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Abstract: Big fish, eats small fish: Big enterprises 

eat small enterprises-law of nature cloned into law 

of economics and technology.  A further proof of 

this law is the popularity of Big Data Hadoop 

Platforms because it meets the needs of many 

organizations for flexible data analysis capabilities 

with an unmatched price-performance curve. This 

is the era of big data and an increasing number of 

companies are using to analyze structured and 

unstructured data due to features like scalability, 

cost effectiveness, flexibility and fault tolerance. 

Currently Hadoop is in boom stage and there is a 

WhatsApp-like movement in Big Data Analytics 

Market. In this research paper we have focused 

basic architecture of Hadoop, implementation of 

HDFS file system and MapReduce Algorithm. We 

have also briefly discussed on various big data 

computing Hadoop platforms with the advantages 

and disadvantages of each platform. 
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I. INTRODUCTION: 

 

 Hadoop is a project from the Apache 

Software Foundation written in Java. It enables 

management of petabytes of data in thousands of 

machines. The inspiration comes from Google’s 

MapReduce and Google File System papers. 

Hadoop’s biggest contributor has been the search 

giant Yahoo [1]. In recent years Hadoop has 

become a widely used platform and runtime 

environment for the deployment of Big Data 

applications. Big data is a collection of large data 

sets that include different types such as structured, 

unstructured and semistructured data.  This  data  

can be  generated  from different  sources  like  

social  media ( Facebook, Twitter, YouTube etc.),  

audios,  images,  log  files, sensor  data,  stock 

market exchanges, transactional  applications, 

sensor web  etc. are the main contributors of these 

data [2]. These large data sets are called Big Data. 

In terms of relational databases, moving and 

modifying large volumes of unstructured data into 

the necessary form for Extraction, Transformation, 

Loading (ETL) can be both costly and time-

consuming. To  process  or  analyze  this  huge  

amount  of  data  or  extracting meaningful  

information  is  a  challenging  task  now  a  days.  

Big data exceeds the processing capability of 

traditional database to capture, manage, and 

process the voluminous amount of data. Falling 

storage costs and access to better compute power 

for less money have made the software more 

attractive as datasets continue to grow, As a result, 

many companies are rethinking their approach to 

traditional enterprise storage and architecture to 

leverage big data [3]. Hadoop is best suited for 

Processing unstructured data, Complex parallel 

information processing, Large Data Sets/Files, 

Machine Learning Critical fault tolerant data 

processing, Reports not needed in real time, 

Queries that cannot be expressed by SQL and Data 

processing Jobs needs to be faster. These are the 

key reasons why Hadoop platforms so attractive 

[4]. 

 
II. OVERVIEW OF HADOOP PLATFORM 

1.0  

 

Hadoop 1.0 popularized MapReduce programming 

for batch jobs and demonstrated the potential value 

of large scale, distributed processing. MapReduce, 

as implemented in Hadoop 1.0, can be I/O 

intensive, not suitable for interactive analysis [5]. 

In Hadoop 1.0, a single Namenode managed the 

entire namespace for a Hadoop cluster. [6]. The 

basic architecture of Hadoop 1.0 version we have 

shown in figure 1. 

 
Fig 1.  Basic components of Hadoop Platform 1.0 
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III. ISSUES & LIMITATIONS OF 

HADOOP 1.0 

 
Issue of Availability: Hadoop 1.0 Architecture had 

only one single point of availability i.e. the Job 

Tracker, so in case if the Job tracker fails then all 

the jobs will have to restart [7]. 

 
Issue of Scalability: The Job Tracker runs on a 

single machine performing various tasks such as 

Monitoring, Job Scheduling, Task Scheduling and 

Resource Management. In spite of the presence of 

several machines (Data Nodes), they were not 

being utilized in an efficient manner, thereby 

limiting the scalability of the system. 

 
Cascading Failure Issue: When the number of 

nodes is greater than 4000 in a cluster, some kind 

of fickleness is observed Hadoop 1.0 architecture. 

 
Multi-Tenancy Issue: The major issue with 

Hadoop MapReduce that paved way for the advent 

of Hadoop YARN was multi-tenancy. With the 

increase in the size of clusters in Hadoop systems, 

the clusters can be employed for a wide range of 

models. 

