
1

A GNU Radio Implementation of Automatic

Meter Reading for the ERT Packet Standard

Design Description

By Kirsten Basinet

November 29, 2015

2

1. Introduction

This document is a description of the automatic ERT meter reader implemented in GNU Radio.

The project was started in winter 2015 by Nicholas Conroy as a MATLAB implementation using

an RTL-SDR receiver and continued in summer 2015 by Kirsten Basinet to add support for file

reading to the existing code, fix known issues, and create a GNU Radio alternative. Because

much of the code is shared between the MATLAB and GNU Radio versions, it is expected that

the reader has read Conroy’s Software Defined Radio: Foundational Study paper (see reference [1]).

This report is not intended to give a comprehensive understanding of the processing algorithms

used for the project, because they have already been addressed in Conroy’s report. Instead, it is a

brief description of the changes that were made and an overview of the GNU Radio

implementation in particular.

2. Changes to MATLAB Code

Before work began with GNU Radio, it was necessary to fully understand and improve the

existing MATLAB source code (see section 5.1 for the full code). The main changes that were

made are:

 Added functionality for reading ERT data from a file

 Removed dependence on Communications Systems Toolbox when not using RTL-SDR

 Enabled program to detect packets that are split between data blocks

In MATLAB, reading data from a .bin file is accomplished by using the fread command.

Once the data is imported and stored into a double-precision vector, the processing method is

identical to the data received by an RTL-SDR.

Although the Communications Systems Toolbox is required to interface with the RTL-SDR, it

isn’t strictly necessary in order to process information from a file. Therefore, in order to make

the code as accessible as possible, the decision was made to remove additional dependencies

from the toolbox. The most significant of these was the need for a custom polynomial division

function in order to handle the packet’s cyclical redundancy check (CRC). The algorithm used

for this was based on the XOR method of polynomial division, which is the method one would

use when doing the procedure by hand.

Additionally, it was necessary to create a function to handle binary-to-decimal conversions.

Although MATLAB’s native bin2dec command is available, it is extremely inefficient for the

requirements of this project because it only accepts binary numbers as character strings with a

length less than 53. The custom alternative that was written is very short and accepts a binary

number as a vector where each element is a digit. It checks each digit, and for every ‘1’ the

square of the number’s place relative to the decimal point is added to the total value to give the

final decimal number.

Along with adding these features, it was important that any known errors be fixed before

proceeding to GNU Radio. The most major bug was the inability for the program to decode

packets that fell between data blocks, because there was no mechanism to “remember” values

3

from the previously consumed block. This was fixed by adding a small amount of redundancy to

the processing loop so that a buffer of 2880 samples would be retained between data blocks.

Through testing it was determined that this was the smallest practical buffer size to prevent

packets from being missed. Occasionally, this method causes the same packet to be read twice.

Although this is isn’t ideal, the issue was ignored to meet time constraints because it does not

take away from the functionality of the program.

3. GNU Radio Implementation

The final (and major) portion of this project was to “translate” the code to a system that could

be used by GNU Radio Companion (GRC) using a USRP SDR. Because learning GRC requires

a significant learning curve, as much of the original code as possible was used.

To accomplish this, the MATLAB source was first translated to Python as an intermediate step.

(See section 5.2 for Python source code.) Then, the necessary code was added in order to

interface it with GRC. Mainly, doing this requires knowing the architecture of GNU Radio and

defining the input and output vectors of the custom block accordingly.

GNU Radio works by using a “top block” written in Python, which defines all of the processing

blocks and parameters used and how each is connected together. The blocks themselves are

functions written either in Python or C++ that accomplish a single task and are grouped

together in “modules”.

There are several major advantages to using GNU Radio over MATLAB or other another tool.

One is that it’s a completely free, open-source API supported by many community members as

well as Ettus Research, arguably the most major general-purpose SDR manufacturer. Because of

this, GNU Radio has native support for a large number of software-defined radios [2]. In

addition, the graphical style of GRC makes it uniquely easy to see the path a signal takes as it is

processed by each block.

For the purposes of this project, GRC is mainly used as a tool to interface the USRP with the

ERT decoding code. All of the blocks used in between are used to do simple math operations

or convert the data to a different type so that other blocks know how to use it.

