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Abstract

Multifactorial evolutionary algorithm (MFEA) ex-
ploits the parallelism of population-based evolu-
tionary algorithm and provides an efficient way to
evolve individuals for solving multiple tasks con-
currently. Its efficiency is derived by implicitly
transferring the genetic information among tasks.
However, MFEA doesn’t distinguish the informa-
tion quality in the transfer compromising the algo-
rithm performance. We propose a group-based M-
FEA that groups tasks of similar types and selec-
tively transfers the genetic information only within
the groups. We also develop a new selection crite-
rion and an additional mating selection mechanism
in order to strengthen the effectiveness and efficien-
cy of the improved MFEA. We conduct the exper-
iments in both the cross-domain and intra-domain
problems.

1 Introduction
Classical evolutionary algorithms (EA) use population based
search over the solution space to solve an optimization task.
As a recently proposed learning paradigm, Multifactorial evo-
lutionary algorithm (MFEA) [Gupta et al., 2016] aims to
solve multiple optimization tasks simultaneously in a unified
search space, where an individual in the population evolves
based on the factorial influences received from every task and
every task could be either a single objective or multiple objec-
tive optimization problem. Considering that real world prob-
lems seldom exist in isolation, a set of parameters tuned for
one task are likely to be useful for a similar optimisation. This
helps circumvent challenges associated with the dimension-
ality curse when several tasks with multidimensional search
spaces are to be solved simultaneously. MFEA leverages the
genetic complementaries transferring between tasks and en-
hances the averaged performance of solving the tasks. Its ob-
vious advantage in time over a single-task EA demonstrates
enormous potential of responding to the rapidly expanding of
cloud computing industry. Multiple optimisation tasks that
are received simultaneously from multiple users need to be
solved within a limited amount of time in the cloud, which
stresses on the time requirement for the multitasking.

Recently, MFEA has shown great potential on solving real-
world problems like complicated engineering design [Cheng
et al., 2017], capacitated vehicle routing Problem [Zhou et
al., 2016] and so on. For instance, in engineering design, a va-
riety of possible product designs are analysed and optimised
during the conceptualisation phase (before one of them is fi-
nally chosen). Speeding up the analysis/design-optimisation
stage through a multitasking solver can considerably reduce
the often exorbitant design time.

What MFEA differs most from the single-task EA is the
existence of genetic communication between tasks. The cur-
rent version of MFEA has all the tasks share the genetic in-
formation without evaluating its potential impact on solving
the tasks. In this paper, we group the tasks of similar types
and transfer the genetic information only within the group-
s. This will differentiate the genetic information transfers a-
mong tasks so that the tasks share only the genetic informa-
tion with positive mutual impact. Without solving the tasks, a
proper task differentiation is difficult since it is hard to know
what genetic exchange will contribute to solving the task.
However, individuals (in a population) that are employed to
solve the tasks in MFEA will reflect the characteristics of the
tasks (e.g. the landscape of objective functions of the tasks),
which can be used to group the tasks. The similar tasks grant
the individuals’ commonality that facilitates the same task
management.

Inspired by this idea, we propose group-based M-
FEA (GMFEA) that restricts individual behaviour within a
group of similar tasks. Unlike the MFEA of giving an e-
qual opportunity of inter-task genetic communication, GM-
FEA controls the genetic transfer among tasks belonging to
the same group. We observe that the tasks having near global
optima often choose individuals that follow similar solution
paths, which is also verified in the experimental study (in
Fig. 10). Subsequently multiple traits stemming from mul-
tiple tasks can exert a joint influence on the individual evo-
lution in a positive way. Hence we group tasks from both
the genotype and phenotype of individuals in a population.
Genotypes consider genetic composition of individuals while
phenotypes are their fitness values. The grouping could be
conducted without prior knowledge about the task properties.

Introducing the grouping operator may compromise the
population diversity resulting in poor algorithm performance.
To mitigate this problem, we propose a new selection crite-
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Task Set Unified representation of individuals

…T1 T2 T3

d) Environmental 
selection.

a) Individuals 
are evaluated 
for all tasks, 
and then 
assigned to 
tasks.

b) Information transfer 
(through genetic operations) 
with a small certain amount 
of probability.

c) Each individual is 
evaluated for one task.

Figure 1: The MFEA main procedures.

rion that considers a tradeoff between individual fitness and
population diversity. The new consideration significantly re-
duces the evaluation time while maintaining good perfor-
mance. We summarise the main contributions below.

