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The emerging field of discrete differential geometry
(DDG) studies discrete analogues of smooth geometric
objects, providing an essential link between analytical
descriptions and computation. In recent years it has un-
earthed a rich variety of new perspectives on applied
problems in computational anatomy/biology, computa-
tional mechanics, industrial design, computational archi-
tecture, and digital geometry processing at large. The ba-
sic philosophy of discrete differential geometry is that
a discrete object like a polyhedron is not merely an ap-
proximation of a smooth one, but rather a differential ge-
ometric object in its own right. In contrast to traditional
numerical analysis which focuses on eliminating approx-
imation error in the limit of refinement (e.g., by taking
smaller and smaller finite differences), DDG places an
emphasis on the so-called “mimetic” viewpoint, where
key properties of a system are preserved exactly, inde-
pendent of how large or small the elements of a mesh
might be. Just as algorithms for simulating mechani-
cal systems might seek to exactly preserve physical in-
variants such as total energy or momentum, structure-
preserving models of discrete geometry seek to exactly
preserve global geometric invariants such as total curva-
ture. More broadly, DDG focuses on the discretization of
objects that do not naturally fall under the umbrella of
traditional numerical analysis. This article provides an
overview of some of the themes in DDG.

The Game. Our article is organized around a “game” of-
ten played in discrete differential geometry in order to
come up with a discrete analogue of a given smooth ob-
ject or theory:

1. Write down several equivalent definitions in the
smooth setting.

2. Apply each smooth definition to an object in the dis-
crete setting.

3. Analyze trade-offs among the resulting discrete def-
initions, which are invariably inequivalent.
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Figure 1: Discrete differential geometry re-imagines
classical ideas from differential geometry without ref-
erence to differential calculus. For instance, sur-
faces parameterized by principal curvature lines are
replaced by meshes made of circular quadrilaterals
(top left), the maximum principle obeyed by harmonic
functions is expressed via conditions on the geome-
try of a triangulation (top right), and complex-analytic
functions can be replaced by so-called circle packings
that preserve tangency relationships (bottom). These
discrete surrogates provide a bridge between geome-
try and computation, while at the same time preserv-
ing important structural properties and theorems.

Most often, none of the resulting discrete objects pre-
serve all the properties of the original smooth one—a so-
called no free lunch scenario. Nonetheless, the proper-
ties that are preserved often prove invaluable for partic-
ular applications and algorithms. Moreover, this activity
yields some beautiful and unexpected consequences—
such as a connection between conformal geometry
and pure combinatorics, or a description of constant-
curvature surfaces that requires no definition of curva-
ture! To highlight some of the challenges and themes
commonly encountered in DDG, we first consider the
simple example of the curvature of a plane curve.

Discrete Curvature of Planar Curves. How do you define
the curvature for a discrete curve? For a smooth arc-
length parameterized curve 𝛾(𝑠) ∶ [0, 𝐿] → ℝ2, curva-
ture 𝜅 is classically expressed in terms of second deriva-
tives. In particular, if 𝛾 has unit tangent 𝑇 ∶= 𝑑

𝑑𝑠𝛾 and
unit normal 𝑁 (obtained by rotating 𝑇 a quarter turn in
the counter-clockwise direction), then

𝜅 ∶= ⟨𝑁, 𝑑2

𝑑𝑠2 𝛾⟩ = ⟨𝑁, 𝑑
𝑑𝑠𝑇⟩ . (1)

Suppose instead we have a polygonal curve with vertices
𝛾1,… ,𝛾𝑛 ∈ ℝ2, as often used for numerical computa-
tion (See Figure 2, right). Here we hit upon the most el-
ementary problem of discrete differential geometry: dis-
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crete geometric objects are often not sufficiently differ-
entiable (in the classical sense) for standard definitions
to apply. For instance, our curvature definition (Equa-
tion 1) causes trouble, since at vertices our discrete curve
is not twice differentiable, nor does it have well defined
normals. The basic approach of DDG is to find alterna-
tive characterizations in the smooth setting that can be
applied to discrete geometry in a natural way. With cur-
vature, for instance, we can apply the fundamental theo-
rem of calculus to Equation 1 to acquire a different state-
ment: if 𝜑 is the angle from the horizontal to 𝑇, then

∫
𝑏

𝑎
𝜅 𝑑𝑠 = 𝜑(𝑏) −𝜑(𝑎) mod 2𝜋.