4. Suggested Future Additions

If the reader is considering improving on this project or attempting something similar, a few

suggestions for additional features include:

 Translate GNU Radio blocks in Python to C++ for increased efficiency

 Take advantage of more native GNU Radio modules to handle signal processing—it’s

possible that most, if not all, of the functionality of the custom block can already be

done with pre-existing ones.

 Fix bug of packets being detected twice

5. Appendix
5.1 MATLAB Source Code

4

ERT_Decoder.m

%% Decoder for ERT standard v1.0

% A.G. Klein and N. Conroy and K. Basinet

% Description: -Decodes ERT gas meter data from .bin file and displays

% meter ID, meter type, physical tamper flag, encoder tamper flag,

% consumption value, and the elapsed time since the last loop.

% Dependencies: -Requires custom functions binary2decimal and

% polynomialDivision

% --

%% Revision history:

% 22-feb-2015 v0.1 -initial version

% 22-feb-2015 v0.2 -updated to run on Nick's sample code

% 03-mar-2015 mod2 -added ert_out for message decoding -NC

% 13-mar-2015 mod3 -first attempt at cumsum detector -NC

% 21-mar-2015 mod4 -second attempt at cumsum detector -NC

% 22-mar-2015 mod5 -succesful cumsum detector, integrated ert_out func. -NC

% 23-mar-2015 mod6 -detector optimization test -NC

% 23-mar-2015 mod7 -more detector optimization tests -NC

% 24-mar-2015 mod8 -conversion to fully vector operations

% -optimized checksum operation -NC

% 24-mar-2015 mod9 -first attempt at real time decoding with RTL-SDR -NC

% 10-jul-2015 v1.0 -new version that reads ERT data from .bin file -KB

% 15-jul-2015 mod1 -some packets being dropped, some invalid packets detected

% -BCH processing disabled -KB

% 29-jul-2015 mod2 -new function successfully checks BCH -KB

% -fixed error in preamble check, all detected packets

% are valid -KB

% 03-aug-2015 mod3 -still attempting to fix boundary data block skipping,

% some packets still dropped -KB

% 04-aug-2015 mod4 -all packets get decoded successfully, but some multiple

% times -KB

%--

clear;

%% Parameters and constants

JMP=30; % Number of samples to jump over each iteration

DataRate=16384; % Data rate for determining symbol period

SMPRT=2392064; % RTL-SDR Sample Rate

BLOCKSIZE=18688; % RTL-SDR Samples per frame

SP=int16(SMPRT/DataRate); % nominal symbol period (in # samples)

BCH_POLY = [1,0,1,1,0,1,1,1,1,0,1,1,0,0,0,1,1]; % BCH generator polynomial coefficients from ERT

standard

PREAMBLE=[1;1;1;1;1;0;0;1;0;1;0;1;0;0;1;1;0;0;0;0;0]; %From ERT standard, includes sync bit.

fname='rtlamr_log_2-20-2015.bin'; % Raw data file name

%% Load file

fid=fopen(fname);

dat=fread(fid,'uint8=>double');

dat=dat-127;

s=dat(1:2:end)+1j*dat(2:2:end);

fclose(fid);

%% Preallocate buffer space

zbuff = zeros(BLOCKSIZE,1);

softbits = zeros(96,1);

bits = zeros(96,1);

cnt = 0; %Decoded message counter

block_index = 1;

5

while block_index < numel(s)-BLOCKSIZE+JMP

 tic %Start timing of one loop

 i = 1; %Counter for sample feeding

 zbuff=s(block_index:block_index+(BLOCKSIZE-1)); %Grab 18688 samples from file, store them in

 %buffer

 buff = int32((real(zbuff)).^2+((imag(zbuff)).^2)); %Cheap absolute value of buffer

 while i < BLOCKSIZE-(96*SP) %Loop feeds samples through decoder

 cu = cumsum(buff(i:i+96*SP)); %Perform cumulative summation

 softbits = (2*cu((SP/2)+1:SP:(95*SP)+(SP/2)+1))- cu(1:SP:(95*SP)+1) -

cu(SP+1:SP:(95*SP)+SP+1);

 bits = (softbits>0); %Column vector with '1' where corresponding index in softbits is

