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September 23, 2016

Abstract

This paper is concerned with the development and implementation of
an adaptive solution algorithm for the optimal control of a time-discrete
Cahn–Hilliard–Navier–Stokes system with variable densities. The free
energy density associated to the Cahn-Hilliard system incorporates the
double-obstacle potential which yields an optimal control problem for a
family of coupled systems in each time instant of a variational inequality
of fourth order and the Navier–Stokes equation. A dual-weighted residual
approach for goal-oriented adaptive finite elements is presented which is
based on the concept of C-stationarity. The overall error representation
depends on primal residuals weighted by approximate dual quantities and
vice versa as well as various complementarity mismatch errors. Details on
the numerical realization of the adaptive concept and a report on numer-
ical tests are given.

1 Introduction

In this paper we develop an efficient numerical solver for the optimal
control of two-phase flows which includes an intelligent mesh refinement
technique. More precisely, we consider a diffuse interface model of phase
separation which involves a nonsmooth version of the well-known Cahn-
Hilliard (CH) system, which is due to Cahn and Hilliard’s seminal work
[14]. Phase field models are appreciated for their ability to overcome both,
analytical difficulties of topological changes, such as, e.g., droplet break-
ups or the coalescence of interfaces, as well as numerical challenges in
capturing the interface dynamics. In the presence of hydrodynamic effects,
the CH system has to be enhanced by an equation which captures the
behavior of the fluid. In [34], Hohenberg and Halperin introduced a basic
model for immiscible, viscous two-phase flows. Their so-called ’model H’
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combines the Cahn-Hilliard system with the Navier-Stokes equation. It
is, however, restricted to the case where the two fluids possess nearly
identical densities, i.e., matched densities. Recently, Abels, Garcke and
Grün [2] obtained the following diffuse interface model for two-phase flows
with non-matched densities:

∂tϕ+ v∇ϕ− div(m(ϕ)∇µ) = 0, (1.1a)

−σε∆ϕ+
σ

ε
(∂Ψ0(ϕ)− κ̃ϕ)− µ = 0, (1.1b)

∂t(ρ(ϕ)v) + div(v ⊗ ρ(ϕ)v)− div(2η(ϕ)Dsy(v)) +∇p
+div(v ⊗ J)− µ∇ϕ = 0, (1.1c)

divv = 0, (1.1d)

v|∂Ω = 0, (1.1e)

∂nϕ|∂Ω = ∂nµ|∂Ω = 0, (1.1f)

(v, ϕ)|t=0 = (va, ϕa). (1.1g)

The system is considered in the space-time cylinder Ω × (0,∞), where
∂Ω denotes the boundary of Ω. It is thermodynamically consistent in
the sense that it allows for the derivation of local entropy or free energy
inequalities.

In the above model, v represents the velocity of the fluid and p de-
scribes the fluid pressure. The symmetric gradient of v is defined by
Dsy(v) := 1

2
(∇v +∇v>). The density ρ of the mixture of the fluids de-

pends on the order parameter ϕ, which reflects the mass concentration of
the fluid phases. More precisely,

ρ(ϕ) =
ρ1 + ρ2

2
+
ρ2 − ρ1

2
ϕ, (1.2)

where ϕ ranges in the interval [−1, 1], and 0 < ρ1 ≤ ρ2 are the given
densities of the two fluids under consideration. The relative flux J :=
− ρ2−ρ1

2
m(ϕ)∇µ, which corresponds to the diffusion of the two phases, in-

volves the gradient of the chemical potential µ. The viscosity and mobility
coefficients of the system, η and m, depend on the actual concentration of
the two fluids at each point in time and space. The initial states are given
by va and ϕa, and σ, ε, κ̃ > 0 are positive constants. Furthermore, Ψ0

represents the convex part of the homogeneous free energy density Ψ con-
tained in the Ginzburg-Landau energy model which is associated with the
Cahn-Hilliard part of (1.1). Usually, the homogeneous free energy density
serves the purpose of restricting the order parameter ϕ to the physically
meaningful range [−1, 1] and to capture the spinodal decomposition of the
phases. For this reason, it is typically non-convex and maintains two local
minima near or at −1 and 1.

Different choices have been investigated in the literature, depending
on the underlying applications. In [42], Oono and Puri found that in
the case of deep quenches of, e.g., binary alloys, the double-obstacle po-
tential proves to be the best choice for modeling the separation process.
A similar observation appears to be true in the case of polymeric mem-
brane formation under rapid wall hardening. The double-obstacle poten-
tial Ψ(ϕ) = I[−1,1](ϕ)− κ̃

2
ϕ2, with I[−1,1] denoting the indicator function of

the interval [−1, 1] in R, combines the advantages of the existence of pure
phases and the exclusiveness of the interval [−1, 1] at the cost of losing dif-
ferentiability (when compared for instance to the double-well potential).
The presence of a non-smooth homogeneous free energy density gives rise
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to a variational inequality in (1.1b) which complicates the analytical and
numerical treatment of the overall model.

The Cahn-Hilliard-Navier-Stokes system is used to model a variety of
situations. These range from the aforementioned solidification process
of liquid metal alloys, cf. [17], the simulation of bubble dynamics, as in
Taylor flows [4], or the pinch-offs of liquid-liquid jets [37], to the formation
of polymeric membranes [50] and protein crystallization, see e.g. [38]
and references within. Furthermore, the model can be easily adapted to
include the effects of surfactants such as colloid particles at fluid-fluid
interfaces in gels and emulsions used in food, pharmaceutical, cosmetic,
or petroleum industries [5, 44]. In many of these situations an optimal
control context is desirable in order to influence the system in such a way
that a prescribed system behavior is guaranteed.

Therefore we investigate the optimal control of the coupled Cahn-
Hilliard-Navier-Stokes (CHNS) system. We point out that, due to the
presence of the variational inequality constraint, the mapping between the
control and the state is in general not differentiable. As a consequence,
classical constraint qualifications for optimal control problems (see, e.g.,
[51]) fail, preventing the application of the Karush-Kuhn-Tucker (KKT)
theory in Banach space for a primal-dual first-order characterization of an
optimal solution. In fact, it is known [28, 31] that the resulting problem
falls into the realm of mathematical programs with equilibrium constraints
(MPECs) in function space. A problem class, which even in finite dimen-
sions, is well-known for its constraint degeneracy [40, 43]. As a result,
stationarity conditions are no longer unique (in contrast to KKT condi-
tions); compare [28, 29] in function space and, e.g., [46] in finite dimen-
sions. Rather they depend on the underlying problem structure and/or
on the chosen analytical approach.

Our work is based on the analytical results obtained in [27], where the
problem has been discretized in time and a Yosida regularization tech-
nique yielding a sequence of approximating problems with a subsequent
passage to the limit with the Yosida parameter has been utilized in order
to derive stationarity conditions of C-stationarity type. In this paper, we
develop and implement a solution algorithm based on the constructive
nature of the former approach which solves each approximating problem
by a Newton method applied to a suitable finite element discretization in
space.

As the solution of a sequence of large-scale nonlinear optimization
problems might cause an immense numerical expense, it is desirable to
reduce the computational effort by choosing a beneficial adaptation pro-
cess for the underlying space mesh. The general idea of adaptive finite
element methods is to refine the discretization locally only in regions with
large errors while keeping elements coarse wherever possible. This is espe-
cially useful in the context of variational inequalities where the analytical
solution usually has a smooth structure on large parts of the domain,
whereas it is often nonsmooth only in the small region where the active
and the inactive sets meet. In the presence of an optimal control prob-
lem this approach can be modified. In our optimal control context we
modify the method in order to guarantee an accurate evaluation of the
objective functional. While this method has been successfully applied in
PDE constrained optimization [8, 10, 22, 24, 25, 45, 49], to the best of our
knowledge the literature concerning MPECs is rather scarce. However,
recent work on adaptivity for elliptic MPECs indicates a good numerical
behavior of these methods also for MPECs, cf. [13, 26].
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Let us finally comment on further contributions to control and optimal
control of Cahn–Hilliard Navier–Stokes systems. Model predictive control
concepts for variable density Cahn–Hilliard Navier–Stokes systems are
developed in [32, 33]. Optimal control of a related system is investigated
in [9]. Phase field based shape and topology optimization concepts for
flows are proposed and numerically implemented in [18]. This approach
is extended to the minimization of surface functionals in [19].

The remainder of the paper is organized as follows. We start by for-
mally introducing the optimal control problem under consideration and
some additional concepts in section 2. This is followed by an explanation
of the chosen discretization in space and the involved finite elements, re-
spectively, in section 3. Section 4 provides a rigorous derivation of the
goal-oriented error estimator. Finally, we present numerical results along
with the details of the numerical implementation of the algorithm in sec-
tion 5.

We end this introduction by defining some notation. Let Ω ⊂ RN , N =
2, 3, be a bounded domain with smooth boundary ∂Ω ∈ C2. The smooth
boundary ensures a higher regularity of the state in our subsequent anal-
ysis, cf. [27]. In our numerical tests, however, we observe that the subse-
quently developed algorithm achieves excellent results even for nonsmooth
domains such as, e.g., the unit square.

