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PREFACE

This book is intended to serve as a comprehensive textbook of harmonic analysis with two
goals; the first is to present typical arguments for readers to feel the flavor of the real-variable
method. The other is to introduce various function spaces. Anyone that has even just scratched
the surface of the theory of integration, general topology and functional analysis can start this
book without much difficulty.

I wrote this book based on my teaching experience as well. The experience of my teaching
assistant at the University of Tokyo helped a lot.

Throughout this book, we usually place ourselves in R? equipped with the Lebesgue measure.
However, after Chapter 11, we sometimes place ourselves in the setting of the probability space
(Q,F, P). My decision to deal with probability theory is to show that harmonic analysis has a
lot to do with probability theory.

I hope that this book will be of service to the students wishing to specialize in harmonic
analysis or who wish to scratch the surface of harmonic analysis. I intended to publish a book
that contains topics when he struggled to study in 2002 and 2003.

Yoshihiro Sawano, Sagamihara.

ACKNOWLEDGEMENT

This book is originally based on a seminar given at the University of Tokyo, Graduate School
of Mathematical Sciences. However, after deciding to publish it, much content was added and
the new material is based mostly on other lectures given there.

Orientation of this book.
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In Chapter 1 we have selected some typical problems and shown the readers the flavor of
harmonic analysis.

After this bird’s-eye-view of this book, we shall briefly review Lebesgue spaces in Chapter
3. In Chapter, 4 we take up Schwartz distributions as a review of elementary Fourier analysis,
and collect some elementary topics of functional analysis in Chapter 5.

Chapter 7 is devoted to presenting elementary facts of maximal operator theories that are
frequently applied to analysis, in general. In Chapter 8, we investigate the boundedness prop-
erties of singular integral operators from many points of view. In Chapter 9, we integrate
Chapters 7 and 8 and investigate the Hardy-Littlewood maximal operator and singular integral
operators in more depth.

Chapter 11 deals with the theory of martingales. It is the author’s hope that the reader
will come to see that there is a close connection between harmonic analysis and probability
theory. Moreover, for the reader who is interested in only harmonic analysis, the discussion on
probability theory can be skipped. In Chapter 12 we consider ergodic theory as an application
of probability theory.

Chapter 14 deals with more specialized topics related to harmonic analysis, as well as we
review elementary notions such as resolvent sets and compact operators. This chapter deals with
the Bochner integral, semigroups and Banach algebra. Chapter 15 deals with more complicated
structures: the space of tempered distributions S’(R?) is a typical example of topological vector
spaces. As a concrete example, we present a theory of the distribution space D’(Q2) for open sets
) C R? and take up topological linear spaces which cannot be endowed with any (quasi-)norm.
In Chapter 16 we reconsider interpolation, which somehow appeared in places like Chapters 7
and 8, and aim to develop a systematic theory of interpolation. Chapter 17 will serve as an
introduction to wavelet theory, as well as an example of the usage of the Calderén-Zygmund
theory. One of the purposes of this chapter is to consider the notion of basis.

Part 18 can be read independently of Part 13. In Chapter 19, we develop the ¢4¢-valued
extension. By Theorem 1.7 in Section 1, we know that

(0.1) M fllLecry < cpllfllze(my-

By “a vector-valued extension” we mean

q

Q=

(02) Zijq Scp7q Z|f]|q 5
Jj=1 j=1

Lr(T) Lr(T)
where 0 < ¢ < co. Here we modify (0.2) to define

sup M f;
jEN

<6
Lr(T)

sup | f;]
JEN e
The aim of this chapter is to consider such extensions. In Chapter 20, we present a powerful tool
called the Littlewood-Paley theory. As well as the theory on R%, we consider its counterpart to

probability theory, called the Burkholder-Gundy-Davis inequality.

In Part 21, we consider function spaces appearing in Fourier analysis and partial differential
equations. In actual analysis, such as investigation of a particular differential equation, it is not
enough to use the Sobolev space W™P?(R4) with m € Ng = {0,1,2,...} and 1 < p < co. We will
have to measure fractional order differentiability. In Chapter 23, we consider function spaces
carrying 1 or 2 parameters, while in Chapter 24, we exhibit some examples of applications
of our results from functional analysis, function spaces, Littlewood-Paley theory and theory of
singular integral operators. As an application of the maximal theory we take up the functions on
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R. There are many properties decribing the functions on R: monotonicity, convexity, Lipschitz
continuity, etc. Here covering lemmas that appeared in Chapter 7 play a crucial role. After
setting down the key properties of such functions, in particular convex functions, we take up
Orlicz spaces. We can say that the space LP are made of the function ¢(t) = ¢?, ¢ > 0. From
this viewpoint Orlicz spaces reflect behavior near t = 0 and ¢ = oco. For example the Orlicz
spaces contain a class of the function space corresponding to min(t, t2).

Finally, in Part 26, we collect some other materials and supplement the topics in this book.
Chapter 27 contains some further facts on measure theory.