• We propose a group-based MFEA to control the inter-
task genetic communication in a dynamic way;

• We design a new selection criterion considering both fit-
ness and diversity, which is used in the group-based mat-
ing selection and environmental selection;

• We conduct experiments in both cross-domain and intra-
domain problems to demonstrate performance of the
new algorithm.

2 Background Knowledge and Related Works
Evolutionary algorithms are optimisation metaheuristic
which mimics the process of natural evolution [Bäck et
al., 1997]. EAs have been widely used to solve corre-
sponding optimisation problems in multiple domains, e.g,
single-objective optimisation [Guo and Yang, 2015] , multi-
objective optimisation [Coello, 2006; Fonseca and Fleming,
1995] and so on. Recently, inspired by the concept of ‘mul-
tifactorial inheritance’, Gupta et al. [2016] introduce mul-
tifactorial evolutionary algorithm (MFEA) that further pro-
motes the concurrent search to optimize multiple tasks simul-
taneously. The MFEA splits a population into different skill
groups each of which excels at a different task. The genet-
ic material created within a particular group turns out to be
useful for another task as well. Thus, in such situations, the
scope for genetic transfer across tasks can potentially lead to
the discovery of otherwise hard to find global optima.

Fig. 1 elaborates four main procedures of MFEA that s-
tart from a unified representation of individuals for the tasks,
and then iterates individual evaluation, genetic information
transfer and environmental selection. In every iteration, only
promising candidates to solve one task (in the right contain-
er) survive after an environmental selection that is conducted
in the bottom container. We aim to improve the basic MFEA
framework in this paper.

On theoretical grounds, MFEA amplifies the power of
population-based search. As genetic building blocks corre-
sponding to different optimisation tasks are contained within
a unified pool of genetic material, they get processed by the

EA in parallel [Wright et al., 2003]. Most importantly, this
encourages the discovery and implicit transfer of useful ge-
netic material from one task to another in an efficient man-
ner. Moreover, as a single individual in the population may
inherit genetic building blocks corresponding to multiple op-
timisation tasks, the analogy with multifactorial inheritance
becomes more meaningful.

We shall note that MFEA deals with multiple fundamen-
tally distinct optimisation tasks while coevolutionary algo-
rithms [Trunfio, 2015] handle a single optimisation task. It
is indeed conceivable to design a coevolutionary algorithm
capable of multitasking. However, this requires several hy-
perparameters to be specified in the coevolution framework.
Meanwhile, MFEA is more general than multi-objective op-
timisation (MOO). MOO deals with conflicts among compet-
ing objectives belonging to one given task. MFEA is to op-
timize each constitutive task absolutely, instead of having to
establish any kind of trade-off between individual tasks.

Finally, another relevance is multitask learning that have
been well studies in the machine learning field [Caruana,
1997]. The multitask learning research mainly focuses on
investigation of relatedness among different tasks and knowl-
edge transfer among the learning domains. It is not intend-
ed for solving multiple-function optimisation problems and
is not rooted in the EA principle. MFEA is the state-of-art
solver for solving multifactorial optimisation problems.

3 Group-based MFEA
We first present the grouping operator in the new algorith-
m and then develop a new selection criterion to improve the
mating selection and environmental selection.

3.1 Grouping Tasks
Grouping tasks is derived from observation that tasks having
near global optima will positively influence each other when
there are genetic information transfers among them. When
solutions of a task move further away from other tasks, the
genetic information transfers between the task and others in-
crease redundancy gradually. We call that the tasks with near
global optima are ‘similar’ for simplicity. Despite that com-
bining dissimilar tasks will increase diversity from the very
beginning, convergence speed afterwards and the final results
of these tasks within limited rounds leave much to be desired.

Similar tasks are grouped and dissimilar tasks are separated
in the grouping operation. Mating between individuals is only
allowed in the same group so that negative genetic transfers
could be eliminated. Grouping tasks can be implemented in
two levels: genotype and phenotype.

At the genotype level, tasks are grouped by genotypic sim-
ilarity of their best individuals. We resort to the clustering
technique like the bisecting K-means [Steinbach et al., 2000]
based on the Manhattan distance between individuals. Using
one group for a searching area, M representatives are chosen
from the best individuals to represent M groups or M search
spaces one-on-one.