We define the Sobolev spaces H1
0,σ(Ω;RN ) = {f ∈ H1

0 (Ω;RN ) : divf =

0, a.e. on Ω} and W
k,p

(Ω) =
{
f ∈W k,p(Ω) :

∫
Ω
fdx = 0

}
for k ∈ N and

1 ≤ p ≤ ∞, where ’a.e.’ stands for ’almost everywhere’. Here, W k,p(Ω)
and W k,p

0 (Ω) denote the usual Sobolev spaces, see [3]. For p = 2, we also
write Hk(Ω) and Hk

0 (Ω), respectively. By (·, ·) we denote the L2-inner
product, ‖·‖ is the induced norm, and 〈·, ·〉 := 〈·, ·〉

H
−1
,H

1 represents the

duality pairing between H
1
(Ω) and H

−1
(Ω). For a Banach space W , we

denote by W ∗ its topological dual. In our notation for norms, we do not
distinguish between scalar- or vector-valued functions. The inner product
of vectors is denoted by ’·’, the vector product is represented by ’⊗’ and
the tensor product for matrices is written as ’:’.

2 The semi-discrete CHNS-system and
the optimal control problem

In this paper, we study an optimal control problem for a semi-discrete
variant of the Cahn-Hilliard-Navier-Stokes system. Concerning the mo-
bility and viscosity coefficients, as well as the initial data for the velocity
and the phase field parameter we invoke the following assumption.

Assumption 2.1. 1. The coefficient functions in (1.1a), (1.1c) satisfy
m, η ∈ C2(R) and their derivatives up to second order are bounded,
i.e. there exist constants 0 < b1 ≤ b2 such that for every x ∈ R, it
holds that b1 ≤ min{m(x), η(x)} and

max{m(x), η(x), |m′(x)|, |η′(x)|, |m′′(x)|, |η′′(x)|} ≤ b2.

2. The initial state satisfies (va, ϕa) ∈ H2
0,σ(Ω;RN ) ×

(
H

2
(Ω) ∩K

)
where

K :=
{
v ∈ H1

(Ω) : ψ1 ≤ v ≤ ψ2 a.e. in Ω
}
, ϕa :=

1

|Ω|

∫
Ω

ϕadx,

with −1− ϕa =: ψ1 < 0 < ψ2 := 1− ϕa.
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3. The density ρ depends on the order parameter ϕ via

ρ(ϕ) = max
{ρ1 + ρ2

2
+
ρ2 − ρ1

2
(ϕ+ ϕa), 0

}
≥ 0.

In the subsequent definition, τ > 0 denotes the constant time step-size
and M ∈ N the total number of equidistantly spaced time instances in
the semi-discrete setting. For the sake of a simple notation, we further set
σ := 1

ε
and κ := κ̃

ε2
. Since the first equation of the Cahn-Hilliard system

(1.1a) guarantees that the mean value of the order parameter remains
constant, we consider a shifted Cahn-Hilliard-Navier-Stokes system where
the mean value is set to zero. For each time step i = 0, ..,M−2 we consider
an arbitrary control ui ∈ U in a Banach space U which acts on the right-
hand side of the Navier-Stokes equation via a bounded linear operator
B : U → L2(Ω;RN ). Note that U can be chosen as L2(Ω;RN ) and B as
the identity operator. In our numerical tests, however, we choose a finite
dimensional control, since the number of control parameters is usually
limited in praxis, see Section 6.

Defintion 2.2 (Semi-discrete CHNS-system). Let Ψ0 : H
1
(Ω) → R be

the convex part of the double-obstacle potential with subdifferential ∂Ψ0,
i.e. the indicator function of K. Fixing (ϕ−1, v0) = (ϕa, va) we say that
a triple

(ϕ, µ, v) = ((ϕi)M−1
i=0 , (µi)M−1

i=0 , (vi)M−1
i=1 )

in H
1
(Ω)M ×H1

(Ω)M ×H1
0,σ(Ω;RN )M−1 solves the semi-discrete CHNS

system with respect to a given control u ∈ UM−1, i.e. (ϕ, µ, v) ∈ SΨ(u),

if there exists ai+1 ∈ ∂Ψ0(ϕi+1) such that for all φ ∈ H
1
(Ω) and ψ ∈

H1
0,σ(Ω;RN ) it holds that〈
ϕi+1 − ϕi

τ
, φ

〉
+
〈
vi+1∇ϕi, φ

〉
+
〈
m(ϕi)∇µi+1,∇φ

〉
= 0, (2.1)〈

∇ϕi+1,∇φ
〉

+
〈
ai+1, φ

〉
−
〈
µi+1, φ

〉
−
〈
κϕi, φ

〉
= 0, (2.2)〈

ρ(ϕi)vi+1 − ρ(ϕi+1)vi

τ
, ψ

〉
H−1,H1

0

−
〈
vi+1 ⊗ ρ(ϕi+1)vi,∇ψ

〉
H−1,H1

0

+
〈
vi+1 ⊗ ρ2 − ρ1

2
m(ϕi+1)∇µi,∇ψ

〉
H−1,H1

0

+ (2η(ϕi)Dsy(vi+1), Dsy(ψ))

−
〈
µi+1∇ϕi, ψ

〉
H−1,H1

0

=
〈
Bui+1, ψ

〉
H−1,H1

0

.

(2.3)

The first two equations are supposed to hold for every 0 ≤ i+ 1 ≤M − 1
and the last equation holds for every 1 ≤ i+ 1 ≤M − 1.

Remark 2.3. For a more detailed explanation of the above assumptions,
we refer to [27], where the problem was originally formulated.

Introducing a Fréchet differentiable objective function J : X → R with

X := H
1
(Ω)M ×H1

(Ω)M ×H1
0,σ(Ω;RN )M−1 × UM−1,

the optimal control problem reads

min J(ϕ, µ, v, u) over (ϕ, µ, v, u) ∈ X
subject to (s.t.) (ϕ, µ, v) ∈ SΨ(u).

(PΨ)
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Although our subsequent analysis can be applied to this general setting,
for the purpose of numerical realization we will later consider the case
where J equals the following tracking-type function

J(ϕ, µ, v, u) :=
1

2
‖ϕM − ϕd‖2 +

ν

2
‖u‖2. (2.4)

Here, ϕd ∈ H1(Ω)M is a given desired state of the system.
In [27], it has been shown that the semi-discrete Cahn-Hilliard-Navier-

Stokes system possesses a solution (ϕ, µ, v) ∈ SΨ(u) for every Bu ∈
L2(Ω;RN )M−1. Furthermore, it was verified that the optimal control
problem (PΨ) admits a solution. It can be characterized by the following
stationarity conditions of E-almost C-stationary type. Here, the notion of
’E-almost’ is due to an application of Egorov’s theorem; see [28].

Defintion 2.4. A point (ϕ, µ, v, a, u, p, r, q, π, λ+, λ−) ∈ Y with

Y :=H
1
(Ω)M ×H1

(Ω)M ×H1
0,σ(Ω;RN )M−1 × L2

(Ω)M × UM−1 ×H1
(Ω)M

×H1
(Ω)M ×H1

0,σ(Ω;RN )M−1 ×H1
(Ω)M ×

(
H

1
(Ω)∗

)M
×
(
H

1
(Ω)∗

)M
is called E-almost C-stationary for (PΨ) if it satisfies the following system:
Feasibility:〈
ϕi+1 − ϕi

τ
, φ

〉
+
〈
vi+1∇ϕi, φ

〉
+
〈
m(ϕi)∇µi+1,∇φ

〉
= 0, (2.5)〈

∇ϕi+1,∇φ
〉

+
〈
ai+1, φ

〉
−
〈
µi+1, φ

〉
−
〈
κϕi, φ

〉
= 0, (2.6)〈

ρ(ϕi)vi+1 − ρ(ϕi+1)vi

τ
, ψ

〉
H−1,H1

0

−
〈
vi+1 ⊗ ρ(ϕi+1)vi,∇ψ

〉
H−1,H1

0

+
〈
vi+1 ⊗ ρ2 − ρ1

2
m(ϕi+1)∇µi,∇ψ

〉
H−1,H1

0

+ (2η(ϕi)Dsy(vi+1), Dsy(ψ))

−
〈
µi+1∇ϕi, ψ

〉
H−1,H1

0

=
〈
Bui+1, ψ

〉
H−1,H1

0

,

(2.7)

ψ1 ≤ ϕi+1 ≤ ψ2 a.e. on Ω,

(2.8)

(ai+1)+ := max(ai+1, 0) ≥ 0, (ai+1)− := max(−ai+1, 0) ≥ 0 a.e. on Ω,
(2.9)〈

(ai+1)+, ϕi+1 − ψ2

〉
= 0,

〈
(ai+1)−, ϕi+1 − ψ1

〉
= 0.