 %positive

 %% Check if preamble is correct and parse data

 if sum(bits(1:21)==PREAMBLE) == 21

 bin_dec = binary2decimal(bits(22:96)'); %Convert binary bits to decimal

 %% BCH processing

 dc = [zeros(180,1);bits(22:96)];%bin2dec(num2str(bits(22:96)))];

 if polynomialDivision(BCH_POLY,bits(22:96)') == 0

 %%BCH passed

 i = i+(96*SP)-JMP; %Jump past current message on next iteration

 cnt = cnt+1; %Record successful message detection

 %% Separate BCH Decoded blocks

 dc_id = [dc(181:182);dc(216:239)];

 SCM_ID = [bits(22:23)',bits(56:79)'];

 dc_phy_tmp = dc(184:185);

 dc_ert_type = dc(186:189);

 dc_enc_tmp = dc(190:191);

 dc_consump = dc(192:215);

 %% Convert to decimal

 dc_id = binary2decimal(dc_id);%bin2dec(num2str(dc_id)');

 dc_phy_tmp = binary2decimal(dc_phy_tmp);%bin2dec(num2str(dc_phy_tmp)');

 dc_ert_type = binary2decimal(dc_ert_type);%(bin2dec(num2str(dc_ert_type)');

 dc_enc_tmp = binary2decimal(dc_enc_tmp);%bin2dec(num2str(dc_enc_tmp)');

 dc_consump = binary2decimal(dc_consump);%bin2dec(num2str(dc_consump)');

 %% Print Decoded Output

 fprintf('\nDecoded Meter ID: %d', dc_id);

 fprintf('\nDecoded Meter Type: %d', dc_ert_type);

 fprintf('\nDecoded Physical Tamper: %d', dc_phy_tmp);

 fprintf('\nDecoded Encoder Tamper: %d', dc_enc_tmp);

 fprintf('\nDecoded Consumption: %d', dc_consump);

 fprintf('\n');

 else

 %BCH failed

 end %end: if polynomialDivision(BCH_POLY,bits(22:96)') == 0

 %end %if (nerrs == 0)

 else

 %Preamble not found

 end %end: if sum(bits(1:21)==PREAMBLE) == 21

 i = i+JMP; %skip ahead

 end %end: i < BLOCKSIZE-(96*SP)

 block_index=block_index+(JMP*96); %feed new data through the loop

 toc %Display end time for one loop

end %end: while block_index < numel(s)-BLOCKSIZE+JMP

binary2decimal.m

%% Unsigned binary to decimal converter

% July 23 2015 by Kirsten Basinet

% Parameters: -bin_vector: Row vector containing binary number, where

% bin_vector(1) is the MSB

% Returns: -dec_result: Decimal representation of binary number,

% or NaN if an errror occurred

% Notes: -This function was created as an alternative to the

% vanilla MATLAB function bin2dec, which only accepts char

% strings 52 bits or less

%--

function dec_result = binary2decimal(bin_vector)

6

 dec_result = 0;

 for count = 0:1:length(bin_vector)-1

 if bin_vector(length(bin_vector)-count) == 1 %Current binary digit is 1

 dec_result = dec_result+2^count;

 elseif bin_vector(length(bin_vector)-count) == 0 %Current binary digit is 0

 %Do nothing

 else

 dec_result = NaN; %Error if bin_vector is not binary

 end %end: if bin_vector(length(bin_vector)-count) == 1

 end %end: for count = 0:1:length(bin_vector)-1

end %end: function binary2decimal

 polynomialDivision.m

%% Unsigned polynomial division function

% July 27 2015 by Kirsten Basinet

% Parameters: -divisor: Row vector containing descending polynomial

% coefficients

% -dividend: Row vector containing descending codeword

% coefficients

% Returns: -quotient: Row vector containing descending quotient

% coefficients, or NaN if an error occurred

% -remainder: Row vector contianing remainder

% Dependencies: -Requires the custom function binary2decimal. MATLAB

% native functions bin2dec and num2str can be used if

% dividing small polynomials. bi2de can be used if the

% user has the communications systems toolbox.

% Notes: -The function may need more debugging for cases where

% divisor>dividend, negative numbers are included, and

% other possible inputs. Works for CRC applications.