Put more simply: curvature is the rate at which the tan-
gent turns. This characterization can be applied natu-
rally to our polygonal curve: along any edge the change
in angle is clearly zero. At a vertex it is simply the turn-
ing angle 𝜃𝑖 ∶= 𝜑𝑖,𝑖+1 − 𝜑𝑖−1,𝑖 between the directions
𝜑𝑖−1,𝑖,𝜑𝑖,𝑖+1 of the two incident edges, yielding our first
notion of discrete curvature:

𝜅𝐴
𝑖 ∶= 𝜃𝑖 ∈ (−𝜋,𝜋). (2)

Are there other characterizations that also lead natu-
rally to a discrete formulation? Yes: for instance we
can consider the motion of 𝛾 that most quickly reduces
its length. In the smooth case it is well known that
the change in length with respect to a smooth variation
𝜂(𝑠) ∶ [0, 𝐿] → ℝ2 that vanishes at endpoints is given by
integration against curvature:

𝑑
𝑑𝜀|𝜀=0

length(𝛾 + 𝜀𝜂) = −∫
𝐿

0
⟨𝜂(𝑠), 𝜅(𝑠)𝑁(𝑠)⟩ 𝑑𝑠.

Hence, the velocity that most quickly reduces length is
𝜅𝑁. For a polygonal curve, we can simply differentiate
the sum of the edge lengths 𝐿 ∶= ∑𝑛−1

𝑖=1 |𝛾𝑖+1 − 𝛾𝑖| with
respect to any vertex position. At a vertex 𝑖 we obtain

𝜕𝛾𝑖𝐿 = 𝛾𝑖 −𝛾𝑖−1
|𝛾𝑖 −𝛾𝑖−1|

− 𝛾𝑖+1 −𝛾𝑖
|𝛾𝑖+1 −𝛾𝑖|

=∶ 𝑇𝑖−1,𝑖 −𝑇𝑖,𝑖+1, (3)

i.e., just a difference of unit tangent vectors 𝑇𝑖,𝑖+1 along
consecutive edges. If 𝑁𝑖 ∈ ℝ2 is the unit angle bisector
at vertex 𝑖, this difference can also be expressed as

𝜅𝐵
𝑖 𝑁𝑖 ∶= 2 sin(𝜃𝑖/2)𝑁𝑖, (4)

providing a discretization of the curvature normal 𝜅𝑁.
A closely-related idea is to consider how the length of
a curve changes if we displace it by a small constant
amount in the normal direction. As observed by Steiner,
the new length can be expressed as

length(𝛾 + 𝜀𝑁) = length(𝛾) − 𝜀∫
𝐿

0
𝜅(𝑠) 𝑑𝑠. (5)

Since this formula holds for any small piece of the
curve, it can be used to obtain a notion of curvature at
each point. How dowe define normal offsets in the polyg-
onal case? At vertices we again encounter the issue that
we have no notion of normals. One idea is to break the
curve into individual edges which can then be translated
by 𝜀 along their respective normal directions. We can
then close the gaps between edges in a variety of ways:
using (A) a circular arc of radius 𝜀, (B) a straight line, or by
(C) extending the edges until they intersect (see Figure 3).
If we then calculate the lengths for these new curves, we
get

length𝐴 = length(𝛾) − 𝜀∑𝑛−1
𝑖=2 𝜃𝑖,

length𝐵 = length(𝛾) − 𝜀∑𝑛−1
𝑖=2 2 sin(𝜃𝑖/2),

length𝐶 = length(𝛾) − 𝜀∑𝑛−1
𝑖=2 2 tan(𝜃𝑖/2).

Figure 2: A given geometric quantity from the smooth
setting, like curvature 𝜅, may have several reasonable
definitions in the discrete setting. Discrete differential
geometry seeks definitions that exactly replicate prop-
erties of their smooth counterparts.