Exercise problems are scattered throughout this book but, most of them are presented with
some clues. Some problems are solved easily by re-examining or mimicking the proofs of other
theorems. However, the author expects the reader to solve them so that they can be familiar
with the arguments of harmonic analysis, more than just the statement of the propositions.
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Notations in this book.

Notation (Sets and set functions).

(1) We usually use the £2-norm or the /*°*-norm to define a ball in R%.

(2) The metric ball defined by ¢? is usually called a ball. We denote by B(z,r) the ball
centered at x of radius r. Given a ball B, we denote by ¢(B) its center and by r(B) its
radius. We write B(r) instead of B(o,r), where o := (0,0,...,0).

(3) By “cube” we mean a compact cube whose edges are parallel to the coordinate azes.
The metric ball defined by ¢ is called a cube. If a cube has center x and radius r, we
denote it by Q(z,r). From the definition of Q(z,r), its volume is (2r)%. We write Q(r)
instead of Q(o,r). Given a cube @, we denote by ¢(Q) the center of @ and by £(Q) the
sidelength of Q: £(Q) = |Q|*/¢, where |Q| denotes the volume of the cube Q.

(4) Given a cube Q and k > 0, k@ means the cube concentric to Q with sidelength k ¢(Q).
Given a ball B and k > 0, we denote by k B the ball concentric to B with radius kr(B).

(5) Let E be a measurable set. Then we denote its indicator function by xg. If E has
positive measure and F is integrable over f, then denote by mg(f) the average of f
over E. |E| denotes the volume of E.

(6) If we are working on R?, then B denotes the set of all balls in R, while Q denotes the
set of all cubes in R%. Be careful because B can be used for a different purpose: When
we are working on a measure space (X, B, ), then B stands for the set of all Borel sets.

(7) The symbol $A means the cardinality of the set A.

(8) A family of sets {Xx}aea is said to be almost disjoint, if there exists a constant ¢ > 0
depending only on the underlying space X so that

(0.3) Y Xy<e
AEA
(9) The symbol 2% denotes the set of all subsets in X.
(10) Let X be a topological space. Then Kx is the set of all compact subsets of X, and Ox
is the set of all open subsets of X.
(11) The set Z(R) denotes the set of all closed intervals in R.

Notation (Numbers).

(1) Let a € R. Then write a4 := max(a,0) and a_ := min(a,0). Correspondingly, given
an R-valued function f, f; and f_ are function given by f(x) := max(f(z),0) and
f—(x) := min(f(x),0), respectively.

(2) Let a,b € R. Then denote a Vb = max(a,b) and a A b = min(a,b). Correspond-
ingly, given R-valued functions f, g, f V g and f A g are functions given by fV g(z) =
max(f(x),g(x)) and f A g(x) = min(f(z), g(z)), respectively.

(3) Let A,B > 0. Then A < B means that there exists a constant C' > 0 such that
A < CB, where C depends only on the parameters of importance.

(4) We define

(0.4) N:={1,2,...}, Z:={0,+£1,42,...}, Ng := {0,1,...}.
(5) We denote by K either R or C, the coefficient field under consideration.

Notation (Function spaces).

(1) Let X be a Banach space. We denote its norm by ||-||x. However, we sometimes denote
the LP(p)-norm of functions by || - ||,.

(2) Let © be an open set in R?. Then C2°(f2) denotes the set of smooth function with
compact support in €.

(3) Let 1 < j < d. The symbol z; denotes not only the j-th coordinate but also the
function x = (z1,...,2q) — ;.
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(4) Suppose that {f;};en is a sequence of measurable functions. Then we write

1
P

(05) 5llren = | [ X is@ir] do| o<pg<e.
j=1

ya
q

(5) We denote uninteresting positive constants by c¢. Even if they are different we denote
them by the same letter. Therefore the inequality 2¢ < ¢ makes sense.

(6) The space L?(R?) is the Hilbert space of square integrable functions on R? whose inner
product is given by

(06) ()= [ 1) 300 do

(7) In view of (0.6), the inner product of L?(R9), it seems appropriate that we define the
embedding Li (R?) NS'(RY) — S'(RY) by:

loc

(0.7) feLli . RYNS(RY) — Fy:= {g eSRY — [ g@)f(z) dm} .
Rd
However, in order that f — F be linear, we shall define it later by:
(0.8) feLl . (RYNS (RY) s Fy = {g ceSRY — [ ga)f(z) d:c} .
Rd

(8) Let E be a measurable set and f be a measurable function with respect to the Lebesgue
1
measure. Then denote mpg(f) := —/ f
E| /i

(9) Let 0 < < 00, E be a measurable set, and f be a positive measurable function with
respect to the Lebesgue measure. Then denote mg])(f) = mE(f")%.
10) Let 0 < 7 < co. We define the powered Hardy-Littlewood maximal operator M by
]

1

1 n
0.9 M f(z) = sup 7/ f)|"dy | .
(0.9) (=) r>0 \ |B(z, R)| B(z,R)| W)l
For x € R?, we define (z) := /1 + |z|2.

