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Brief Overview of Derivatives

Term Derivative comes from the word Derived

Financial product whose structure (and hence, value) is derived from
the performance of an underlying entity
Technically a legal contract between buyer and seller that is either:

Lock-type: Entitles buyer to future contingent-cashflow (payoff)
Option-type: Buyer has future choices, leading to contingent-cashflow

Some common derivatives:
Forward - Contract to deliver/receive asset on future date for fixed cash

Forward Payoff: f (Xt) = Xt − K

European Option - Right to buy/sell on future data at agreed price

Call and Put Option Payoff: max(Xt − K , 0) and max(K − Xt , 0)

American Option - Can exercise option on any day before expiration

Why do we need derivatives?
To protect against adverse market movements (risk-management)
To express a market view cheaply (leveraged trade)
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Derivatives Pricing and Hedging problems as MDPs

Pricing: Determination of fair value of an asset or derivative

Hedging: Protect against market movements with “opposite” trades

Replication: Clone payoff of a derivative with trades in other assets

We consider two applications of Stochastic Control here:

Optimal Exercise of American Options in an idealized setting
Optimal Hedging of Derivatives Portfolio in a real-world setting

Both problems enable us to price the respective derivatives

Expressing these problems as MDP Control brings ADP/RL into play

Optimal Exercise of American Options is Optimal Stopping problem

So we start by learning about Stopping Time and Optimal Stopping
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Stopping Time

Stopping time τ is a “random time” (random variable) interpreted as
time at which a given stochastic process exhibits certain behavior

Stopping time often defined by a “stopping policy” to decide whether
to continue/stop a process based on present position and past events

Random variable τ such that Pr [τ ≤ t] is in σ-algebra Ft , for all t

Deciding whether τ ≤ t only depends on information up to time t

Hitting time of a Borel set A for a process Xt is the first time Xt

takes a value within the set A

Hitting time is an example of stopping time. Formally,

TX ,A = min{t ∈ R|Xt ∈ A}

eg: Hitting time of a process to exceed a certain fixed level
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Optimal Stopping Problem

Optimal Stopping problem for Stochastic Process Xt :

W (x) = max
τ

E[H(Xτ )|X0 = x ]

where τ is a set of stopping times of Xt , W (·) is called the Value
function, and H is the Reward function.

Note that sometimes we can have several stopping times that
maximize E[H(Xτ )] and we say that the optimal stopping time is the
smallest stopping time achieving the maximum value.

Example of Optimal Stopping: Optimal Exercise of American Options

Xt is risk-neutral process for underlying security’s price
x is underlying security’s current price
τ is set of exercise times corresponding to various stopping policies
W (·) is American option price as function of underlying’s current price
H(·) is the option payoff function, adjusted for time-discounting
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Optimal Stopping Problems as Markov Decision Processes

We formulate Stopping Time problems as Markov Decision Processes

State is Xt

Action is Boolean: Stop or Continue

Reward always 0, except upon Stopping (when it is = H(Xτ ))

State-transitions governed by the Stochastic Process Xt

For discrete time steps, the Bellman Optimality Equation is:

V ∗(Xt) = max(H(Xt),E[V ∗(Xt+1)|Xt ])

For finite number of time steps, we can do a simple backward
induction algorithm from final time step back to time step 0

Ashwin Rao (Stanford) Derivatives Chapter January 29, 2022 6 / 17



Mainstream approaches to American Option Pricing

American Option Pricing is Optimal Stopping, and hence an MDP

So can be tackled with Dynamic Programming or RL algorithms

But let us first review the mainstream approaches

For some American options, just price the European, eg: vanilla call

When payoff is not path-dependent and state dimension is not large,
we can do backward induction on a binomial/trinomial tree/grid

Otherwise, the standard approach is Longstaff-Schwartz algorithm

Longstaff-Schwartz algorithm combines 3 ideas:

Valuation based on Monte-Carlo simulation
Function approximation of continuation value for in-the-money states
Backward-recursive determination of early exercise states

RL is an attractive alternative to Longstaff-Schwartz algorithm
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Binomial Tree for Backward Induction
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Optimal Exercise Boundary of American Put Option
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Classical Pricing and Hedging of Derivatives

Classical Pricing/Hedging Theory is based on a few core concepts:

Arbitrage-Free Market - where you cannot make money from nothing
Replication - when the payoff of a Derivative can be constructed by
assembling (and rebalancing) a portfolio of the underlying securities
Complete Market - where payoffs of all derivatives can be replicated
Risk-Neutral Measure - Altered probability measure for movements
of underlying securities for mathematical convenience in pricing

Assumptions of arbitrage-free and completeness lead to (dynamic,
exact, unique) replication of derivatives with the underlying securities

Assumptions of frictionless trading provide these idealistic conditions

Frictionless := continuous trading, any volume, no transaction costs

Replication strategy gives us the pricing and hedging solutions

This is the foundation of the famous Black-Scholes formulas

However, the real-world has many frictions ⇒ Incomplete Market

... where derivatives cannot be exactly replicated
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Pricing and Hedging in an Incomplete Market