 

IV. HADOOP 2.0 (YARN) AND ITS 

COMPONENTS 

 
YARN (Yet Another Resource Negotiator) is a new 

component added in Hadoop 2.0. YARN is 

backward compatible existing MapReduce job can 

run on Hadoop 2.0 without any change. In Hadoop 

2.0 a new layer called YARN has been introduced 

between HDFS and MapReduce. YARN is 

responsible for doing Cluster Resource 

Management i.e (Memory, CPU etc) managing the 

resources of the Hadoop Clusters [8]. No more 

JobTracker and TaskTracker needed in Hadoop 

2.0. We have given the high-level architecture of 

hadoop 2.0 version in figure 2. 

 

In Hadoop 2.0, the Job Tracker in YARN mainly 

depends on 3 important components. 

 

1. Resource Manager Component: This 

component is considered as the negotiator of all the 

resources in the cluster. Resource Manager is 

further categorized into an Application Manager 

that will manage all the user jobs with the cluster 

and a pluggable scheduler. This is a relentless 

YARN service that is designed for receiving and 

running the applications on the Hadoop Cluster. In 

Hadoop 2.0, a MapReduce job will be considered 

as an application [12]. 

 
 

Fig 2.  Basic components of Hadoop Platform 1.0 

 
2. Node Manager Component: This is the job 

history server component of YARN which will 

furnish the information about all the completed 

jobs. The Node Manager keeps a track of all the 

users’ jobs and their workflow on any particular 

given node. 
 
3. Application Master Component: (User Job 

Life Cycle Manager): This is the component where 

the job actually resides and the Application Master 

component is responsible for managing each and 

every Map Reduce job and is concluded once the 

job completes processing. 

 

Advantage of YARN 

 
● There are no more fixed map-reduce slots. 

YARN provides central resource manager. 

With YARN, now we can run multiple 

applications in Hadoop, all sharing a 

common resource.   

● Yarn can even run application that do not 

follow MapReduce model. 

● YARN decouples MapReduce resource 

management and scheduling capabilities 

from the data processing component, 

enabling Hadoop to support more varied 

processing approaches and a broader array 

of applications. For example, Hadoop 

clusters can now run interactive querying 

and streaming data applications 

simultaneously with MapReduce batch 

jobs [12].  
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V. HADOOP ECOSYSTEM
 

 
 

Fig 3. Different Layers of Hadoop Ecosystem 

 

1. Data Storage Layer: This is where the data is 

stored in a distributed file system, consist of HDFS 

and HBase ColumnDB Storage. 

 

a. HDFS (Hadoop Distributed File 

System): It is a Java based file system 

providing scalable and reliable data 

storage, designed to span large clusters of 

commodity servers 

b. HBase: A non-relational (NoSQL) 

columnar database running on top of HDFS 

 

2. Data Processing Layer: It is the layer where the 

scheduling, resource management and cluster 

management to be calculated here. YARN job 

scheduling and cluster resource management with 

MapReduce are located in this layer. 

 

a. MapReduce: A programming model for 

large scale data processing. 

YARN: The resource management and processing 

components in Hadoop 2. 

 

 

3. Data Access Layer: This is the layer where the 

request from Management layer was sent to Data 

Processing Layer.  

 

a. Hive: A data warehouse infrastructure  

b. built on Hadoop, providing a mechanism 

 to project structure onto the data  and 

 query it using SQL like language – 

 HiveQL 

c. Pig: It allows writing complex 

 MapReduce jobs using a scripting 

 language – PigLatin 

d. Mahout: A Scalable machine learning 

 and data mining library 

e. Avro: Data serialization system. 

f. Sqoop: Tool for transferring bulk data 

 between Hadoop and structured databases 

 e.g. RDBMS  

 

4. Management Layer: This is the layer that meets 

the user. User access the system through this layer 

which has the components like: Chukwa, 

ZooKeeper. 

 

● Chukwa: A data collection system for 

managing large distributed system. 

● ZooKeeper: High-performance 

coordination service for distributed 

applications. 

● Flume: Service for integrating large 

amounts of streaming data (e.g. logs) into 

HDFS. 

● Oozie: Java web application used to 

schedule Hadoop jobs. 

 

 

VI. HADOOP ARCHITECTURE 

 

Hadoop cluster has three components: 

 

1. Client Node: Client machines are responsible for 

loading data into the cluster, submitting MapReduce 

jobs and viewing the results of the job once 

complete. The client applications access the file 

system via the HDFS client. HDFS supports the 

basic operations e.g. read, write and delete files 

along with and operations to create and delete 

directories. The client's reference these files and 

directories by their paths in the namespace. When a 

client application reads a file, the HDFS client first 

checks the NameNode for the list of DataNodes 

which host the replicas of the blocks of the file [13]. 