(2.10)
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Adjoint system:

− 1

τ
(pi+1 − pi) +m′(ϕi)∇µi+1 · ∇pi+1 − div(pi+1vi+1)−∆ri

+ λi+1 − κri+2 − 1

τ
ρ(ϕi)

′
vi+1 · (qi+2 − qi+1)

− (ρ(ϕi)
′
vi+1 − ρ2 − ρ1

2
m′(ϕi)∇µi+1)(Dqi+2)>vi+2

+ 2η(ϕi)
′
Dsy(vi+1) : Dqi+1 + div(µi+1qi+1) =

∂J

∂ϕi
(z),

(2.11)

− ri − div(m(ϕi+1)∇pi)− div(
ρ2 − ρ1

2
m(ϕi+1)(Dqi+1)>vi+1)

− qi · ∇ϕi+1 =
∂J

∂µi
(z),

(2.12)

− 1

τ
ρ(ϕi+1)(qi+1 − qi)− ρ(ϕi+1)(Dqi+1)>vi+1

− (Dqi)(ρ(ϕi−2)vi+1 − ρ2 − ρ1

2
m(ϕi−2)∇µi+1)

− div(2η(ϕi+1)Dsy(qi)) + pi∇ϕi+1 =
∂J

∂vi
(z),

(2.13)

B?qi+1 =
∂J

∂ui
(z),

(2.14)

ri = πi. (2.15)

Complementarity conditions:〈
(λi)+, ϕi − ψ2

〉
= 0,

〈
(λi)−, ϕi − ψ1

〉
= 0, (2.16)〈

ai, πi
〉

= 0. (2.17)

Moreover, for every c > 0 there exist a measurable subset M i
c of M i :=

{x ∈ Ω : ψ1 < ϕi(x) < ψ2} with |M i \M i
c | < c and

〈λi, v〉 = 0 ∀v ∈ H1
(Ω), v|Ω\Mi

c
= 0.

Remark 2.5. Note that for the previous definition (λi)+ and (λi)− have
to be defined slightly differently than in [27]. More precisely, we define

(λi)+ ∈ H
1
(Ω)∗ as the weak limit of

(
Ψ0(m)

′′)+ (ϕi+1
(m))

∗ri(m) in H
1
(Ω)∗

and (λi)− ∈ H1
(Ω)∗ as the weak limit of

(
Ψ0(m)

′′)− (ϕi+1
(m))

∗ri(m) in H
1
(Ω)∗.

Here, for a function f we define (f)+ and (f)− as follows

(f)+(x) :=

{
0 if x ≤ 0
f(x) if x > 0

, (f)−(x) :=

{
f(x) if x < 0
0 if x ≥ 0

.

By this definition it holds that λi = (λi)+ + (λi)−. Furthermore, we
introduced the artificial variable π which allows us to fix a quantity in the
complementarity mismatch in our subsequent error analysis, cf. Lemma
4.3 and Theorem 4.4.

7



3 Discretization of the problem

In order to treat the problem (PΨ) numerically, an additional discretiza-
tion step is necessary. Here we follow the so called first optimize, then
discretize approach in that we provide a discretization of the optimality
conditions (2.5)–(2.17). For this let (T i)M−1

i=0 = (
⋃nt
k=1 T

i
k)M−1
i=0 denote a

sequence of regular triangulations of Ω, cf. [12, Def. 4.4.13], such that
T i = Ω, for i = 0, . . . ,M − 1, and such that the L2-projection is sta-
ble in H1, cf. [11]. On T i we consider finite dimensional finite element
subspaces

V i1 : = {v ∈ C(T i) | v|T i
k
∈ P 1(T ik), k = 1, . . . , nt}

= span{φi1, . . . , φiNi
1
} ⊂ H1(Ω),

V i2 : = {v ∈ C(T i)N | v|∂Ω = 0, v|T i
k
∈ P 2(T ik)N , k = 1, . . . , nt}

= span{ψi1, . . . , ψiNi
1
} ⊂ H1

0 (Ω)N .

We denote the fully discrete counterpart to a solution (ϕi, µi, vi) ∈ H1(Ω)×
H1(Ω)×H1

0 (Ω,RN ) of (2.1)–(2.3) by (ϕih, µ
i
h, v

i
h) ∈ V i1 ×V i1 ×V i2 . We note

that we do not incorporate the solenoidality condition on the velocity into
the discrete ansatz space, but introduce an additional pressure variable
ξih ∈ V i1 and an adjoint pressure variable χih ∈ V i1 . For such a setting,
the pair (V i2 , V

i
1 ) is LBB-stable and thus admissible for this numerical

realization of (2.3), cf., e.g., [21, 48].
The discrete variant of (2.1)–(2.3) we define as follows:
For i = 0, . . . ,M − 1 find, (ϕi+1

h , µi+1
h , ai+1

h , vi+1
h , ξi+1

h ) ∈ (V i+1
1 ×

V i+1
1 × V i+1

1 × V i+1
2 × V i+1

1 ) such that〈
ϕi+1
h −Πi+1ϕih

τ
, φ

〉
+
〈
vi+1
h ∇ϕ

i
h, φ
〉

+
〈
m(ϕih)∇µi+1

h ,∇φ
〉

= 0 ∀φ ∈ V i+1
1 ,

(3.1)〈
∇ϕi+1

h ,∇φ
〉

+
(
ai+1
h , φ

)
−
〈
µi+1
h , φ

〉
−
〈
κΠi+1ϕih, φ

〉
= 0 ∀φ ∈ V i+1

1 ,

(3.2)

1

τ

〈
ρ(ϕih)vi+1

h − ρ(ϕi−1
h )vih, ψ

〉
−
〈

(tih∇)ψ, vi+1
h

〉
+
〈

2η(ϕih)Dsy(vi+1
h ), Dsy(ψ)

〉
−
〈
µi+1
h ∇ϕ

i
h, ψ

〉
H−1,H1

0

−
〈

divψ, ξih

〉
= (Bui+1, ψ) ∀ψ ∈ V i+1

2 , (3.3)

− (divvi+1
h , φ) = 0, (3.4)

with tih := ρ(ϕi−1
h )vih− ρ2−ρ1

2
m(ϕi−1

h )∇µih, together with the complemen-
tarity conditions for the Cahn–Hilliard problem:

ψ1 ≤ ϕi+1
h ≤ ψ2 a.e. on Ω, (3.5)

(ai+1
h )+ := max(ai+1

h , 0) ≥ 0, (ai+1
h )− := max(−ai+1

h , 0) ≥ 0, (3.6)

((ai+1
h )+, ϕi+1

h − ψ2) = 0, ((ai+1
h )−, ϕi+1

h − ψ1) = 0. (3.7)

Here and in the following Πi+1 : L2(Ω)→ V i+1
1 denotes the orthogonal

L2 projection which is required for stability reasons, compare [20, 27].
Further, max(ai+1

h , 0) and max(−ai+1
h , 0) are understood pointwise in

the nodes of T i+1, and z = (ϕ, µ, v, u).
The fully discrete counterpart to (2.5)–(2.17) is then defined as follows.
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Defintion 3.1. Let ϕ−1
h = ΠH1(ϕa), v0

h = ΠL(va) be given, where ΠH1

denotes the H1 projection onto T 0, while ΠL denotes the Leray projection
([15]) onto T 0 .

We say that

(ϕih, µ
i
h) ∈ (V i1 )M−1

i=0 × (V i1 )M−1
i=0 , (vih, ξ

i
h) ∈ (V i2 )M−1

i=1 × (V i1 )M−1
i=1 ,

(aih) ∈
(
V i1

)M−1

i=0
, (ui) ∈ (U i)M−1

i=1 ,

(pih, r
i
h) ∈ (V i1 )M−1

i=0 × (V i1 )M−1
i=0 , (qih, χ

i
h) ∈ (V i2 )M−1

i=1 × (V i1 )M−1
i=1 ,

(πih, λ
i
h) ∈ (V i1 )M−1

i=0 ×
(
V i1

)M−1

i=0

is discrete C-stationary for (PΨ), if it satisfies (3.1)-(3.7) together with
the following equations:

Adjoint system:

− 1

τ
(
〈

(pi+1
h ,Πi+1φ

〉
−
〈
pih, φ

〉
) + (m′(ϕih)∇µi+1

h · ∇pi+1
h , φ) (3.8)

+
〈
pi+1
h vi+1

h ,∇φ
〉

+
〈
∇rih,∇φ

〉
+ (λi−1

h , φ)−
〈
κri+1
h ,Πi+1φ

〉
(3.9)

−
〈

1

τ
ρ′(ϕih)vi+1

h (qi+2
h − qi+1

h ), φ

〉
(3.10)

−
〈(
ρ(ϕih)′vi+1

h − ρ2 − ρ1

2
m′(ϕih)∇µi+1

h

)
(Dqi+2

h )>vi+2
h , φ

〉
(3.11)

+
〈

2η(ϕih)′Dsy(vi+1
h ) : Dqi+1

h , φ
〉
−
〈
µi+1
h qi+1

h ,∇φ
〉

=

〈
∂J

∂ϕih
(z), φ

〉
(3.12)

−
〈
rih, φ

〉
+
〈
m(ϕi−1

h )∇pih,∇φ
〉

(3.13)

+
〈ρ2 − ρ1

2
m(ϕi−1

h )(Dqi+1
h )>vi+1

h ,∇φ
〉
− (qih∇ϕi−1

h , φ) =

〈
δJ

δµih
(z), φ

〉
(3.14)

− 1

τ

〈
ρ(ϕi−1

h )(qi+1
h − qih), ψ

〉
−
〈
ρ(ϕi−1

h )(Dqi+1
h )>vi+1

h , ψ
〉

(3.15)

−
〈

(Dqih)(ρ(ϕi−2
h )vi−1

h − ρ2 − ρ1

2
m(ϕi−2

h )∇µi−1
h ), ψ

〉
(3.16)

+
〈

2η(ϕi−1
h )Dsy(qih),∇ψ

〉
+
〈
pih∇ϕi−1

h , ψ
〉
−
〈
χih,div ψ

〉
=

〈
∂J

∂vih
(z), ψ

〉
(3.17)

−
〈

div qih, ψ
〉

= 0,

(3.18)〈
B?qi−1

h , ũ
〉
U?,U

=

〈
∂J

∂ui
(z), ũ

〉
,

(3.19)

rih = πih.
(3.20)

Complementarity conditions:

((λih)+, ϕih − ψ2) = 0, ((λih)−, ϕih − ψ1) = 0, (3.21)

(aih, π
i
h) = 0, (3.22)
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We note that the prolongation operator Πi+1 is applied to the test function
in the adjoint equation.