Mirroring the observation in the smooth setting, we can
now say that whatever change we observe in the length
provides a definition for discrete curvature. The first two
are the same as ones we have seen already: the circu-
lar arc yielding the expression from Equation 2, and the
straight line corresponding to Equation 4. The third one
provides yet another notion of discrete curvature

𝜅𝐶
𝑖 ∶= 2 tan(𝜃𝑖/2).

Finally, in the smooth case it is also well known that cur-
vature has magnitude equal to the inverse of the radius
of the so-called osculating circle, which agrees with the
curve up to second order. A natural way to define an
osculating circle for a polygon is to take the circle pass-
ing through a vertex and its two neighbors. From the
formula for the radius 𝑅𝑖 of a circumcircle in terms of
the side lengths of the corresponding triangle, one eas-
ily gets a discrete curvature that is different from the one
we saw before:

𝜅𝐷
𝑖 ∶= 1/𝑅𝑖 = 2 sin(𝜃𝑖)/𝑤𝑖, (6)

where 𝑤𝑖 ∶= |𝛾𝑖+1 − 𝛾𝑖−1|. Apart from merely being
different expressions, we can notice that 𝜅𝐴, 𝜅𝐵 and 𝜅𝐶

are all invariant under a uniform scaling of the curve,
whereas 𝜅𝐷 scales like the smooth curvature 𝜅. This sit-
uation demonstrates another common phenomenon in
discrete differential geometry, namely that depending
on which smooth characterization is used as a starting
point, onemay end up with pointwise or integrated quan-
tities in the discrete case.

Figure 3: Different characterizations of curvature in
the smooth setting naturally lead to different notions
of discrete curvature. (Here we abbreviate 𝑇𝑖,𝑖+1 and
𝑇𝑖−1,𝑖 by 𝑢 and 𝑣, respectively.)
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Figure 4: Typically, not all properties of a smooth ob-
ject can be preserved exactly at the discrete level. For
curve-shortening flow, for example, 𝜅𝐴 exactly pre-
serves the total curvature, 𝜅𝐵 exactly preserves the
center of mass, and with 𝜅𝐶 the flow remains station-
ary (up to rescaling) for any circular solution. How-
ever, no local definition of discrete curvature can pro-
vide all three properties simultaneously.

As one might imagine, there are many other possible
starting points for obtaining a discrete analogue of cur-
vature. Eventually, however, all starting points end up
leading back to the same definitions, suggesting that
there may be only so many possibilities. For example,
if 𝜙 ∶ ℝ2 → ℝ is the signed distance from a smooth
closed curve 𝛾, then applying the Laplacian Δ yields the
curvature of its level curves; in particular, Δ𝜙|𝜙=0 yields
the curvature of 𝛾. Likewise, if we apply the Laplacian
to the signed distance function for a discrete curve, we
recover 𝜅𝐴 on one side and 𝜅𝐵 on the other. Yet another
approach is the theory of normal cycles (as discussed by
Morvan), related to the Steiner formula from Equation (5).
Here, rather than settle on a single normal𝑁𝑖 at each ver-
tex we consider all unit vectors between the unit normals
of the two incident edges, ultimately leading back to the
first discrete curvature 𝜅𝐴. This theory applies equally
well to both smooth and polygonal curves, again rein-
forcing the perspective that the fundamental behavior of
geometry is neither inherently smooth nor discrete, but
can be well captured in both settings by picking the ap-
propriate ansatz. More broadly, the fact that equivalent
characterizations in the smooth setting lead to different
inequivalent definitions in the discrete setting is not spe-
cial to the case of curves, but is one of the central themes
in discrete differential geometry.

From here, a natural question arises: which discrete
curvature is “best”? A traditional criterion for discrimi-
nating among different discrete versions is the question
of convergence: if we consider finer and finer approx-
imating polygons, will our discrete curvatures converge
to the classical smooth one? However, convergence does
not always single out a best version: treated appropri-
ately, all four of our discrete curvatures will converge.
We must therefore look beyond convergence, toward ex-
act preservation of properties and relationships from the
smooth setting. Which properties should we try to pre-
serve? The answer of course depends on what we aim to
use these curvatures for.