This list is sorted by the network topology distance 

from the client location. The client then contacts the 

DataNode directly and requests to transfer the 

desired block. When a client writes, it first seeks the 

DataNode from the NameNode. The client then 

organizes a pipeline from node-to-node and starts 

sending the data. Once the initial block is filled, 
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client requests for new DataNodes. These 

DataNodes are to be chosen to host replicas of the 

next block. A fresh pipeline is then organized, and 

the client sends further bytes of the file. Choice of 

DataNodes for every single block is different. 

 

2. Master Node: It consists of NameNode and 

Secondary namenode which manages the file system 

namespace operations like opening, closing, and 

renaming files and directories and determines the 

mapping of blocks to DataNodes along with 

regulating access to files by clients [9]. 

 

JobTracker (Master process): In Hadoop, The 

JobTracker (a java process) is responsible for 

monitoring the job, managing the MapReduce 

phase, managing the retries in case of errors. The 

primary functions of JobTracker are resource 

management, tracking resource availability, and task 

process cycle. JobTracker identifies the TaskTracker 

to perform certain tasks and monitors the progress 

and status of a task. JobTracker is a single point of 

failure for the MapReduce process [13]. 

 

3. Slaves Node: DataNodes which are responsible 

for serving read and write requests from the file 

system’s clients along with perform block creation, 

deletion, and replication upon instruction from the 

Master (NameNode). 

 

TaskTracker (Slave process): The TaskTrackers 

(Java process) are running on the different 

DataNodes. Each TaskTracker executes the tasks of 

the job on the locally stored data. TaskTracker is the 

slave daemon process that performs a task assigned 

by JobTracker. TaskTracker sends heartbeat 

messages to JobTracker periodically to notify about 

the free slots and sends the status to JobTracker 

about the task and checks if any task has to be 

performed. 

 

The architecture of HDFS is shown in Figure 4. 

HDFS uses the Master / Slave architecture. HDFS 

mainly consists of the following components: 

Client, NameNode, Secondary NameNode and 

DataNode. These components are described 

separately. 

 

Fig 4.  Hadoop Cluster Core Components.  

 

VII. HADOOP DISTRIBUTED FILE 

SYSTEM (HDFS)  

Hadoop Distributed File System (HDFS) is a Java-

based file system that provides scalable and reliable 

data storage that is designed to span large clusters of 

commodity servers. Files and directories are 

represented on the NameNode by inodes. Inodes 

record attributes like permissions, modification and 

access times, or namespace and disk space quotas. 

The HDFS file content is split into large blocks 

(typically 128 megabytes), and each block of the file 

is independently replicated at multiple DataNodes. 

A block is the smallest unit of data that can be 

stored or retrieved from the disk. HDFS stores all 

the data in terms of block. The file is split into 

multiple blocks based on the block size of the 

cluster. If the file was a 128 MB file or 256 MB file, 

it will have 4 MB blocks; which means the file will 

go into 4 blocks. If the replication factor is 1, there 

will be four blocks.The namenode is basically 

managing the complete file system [13]. The blocks 

are stored on the local file system on the datanodes. 

The Namenode actively monitors the number of 

replicas of a block. When a replica of a block is lost 

due to a DataNode failure or disk failure, the 

NameNode creates another replica of the block. The 

NameNode maintains the namespace tree and the 

mapping of blocks to DataNodes, holding the entire 

namespace image in RAM. The NameNode does not 

directly send requests to DataNodes. It sends 

instructions to the DataNodes by replying to 

heartbeats sent by those DataNodes. The 
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instructions include commands to: replicate blocks 

to other nodes, remove local block replicas, re-

register and send an immediate block report, or 

shutdown the node [14]. 

Advantages of HDFS block: 

 

● HDFS blocks are of fixed size, so it is very 

easy to calculate the number of blocks that 

can be stored on a disk. 

 

● HDFS block concept simplifies the storage 

of the datanodes. The datanodes doesn’t 

need to concern about the blocks metadata 

data like file permissions etc. The 

namenode maintains the metadata of all the 

blocks. 

 

● If the size of the file is less than the HDFS 

block size, then the file does not occupy the 

complete block storage. 

 

● As the file is chunked into blocks, it is easy 

to store a file that is larger than the disk 

size as the data blocks are distributed and 

stored on multiple nodes in a hadoop 

cluster. 

 

● Blocks are easy to replicate between the 

data nodes and thus provide fault tolerance 

and high availability. Hadoop framework 

replicates each block across multiple nodes 

(default replication factor is 3). In case of 

any node failure or block corruption, the 

same block can be read from another node. 