At the phenotype level, representatives conduct tests on
others’ districts to see any better exploration positions. We
run tests between representative pairs rather than best indi-
vidual pairs, which reduces the needed number of tests. Only
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Algorithm 1: Grouping Tasks
Input: BI (best individuals)
Output: Groups of Individuals GB

1 Groups← bisectingKmeans(BI).
2 Randomly choose representatives (RG) of groups while one

representative is corresponding to one group.
3 k ← dM/2e. // |Groups| =M .
4 kRG← Randomly choose k representatives from RG.
5 t← k.
6 Generate an empty set ERG for archive.
7 for i = 1 to k do
8 tRG← Randomly choose t representatives from RG.
9 Change the skill factor of all representatives in tRG to τi

while τi is the skill factor of i-th representative of kRG.
10 ERG← ERG ∪ tRG.
11 end
12 Evaluate the representatives in ERG with respect to their skill

factors only.
13 Obtain the new best individuals (NBI) according to ERG.
14 for nbij ∈ NBI do
15 if nbij is fitter than bij then
16 Remove j from its original group.
17 Add j into the group represented by nbij .
18 end
19 end
20 Update GBI .

partial representatives are selected to run the tests on other s-
elected representatives, and their skill factors are changed to
the formers for additional evaluations and the best evaluation
results are chosen for every test representative. The skill fac-
tor of an individual is the one task, on which the individual is
most effective. The structure of groups and the best individ-
uals are updated by the results. The task grouping process is
described in Algorithm 1.

In order to illustrate the procedure of grouping, assume
there are four tasks from T1 to T4 whose best individuals are
bi∗ respectively in Fig. 2. The solid points are for the best in-
dividuals while each solid circle is for the exploitation space
of each task constructed by its individuals. After the prelim-
inary grouping, T1 and T2 reside in group g1, and T3 and T4
are in group g2. Assuming that bi1 and bi4 are selected as
representatives of g1 and g2 respectively. Then bi1 conducts
a test in bi4, which means that bi4 changes its skill factors to
bi1’s. Next, bi4 is evaluated in task T1 and luckily achieves
better results than bi1’s. It shows that adding task T1 into
group g2 will improve solutions to T1 due to a better evolu-
tion of bi1. Finally two new groups: {T2} and {T1, T3, T4}
are obtained.

Figure 2: Grouping tasks.

3.2 Selection
Selection Criterion
The existing MFEA algorithm adopts a fitness-based selec-
tion criterion for effectively transferring elite genes between
tasks and best individuals are always kept for each task, which
implies a large accumulation of elite genes. However, pop-
ulation diversity is necessary when it becomes a bottleneck
against the genetic information transfer. Meanwhile, the un-
certainty of genetic information brought by other tasks can’t
ensure local diversity of a particular task, which is useful for
an efficient search [López et al., 2010; Ishibuchi et al., 2008;
Črepinšek et al., 2013]. In GMFEA, we propose a new se-
lection criterion keeping a balance between individual fitness
and diversity in a population.

We redefine fitness scalar (FS) as a fitness estimator to ad-
just factorial cost of individuals evaluated for different tasks
to a common scale.

Definition 1 (Fitness Scalar): For each individual pi ∈ P
on task Tj , FS is computed in Eq. 1.

pi.FS = (Ψi
j − lbj)/(ubj − lbj) (1)

where Ψi
j is the factorial cost of pi on task Tj , lbj and ubj are

minimum and maximum factorial costs of individuals on task
Tj over all individuals in P .

We use crowding distance (CD) [Deb et al., 2000; Deb et
al., 2002; Yang et al., 2013] to approximately estimate indi-
vidual diversity here.

Definition 2 (Crowding Distance): For each individual pi,
crowding distance is computed in Eq. 2.

pi.CD =
∑

pk∈N(pi)
(1−D(pi, pk)) (2)

where D(pi, pk) =
∑D

l=1 |pi(l)− pk(l)| measures the dis-
tance between pi and pj in the genotype level using a Man-
hattan distance, pi(l) denotes the l-th component of pi as a
vector form, and N(pi) = {pk|D(pi, pk) < neighbor size}
stands for neighbours of pi ranged by the neighbor size.