We further define (λih)+ and (λih)− as in Remark 2.5 and nodewise in
the nodes xj of T i as

(λih)+(xj) :=

{
λih if ϕih(xj) > 0,

0 else,
(λih)−(xj) :=

{
λih if ϕih(xj) < 0,

0 else.

Remark 3.2. We point out that ’E-almost’ C-stationarity is an infinite
dimensional concept which corresponds to the notion of C-stationarity in
finite dimensions.

4 Goal-oriented error estimator

This section is devoted to the derivation of an error estimator which is
used to design an appropriate refinement technique for the space mesh.
The derivation is based on the dual-weighted residual method which was
already successfully transferred to the optimal control of an elliptic varia-
tional inequality in [26]. For this purpose, we start by defining the MPCC-
Lagrangian of (PΨ) as follows:

Defintion 4.1. The MPCC-Lagrangian L : Y → R corresponding to (PΨ)
is given by

L(ϕ, µ, v, a, u, p, r, q, π, λ+, λ−) := J(ϕ, µ, v, u)

+

M−2∑
i=−1

[〈
ϕi+1 − ϕi

τ
, pi+1

〉
+
〈
vi+1∇ϕi, pi+1

〉
+
〈
m(ϕi)∇µi+1,∇pi+1

〉]

+

M−2∑
i=−1

[〈
−∆ϕi+1, ri+1

〉
+
〈
ai+1, ri+1

〉
−
〈
µi+1, ri+1

〉
−
〈
κϕi, ri+1

〉]

+

M−2∑
i=0

[〈
ρ(ϕi)vi+1 − ρ(ϕi+1)vi

τ
, qi+1

〉
−
〈
vi+1 ⊗ ρ(ϕi+1)vi,∇qi+1

〉
H−1,H1

0

+
〈
vi+1 ⊗ ρ2 − ρ1

2
m(ϕi+1)∇µi,∇qi+1

〉
H−1,H1

0

−
〈
µi+1∇ϕi, qi+1

〉
H−1,H1

0

+(2η(ϕi)Dsy(vi+1), Dsy(qi+1))−
〈
Bui+1, qi+1

〉
H−1,H1

0

]
−
M−1∑
i=0

〈
ai, πi

〉
−
M−1∑
i=0

〈
(λi)+, ϕi − ψ2

〉
−
M−1∑
i=0

〈
(λi)−, ϕi − ψ1

〉
.

For the sake of readability, we collect the primal variables in y :=
(ϕ, µ, a, v) which describes the state of the optimal control problem and
the adjoint variables in Φ := (p, r, q). Furthermore, we define

Yh := (VM1 )3 × VM−1
2 × UM−1 × (VM1 )2 × VM−1

2 × (VM1 )3. (4.1)

Clearly, the MPCC-Lagrangian possesses the following saddle point
property.

Remark 4.2. If (y, u) is an E-almost C-stationary point of (PΨ) with
corresponding adjoints (Φ, π, λ+, λ−) then

L(y, u,Φ, π, λ+, λ−) = J(ϕ, µ, v, u). (4.2)
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For an arbitrarily fixed triple (π, λ+, λ−) the MPCC-Lagrangian L( · , π, λ+, λ−)
is infinitely Gâteaux differentiable with respect to (y, u,Φ) and the cor-
responding second derivative is constant. This property gives rise to the
subsequent lemma.

Lemma 4.3. Let (yh, uh,Φh, πh, λ
+
h , λ

−
h ) ∈ Yh satisfy the discretized sta-

tionarity system derived in the previous section. Then for every point
(y, u,Φ) it holds that

J(ϕh, µh, vh, uh) =L(y, u,Φ, πh, λ
+
h , λ

−
h )

+
1

2
∇xL(y, u,Φ, πh, λ

+
h , λ

−
h )((yh, uh,Φh)− (y, u,Φ))

+
1

2
∇xL(yh, uh,Φh, πh, λ

+
h , λ

−
h )((yh, uh,Φh)− (y, u,Φ)).

(4.3)

Proof. Since (yh, uh,Φh, πh, λ
+
h , λ

−
h ) is a discrete E-almost C-stationary

point, in particular due to equation (3.1)-(3.3), (3.18),(3.21) and (3.22),
it holds that

J(ϕh, µh, vh, uh) = L(yh, uh,Φh, πh, λ
+
h , λ

−
h ). (4.4)

Here, we additionally employed the fact that Πi+1 is the orthogonal pro-
jection onto V i+1

1 , i.e.,
〈
Πi+1ϕih, p

i+1
h

〉
=
〈
ϕih, p

i+1
h

〉
for all ϕih ∈ L2(Ω)

and pi+1
h ∈ V i+1

1 . Let X be a Banach space and f : X → R be a twice
Gâteaux differentiable function with constant second derivative. Apply-
ing Taylor’s expansion at x ∈ X, then for an arbitrary z ∈ X we derive
f(z) = f(x) +∇f(x)(z − x) + 1

2
∇2f(x)(z − x)2. Furthermore, the Taylor

expansion of ∇f at x yields ∇f(z) = ∇f(x) +∇2f(x)(z − x).
In summary, it holds that

f(z) = f(x) +∇f(x)(z − x) +
1

2
(∇f(z)−∇f(x))(z − x)

= f(x) +
1

2
∇f(x)(z − x) +

1

2
∇f(z)(z − x).

Applying the last equation to L( · , πh, λ+
h , λ

−
h ) with x := (y, u,Φ) and

z := (yh, uh,Φh) proves the assertion.

Using the previous lemma we present a first characterization of the
difference of the objective values at stationary points of the semi-discrete
and the fully discretized problem. Subsequently, the index δ denotes the
difference of the discrete and the continuous variables, e.g. (yδ, uδ,Φδ) :=
(yh, uh,Φh)− (y, u,Φ).

Theorem 4.4. Let (yh, uh,Φh, πh, λ
+
h , λ

−
h ) be given as in Lemma 4.3 and

(y, u,Φ, π, λ+, λ−) be a stationary point of the optimal control problem
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(PΨ). Then

J(ϕh, µh, vh, uh)− J(ϕ, µ, v, u) =
1

2

(
M−1∑
i=0

〈
aih, π

i
〉
−
M−1∑
i=0

〈
ai, πih

〉)

+
1

2

(
M−1∑
i=0

〈
(λi)+, ϕih − ψ2

〉
−
M−1∑
i=0

〈
(λih)+, ϕi − ψ2

〉)

+
1

2

(
M−1∑
i=0

〈
(λi)−, ϕih − ψ1

〉
−
M−1∑
i=0

〈
(λih)−, ϕi − ψ1

〉)

+
1

2
∇xL(yh, uh,Φh, πh, λ

+
h , λ

−
h )((yh, uh,Φh)− (y, u,Φ))

(4.5)

holds.

Proof. Since (y, u,Φ) is a stationary point, the gradient of the MPCC-
Lagrangian with respect to a direction (yδ, uδ,Φδ) reduces to

∇xL[y, u,Φ, πh, λ
+
h , λ

−
h ](yδ, uδ,Φδ)

=

M−2∑
i=−1

〈
ai+1
δ , ri+1

〉
−
M−2∑
i=−1

〈
(λi+1)+ + (λi+1)−, ϕi+1

δ

〉

−

(
M−1∑
i=0

〈
aiδ, π

i
h

〉
+

M−1∑
i=0

〈
(λih)+, ϕiδ

〉
+

M−1∑
i=0

〈
(λih)−, ϕiδ

〉)

=

M−1∑
i=0

〈
aiδ, π

i − πih
〉

+

M−1∑
i=0

〈
(λi)+ − (λih)+, ϕiδ

〉
+

M−1∑
i=0

〈
(λi)− − (λih)−, ϕiδ

〉
.