Read Operation In HDFS: 

Data read request is served by HDFS, NameNode 

and DataNode. Let's call reader as a 'client'. Below 

figure 5 depicts file read operation in Hadoop [13]. 

 

1. Client initiates read request by calling 

'open()' method of FileSystem object. 

2. This object connects to namenode using 

RPC (Remote Procedure Call) and gets 

metadata ( location of blocks ) information. 

3. Addresses of the DataNodes having copy 

of that block, is returned back. 

4. Once addresses of DataNodes are received, 

an object of type FSDataInputStream is 

returned to the client. FSDataInputStream 

contains DFSInputStream which takes care 

of interactions with DataNode and 

NameNode. In step 4 shown in above 

diagram, client invokes 'read()' method 

which causes DFSInputStream to establish 

a connection with the first DataNode with 

the first block of file. 

5. Data is read in the form of streams wherein 

client invokes 'read()' method repeatedly. 

This process of read() operation continues 

till it reaches end of block. 

6. Once end of block is reached, 

DFSInputStream closes the connection and 

moves on to locate the next DataNode for 

the next block 

7. Once client has done with the reading, it 

calls close() method. 

 

 

Fig 5. Read Operation In HDFS 

Write Operation In HDFS: In this section, we will 

understand how data is written into HDFS through 

files [14]. 

 

1. Client initiates write operation by calling 

'create()' method of DistributedFileSystem 

object which creates a new file shown in fig 6. 

2. DistributedFileSystem object connects to the 

NameNode using RPC call and initiates new 

file creation. NameNode verifies that the file 

(which is being created) does not exist already 

and client has correct permissions to create 

new file. If that is not the case then 

IOException is thrown to client. Otherwise a 

new record for the file is created by the 

NameNode. 
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3. Once new record in NameNode is created, an 

object of type FSDataOutputStream is returned 

to the client. Client uses it to write data into 

the HDFS. Data write method is invoked. 

4. FSDataOutputStream contains 

DFSOutputStream object which looks after 

communication with DataNodes and 

NameNode. While client continues writing 

data, DFSOutputStream continues creating 

packets with this data. These packets are 

enqueued into a queue which is called as 

DataQueue. 

5. There is one more component called 

DataStreamer which consumes this 

DataQueue. DataStreamer also asks 

NameNode for allocation of new blocks 

thereby picking desirable DataNodes to be 

used for replication. 

6. The process of replication starts by creating a 

pipeline using DataNodes. In our case, we 

have chosen replication level of 3 and hence 

there are 3 DataNodes in the pipeline. 

7. The DataStreamer pours packets into the first 

DataNode in the pipeline. 

8. Every DataNode in a pipeline stores packet 

received by it and forwards the same to the 

second DataNode in pipeline. 

9. Another queue, 'Ack Queue' is maintained by 

DFSOutputStream to store packets which are 

waiting for acknowledgement from 

DataNodes. 

10. Once acknowledgement for a packet in queue 

is received from all DataNodes in the pipeline, 

it is removed from the 'Ack Queue'. In the 

event of any DataNode failure, packets from 

this queue are used to reinitiate the operation. 

11. After client is done with the writing data, it 

calls close() method (Step 9 in the diagram) 

Call to close(), results into flushing remaining 

data packets to the pipeline followed by 

waiting for acknowledgement. 

12. Once final acknowledgement is received, 

NameNode is contacted to tell it that the file 

write operation is complete. 

 

  Advantage & Disadvantage of HDFS: 

 

Advantages 

 

● Very large files 

● Streaming data access 

● Commodity hardware 

 

Fig 6. Read Operation In HDFS 

 

Disadvantages 

 

● Low-latency data access 

● Lots of small files 

● Multiple writers, arbitrary file 

modifications 

 

VIII. MAPREDUCE  

 

MapReduce is a framework for parallel processing 

of massive data sets. A job to be performed using 

the MapReduce framework has to be specified as 

two phases: the map phase as specified by a Map 

function (also called mapper) takes key/value pairs 

as input, possibly performs some computation on 

this input, and produces intermediate results in the 

form of key/value pairs; and the reduce phase which 

processes these results as specified by a Reduce 

function (also called reducer). The data from the 

map phase are shuffled, i.e., exchanged and merge-

sorted, to the machines performing the reduce phase 

[15]. It should be noted that the shuffle phase can 

itself be more time-consuming than the two others 

depending on network bandwidth availability and 

other resources. In big data, we want to break a 

large data set into many smaller pieces and process 

them in parallel with the same algorithm. With the 

HDFS, the files are already divided into bite-sized 

pieces. MapReduce helps in processing all the 

pieces of this data. MapReduce jobs are complex 

and involve multiple steps; some steps are 
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performed by Hadoop with default behavior and can 

be overridden if needed. The below are the 

mandatory steps performed in MapReduce in 

sequence: 