As a toy example, consider the curve-shortening flow
(depicted in Figure 4, top left), where a curve evolves
according to the velocity that most quickly reduces its
length. As discussed above, this velocity is equal to the

curvature normal 𝜅𝑁. A smooth, simple curve evolving
under this flow exhibits several basic properties: it has
at all times total curvature 2𝜋, its center of mass re-
mains fixed, it tends toward a circle of vanishing radius,
and remains embedded for all time, i.e., no self-crossings
arise (Gage-Grayson-Hamilton). Do our discrete curva-
tures furnish these same properties? A numerical exper-
iment is shown in Figure 4. Here we evolve our polygon
by a simple time-discrete flow 𝛾𝑖 ← 𝛾𝑖 + 𝜏𝜅𝑖𝑁𝑖 with a
fixed time step 𝜏 > 0. For 𝜅𝐷, 𝑁𝑖 is the unit vector along
the circumradius; otherwise it is the unit angle bisector.
Not surprisingly, 𝜅𝐴 preserves total curvature (due to
the fundamental theorem of calculus); 𝜅𝐵 does not drift
(consider summing Equation 3 over all vertices); and 𝜅𝐷

has circular polygons as limit points (since all velocities
point toward the center of a common circle). However,
no discrete curvature satisfies all three properties simul-
taneously. Moreover, for a constant time step 𝜏 no such
flow can guarantee that new crossings do not occur. This
situation illustrates the no free lunch idea: no matter
how hard we try, we cannot find a single discrete object
that preserves all the properties of its smooth counter-
part. Instead, we have to pick and choose the properties
best suited to the task at hand.

Suppose that instead of curvature flow, we consider
two other beautiful topics in the geometry of plane
curves: the Whitney–Graustein theorem, which classifies
regular homotopy classes of curves by their total curva-
ture, and Kirchhoff’s famous analogy between motions
of a spherical pendulum and elastic curves, i.e., curves
that extremize the bending energy ∫𝐿0 𝜅2 𝑑𝑠 subject to
boundary conditions. Among the curvatures discussed
above, only 𝜅𝐴 provides a discrete version of Whitney–
Graustein, but does not provide an exact discrete ana-
logue of Kirchhoff. Likewise, 𝜅𝐶 preserves the struc-
ture of the Kirchhoff analogy, but notWhitney–Graustein.
This kind of no free lunch situation is a characteristic fea-
ture of DDG. A similar obstacle is encountered in the the-
ory of ordinary differential equations, where it is known
that there are no numerical integrators for Hamiltonian
systems that simultaneously conserve energy, momen-
tum, and the symplectic form. From a computational
point of view, making judicious choices about which
quantities to preserve for which applications goes hand-
in-hand with providing formal guarantees on the reliabil-
ity and robustness of algorithms.

We now give a few glimpses into recent topics and
trends in DDG.

Discrete Conformal Geometry A conformal map is,
roughly speaking, a map that preserves angles (see Fig-
ure 1, bottom left). A good example is Mercator’s pro-
jection of the globe: even though area gets stretched
out badly—making Greenland look much bigger than
Australia!—the directions “north” and “east” remain at
right angles, which is very helpful if you’re trying to nav-
igate the sea. A beautiful fact about conformal maps
is that any surface can be conformally mapped to a
space of constant curvature (“uniformization”), provid-
ing it with a canonical geometry. This fact, plus the
fact that conformal maps can be efficiently computed
(e.g., by solving sparse linear systems), have led in recent
years to widespread development of conformal mapping
algorithms as a basic building block for digital geometry
processing algorithms. In applications, discrete confor-
mal maps are used for everything from sensor network
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Figure 5: What is the simplicial analogue of a confor-
mal map? Requiring all angles to be preserved is too
rigid, forcing a global similarity (left). Asking only for
preservation of so-called length cross ratios provides
just the right amount of flexibility, maintaining much
of the structure found in the smooth setting such as
invariance under Möbius transformations (right)

layout to comparative analysis of medical or anatomical
data. Of course, to process real data one must be able to
compute conformal maps on discrete geometry.