Strictly speaking, CD is not a standard estimator of diver-
sity, but density, as it serves for each individual instead of an
entire population. However, maximising diversity of the pop-
ulation of individuals is a NP-hard problem and approximate
algorithms are computationally expensive [Qu et al., 2015;
Nemhauser et al., 1978]. We resort to a heuristic method of
computing CD for each individual, which provides a good
diversity of the population while using less computation.

Formally the selection criterion weighing against both fit-
ness and diversity is defined in Eq. 3.

mini {α× pi.FS + (1− α)× pi.CD} (3)

where α is the balance factor.

Mating Selection
Mating selection aims at focusing search strength on the most
promising individuals [Yang et al., 2013]. We adopt it as a
preparation for genetic information exchange. In this paper,
we use a binary selection technique and consider both the fit-
ness and diversity to form a promising mating pool for each
group. Two individuals are randomly selected one of which
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Algorithm 2: Mating Selection
Input: Groups (grouped tasks), P (population), N

(population size), α
Output: New populations NP

1 Reshuffle P .
2 Generate an empty set NP for archive.
3 for i = 1 to N/2 do
4 p1 ← (2× i− 1)-th individual of P .
5 p2 ← (2× i)-th individual of P .
6 if (α× p1.FS + (1− α)× p1.CD) <

(α× p2.FS + (1− α)× p2.CD) then
7 NP ← NP ∪ p1.
8 else
9 NP ← NP ∪ p2.

10 end
11 end

Algorithm 3: Environmental Selection
Input: P (population), T (the set of tasks), Nτ ′ (the size of

individuals required by task τ ′) // τ ′ is also
representing the relevant skill
factor

Output: New population NP
1 Generate an empty set NP for archive.
2 {p.CD|p ∈ P} ← 0.
3 for τ ′ ∈ T do
4 P ′ = {p ∈ P |p.τ = τ ′}.
5 Generate a temporary set tP for archive.
6 while |tP | < Nτ do
7 q ← minp∈P ′ {α× p.FS + (1− α)× p.CD}.
8 tP ← tP ∪ q.
9 P ′ ← updateCD(P ′, q).

10 end
11 NP ← NP ∪ tP .
12 end

is chosen to stay in the mating pool while the other is aban-
doned. Eventually only half of a population is allowed to be
mated, which significantly reduces computational cost in ev-
ery evaluation call. Details are summarised in Algorithm 2.
Environmental Selection
Environmental selection aims to maintain promising candi-
date individuals for a new generation. An intuitive thought
is to design a selection strategy based on fitness. However,
selecting similar or even identical genotypic individuals may
lead to a significant loss of diversity. In GMFEA, we follow
the criterion (Eq. 3) in the selection. First all individuals’
crowding distances (CDs) are set as zeros. For each task, a
certain number of individuals are selected using CDs. After
an individual q has been picked out, we update the CD (in Al-
gorithm 4) for q’s remaining neighbours. Thus the selection
probability of q’s neighbours drops for keeping a large diver-
sity of the population. The main procedure of environmental
selection is summarised in Algorithm 3.

4 Experimental Study
All experiments are performed on a desktop with Intel i7 CPU
(3.4 GHz) and 8GB RAM.

Algorithm 4: Update Crowding Distance
Input: P (population), q (selected individual), D (distance

matrix), N(q) = {p ∈ P |D(p, q) < neighbor size}
1 for p ∈ N(q) do
2 p.CD ← p.CD + 1−D(p, q).
3 end
4 Normalize CD.

Table 1: Search spaces of functions

Function Range Function Range
Griewank [-600,600] Rastrigin [-5,5]

Ackley [-32,32] Weierstrass [-0.5,0.5]

4.1 Function Optimisation
We begin the cross-domain experiments with four
benchmark functions for continuous optimisation that
are commonly used in the closely related literature
[Yew-Soon Ong et al., 2006; Chauhan et al., 2013;
Nguyen et al., 2007; Le et al., 2009]: a) Griewank
function: 1 +

∑n
i=1

z2
i

4000 −
∏n

i=1 cos( zi√
i
); b) Ackley func-

tion: 20 + e − 20 exp(−0.2((
∑D

i=1 z
2
i )/D)(1/2)) −

exp(
∑D

i=1 cos(2πzi)/D); c) Rastrigin function:∑D
i=1(z2i − 10 cos(2πzi) + 10); and d) Weierstrass

function:
∑D

i=1(
∑20

k=0(0.5k cos(2π · 3k(zi + 0.5)))) −
D

∑20
k=0(0.5k cos(2π · 3k · 0.5)).