%--

function [remainder,quotient] = polynomialDivision(divisor,dividend)

 %Initialize variables

 clear place_count;

 clear remainder;

 quotient=[];

 %Remove leading zeros

 dividend = dividend(find(dividend,1,'first'):numel(dividend));

 divisor = divisor(find(divisor,1,'first'):numel(divisor));

 place_count = numel(divisor);

 temp_dividend = dividend(1:place_count);

 dividing = true;

 %Perform polynomial division

 while dividing

 if temp_dividend(1) == 1 %Use XOR method of polynomial division

 quotient = [quotient,1];

 temp_dividend = bitxor(temp_dividend,divisor);

 elseif temp_dividend(1) == 0

 quotient = [quotient,0];

 else

 %Non-binary number or NaN

 remainder = NaN; %Error

 quotient = NaN; %Error

 dividing = false; %Done

 end %end: if temp_dividend(1) == 1;

 place_count = place_count+1;

 if place_count > numel(dividend)

 %Remove leading zeros and set remainder

 remainder = temp_dividend(find(temp_dividend,1,'first'):numel(temp_dividend));

 if isempty(remainder)

 remainder = 0;

 else

 %Do nothing

 end %end: if isempty(remainder)

 dividing = false; %Done

 else

7

 temp_dividend = [temp_dividend(2:numel(temp_dividend)),dividend(place_count)];

 end %end: if place_count > numel(dividend)

 end %end: while dividing

end %end: function polynomialDivision

5.2 Python Source Code

ERTDecoder.py

#!/usr/bin/env python

-*- coding: utf-8 -*-

Decoder for ERT standard. v1.0: August 9, 2015

A.G. Klein and N. Conroy and K. Basinet

Description: -Decodes ERT gas meter data from .bin file and displays

meter ID, meter type, physical tamper flag, encoder tamper flag,

consumption value, and the elapsed time since the last loop.

Code is based on similary ERT decoder for MATLAB written by

A.G. Klein and N. Conroy and K. Basinet

Dependencies: -Requires Numpy and custom function polynomialDivision

--

import numpy as np

from polynomialDivision import polynomialDivision

#"Macro" for converting binary number as digits in list to decimal integer

def bin2dec(bin_list):

 bin_list = [int(b) for b in bin_list]

 return int(''.join(str(c) for c in bin_list),2)

#Parameters and constants

JMP = 30 # Number of samples to jump over each iteration

DataRate = 16384 # Data rate for determining symbol period

SMPRT = 2392064 # RTL-SDR Sample Rate

BLOCKSIZE = 18688 # RTL-SDR Samples per frame

SP = np.int16(SMPRT/DataRate) # Nominal symbol period (in # samples)

BCH_POLY = [1,0,1,1,0,1,1,1,1,0,1,1,0,0,0,1,1] # BCH generator polynomial coefficients from ERT

standard

PREAMBLE = [1,1,1,1,1,0,0,1,0,1,0,1,0,0,1,1,0,0,0,0,0] #From ERT standard, includes sync bit

#Load file into list

with open('rtlamr_log2015-12-29.bin', 'rb') as fid:

 dat = np.fromfile(fid,np.int8)

fid.close()

dat = dat-127

s = dat[1:(len(dat)-1):2]+1j*dat[2:(len(dat)-1):2]

#Preallocate buffer space

zbuff = np.zeros(BLOCKSIZE)

softbits = np.zeros(96)

bits = np.zeros(96)

cnt = 0 #Decoded message counter

block_index = 0 #Data block counter

while block_index < len(s)-BLOCKSIZE+JMP:

 i=0 # Counter for sample feeding

 zbuff = s[block_index:block_index+(BLOCKSIZE-1)] #Grab block of samples from file,

 #store them in buffer

 buff = np.int32(np.real(zbuff))**2+np.int32(np.imag(zbuff))**2 #Cheap absolute value of

 #buffer

 while i < BLOCKSIZE-(96*SP):

 cu = np.cumsum(buff[i:(i+96*SP)])

 softbits = (2*cu[(SP/2)+1:(95*SP)+(SP/2)+1:SP])-cu[1:(95*SP)+1:SP]-

cu[SP+1:(95*SP)+SP+1:SP];

 for n in range(len(softbits)): #List with '1' where corresponding index in

 #softbits is positive

8

 if softbits[n] > 0:

 bits[n] = 1

 else:

 bits[n] = 0

 #Check if preamble is correct and parse data

 if np.array_equal(bits[0:len(PREAMBLE)],PREAMBLE):