On the other hand, the feasibility of (y, u) implies that

L(y, u,Φ, πh, λ
+
h , λ

−
h ) =J(ϕ, µ, v, u)−

M−1∑
i=0

〈
ai, πih

〉
−
M−1∑
i=0

〈
(λih)+, ϕi − ψ2

〉
−
M−1∑
i=0

〈
(λih)−, ϕi − ψ1

〉
.

Inserting these equations into (4.3) leads to

J(ϕh, µh, vh, uh) =J(ϕ, µ, v, u)−
M−1∑
i=0

〈
ai, πih

〉
−
M−1∑
i=0

〈
(λih)+, ϕi − ψ2

〉
−
M−1∑
i=0

〈
(λih)−, ϕi − ψ1

〉
+

1

2

M−1∑
i=0

〈
aih − ai, πi − πih

〉
+

1

2

M−1∑
i=0

〈
(λi)+ − (λih)+, ϕih − ϕi

〉
+

1

2

M−1∑
i=0

〈
(λi)− − (λih)−, ϕih − ϕi

〉
+

1

2
∇xL(yh, uh,Φh, πh, λ

+
h , λ

−
h )((yh, uh,Φh)− (y, u,Φ)).

An appropriate rearrangement of the terms involving the complementarity
conditions (2.16) and (2.17) yields the assertion.
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Remark 4.5. Note that, since (yh, uh,Φh, πh, λ
+
h , λ

−
h ) satisfies the dis-

crete stationarity system and taking into account the orthogonality of the
projection Πi+1, the direction (yh, uh,Φh) − (y, u,Φ) in the last term of
(4.5) can be replaced by any difference (yα, uα,Φα) − (y, u,Φ) involving
arbitrary discrete variables (yα, uα,Φα) ∈ V2

1 × V2 × V1 × V2 × V2
1 × V2.

The last term on the right-hand side of equation (4.5) assembles the
weighted dual and primal residuals, whereas the other terms display the
mismatch in the complementarity between the discretized solution and
the original one. For each time step i ∈ {0, ..,M − 1}, the mismatch is
represented by the following four parts

ηCM1,i :=
1

2

〈
aih, π

i − πih
〉
, ηCM2,i :=

1

2

〈
(λih), ϕi − ϕih

〉
,

ηCM3,i :=
1

2

〈
ai, πih − πi

〉
, ηCM4,i :=

1

2

〈
(λi)+, ϕih − ψ2

〉
+
〈

(λi)−, ϕih − ψ1

〉
.

Note that ηCM3,i can be alternatively defined by

ηCM3,i =
〈
ai, πih − πi

〉
=
〈

∆ϕi + µi + κϕi+1, πih − πi
〉

≈
〈

∆ϕih + µih + κϕi−1
h , πih − πi

〉
.

Next, we characterize the so-called dual-weighted primal residual ηCHNS,i :=
ηCH1,i + ηCH2,i + ηNS,i by defining each of the three parts coming from
the respective primal equations (for i = −1, ..,M − 2)

ηCH1,i+1 :=

〈
ϕi+1
h − ϕih
τ

, pi+1
δ

〉
+
〈
vi+1
h ∇ϕ

i
h, p

i+1
δ

〉
+
〈
m(ϕih)∇µi+1

h ,∇pi+1
δ

〉
,

ηCH2,i+1 :=
〈
−∆ϕi+1

h , ri+1
δ

〉
+
〈
ai+1
h , ri+1

δ

〉
−
〈
µi+1
h , ri+1

δ

〉
−
〈
κϕih, r

i+1
δ

〉
,

ηNS,i+1 :=

〈
ρ(ϕih)vi+1

h − ρ(ϕi−1
h )vih

τ
, qi+1
δ

〉
H−1,H1

0

−
〈
vi+1
h ⊗ ρ(ϕi−1

h )vih,∇qi+1
δ

〉
H−1,H1

0

−
〈
vi+1
h ⊗ ρ2 − ρ1

2
m(ϕi−1

h )∇µih,∇qi+1
δ

〉
H−1,H1

0

+ (2η(ϕih)Dsy(vi+1
h ), Dsy(qi+1

δ ))

−
〈
µi+1
h ∇ϕ

i
h, q

i+1
δ

〉
H−1,H1

0

−
〈
Bui+1

h , qi+1
δ

〉
H−1,H1

0

.

Since the Navier-Stokes equation is only defined for i ∈ {1, ..,M − 1}
based on the chosen discretization, we set ηNS,0 := 0 for the sake of a
brief notation.

In order to analyse the primal-weighted dual residual, we point out
that the discrete stationary point satisfies〈

∂J

∂ui
(ϕh, µh, vh, uh)−B?qih, uiδ

〉
= 0. (4.6)

Due to our specific choice of J in (2.4), the partial derivatives are given
by

∂J

∂ϕi
(ϕh, µh, vh, uh) = ϕih − ϕid,

∂J

∂µi
(ϕh, µh, vh, uh) = 0,

∂J

∂vi
(ϕh, µh, vh, uh) = 0.
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Incorporating the previous considerations, we define the primal-weighted
dual residual in three parts for i ∈ {0, ..,M − 1} (with ηADv,0 := 0) by

ηADϕ,i :=

[
ϕih − ϕid −

1

τ
(pi+1
h − pih) +m′(ϕih)∇µi+1

h · ∇pi+1
h − div(pi+1

h vi+1
h )

−∆rih + λih − κri+1
h − 1

τ
ρ′(ϕih)vi+1

h · (qi+2
h − qi+1

h )

− (ρ′(ϕih)vi+1
h − ρ2 − ρ1

2
m′(ϕih)∇µi+1

h )(Dqi+2
h )>vi+2

h

+ 2η′(ϕih)Dsy(vi+1
h ) : Dqi+1

h + div(µi+1
h qi+1

h )

]
(ϕiδ),

ηADµ,i :=

[
− rih − div(m(ϕi−1

h )∇pih)− div(
ρ2 − ρ1

2
m(ϕi−1

h )(Dqi+1
h )>vi+1

h )

− qih · ∇ϕi−1
h

]
(µiδ),

ηADv,i :=

[
− 1

τ
ρ(ϕi−1

h )(qi+1
h − qih)− ρ(ϕi−1

h )(Dqi+1
h )>vi+1

h

− (Dqih)(ρ(ϕi−2
h )vi−1

h − ρ2 − ρ1

2
m(ϕi−2

h )∇µi−1
h )

− div(2η(ϕi−1
h )Dsy(qih)) + pih∇ϕi−1

h

]
(viδ).

By these definitions and Theorem 4.4, the discretization error with respect
to the objective function is then given by

J(ϕh, µh, vh, uh)−J(ϕ, µ, v, u)

=

M−1∑
i=0

(ηCM1,i + ηCM2,i + ηCM3,i + ηCM4,i + ηCH1,i

+ ηCH2,i + ηNS,i + ηADϕ,i + ηADµ,i + ηADv,i).

(4.7)

We point out that the integral structure of these error terms allows a
patchwise evaluation on the underlying mesh.

Apart from the weights ϕiδ, µ
i
δ and viδ and piδ, q

i
δ, r

i
δ, respectively,

the primal-dual-weighted error estimators only contain discrete quantities.
In order to obtain a fully a-posteriori error estimator the weights are
approximated involving a local higher-order approximation based on the
respective discrete variables.

5 The numerical realization

Next we describe how we employ the error representation (4.7) in order to
find numerical approximations to solutions of the optimal control prob-
lem (PΨ). Our overall algorithm is based on solving an approximation
of equations (3.1)–(3.22) for a given mesh sequence (T 1, . . . , T M ), and
then utilizing (4.7) to generate new grids that are better suited for rep-
resenting the continuous optimal solution. The implementation is done
in C++ using the finite element toolbox FEniCS [39] together with the
PETSc linear algebra backend [7] and the linear solver MUMPS [6]. For
the adaptation of the spatial meshes the toolbox ALBERTA [47] is used.
Finite dimensional approximations of the minimization problem (PΨ) are
solved by the steepest descent method from the GNU scientific library [1].
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The relaxed equations

We introduce a smooth approximation of Ψ0(ϕ) using Moreau–Yosida
relaxation, similar to [23], by

Ψs
0(ϕ) :=

s

3

(
|max(0, ϕ− 1)|3 + |min(0, ϕ+ 1)|3

)
, (5.1)

where s � 0 is a relaxation parameter. We point out that it is possi-
ble to use a Moreau-Yosida regularization combined with a semi-smooth
Newton method here instead, as, e.g., in [28]. However, since we observe
no singularities in our numerical tests and achieve a good approximation
of feasibility already for moderate relaxation parameters, we choose the
above approach for the ease if implementation.