In an incomplete market, we have multiple risk-neutral measures

So, multiple derivative prices (each consistent with no-arbitrage)

The market/trader “chooses” a risk-neutral measure (hence, price)

This “choice” is typically made in ad-hoc and inconsistent ways

Alternative approach is for a trader to play Portfolio Optimization

Maximizing “risk-adjusted return” of the derivative plus hedges

Based on a specified preference for trading risk versus return

This preference is equivalent to specifying a Utility function

Reminiscent of the Portfolio Optimization problem we’ve seen before

Likewise, we can set this up as a stochastic control (MDP) problem

Where the decision at each time step is: Trades in the hedges

So what’s the best way to solve this MDP?
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Deep Reinforcement Learning (DRL)

Dynamic Programming not suitable in practice due to:

Curse of Dimensionality
Curse of Modeling

So we solve the MDP with Deep Reinforcement Learning (DRL)

The idea is to use real market data and real market frictions

Developing realistic simulations to derive the optimal policy

The optimal policy gives us the (practical) hedging strategy

The optimal value function gives us the price (valuation)

Formulation based on Deep Hedging paper by J.P.Morgan researchers

More details in the prior paper by some of the same authors
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Problem Setup

We will simplify the problem setup a bit for ease of exposition

This model works for more complex, more frictionful markets too

Assume time is in discrete (finite) steps t = 0, 1, . . . ,T

Assume we have a position (portfolio) D in m derivatives

Assume each of these m derivatives expires in time ≤ T

Portfolio-aggregated Contingent Cashflows at time t denoted Xt ∈ R
Assume we have n underlying market securities as potential hedges

Hedge positions (units held) at time t denoted αt ∈ Rn

Cashflows per unit of hedges held at time t denoted Yt ∈ Rn

Prices per unit of hedges at time t denoted Pt ∈ Rn

Trading account position at time t is denoted as βt ∈ R
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States and Actions

Denote state space at time t as St , state at time t as st ∈ St
Among other things, st contains αt ,Pt , βt ,D

st will include any market information relevant to trading actions

For simplicity, we assume st is just the tuple (αt ,Pt , βt ,D)

Denote action space at time t as At , action at time t as at ∈ At

at represents units of hedges traded (positive for buy, negative for sell)

Trading restrictions (eg: no short-selling) define At as a function of st

State transitions Pt+1|Pt available from a simulator, whose internals
are estimated from real market data and realistic assumptions
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Sequence of events at each time step t = 0, . . . ,T

1 Observe state st = (αt ,Pt , βt ,D)

2 Perform action (trades) at for account position change = −aT
t · Pt

3 Trading transaction costs, eg. = −γ · abs(aT
t ) · Pt for some γ > 0

4 Update αt as: αt+1 = αt + at (force-liquidation at T ⇒ aT = −αT )

5 Realize cashflows (from updated positions) = Xt+1 + αT
t+1 · Yt+1

6 Update trading account position βt as:

βt+1 = βt − aT
t · Pt − γ · abs(aT

t ) · Pt + Xt+1 + αT
t+1 · Yt+1

7 Reward rt = 0 for all t = 0, . . . ,T − 1 and rT = U(βT+1) for an
appropriate concave Utility function U (based on risk-aversion)

8 Simulator evolves hedge prices from Pt to Pt+1
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Pricing and Hedging

Assume we now want to enter into an incremental position (portfolio)
D ′ in m′ derivatives (denote the combined position as D ∪ D ′)

We want to determine the Price of the incremental position D ′, as
well as the hedging strategy for D ′

Denote the Optimal Value Function at time t as V ∗t : St → R
Pricing of D ′ is based on the principle that introducing the
incremental position of D ′ together with a calibrated cashflow (Price)
at t = 0 should leave the Optimal Value (at t = 0) unchanged

Precisely, Price of D ′ is the value x such that

V ∗0 ((α0,P0, β0 − x ,D ∪ D ′)) = V ∗0 ((α0,P0, β0,D))

This Pricing principle is known as the principle of Indifference Pricing

The hedging strategy at time t for all 0 ≤ t < T is given by the
Optimal Policy π∗t : St → At
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DRL Approach a Breakthrough for Practical Trading?

The industry practice/tradition has been to start with Complete
Market assumption, and then layer ad-hoc/unsatisfactory adjustments

There is some past work on pricing/hedging in incomplete markets

But it’s theoretical and not usable in real trading (eg: Superhedging)

My view: This DRL approach is a breakthrough for practical trading

Key advantages of this DRL approach:

Algorithm for pricing/hedging independent of market dynamics
Computational cost scales efficiently with size m of derivatives portfolio
Enables one to faithfully capture practical trading situations/constraints
Deep Neural Networks provide great function approximation for RL
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