What does it mean for a discrete map to be conformal?
As with curvature, one can play the game of enumerat-
ing several equivalent characterizations in the smooth
setting. Consider for instance a map 𝑓 ∶ 𝑀 → 𝐷2 ⊂ ℂ
from a disk-like surface 𝑀 with Riemannian metric 𝑔 to
the unit disk 𝐷2 in the complex plane. This map is con-
formal if it preserves angles, if it preserves infinitesimal
circles, if it can be expressed as a pair of real conjugate
harmonic functions 𝑓 = 𝑎+𝑏𝑖, if it is a critical point of
the Dirichlet energy ∫𝑀 |𝑑𝑓|2 𝑑𝐴, or if it induces a new
metric ̃𝑔 ∶= 𝑑𝑓 ⊗ 𝑑𝑓 that at each point is a positive
rescaling of the original one: ̃𝑔 = 𝑒2𝑢𝑔. Each starting
point leads down a path toward different consequences
in the discrete setting, and to algorithms with different
computational tradeoffs.

Oddly enough, the most elementary characterization
of conformal maps, angle preservation, does not trans-
late very well to the discrete setting (see Figure 5). Con-
sider for instance a simplicial map that takes a triangu-
lated disk 𝐾 = (𝑉,𝐸,𝐹) to a triangulation in the plane.
Any map that preserves interior angles will be a similar-
ity on each triangle, i.e., it can only rigidly rotate and
scale. But since adjacent triangles share edges, the scale
factor for all triangles must be identical. Hence, the only
discrete surfaces that can be conformally flattened in
this sense are those that are (up to global scale) devel-
opable, i.e., that can be rigidly unfolded into the plane.
This outcome is in stark contrast to the smooth setting,
where any disk can be conformally flattened. This sit-
uation reflects a common scenario in DDG: rigidity, or
what in finite element analysis is sometimes called lock-
ing. There are simply too few degrees of freedom relative
to the number of constraints: we want to match angles
at all 3𝐹 corners, but have only 2𝑉 < 3𝐹 degrees of free-
dom. Hence, if we insist on angle preservation we have
no chance of capturing the flexibility of smooth confor-
mal maps.

Other characterizations provide greater flexibility.
One idea is to associate each vertex of our discrete disk
𝐾 with a circle in the plane. A theorem of Koebe implies
that one can always arrange these circles such that two
circles are tangent if they belong to a shared edge and all
boundary circles are tangent to a common circle bound-
ing the rest. For a regular triangular lattice approximat-

ing a region 𝑈 ⊂ ℂ, Thurston noticed that this map ap-
proximates a smooth conformal map 𝑓 ∶ 𝑈 → 𝐷2 as the
region is filled by smaller and smaller circles (see Fig-
ure 1, bottom), as later proved by Rodin and Sullivan.
Unlike a traditional finite element discretization, these
so-called circle packings also preserve many of the basic
structural properties of conformal maps. For instance,
composition with a Möbius transformation of the disk
yields another uniformization map, as in the smooth
setting. More broadly, circle packings provide an un-
expected bridge between geometry and combinatorics,
since the geometry of a map is determined entirely by
incidence relationships 1. On the flip side, this means a
different theory is needed to account for the geometry
of irregular triangulations, as more commonly used in
applications.