Using Ψs
0 we introduce the relaxed state equations (5.2)–(5.5)〈

ϕi+1
h −Πi+1ϕih

τ
, φ

〉
+
〈
vi+1
h ∇ϕ

i
h, φ
〉

+
〈
m(ϕih)∇µi+1

h ,∇φ
〉

= 0, ∀φ ∈ V i+1
1 ,

(5.2)〈
∇ϕi+1

h ,∇φ
〉

+ ((Ψs
0)′(ϕi+1

h ), φ)h −
〈
κΠi+1ϕih, φ

〉
−
〈
µi+1
h , φ

〉
= 0, ∀φ ∈ V i+1

1 ,

(5.3)

1

τ

〈
ρ(ϕih)vi+1

h − ρ(ϕi−1
h )vih, ψ

〉
−
〈

(tih∇)ψ, vi+1
h

〉
+
〈

2η(ϕih)Dsy(vi+1
h ), Dsy(ψ)

〉
−
〈
µi+1
h ∇ϕ

i
h, ψ

〉
H−1,H1

0

−
〈

divψ, ξih

〉
= (Bui+1, ψ) ∀ψ ∈ V i+1

2 , (5.4)

− (divvi+1
h , φ) = 0 ∀φ ∈ V i+1

1 , (5.5)

and the corresponding relaxed optimization problem (P sh).

min J(ϕih, µ
i
h, v

i
h, u

i
h) over (ϕih, µ

i
h, v

i
h, u

i
h) ∈ (VM1 )2 × VM−1

2 × UM−1

s.t. (5.2)− (5.5).
(P sh)

Here, by (·, ·)h we denote the lumped inner product

(f, g)h :=

∫
Ω

Ii(fg) dx,

where Ii denotes the Lagrangian interpolation on V i1 .

Remark 5.1. The existence of feasible points for (P sh) and their bound-
edness with respect to u can be proven, e.g., by transferring the existence
proof of Theorem 3.8 in [27] to the discretized problem. Since the equations
(5.2)–(5.5) admit a unique solution for every control u, we can introduce
the reduced functional Ĵ(uih) := J(ϕih(uih), µih(uih), vih(uih), uih) and derive
the existence of solutions and first order optimality conditions by standard
arguments such as, e.g., in [51]. Consequently, we can apply a gradient
descent method with respect to Ĵ in order so solve problem (P sh) numeri-
cally.

Defintion 5.2. Let ϕ−1
h = P (ϕa), v0

h = L(va) be given, where P denotes
the H1 projection onto T 0, while L denotes the Leray projection ([15])
onto T 0 .

We say that

(ϕih, µ
i
h) ∈ (V i1 )M−1

i=0 × (V i1 )M−1
i=0 , (vih, ξ

i
h) ∈ (V i2 )M−1

i=1 × (V i1 )M−1
i=1 ,

(ui) ∈ (U i)M−1
i=1 ,

(pih, r
i
h) ∈ (V i1 )M−1

i=0 × (V i1 )M−1
i=0 , (qih, χ

i
h) ∈ (V i2 )M−1

i=1 × (V i1 )M−1
i=1 ,
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is a stationary point for (P sh), if it satisfies (5.2)-(5.5) together with the
following equations:

− 1

τ
(
〈

(pi+1
h ,Πi+1φ

〉
−
〈
pih, φ

〉
) + (m′(ϕih)∇µi+1

h · ∇pi+1
h , φ) +

〈
pi+1
h vi+1

h ,∇φ
〉

+((Ψs
0)′′(ϕih)rih, φ)h −

〈
κri+1
h ,Πi+1φ

〉
−
〈

1

τ
ρ′(ϕih)vi+1

h (qi+2
h − qi+1

h ), φ

〉
+
〈
∇rih,∇φ

〉
−
〈(
ρ(ϕih)′vi+1

h − ρ2 − ρ1

2
m′(ϕih)∇µi+1

h

)
(Dqi+2

h )>vi+2
h , φ

〉
+
〈

2η(ϕih)′Dsy(vi+1
h ) : Dqi+1

h , φ
〉
−
〈
µi+1
h qi+1

h ,∇φ
〉

=

〈
∂J

∂ϕih
(z), φ

〉
−
〈
rih, φ

〉
+
〈
m(ϕi−1

h )∇pih,∇φ
〉

+
〈ρ2 − ρ1

2
m(ϕi−1

h )(Dqi+1
h )>vi+1

h ,∇φ
〉
− (qih∇ϕi−1

h , φ) =

〈
δJ

δµih
(z), φ

〉
− 1

τ

〈
ρ(ϕi−1

h )(qi+1
h − qih), ψ

〉
−
〈
ρ(ϕi−1

h )(Dqi+1
h )>vi+1

h , ψ
〉

−
〈

(Dqih)(ρ(ϕi−2
h )vi−1

h − ρ2 − ρ1

2
m(ϕi−2

h )∇µi−1
h ), ψ

〉
+
〈

2η(ϕi−1
h )Dsy(qih),∇ψ

〉
+
〈
pih∇ϕi−1

h , ψ
〉
−
〈
χih, div ψ

〉
=

〈
∂J

∂vih
(z), ψ

〉
−
〈

div qih, ψ
〉

= 0,〈
B?qi−1

h , ũ
〉
U?,U

=

〈
∂J

∂ui
(z), ũ

〉
,

Comparing the optimality system for (PΨ) and (P sh) and taking into
account the convergence results from [27] it is reasonable to use the ap-
proximation (3.1)–(3.22)

(aih, φ) ≈ ((Ψs
0(ϕih))′, φ)h,

(λih, φ) ≈ ((Ψs
0(ϕih))′′rih, φ)h,

also compare Remark 2.5.
Moreover by using s sufficiently large in (5.1) we guarantee, that the

complementarity conditions (3.5)–(3.7) and (3.21)–(3.22) are sufficiently
well fulfilled, when using these approximations for a and λ. For this we
use the subsequent updating rule for the parameter s. In fact, in our
numerical tests we observe that the complementarity conditions (3.21)
and (3.22) are better fulfilled than (3.7) to at least 3 orders of magnitude.
For this reason we base our update procedure in the following on (3.7)
only, and next derive an estimate for the dependence of (3.7) with respect
to s.

Exploiting the structure of Ψs
0 we observe

|(((Ψs
0(ϕih))′,ϕ± 1)|

≤ ‖(Ψs
0(ϕih))′‖L1(Ω)‖max(0, ϕ− 1) + min(0, ϕ+ 1)‖L∞(Ω),

where we note, that in fact ϕ ∈ L∞(Ω) by elliptic regularity theory and
Sobolev embeddings. Using Φ ≡ ±1 in (5.3) we further observe that there
exists C > 0 independent of s such that

‖(Ψs
0(ϕih))′‖L1(Ω) ≤ C,
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and from [30, 36] we obtain

‖max(0, ϕ− 1) + min(0, ϕ+ 1)‖L∞(Ω) ≤ Cs−1/2

for this specific choice of Ψs
0. Together it holds

|(((Ψs
0(ϕih))′, ϕ± 1)| ≤ Cs−1/2 (5.6)

Let θ denote the maximum complementarity mismatch for (3.7) over all
time instances. We find a new value snew by estimating the unknown
constant in (5.6) as C = θs1/2, and, given a tolerance tolc, we set snew :=(

C
0.9tolc

)2

, where the factor 0.9 is a guard to really get below the desired

tolerance.

The local error indicator

Using these definitions we can evaluate the error indicators η?, as de-
scribed in Section 4. For this it is important that the complementar-
ity conditions (3.5)– (3.7) and (3.21)–(3.22) are sufficiently well approxi-
mated. We split the individual indicators canonically using the underlying
meshes, e.g.

ηCM1,i =
∑
T∈T i

ηTCM1,i =
∑
T∈T i

(ãi+1
h , πi − πih)|T

and we define for each cell an indicator ηiT as

ηiT =|ηTCM1,i|+ |ηTCM2,i|+ |ηTCM3,i|+ |ηTCM4,i|

+ |ηTCH1,i|+ |ηTCH2,i|+ |ηTNS,i|

+ |ηTADϕ,i|+ |ηTADµ,i|+ |ηTADv,i|.

(5.7)

Note that the individual indicators might be negative, while we require a
positive measure for the error, and thus sum up the absolute values of the
individual terms.

We further set

(−∆ϕi+1
h , riδ) :=

∑
T∈T i+1

[
(−∆ϕi+1

h , riδ)|T +
∑
E⊂T

1

2

([
∇ϕi+1

h

]
E
, riδ

)
|E

]
,

compare, e.g., [26]. For an edge E contained in T the term [f ]E de-
notes the jump of f across the edge E. More precisely, for a pair of
cells T+, T− with T+ ∩ T− = E we define the jump as [f(xE)]E :=(
limx→xE ,x∈T+ f(x)− limx→xE ,x∈T− f(x)

)
· νT+,E , where νT+,E is the

unit normal on E pointing into T+. Note that the definition of [f ]E
is independent of the permutation of T+ and T−.

The approximation of the continuous solution

Let us next discuss the approximation of the continuous solution (y, u, ϕ, µ, a, λ)
using a higher-order finite element approximation of the discrete solution
(yh, uh, ϕh, µh, ah, λh).

For linear functions (i.e. ϕ, µ, p, r), we can use the procedure as de-
scribed, e.g., in [26]. For a triangle T we use the nodes of the surrounding
three triangles to define six points, with corresponding values of the fi-
nite element function under investigation. Then we evaluate the unique
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quadratic polynomial that interpolates these six points, and use its re-
striction to T as quadratic finite element approximation to the continu-
ous solution. If T lies on the boundary of Ω there are less than three
surrounding triangles. Here we create virtual triangles by extending T as
a parallelogram outside Ω, and we also extend the piecewise linear finite
element function linearly on this virtual triangle to obtain again six points
for the interpolation.