Mapper: In MapReduce, Mapper code should have 

a logic, which can be independent of other block 

data. Mapper logic should leverage all the parallel 

steps possible in the algorithm. Input to Mapper is 

set in the Driver program of a particular Input 

Format type and file(s) on which the Mapper 

process has to run. The output of Mapper will be a 

map <key, value>, key and value set in Mapper 

output is not saved in HDFS, but an intermediate 

file is created in the OS space path and that file is 

read and shuffle and sorting takes place [16]. 

Shuffle and sorting (Combine): Shuffle and sort 

are intermediate steps in MapReduce between 

Mapper and Reducer, which is handled by Hadoop 

and can be overridden if required. The Shuffle 

process aggregates all the Mapper output by 

grouping key values of the Mapper output and the 

value will be appended in a list of values. So, the 

Shuffle output format will be a map <key, List<list 

of values>>. 

 
Reducer: Reducer is the aggregator process where 

data after shuffle and sort, is sent to Reducer where 

we have <key, List<list of values>>, and Reducer 

will process on the list of values. Each key could be 

sent to a different Reducer. Reducer can set the 

value, and that will be consolidated in the final 

output of a MapReduce job and the value will be 

saved in HDFS as the final output. 

 

Let’s see an example of above steps. Consider we 

have one file splitted into two nodes and content of 

files are: 

 

1. file1 content : “hello world hello moon” 

2. file2 content : “goodbye world goodnight 

moon” 

 

Now the result of MapReduce after each step will be 

as below: 

 

Advantages & Disadvantages of MapReduce 

 

Advantages 

 

● The MapReduce model is simple but 

expressive. A programmer defines a job 

with only the Map and Reduce functions, 

and does not have to specify the physical 

distribution of the job across the nodes. 

 

● MapReduce does not have any dependency 

on the data model and schema. A 

programmer can work with unstructured 

data more easily than they do with a 

conventional DBMS. 

 

● MapReduce is independent from the 

underlying storage layers. Thus, it can 

work with different storage layers such as 

BigTable and various others. 

 

● It is highly fault tolerant and also highly 

scalable. 

 

Disadvantages 

 

● MapReduce  by  itself  does not provide  

support for  high-level  languages  like 

SQL  in  DBMS  nor for any query 

optimization technique. 

 

● MapReduce also does not support schemas. 

Thus,  the  framework  parses  each  data  

record  at  reading  input,  leading  to 

performance degradation. 

 

● MapReduce  offers  ease  of  use  with  a  

simple  abstraction,  but  in  a  fixed  

dataflow.  Hence,  several  complex  

algorithms  are difficult  to  implement  

with  only  map  and  reduce  functions.  

Additionally, algorithms that require 

multiple inputs are not well supported since 

the MapReduce data flow is designed to 

read a single input and produce a single 

output. 

 

● Since the primary goals of MapReduce are 

scalability and fault tolerance, its 

operations are not optimized for efficient 

I/O. Also, map and reduce are both 

blocking operations.  A  transition  to  the  

next  stage  cannot  be  done  until  all  the  

tasks  of  the previous  stage  are  

completed. There is no support for 

pipelined execution.  Additionally, 

MapReduce does not have execution plans 

and does not optimize plans as DBMS does 

in order to minimize data transfer across 

nodes. Thus, its performance is often 

poorer than that of DBMS.  The  
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MapReduce  framework  also  suffers  from  

a  latency  problem  due  to  batch  

processing.  All the inputs for a job must be 

prepared in advance for processing. 

 

Key features of Hadoop   

 

● Distributed: The data is split into 

manageable blocks which are stored on 

different nodes in a network. 

 

● Scalable: To increase cluster capacity, add 

more nodes. 

 

● Fault-tolerant: Automatically restarts 

failed jobs, node failures are inevitable. 

Replicant copies of each data block are 

kept on different nodes to avoid data loss 

upon failure of a node. 

 

● Open source: The Hadoop project is 

managed by the Apache Software 

Foundation 

 

● low cost: Hadoop runs on commodity 

hardware 

 

● Resilience: With built-in fault tolerance, 

e.g. multiple copies of data replicated on 

cluster nodes, and with high availability 

HDFS in version 2.0, Hadoop provides 

cost-effective resilience to faults and data 

loss. 