An alternative theory starts from the idea that under
a conformal map the Riemannian metric 𝑔 experiences a
uniform scaling at each point: ̃𝑔 = 𝑒2𝑢𝑔. In other words,
vectors tangent to a given point 𝑝 ∈ 𝑀 shrink or grow by
a positive factor 𝑒𝑢. In the simplicial setting𝑔 is replaced
by a piecewise Euclidean metric, i.e., a collection of pos-
itive edge lengths ℓ ∶ 𝐸 → ℝ>0 that satisfy the triangle
inequality in each face. Two such metrics ℓ, ̃ℓ are then
said to be discretely conformally equivalent if they are re-
lated by ̃ℓ𝑖𝑗 = 𝑒(𝑢𝑖+𝑢𝑗)/2ℓ𝑖𝑗 for any collection of discrete
scale factors 𝑢 ∶ 𝑉 → ℝ. Though at first glance this re-
lationship looks like a simple numerical approximation,
it turns out to provide a complete discrete theory that
preserves much of the structure found in the smooth
setting, with close ties to theories based on circles. An
equivalent characterization is the preservation of length
cross ratios 𝔠𝑖𝑗𝑘𝑙 ∶= ℓ𝑖𝑗ℓ𝑘𝑙/ℓ𝑗𝑘ℓ𝑙𝑖 associated with each
edge 𝑖𝑗 ∈ 𝐸; for a mesh embedded in ℝ𝑛 these ratios
are invariant under Möbius transformations, again mim-
icking the smooth theory. This theory also leads to effi-
cient, convex algorithms for discrete Ricci flow, which is
a starting point for many applications in digital geome-
try processing.

More broadly, discrete conformal geometry and dis-
crete complex analysis is an active area of research, with
elegant theories not only for triangulations but also for
lattice-based discretizations, which make contact with
the topic of (discrete) integrable systems, discussed be-
low. Yet basic questions about properties like conver-
gence, or descriptions that are compatible with extrinsic
geometry, are still only starting to be understood.

Discrete Differential Operators Differential geometry
and in particular Riemannian manifolds can be studied
from many different perspectives. In contrast to the
purely geometric perspective (based on, say, notions of
distance or curvature), differential operators provide a
very different point of view. One of the most funda-
mental operators in both physics and geometry is the
Laplace–Beltrami operator Δ (or Laplacian for short) act-
ing on differential 𝑘-forms. It describes, for example,
heat diffusion, wave propagation, steady state fluid flow,
and is key to the Schrödinger equation in quantum me-
chanics. It also provides a link between analytical and
topological information: for instance, on closed Rieman-
nian manifolds the dimension of harmonic 𝑘-forms (i.e.,
those in the kernel of Δ) equals the dimension of the
1See “Circle Packing” in the December 2003 Notices

http://www.ams.org/notices/200311/fea-stephenson.pdf
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𝑘th cohomology—a purely topological property. The
spectrum of the Laplacian (i.e., the list of eigenvalues)
likewise reveals a great deal about the geometry of the
manifold. For example, the first nonzero eigenvalue
of the 0-form Laplacian provides an upper and a lower
bound on optimally cutting a compact Riemannian man-
ifold 𝑀 into two disjoint pieces of, loosely speaking,
maximal volume and minimal perimeter (Cheeger-Buser).
These so-called Cheeger cuts have a wide range of ap-
plications across machine learning and computer vision;
more broadly, eigenvalues and eigenfunctions of Δ help
to generalize traditional Fourier-based simulation and
signal processing to more general manifolds.

These observations motivate the study of discrete
Laplacians, which can be defined even in the purely com-
binatorial setting of graphs. Here we briefly outline their
definition for orientable finite simplicial 𝑛-manifolds,
such as polyhedral surfaces, without boundary. Our ex-
position is similar to what has become known as discrete
exterior calculus. To this end, consider the simplicial
boundary operators 𝜕𝑘 ∶ 𝐶𝑘 → 𝐶𝑘−1 acting on 𝑘-chains
(i.e., formal linear combinations of 𝑘-simplices). The cor-
responding dual spaces (cochains) 𝐶𝑘 ∶= Hom(𝐶𝑘, ℝ)
and respective dual operators 𝛿𝑘 ∶ 𝐶𝑘 → 𝐶𝑘+1 give rise
to the chain complex

{0} → 𝐶0 → 𝐶1 → … → 𝐶𝑛 → {0}.