In above functions, z = M∗ × (x−O∗) and M∗ are ro-
tation matrices which influence the landscapes and O∗ de-
cides global optima of each function. Their search spaces are
summarized in Table 1. We perform experiments by varying
combination of functions, M∗ and O∗. One task is instantiat-
ed after one function, which represents task’s type, is chosen,
and its M and O are randomly generated. D is set to 30, so
the search dimension is 30.

We present two sets of cross-domain experimental result-
s. One is in Figs. 3 - 5 that compare the performance of a
single task EA (denoted as ST) to the MFEA variants. MF
denotes MFEA, GMF denotes MFEA plus task grouping s-
trategy, and GMF+S denotes GMF integrated with the new s-
election criterion. It is noted that the mating selection is intro-
duced along with the new selection criterion in GMF+S and
largely reduces the evaluation calls by nearly a half. 50 tasks
and a population of 250 individuals evolve over 200 genera-
tions. All the results are averaged over 20 independent runs.
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(b) 50 tasks, 11 positions for O

Figure 3: Convergence trends of 50 tasks
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Figure 4: Running time and evaluation calls of 50 tasks.
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Figure 5: The changes of number of groups (median, minimum and
maximum numbers) of GMF+S

The random mating probability (rmp) of MFEA keeps the
same parameter value 0.3 as in the original paper [Gupta et
al., 2016]. GMFEA variants (GMF and GMF+S) have a full
crossover and a mutation probability of 0.8 among members
in the same group, and the normalised neighbour size val-
ue is set to 0.4. Due to the quasi-Newton method in MFEA
variants that highly strengthens the local search, we resort to
a relatively big α = 0.95 for a relatively small demand of
a population diversity in the experiments. The value of α is
decided by a trade-off between the run time and the objec-
tive values in the experiments (which is not shown due to the
limited space).

Fig. 3 shows the convergence trends of 50 tasks with d-
ifferent position sets. The averaged normalised objective
value is computed by 1/(20 × 50) ×

∑
j f̃j , where f̃j =

(fj − (fj)min)/((fj)max − (fj)min), j represents task Tj ,
(fj)min and (fj)max are the minimum and maximum objec-
tive values among all runs of ST and MFEA variants corre-
sponding to task Tj . 250 individuals serving for a single task
earns the best beginning in ST. However, all the MFEA vari-
ants defeat ST after several generations because ST is quickly
trapped in a local optimum. GMFEA variants exhibit a better
convergence compared to MF, while the performance of GM-
F+S is between GMF and MF. For both cases, the variances
are rather small (can’t be shown in the figures), which implies
a fast convergence and is consistent with the trends in Fig. 3.

In Fig. 4, MFEA variants show great time advantage over
ST for running multiple tasks with the same size of popula-
tion. GMF is more time-consuming than MF due to the time
spent on grouping tasks and updating CDs. GMF+S is the
fastest among all four algorithms as it reduces the number of
individual evaluations.

Fig. 5 shows the changes of the number of groups of GM-
F+S. Global optima of 50 tasks distributed among 6 positions
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Figure 6: Convergence trends of larger task sets

and 11 positions become stable within 100 generations, which
endorses the reasonable strategy of grouping tasks and its util-
ity. Fig. 6 focuses on the scalability tests of MF and GMF+S.
Two larger task sets of 75 tasks and 100 tasks are considered
in two position sets. The population size increases to 400 and
other parameters keep the same. GMF+S outperforms MF
and achieves larger scalability in all the cases.

4.2 Sudoku Puzzles
Sudoku is a puzzle game designed for a player to fill in a 9 x 9
grid with digits from 1 to 9. We draw part of Sudoku puzzles
from the website (websudoku.com) while the rest of puzzles
are hand-crafted.

The chosen Sudoku puzzles serve the purpose of provid-
ing intuitive benchmarks where although there may exist lit-
tle similarity between tasks on the surface, there indeed exist
strong underlying (latent) correlations between the optimum
solutions of the tasks. It is contended that such examples are
common in diverse real-world settings, thereby providing im-
mense scope and motivation for multitask problem-solving.