 

● Flexible: Hadoop is schema-less, and is 

capable of absorbing any type of structured 

or unstructured data from any number of 

sources. Multiple source data can be joined 

and aggregated in arbitrary ways enabling 

deeper analysis that cannot be provided by 

any one system. 

 

Hadoop use cases for different industries are: 

 

Social Media Engagement and Clickstream 

Analysis (Web Industry): A clickstream is the 

recording of the parts of the screen a computer user 

clicks on web while browsing or using another 

software application. Clickstream analysis is useful 

for web activity analysis, and customer behavior 

software testing, market research, and even for 

analyzing employee productivity. 

 

Content Optimization and Engagement (Media 

Industry): Content required to be optimized for 

rendering on different devices supporting different 

content formats. Media companies require large 

amount of content to be processed in different 

formats. Also content engagement models need to 

be mapped for feedback and enhancements. 

 

Network Analytics and Mediation 

(Telecommunication Industry): Telecommunication 

companies generate a large amount of data in the 

form of usage transaction data, network 

performance data, cell-site information device level 

data and other forms of back office data. The real 

time analytics plays a critical role in reducing the 

OPEX and enhancing the user experience. 

 

Targeting and Product Recommendation (Retail 

Industry): The retail companies and e-Commerce 

companies model the data from different sources to 

target customers and provide product 

recommendations based on end user’s profile and 

usage patterns. 

 

Risk Analysis, Fraud Monitoring and Capital 

Market Analysis (BFSI Industry): Banking and 

finance sectors have large sets of structured and 

unstructured data generated by different sources like 

trading pattern in capital markets, consumer 

behavior for banking services etc. Financial 

institutions use big data to perform Risk Analysis, 

Fraud Monitoring and Tracking, Capital Market 

Analysis, converged data management etc. 

 

Key Adopters of Hadoop 

 
The early adopters of Hadoop are the web giants 

like Facebook, Yahoo, Google, LinkedIn, Twitter 

etc. In Table 1 we have given the classification of 

companies in Big Data & Hadoop Space. 

                         
Facebook: Facebook uses Hadoop – Hive and 

HBase for data warehousing (over 300 PB in 

aggregate and over 600 TB daily data inflows) and 

real-time application, serving up dynamic pages 

customized for each of its over 1.2 billion users. 

Yahoo: Yahoo uses Hadoop and Pig for data 

processing and analytics, web search, email 

antispam and ad serving with more than 100,000 

http://www.apache.org/
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CPUs in over 40,000 servers running Hadoop with 

170 PB of storage. 

 

Google: Google used MapReduce to create its web 

index from crawl data and also uses Hadoop clusters 

on its cloud platform with Google Compute Engine 

(GCE). 

 

LinkedIn: LinkedIn uses Hadoop for data storage 

and analytics driving personalized recommendations 

like “People you may know” and ad targeting. 

 

Twitter: Twitter uses Hadoop – Pig and HBase for 

data visualization, social graph analysis and 

machine learning. 

 

Classification of Companies in Big Data & 

Hadoop Space 

 

● Class 1: Companies who have adopted 

Hadoop as Big Data Strategy. Class 1 

companies are using Class 2 companies are 

partner to excel in Big Data space. 

 

● Class 2: Companies who have taken 

Hadoop and productized it. 

 

● Class 3: These companies are creating 

products which are adding value to overall 

Hadoop eco-system. 

 

● Class 4: These companies are consuming 

or providing Hadoop based services to 

other companies on smaller scale compared 

to class 1 and class 2 companies. 

 
 
Table 1. Classification of Companies in Big 

Data & Hadoop Space 

IX. HADOOP PLATFORMS 

 

There are two types of Hadoop Distributions i.e 

Open Source & Commercial. Open Source Hadoop 

Distributions examples are Apache Hadoop, 

Hortonworks Hadoop [18], [19]. The Commercial 

Hadoop Distributions examples are cloudera, 

Amazon EMR, Microsoft HDinsight [9], [10]. 

 

Apache Hadoop:  Apache Hadoop is an open-

source software framework written in Java for 

distributed storage and distributed processing of 

very large data sets on computer clusters built from 

commodity hardware [9]. All the modules in 

Hadoop are designed with a fundamental 

assumption that hardware failures (of individual 

machines, or racks of machines) are commonplace 

and thus should be automatically handled in 

software by the framework.  Figure 7 is all about the 

basic architecture view of Apache Hadoop 

components. 