The chain property says that 𝛿𝑘∘𝛿𝑘−1 = 0, and one hence
obtains simplicial cohomology 𝐻𝑘 ∶= ker(𝛿𝑘)/im(𝛿𝑘−1).
To define a Laplacian in this setting, we equip each 𝐶𝑘

with a positive definite inner product (⋅, ⋅)𝑘, and let 𝛿∗
𝑘 be

the adjoint operator with respect to these inner products,
i.e., (𝛿𝑘𝛼,𝛽)𝑘+1 = (𝛼,𝛿∗

𝑘𝛽)𝑘 for all 𝛼,𝛽. The Laplacian
on 𝑘-cochains is then defined as

Δ𝑘 ∶= 𝛿∗
𝑘𝛿𝑘 +𝛿𝑘−1𝛿∗

𝑘−1.

The resulting space of harmonic 𝑘-chains, {𝛼 ∈
𝐶𝑘|Δ𝑘𝛼 = 0} is then isomorphic to 𝐻𝑘—just as in the
smooth setting. This fact is independent of the choice
of inner product, mirroring the fact that cohomology de-
pends only on topological structure. Likewise, for any
inner product one obtains a discrete Hodge decomposi-
tion

𝐶𝑘 = ker(Δ𝑘) ⊕ im(𝛿𝑘−1) ⊕ im(𝛿∗
𝑘 ),

where here the subspaces do depend on the choice of
inner product.

At this point we return again to the game of DDG:
which choice of inner product is best? A trivial dot
product leads to purely combinatorial graph Laplacians,
which do not (in general) converge to their smooth coun-
terparts (e.g., when approximating a smooth manifold
by a polyhedral one). Another choice is to consider lin-
ear interpolation of 𝑘-cochains over 𝑛-dimensional sim-
plices, resulting in what are known as Whitney elements.
For 𝑛 = 2, we get the so-called cotan Laplacian (Pinkall
and Polthier), which is widely used in digital geometry
processing. Though other choices are possible, we again
encounter a no free lunch situation: no choice of inner
product can preserve all the properties of the smooth
Laplacian. Which properties do we care about? Be-
yond convergence, perhaps the most desirable proper-
ties are the maximum principle (which ensures, for in-
stance, proper behavior for heat flow), and the property
that, for flat domains, linear functions are in the ker-
nel (leading to a proper definition of barycentric coor-
dinates). For general unstructured meshes there are no

Figure 6: Left: two discrete parameterizations of a
pseudosphere (constant Gauß curvature 𝐾 = −1), one
with a Chebychev net along asymptotic directions (left)
and another along principal curvature lines (right).
Right: a discrete Chebyshev net on a surface of vary-
ing curvature, resembling the weft and warp direc-
tions of a woven material.

discrete Laplacians with all of these properties. How-
ever, certain types of meshes (such as Delaunay triangu-
lations) do indeed allow for “perfect” discrete Laplacians,
offering a connection between geometry and (discrete)
differential operators.

Discrete Integrable Systems Another topic that has pro-
vided inspiration for many ideas in DDG is parameter-
ized surface theory. Consider for instance the problem
of dressing a given surface by a fishnet stocking, i.e., a
woven material composed of inextensible yarns follow-
ing transversal “warp” and “weft” directions (see Figure
6, right). This task corresponds to decorating a surface
with a tiling where each vertex is incident to four par-
allelograms. Infinitesimally, such a tiling is known as a
weak Chebyshev net (Chebyshev 1878), and locally corre-
sponds to a regularly parameterized surface 𝑓 ∶ 𝑈 ⊂
ℝ2 → ℝ3 where the directional derivatives 𝑓𝑢 and 𝑓𝑣
along the coordinate directions satisfy |𝑓𝑢|𝑣 = |𝑓𝑣|𝑢 = 0,
i.e., partial derivatives with respect to one parameter
have constant length along the parameter lines of the
other parameter. The special case of rhombic tilings
(|𝑓𝑢| = |𝑓𝑣| = 1) are known as (strong) Chebyshev nets.
Can every smooth surface be wrapped in a stocking? Lo-
cally (i.e., in a small patch around any given point) the
answer is “yes”. Globally, however, there are severe ob-
structions to doing so, which provide some fascinating
connections to physics.