 #BCH processing

 dc = np.concatenate([np.zeros(180),bits[21:96]])

 if polynomialDivision(BCH_POLY,bits[21:96])[0] == 0:

 #BCH passed

 i = i+(96*SP)-JMP

 cnt = cnt+1 #Increment detected message counter

 #Separate BCH decoded blocks

 dc_id = np.concatenate([dc[180:182],dc[215:239]])

 SCM_ID = np.concatenate([bits[21:23],bits[55:79]])

 dc_phy_tmp = dc[183:185]

 dc_ert_type = dc[185:189]

 dc_enc_tmp = dc[189:191]

 dc_consump = dc[191:215]

 #Convert to decimal

 dc_id = bin2dec(dc_id)

 dc_phy_tmp = bin2dec(dc_phy_tmp)

 dc_ert_type = bin2dec(dc_ert_type)

 dc_enc_tmp = bin2dec(dc_enc_tmp)

 dc_consump = bin2dec(dc_consump)

 #Print decoded output

 print("Decoded Meter ID: %u" %dc_id)

 print("Decoded Meter Type: %u" %dc_ert_type)

 print("Decoded Physical Tamper: %u" %dc_phy_tmp)

 print("Decoded Encoder Tamper: %u" %dc_enc_tmp)

 print("Decoded Consumption: %u \n" %dc_consump)

 else:

 #Do nothing

 i = i+JMP #Increment sample feeding counter

 block_index = block_index+(JMP*96) #Increment block counter

print(cnt)

polynomialDivision.py

#!/usr/bin/env python

Unsigned polynomial division function

August 10 2015 by Kirsten Basinet

Parameters: -divisor: Row vector containing descending polynomial

coefficients

-dividend: Row vector containing descending codeword

coefficients

Returns: -quotient: Row vector containing descending quotient

coefficients, or NaN if an error occurred

-remainder: Row vector contianing remainder

Dependencies: -Requires Numpy

user has the communications systems toolbox.

Notes: -The function may need more debugging for cases where

divisor>dividend, negative numbers are included, and

other possible inputs. Works for CRC applications.

#--

import numpy as np

def polynomialDivision(divisor, dividend):

 #Initialize variables

 quotient = []

 remainder = []

 temp_dividend = []

 dividing = True

 #Convert divisor and dividend to integers

 divisor = [int(x) for x in divisor]

 dividend = [int(x) for x in dividend]

9

 #Remove leading zeros, return NaN if dividend or divisor are invalid

 try:

 dividend = dividend[np.nonzero(dividend)[0][0]:len(dividend)]

 divisor = divisor[np.nonzero(divisor)[0][0]:len(divisor)]

 except:

 quotient = np.nan

 remainder = np.nan

 dividing = False

 #Return NaN if divisor is bigger than dividend

 if len(divisor)>len(dividend):

 quotient = np.nan

 remainder = np.nan

 dividing = False

 #Perform division

 place_count = len(divisor)

 temp_dividend = dividend[0:place_count]

 while dividing:

 if temp_dividend[0] == 1: #Use XOR method of polynomial division

 quotient.extend([1])

 for i in range(len(divisor)):

 temp_dividend[i] = temp_dividend[i]^divisor[i]

 elif temp_dividend[0] == 0:

 quotient.extend([0])

 else: #Non-binary number or NaN

 remainder = np.nan

 quotient = np.nan

 dividing = False #Done

 place_count = place_count+1

 if place_count > len(dividend):

 #Remove leading zeros and set remainder

 try:

 remainder = temp_dividend[np.nonzero(temp_dividend)[0][0]:len(temp_dividend)]

 except:

 remainder = 0

 dividing = False

 else:

 temp_dividend.pop(0)

 temp_dividend.extend([dividend[place_count-1]])

 return remainder, quotient

#Done

6. References

[1] N. Conroy, "Software Defined Radio: Foundational Study," 9 April 2015. [Online]. Available:

http://aspect.engr.wwu.edu/reports/conroySDRReport.pdf.

[2] "A Quick Guide to Hardware and GNU Radio," 4 October 2015. [Online]. Available:

https://gnuradio.org/redmine/projects/gnuradio/wiki/Hardware. [Accessed 5 November 2015].