 
 

Fig 7. Basic Architecture of Apache Hadoop 

 

Cloudera Hadoop: Cloudera Inc. was founded by 

big data geniuses from Facebook, Google, Oracle 

and Yahoo in 2008. It was the first company to 

develop and distribute Apache Hadoop-based 

software and still has the largest user base with most 

number of clients. Although the core of the 

distribution is based on Apache Hadoop, it also 

provides a proprietary Cloudera Management Suite 

to automate the installation process and provide 

other services to enhance convenience of users 

which include reducing deployment time, displaying 

real time nodes’ count, etc. Cloudera CDH can be 

run on windows server, HDP is available as a native 

component on the windows server [10]. A 

Windows-based Hadoop cluster can be deployed on 

Windows Azure through HDInsight Service. 

Besides the core Hadoop platform (HDFS, 
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MapReduce, Hadoop Commons), CDH integrates 

10 open source projects including HBase, Mahout, 

Pig, ZooKeeper, and others shown in figure 8.   

 

 

Fig 8. High-level Architecture of Cloudera Hadoop 

 

Hortonworks: Hortonworks, one of the leading 

vendors of Hadoop provides open source platform 

based on Apache Hadoop for analysing, storing and 

managing big data. It is the only commercial vendor 

to distribute complete open source Apache Hadoop 

without additional proprietary software [11]. It 

distribution HDP2.0 can be directly downloaded 

from their website free of cost and is easy to install. 

The components of Hortonworks has been given in 

figure 9. 

 

Amazon Elastic MapReduce (Amazon EMR): 

Amazon Elastic MapReduce (EMR) is Amazon’s 

packaged Hadoop offering. Rather than building 

Hadoop deployments manually on EC2 (Elastic 

Compute Cloud) clusters, users can spin up fully 

configured Hadoop installations using simple 

invocation commands, either through the AWS Web 

Console or through command-line tools [18]. 

Several of the popular Hadoop tools are available as 

options, including Hive, Pig, and HBase. Amazon 

EMR removes most of the cumbersome details of 

Hadoop, while taking care of provisioning of 

Hadoop, running the job flow, terminating the job 

flow, moving the data between Amazon EC2 and 

Amazon S3, and optimizing Hadoop shown in 

figure 10.  We can also run other popular distributed 

frameworks such as Spark and Presto in Amazon 

EMR, and interact with data in other AWS data 

stores such as Amazon S3 and Amazon DynamoDB. 

Amazon EMR securely and reliably handles big data 

use cases, including log analysis, web indexing, data 

warehousing, machine learning, financial analysis, 

scientific simulation, and bioinformatics. 

 
Fig 9. The Hortonworks Hadoop architecture   

 

 

 Fig 10. High-level Architecture of Amazon EMR 

MapR: MapR is a complete enterprise-grade 

distribution for Apache Hadoop. It engineered to 

improve Hadoop’s reliability, performance, and ease 

of use. The MapR distribution provides a full 

Hadoop stack that includes the MapR File System 

(MapR-FS), MapReduce, a complete Hadoop 

ecosystem, and the MapR Control System user 

interface which shown in figure 11. We can use 

MapR with Apache Hadoop, HDFS, and 

MapReduce APIs [19]. The major differences to 

CDH and HDP is that MapR uses their proprietary 

file system MapR-FS instead of HDFS. 
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Fig 11. High-level view of the MapR Hadoop 

Distribution  

 
Microsoft HDInsight: HDInsight is a cloud 

implementation on Microsoft Azure of the rapidly 

expanding Apache Hadoop technology stack that is 

the go-to solution for big data analysis [20]. It 

includes implementations of Storm, HBase, Pig, 

Hive, Sqoop, Oozie, Ambari, and so on which 

shown in figure 12. HDInsight also integrates with 

business intelligence (BI) tools such as Excel, SQL 

Server Analysis Services, and SQL Server 

Reporting Services. Windows Azure HDInsight 

Service uses Azure Blob Storage as the default file 

system (or we can store it in the native Hadoop 

Distributed File System (HDFS) file system that is 

local to the compute nodes but would lose the data if 

we deleted our cluster). There is a thin layer over 

Azure Blob Storage that exposes it as an HDFS file 

system called Windows Azure Storage-Blob or 

WASB. Azure HDInsight deploys and provisions 

Apache Hadoop clusters in the cloud, providing a 

software framework designed to manage, analyze, 

and report on big data with high reliability and 

availability. HDInsight uses the Hortonworks Data 

Platform (HDP) Hadoop distribution. 

