data across participants and rounds

(i.e. network structures and choice sets). For 5-agent networks, 1800 observations = 100 partici-

pants × 18 rounds. For 7-agent networks, 1372 observations = 98 participants × 14 rounds.

(a) 5-agent networks

round of last No. choice revisions

choice revision 0 1 2 3 4 5 all

1092 0 0 0 0 0 1092

2 216 0 0 0 0 216

3 59 48 0 0 0 107

4 46 37 12 0 0 95

5 25 49 22 13 0 109

6 29 46 46 38 22 181

all 1092 375 180 80 51 22 1800

(b) 7-agent networks

round of last No. choice revisions

choice revision 0 1 2 3 4 5 6 7 all

777 0 0 0 0 0 0 0 777

2 157 0 0 0 0 0 0 157

3 15 16 0 0 0 0 0 31

4 20 23 9 0 0 0 0 52

5 19 27 8 8 0 0 0 62

6 16 12 11 4 2 0 0 45

7 10 24 17 8 7 3 0 69

8 14 48 35 31 19 13 19 179

all 777 251 150 80 51 28 16 19 1372
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