For quadratic finite elements we proceed analogously and evaluate a
fourth-order polynomial on the given patch of cells, while for boundary
cells we extend the given quadratic function as quadratic polynomial out-
side Ω.

For the multipliers ai and λi we first calculate the representation ãih
and λ̃ih in V i1 and then use the extrapolation for linear elements as pro-
posed above.

In any case we note that the resulting higher-order approximation is
a trianglewise polynomial that is discontinuous across edges.

The final algorithm

Before stating the overall algorithm let us make the following simplifi-
cation. Given ϕ−1 and v0 on a sufficiently well resolved grid, we solve
(3.1)–(3.2) to obtain ϕ0

h and µ0
h on the same grid and treat these func-

tions as given data. Thus throughout the optimization process, the state
that we optimize contains only the time instances t1, . . . , tM .

Including the Moreau–Yosida relaxation we use the following Algo-
rithm 1.

Algorithm 1.

Data: Initial data: ϕ−1, ϕ0, v0, Nmax

1 repeat
2 for l = 1, . . . do
3 solve (P s

h) using steepest descent method;
4 if complementarity conditions (3.7), (3.21), (3.22) are satisfied up

to a tolerance tolc then
5 break;
6 else
7 increase Moreau–Yosida parameter using (5.6);
8 end

9 end
10 calculate the error indicators and find the set Mr of cells to refine

and the set Mc of cells to coarsen;

11 Adapt (T i)Mi=1 using Mr and Mc;

12 until
∑M

i=1 |T i| < Nmax;

Let us explain the steps of Algorithm 1 in detail.The outer loop de-
scribes the refinement of the grids (T i)Mi=1 using (4.7). When the for-loop
breaks, then we have found an approximate optimal control on the cur-
rent sequence of grids that solves the system (3.1)–(3.22) sufficiently well,
as it is required for our error indicators to be valid. Then, in line 10 we
evaluate the error indicators ηiT for all grids T i and for all cells T and
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choose Mr as the set with smallest cardinality such that

∑
T∈Mr

ηT ≥ θr
M∑
i=1

∑
T∈T i

ηT

with a parameter 0 < θr < 1 using a greedy marking algorithm. We mark
all cells inMr for refinement. As in [23] we further choose θc ∈ (0, 1) and
define

Mc :=

T ∈ (T i)Mi=1 | ηT ≥
θc

N

M∑
i=1

∑
T∈T i

ηT

 ,

where N :=
∑M
i=1 |T

i|. Thus, we use the well-known Dörfler marking
procedure [16], where we refine a given proportion of the estimated error.
We stress that we do not perform Dörfler marking on each time instance
separately, but, as the representation (4.7) suggests, we perform a marking
over all cells in the space-time cylinder. We mark cells for coarsening, if
they contain an error that is smaller than θc times the mean error. We
repeat this outer adaptation unless a given total amount of cells Nmax is
reached, summed over all cells, see line 12. We point out that we have
to use a locally refined initial grid in order to get a meaningful initial
resolution of the interface. This prevents us from using a very coarse
grid initially. As a consequence, we also need to introduce a coarsening
strategy.

The inner loop, i.e. lines 2–9, solves (P sh) using the steepest descent
method from the GNU scientific library [1]. Thereafter we check whether
the complementarity conditions are sufficiently well approximated by the
current Moreau–Yosida relaxed system. For this we evaluate the terms
(3.7), (3.21), (3.22) for all time instances. If the absolute value of all these
terms is smaller then a given tolerance tolc, we accept the solution and
proceed with the adaptation step. If any of these terms has an absolute
value larger than tolc we increase the Moreau–Yosida parameter and solve
the optimality problem again.

6 Numerical example: Splitting a bubble
under gravity

Now we study a numerical example.Our aim is to prevent a bubble from
rising and split it into two bubbles that are deformed to rounded squares.

The parameters of the fluid are ρ1 = 1000, ρ2 = 100, η1 = 10, η2 = 1,
g ≡ (0,−0.981)>, and σ = 24.5 · 2

π
, where 24.5 is the physical surface

tension and 2
π

is a required scaling when using a phase field approximation
with double-obstacle free energy density. These parameters arise from a
benchmark for rising bubble dynamics in [35]. We further set ε = 0.02
and m(ϕ) = ε/500.

The initial phase field is given by a circle, located at o = (0.5, 0.5)>

with radius r = 0.2329,

ϕ0(x) = −1 ·

{
sin((‖x− o‖ − r)/ε) if |‖x− o‖ − r|/ε ≤ π/2,
sign(‖x− o‖ − r) else.

(6.1)
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For the desired phase field we define

ϕd[Z, r](x) =

{
sin((‖((x− Z)‖6 − r)/ε) if |‖(x− Z)‖ − r|/ε ≤ π/2,
sign(‖(x− Z)‖6 − r) else,

(6.2)

which describes a square with smooth corners around Z with radius r and
we use ϕd(x) := ϕd[(0.25, 0.50)>, 0.15](x) · ϕd[(0.75, 0.5)>, 0.15](x). The
radius of ϕ0 is chosen such that

∫
Ω
ϕd dx =

∫
Ω
ϕ0 dx since we have to

respect mass conservation. We depict ϕ0 and ϕd in Figure 1. Note that
using the phase field approach we are not able to approach sharp corners
and thus define ϕd with smooth corners.

To define Bu with the control operator B : U → L2(Ω,RN ) we intro-
duce the vector field

(f [o, ξ, c](x))i =

{
cos
(
(π/2)‖ξ−1(x− o)‖

)2
if c ≡ i and ‖ξ−1(x− o)‖ ≤ 1,

0 else.

This describes an approximation to the Gaussian with local support. The
center is given by o and the diagonal matrix ξ describes the width of the
Gaussian in coordinate directions. We identify a scalar value for ξ with
ξI, where I denotes the identity matrix. The parameter c is the number
of the component in which the vector field f is not zero.

We use 2×4 Ansatz functions for the control at the corners of each
square. Thus we use the following 16 Ansatz functions f [mij

l , ξ, c] with
mij
k = (0.5+(−1)k0.25+(−1)i0.13, 0.5+(−1)j0.13)> with 1 ≤ k, i, j ≤ 2,

ξ = 0.1, c ∈ {0, 1}. Thus, U = R16 andBu :=
∑1
c=0

∑2
i,j,k=0 uijkcf [mij

k , ξ, c].
In Figure 1 we show plots of ϕ0,ϕd, and Bu together with the phase field
at final time if no control is applied.

The optimization horizon is T = 1.0 and we use τ = 0.00125 and we
set α = 1e−11. For Algorithm 1 we further set tolc = 1e−3, Nmax = 8e6,
which means 1e4 cells per time instance, and for the marking procedure
we use θr = 0.7 and θc = 0.01.

On a single (time) sequence of grids we stop the optimization procedure
as soon as

‖∇J(u)‖U ≤ 2e− 7 + 0.1‖∇J(u0)‖U (6.3)

holds, where u0 denotes the initial control for the optimization procedure
on the current sequence of meshes. The stopping criteria is motivated by
the fact that we observe in our numerical tests that the optimal control
of the previous adaptation step already constitutes a good guess for the
optimal control on the refined mesh. Algorithm 1 is initialized with zero
control, while subsequent optimization steps, i.e. line 3, are initialized
with the control from the previous optimization run.

The optimal solution

In Figure 2 we depict the temporal evolution of the phase field ϕ? cor-
responding to the optimal control u?, while in Figure 3 we depict the
strength of the control over the time horizon, i.e. |u?(t)|. To obtain this
optimal control we solve the optimization problem (P sh) 10 times, i.e. line
3 of Algorithm 1 is executed 10 times. After the first two solves the
Moreau–Yosida parameter was increased, i.e. line 7 in Algorithm 1 is exe-
cuted, and after the next 8 solves the algorithm proceeded with evaluating
the indicator (4.7) and the proposed Dörfler marking procedure, i.e. line
10 of Algorithm 1 was executed.
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Figure 1: The initial shape ϕ0, the desired shape ϕd together with the zero level
line of the phase field at final time if no control is applied, the ansatz for the
control, |

∑16
i=1 f

i| together with the zero level line of ϕd (left to right).

Figure 2: The evolution of the phase field ϕ with respect to the optimal control
u for few Ansatz functions, t = 0.00, 0.25, 0.50, 0.75, 1.00 (left to right). For
t = 1.00 we show ϕ in gray and in black the zero level line of the desired shape
ϕd.

0 0.2 0.4 0.6 0.8 1
0

2

4

·104

time

control amplitude, |u|

Figure 3: The amplitude of the control over time, |u(t)|. We observe that the
control amplitude is increasing over time until t = 0.7 and thereafter is reduced
again with a second maximum directly before a final strong reduction of the
control at the final time.
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Figure 4: The evolution of the total number of cells, i.e.
∑M

i=1NC(T i), where
NC(T i) denotes the number of cells of the triangulation T i over the adaptation
steps (left). We note that we can not start with an arbitrarily coarse mesh,
as the interface as least has to be resolved roughly at the initialization of the
optimization procedure. On the right we depict the distribution of the number
of cells over the time horizon. We observe that the mesh is refined most close
to the final time instance, where our optimization aim is located.