Two sets of 30 Sudoku puzzles are considered in which 25
puzzles are manually generated while the rest are automated
by our puzzle programs. One contains 15 groups of simi-
lar tasks while the other contains 10 groups of similar tasks.
Fig. 7 gives examples of two pairs of similar tasks: A1-A2
and A3-A4. A population of 500 individuals evolve over 100
generations. GMF+S (α = 1/0.7) denotes GMF+S with two
α settings of 1 and 0.7. Values of other parameters are the
same as those in the previous domains.

We compute the population diversity through the well-
known entropy measurement [Tsujimura and Gen, 1998;
Gupta and Ong, 2016]. E(r,c) denotes the diversity at each
cells and is computed as follows:

E(r,c) = −
∑9

j=1
pr(allele(r,c) = j)·log9(pr(allele(r,c) = j)),

where r and c are the row and column indexes, allele(r,c)
denotes the digit filled in the cells (r, c), and pr(x) represents
the occurrence probability of ‘x’ in one generation.
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Figure 7: Examples of Sudoku puzzles. A1 and A2 are high simi-
lar puzzle pairs so are the pairs of A3 and A4. Other puzzle pairs
composing by the four puzzles are of low similarity.

Subsequently, the population entropy is the sum of diversi-
ty of cells: E = 1

81

∑9
r=1

∑9
c=1E(r,c).

Fig. 8 depicts the convergence trends of two sets of 30
Sudoku puzzles. We don’t add the performance of ST in
Fig. 8 (b) since it has similar trends in Fig. 8 (a). As shown
in the first set of experiments (in Fig. 4), GMF is more time-
consuming than GMF+S while achieving similar objectives.
Hence we don’t show GMF in the second set. We rough-
ly divide Fig. 8 (a) into two stages by the 20th generation
and divide Fig. 8 (b) by 30th generation. In both the fig-
ures, ST converges in the fastest manner, followed by GM-
F+S (α = 1), GMF+S (α = 0.7) again, and the slowest MF
in the former stage. In the latter stage, GMF+S (α = 0.7)
converges first, followed by GMF+S (α = 1), MF and ST
again.

We account for the convergence performances accompa-
nied by population diversities in Fig. 9 (a). Only the pop-
ulation entropy of 15 groups of similar tasks case is given
because the other is similar. ST has the lowest population di-
versity, which helps its fast convergence in the former stage;
however, it is easily trapped in a local optimum. Although ST
offers each task the whole population of individuals, GMF+S
(α = 0.7) has a population diversity between MF and GM-
F+S (α = 1) and finally convergences to the best against all
the other algorithms. On the one hand, GMF+S (α = 0.7)
keeps a higher population diversity than GMF+S (α = 1),
which indeed accelerates the convergence speed in the lat-
ter stage. On the other hand, MF has the highest popula-
tion diversity but performs worse than GMF+S, which shows
that the unlimited population diversity derived from too many
negative information transfers is harmful to the convergence.
Fig. 9 (b) shows the changes of number of groups of GMF+S
(α = 0.7). After 50 generations, the number of groups keeps
stable around 15.

In addition, we further investigate individual similarity in
ST. In every iteration, we sample 300 individuals for each
task (A1-A4) in terms of individual fitness in a population,
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Figure 8: Convergence trends of 30 Sudoku puzzles
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Figure 9: Other metrics of 15 groups of similar tasks

and calculate the normalized Manhattan distance (MD) for
every pair of individuals. Fig. 10 shows the individual simi-
larities that are drawn from different pairs of tasks. In Fig. 10
(a), individuals from similar tasks A1 and A2 have low dis-
tance leading to good similarity. This is also expected in
Fig. 10 (b) when individuals from task A3 and A4 are com-
pared. The experimental results verify our hypothesis that
tasks having near global optima are similar, which motivates
the idea of grouping tasks in MFEA, and indicates the neces-
sary of introducing diversity in the new selection process.

5 Conclusion and Future Work
We propose the group-based MFEA that is scalable to deal
with the optimisation of a significant number of tasks that
can’t be solved by the plain MFEA. The grouping is careful-
ly designed using clustering algorithms and the selection is
based on two well-formulated components. The performance
is demonstrated by different angles over multiple domains.
The results suggest effective performance with good efficien-
cy achieved by GMFEA, which leads to promising solution-
s to a general many-task solver in many applications like a
cloud platform. We notice that the algorithm cannot handle
well the situation that few similar tasks exist in the task set,
e.g. in an extreme circumstance that each group contains only
one task. We will deal with this situation in the future work.
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Figure 10: Individual similarity for different sets of tasks
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