Consider for instance the special case of so-called K-
surfaces, characterized by constant Gauß curvature 𝐾 =
−1. Every K-surface admits a parameterization 𝑓 ∶ 𝑈 ⊂
ℝ2 → ℝ3 aligned with the two transversal asymptotic di-
rections along which normal curvature vanishes. Hence,
if 𝑁 is the unit surface normal then

⟨𝑓𝑢𝑢,𝑁⟩ = ⟨𝑓𝑣𝑣,𝑁⟩ = 0. (7)

Asymptotic parameterizations are weak Chebyshev nets
since

𝑎 ∶= |𝑓𝑢|, 𝑏 ∶= |𝑓𝑣| satisfy 𝑎𝑣 = 𝑏𝑢 = 0. (8)

Moreover, one can show that the angle𝜙 between asymp-
totic lines satisfies the sine-Gordon equation

𝜙𝑢𝑣 −𝑎𝑏 sin𝜙 = 0, (9)

and conversely, every solution to the sine-Gordon equa-
tion describes a parameterized K-surface. Hilbert used
this equation (and Chebyshev nets) to prove that the
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Figure 7: Discrete parameterized surfaces play a role in
architectural geometry, where special incidence rela-
tionships on quadrilaterals translate to manufacturing
constraints like zero nodal torsion, or offset surfaces
of constant thickness. Here a curvature line parame-
terized surface discretized by a conical net is used in
the design of a railway station (courtesy B. Schneider).

complete hyperbolic plane cannot be embedded isomet-
rically into ℝ3. More generally, the sine-Gordon equa-
tion has attracted much interest both in mathematics as
an example of an infinite-dimensional integrable system,
and in physics as an example of a system that admits
remarkably stable soliton solutions, akin to waves that
travel uninterrupted all the way across the ocean. An-
other key property of the sine-Gordon equation is the
existence of a so-called spectral parameter 𝜆 > 0: Equa-
tion (9) is invariant under a rescaling 𝑎 → 𝜆𝑎 and 𝑏 →
𝜆−1𝑏, giving rise to a one-parameter associated family of
K-surfaces. Geometrically, the parameter 𝜆 rescales the
edges of parallelograms while preserving the angle be-
tween asymptotic lines.

Do these properties depend critically on the smooth
nature of the solutions, or can they also be faithfully cap-
tured in the discrete setting? Hirota derived such a dis-
crete version without any reference to geometry. Later
Bobenko and Pinkall suggested a geometric definition
of discrete K-surfaces that recovers Hirota’s equation.
In their setting, discrete K-surfaces are defined as dis-
crete (weak) Chebyshev nets with the additional property
that all four edges incident to any vertex lie in a com-
mon plane. The last requirement is a natural discrete
analogue of Equation (7). This definition of discrete K-
surfaces also comes with a spectral parameter 𝜆 and re-
sults in Hirota’s discrete sine-Gordon equation—without
requiring any notion of discrete Gauß curvature. Only re-
cently has a discrete version of Gauß curvature been sug-
gested that results in discrete K-surfaces indeed having
constant negative Gauß curvature.

For discrete K-surfaces with all equal edge lengths (i.e.,
the rhombic case) the four neighboring vertices of a
given vertex must lie on a common circle. By consider-
ing a subset of the diagonals of the quadrilaterals, one
obtains another quad mesh with the property that all
quads have a circumscribed circle, resulting in so-called
cK-nets (see Figure 6, left). In the discrete setting, reg-
ular networks of circular quadrilaterals play the role of
curvature line parameterized surfaces (as in Figure 1, top
left). This transformation therefore mimics the smooth
setting, where the angle bisectors of asymptotic lines are
lines of principal curvature. More broadly, the theory of
quad nets with special incidence relationships is closely
linked to physical manufacturing considerations in the
field of architectural geometry. For example, a quad net
is conical if the four quads around each vertex are tan-
gent to a common cone—such surfaces admit face off-

sets of constant width, making them attractive for the
construction of (for instance) glass-paneled structures,
as in Figure 7.

For further reading, see “Discrete Differential Geome-
try” (2008, Alexander Bobenko ed.).
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