 
  

 

 

 

 

 

 

 

 

 
 Fig 12. High-level view of the Microsoft HDInsight 

 

X. HADOOP ARCHITECTURE 

COMPARISON 

 

Hadoop introduced a new way to simplify the 

analysis of large data sets, and in a very short time 

reshaped the big data market. In fact, today Hadoop 

is often synonymous with the term big data. Since 

Hadoop is an open source project, a number of 

vendors have developed their own distributions, 

adding new functionality or improving the code 

base. In table 2 we have given in details of the 

Hadoop platform comparison. 

 

XI. CHALLENGES OF ADOPTING 

HADOOP 

 

Hadoop adoption has grown and companies 

increasingly rely on Hadoop, a few shortcomings 

have limited its potential business value [22].  

● Mixed workloads and multi-tenancy 

environments cause jobs to fight for 

resources: Hadoop schedulers still based on 

pre-allocating resources when a job starts. 

The problem is that jobs use a varying mix 

of different hardware resources during the 
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course of their lifetime [21]. In addition, 

some hardware resources (such as disk I/O 

and network) aren’t limited in standard 

Hadoop. Both of these factors lead to 

competition for resources that ideally 

should be arbitrated at runtime, resulting in 

work not being completed in time or at all. 

 

Table 2. Comparison of various Hadoop 

Distributions 

 

 

● Troubleshooting is difficult and can take 

hours: Although there are a multitude of 

tools that allow users to monitor their 

clusters, administrators are often left with 

an incomplete view of the factors affecting 

cluster health. It difficult to isolate the root 

cause of problems and drives a lot of 

inefficient behavior, such as guess-and-

check restarting and asking users about 

jobs they submitted. As cluster size grows 

and businesses increasingly rely on 

Hadoop, such methods will become 

unsustainable. Also need for advanced 

systems administration and analyst 

capabilities when working with Hadoop. 

 

● Buying more hardware than needed: To 

compensate for their lack of control over 

cluster resources, organizations usually size 

their clusters based on anticipated peak 

loads. The goal is to ensure that jobs don’t 

overload the cluster and lead to massively 

degraded performance, job failures, or 

worse. However, because of Hadoop’s 

inefficient, up-front allocation of resources, 

this strategy is expensive and leaves 

capacity unused much of the time – and can 

still fail to prevent undesired outcomes as 

workloads are often unpredictable. 

 

● Security Challenges: Originally Hadoop 

was developed without security in mind,no 

security model, no authentication of users 

and services and no data privacy, so 

anybody could submit arbitrary code to be 

executed. Although auditing and 

authorization controls (HDFS file 

permissions and ACLs) were used in 

earlier distributions, such access control 

was easily evaded because any user could 

impersonate any other use. Organizations 

face the risk of even further reduced 

control if Hadoop clusters are deployed in a 

cloud environment. When used in an 

enterprise environment, the importance of 

security becomes paramount. Organizations 

must protect sensitive customer, partner, 

and internal information and adhere to an 

ever-increasing set of compliance 

requirements. Some of the threats already 

identified in Hadoop platforms like an 
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unauthorized user may access an HDFS file 

via the RPC or via HTTP protocols and 

could execute arbitrary code or carry out 

further attacks [22].  An unauthorized 

client may read/write a data block of a file 

at a DataNode via the pipeline streaming 

Data-transfer protocol. An unauthorized 

client may gain access privileges and may 

submit a job to a queue or delete or change 

priority of the job. DataNodes imposed no 

access control, a unauthorized user could 

read arbitrary data blocks from Data 

Nodes, bypassing access control 

mechanism/restrictions, or writing garbage 

data to DataNode. 

 

XII. CONCLUSION 

 

It's becoming clear that Hadoop platforms changes 

the economics and dynamics of Big data analytics 

due to its scalability, cost effectiveness, flexibility, 

and built-in fault tolerance. It makes possible the 

massive parallel computing that today's data 

analysis requires. Currently, IT organizations and 

independent users must carefully strategize their 

approach to dealing with big data to avoid being 

overrun with data that has no intrinsic value due to 

the lack of adequate processing tools. To truly 

realize the promise of Hadoop platforms and its 

distributed set of resources for big data analysis, 

businesses and end-users need to expand their 

approach by relying on the wealth of resources 

currently available like access to professional 

training, commercial platform implementation. 

However, the proper skillset training will be 

necessary to achieve large-scale data analysis. That's 

why commercial providers Hadoop Platforms offer 

such great value to companies. These integrated 

management features enable the platform to be 

implemented by a wide range of users at all levels of 

skill expertise. Organizations can then make 

appropriate business decisions based on the large 

amounts of data they accrue by accessing the power 

of a relatively low-cost, highly scalable 

infrastructure such as Hadoop to tackle the 

challenges of big data. 
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