The number of cells

In Figure 4 (left) we present the evolution of the total number of cells
over the adaptation steps. The right picture presents the distribution of
the cells for the final sequence of grids. Here we show the number of cells
of T i for every time instance of the time horizon I . We observe that
the number of cells increases as the “length” of the interface increases
with time as the rising bubble is split up. We also observe that the
cells are mainly refined inside and at the border of the diffuse interface
|ϕ| < 1. Such a behavior is expected, as the phase field ϕd has a longer
diffuse interface than ϕ0. In this sense we discover a behavior that is
similar to residual based error estimation, see e.g. [23, 20]. Since our dual
weighted residual error estimator also contains terms from the Navier–
Stokes and the adjoint equation, we further obtain refinement inside of
the bulk domain if required. In Figure 5 we depict the subdomain Ωu =
(0, 1) × (0.5, 1.0) ⊂ Ω at t = 0.7. On the left we show |v| in grayscale
together with the isolines ϕ ≡ ±1 in black. On the right we show the
corresponding mesh and note that the mesh is symmetric w.r.t. the central
line.

The error indicator

Let us next comment on the evolution of the error estimator η. In addition
to (5.7), we introduce the notation ηi :=

∑
T∈T i η

i
T for the total estimated

error at time instance i and ηtot :=
∑M
i=1 η

i for the total estimated error
of a solution to the optimization problem.

In Figure 6 we depict the evolution of ηtot over the adaptation steps,
i.e. for the optimal solution on the kth sequence of grids we show the
estimator for the overall error on the left. We further show the distribution
of ηMT at the time instance tM for the optimal solution u? on the right.
One observes a significant decay of the estimated error throughout the
adaptation steps. Further, the largest error appears at later times of
the simulation horizon. Especially the large error at final time can be
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.

Figure 5: The subdomain (0.0, 1.0)× (0.25, 0.85) ⊂ Ω at t = 0.7. On the left we
show |v| in grayscale together with the isolines ϕ ≡ ±1. On the right we show
the corresponding triangulation. Note that the problem is symmetric w.r.t.
x ≡ 0.5. We observe, that the mesh is refined inside the diffuse interface as
expected, but also is refined in the regions with large velocity.
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simulation time

Estimated error, ηi

Figure 6: The evolution of the error estimator ηtot over the adaptation steps
(left), the distribution of the estimated error over the time horizon (right)

explained by the term ‖ϕM − ϕd‖ arising from the optimization aim, but
we in general observe that larger time instances have a higher impact on
the overall estimated error. Finally, in Figure 7, we depict the distribution
of ηMT for the optimal control. We observe that large errors mainly appear
at the transition from diffuse interface to bulk, i.e. where |ϕ| ≈ 1 holds.
The large error component in the middle of the domain appears as an
artefact of splitting the bubble into the two squares.

For a comparison of the error decay on a homogeneously refined grid
and an adaptively refined grid, where residual based estimation is used
for the pure phase field equation, we refer to [23].

The Moreau–Yosida relaxation

Finally we comment on the update procedure for the Moreau–Yosida pa-
rameter. In Figure 8 we show the evolution of the maximum complemen-
tarity mismatch over the optimization steps. Each column of the plot
contains the maximum mismatch of the five complementarity relations
(2.8)–(2.10), (2.16), and (2.17), where the maximum is taken over all
time instances and all cells. The dashed line indicates the desired maxi-
mum mismatch tolc, and we observe that already with the third value, i.e.
after increasing s twice, the desired bound is reached. The corresponding
values of s are s = 8e6 as initial value, s = 3e14 and finally s = 6e14
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Figure 7: The distribution ηMT at the time instance tM for the optimal control
u?. Black indicates large errors.
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10−10

10−4

102

Number of optimization runs

Maximum complementarity mismatch

chp

chm

adp

adm

api

Figure 8: The maximum complementarity mismatch for each op-
timization run. Here chp denotes maxi=1,...,M maxT∈T i((ai)+, ϕi

h −
1)T , chm denotes maxi=1,...,M maxT∈T i((ai)−, ϕi

h + 1)T ,
adp denotes maxi=1,...,M maxT∈T i((λi)+, ϕi

h − 1)T , adm de-
notes maxi=1,...,M maxT∈T i((λi)−, ϕi

h + 1)T , and api denotes
maxi=1,...,M maxT∈T i(ai, πi)T . We observe that after only one optimiza-
tion with subsequent increment of the Moreau–Yosida parameter s we reach
the desired tolerance tolc = 1e− 3 indicated by the dashed line.

for subsequent steps. Thus, we observe that the results are insensitive
w.r.t. s, as the parameter is not longer updated with decreasing h. For
a rigorous analysis of the error introduced by using the Moreau–Yosida
approximation in the case of control of the obstacle-problem we refer to
[41]. We note that using a small initial value for s also results in well
conditioned linear systems in Newton’s method.
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N., Neumann-Heyme, H., Travnikov, V., Odenbach, S., Voigt, A.,
Eckert, K.: Electromagnetic melt flow control during solidification

25

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://dx.doi.org/10.1007/978-3-0348-7605-6
http://epubs.siam.org/doi/abs/10.1137/120896530
http://epubs.siam.org/doi/abs/10.1137/120896530
http://link.springer.com/book/10.1007%2F978-0-387-75934-0
http://link.springer.com/book/10.1007%2F978-0-387-75934-0
http://dx.doi.org/10.4171/IFB/332
http://epubs.siam.org/doi/abs/10.1137/0733054


of metallic alloys. The European Physical Journal Special Topics
220(1), 123–137 (2013)

[18] Garcke, H., Hecht, C., Hinze, M., Kahle, C.: Numerical approxi-
mation of phase field based shape and topology optimization for flu-
ids. SIAM Journal on Scientific Computing 37(4), 1846–1871 (2015).
DOI 10.1137/140969269. URL http://epubs.siam.org/doi/abs/

10.1137/140969269

[19] Garcke, H., Hecht, C., Hinze, M., Kahle, C., Lam, K.F.: Shape
optimization for surface functionals in Navier–Stokes flow using a
phase field approach. preprint in arXiv: 1504.06402 (2015). URL
http://arxiv.org/abs/1504.06402

[20] Garcke, H., Hinze, M., Kahle, C.: A stable and linear time dis-
cretization for a thermodynamically consistent model for two-phase
incompressible flow. Applied Numerical Mathematics 99, 151–
171 (2016). URL http://arxiv.org/abs/1402.6524http://www.

sciencedirect.com/science/article/pii/S0168927415001324

[21] Girault, V., Raviart, P.A.: Finite element methods for Navier-Stokes
equations, Springer Series in Computational Mathematics, vol. 5.
Springer-Verlag, Berlin (1986). DOI 10.1007/978-3-642-61623-5.
URL http://dx.doi.org/10.1007/978-3-642-61623-5. Theory
and algorithms

[22] Günther, A., Hinze, M.: A posteriori error control of a state con-
strained elliptic control problem. J. Numer. Math. 16(4), 307–322
(2008). DOI 10.1515/JNUM.2008.014. URL http://dx.doi.org/

10.1515/JNUM.2008.014

[23] Hintermüller, M., Hinze, M., Tber, M.H.: An adaptive finite-element
Moreau-Yosida-based solver for a non-smooth Cahn-Hilliard prob-
lem. Optim. Methods Softw. 26(4-5), 777–811 (2011). DOI
10.1080/10556788.2010.549230. URL http://dx.doi.org/10.1080/

10556788.2010.549230

[24] Hintermüller, M., Hoppe, R.H.W.: Goal-oriented adaptivity in con-
trol constrained optimal control of partial differential equations.
SIAM J. Control Optim. 47(4), 1721–1743 (2008). DOI 10.1137/
070683891. URL http://dx.doi.org/10.1137/070683891

[25] Hintermuller, M., Hoppe, R.H.W.: Goal-oriented adaptivity in point-
wise state constrained optimal control of partial differential equa-
tions. SIAM J. Control Optim. 48(8), 5468–5487 (2010). DOI
10.1137/090761823. URL http://dx.doi.org/10.1137/090761823

[26] Hintermüller, M., Hoppe, R.H.W., Löbhard, C.: Dual-weighted goal-
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[43] Outrata, J., Kočvara, M., Zowe, J.: Nonsmooth approach to op-
timization problems with equilibrium constraints, Nonconvex Op-
timization and its Applications, vol. 28. Kluwer Academic Pub-
lishers, Dordrecht (1998). DOI 10.1007/978-1-4757-2825-5. URL
http://dx.doi.org/10.1007/978-1-4757-2825-5. Theory, applica-
tions and numerical results

[44] Praetorius, S., Voigt, A.: A phase field crystal model for col-
loidal suspensions with hydrodynamic interactions. arXiv preprint
arXiv:1310.5495 (2013)
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