1)

2) The space C denotes the set of all continuous functions on R.

3) The space BC(R?) denotes the set of all bounded continuous functions on R<.

4) The space BUC(R?) denotes the set of all bounded uniformly continuous functions on

R4

(15) Occasionally we identify the value of functions with functions. For example sin x denotes
the function on R defined by x + sin .

(16) Given a Banach space X, we denote by X* its dual space. The set X is the closed
unit ball in X.

(17) Let p be a measure on a measure space (X, B, u). Given a py-measurable set A with

positive p-measure and a function f, we denote mqg(f) = ﬁ S f(x)dp(z). Let

0 < n < 00. Then define mg)(f) = mQ(f")% whenever f is positive.

(18) For x € R?, we define Q, to be the set of all cubes containing . Given a measurable
function, M f denotes the uncentered Hardy-Littlewood maximal operator and M’ f
denotes the centered Hardy-Littlewood maximal operator.

Mf(x) = Sup mq(|f1),

x

M’ f(z) = supmq,(|f])-
r>0

(19) If notational confusion seems likely, then we use [ ] to write M f(x) = M[f](x), Fp(§) =
Flel(§), ete.
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Finally, we admit the choice of axiom. We remark that it is equivalent to admiting that

H K, is compact whenever we are given a collection of compact sets { K }rea-
AEA
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Part 1. A bird’s-eye-view of this book

What is harmonic analysis 7 Roughly speaking:

(1) To study the property of the Fourier series and the Fourier transform.
(2) To study the property of integral transforms in general.
(3) To study the behaviour of functions.

In this chapter, we shall make a quick overview of the main ideas used throughout this book. As
a starting material, we take up the Dirichlet problem on the unit disk D := {z € C : |z| < 1} in
the complex plane C and shall start by introducing about what a harmonic analytic argument
looks like.

1. INTRODUCTION

Although this section is meant for those who have learnt about complex analysis, the
Lebesgue integral and functional analysis, it should not be too difficult for those we are ac-
quainted with these fields. The results in this section will not be used later: we wish only to
describe the key ideas of this book. From Chapter 3 we get into the main theory of this field,
but Chapter 1 will help us to get into the remaining parts.

1.1. Maximal operator on JD.

First let us recall the Dirichlet problem on the complex plane C:

{—Au =0 onD,

(1.1)
ul0D = f on ID,

where f is a given function and dD is the boundary of the unit disk on the complex plane C,
that is, 0D := {z € C : |z| = 1}. The unknown is the function v : D — C. Of course, it is
ideal that —Aw exists in the sense of the usual partial derivative. For example, in engineering,
it is not preferable that we consider the weak solution. This is why we prefer to postulate that
u € C%(D). From this point of view, it is natural that f € C'(0D). Thus, a natural conclusion
for (1.1) is the following:

Theorem 1.1. Given f € C(dD), we can find a unique solution u € C2(D) N C(D) of (1.1).
Outline of the proof. To prove the uniqueness, we use, for example, the maximum principle. For

details, we refer to [2, 50]; we shall not go into the details because it is not of much importance
in this chapter.

To prove the existence, it turns out that we can write the solution out in full:

(12) O=p [ s T ep
. u(z) = — eV)———db, z .
27 Jo |z —ei?|2 7
. . . . 1—|2)?
Observe that the function u inherits harmonicity from the kernel z € C — W eR.
z —et

Up to this point, we have made a very quick review of the proof of uniqueness and harmonicity
of the constructed solution (1.2). The interested reader may find it worthwhile to fill in the
details by themselves.
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However, they are not what we want to shed light on. Indeed, we are left with the task

of showing the boundary condition, for which give a detailed proof. It suffices to estimate
lu(z) — f(e'%)| for fixed 6:

) 1 27 ) 1— 2
Let 0 < < % be fixed. Since f(e'fy) = —/ f(e’9°)| 12 d#, it follows that:
0

27 z — eif]2

Ju(z) — f(e™)]

1 o i0 00y 1 — |Z\2
— Yy — oy ———— df
S RN ICORS (GOl
1 O0o+n ‘ " " 1— ‘z|2 1 0o—n Oo+m | ( 0 " | 1— |Z‘2
= f(e?) = f(e"°)|——55 df + — +/ f(e?) = f(e"°)|———= db
27 Joo—n |z — €2 27 Joo—n 0o-+1 |z — €2

1 , , fotn 1 — |22 4(1 -
Sgw< sup If(e”)—f(e“’”)l> | R S sw 1w

|1 — €2 yeop

0€[00—n,00+n] o—n
i i 41—z
< s [f@) — fE) + T ap ()
0€[00—n,00+n] | —€ | weID
Letting z — €0, we obtain
(1.3) limsup |u(z) — f(e)[ < sup  |f(e”) = f(e™)].
z€D—et 0€[00—n,00+n]

Since dD is compact, f is uniformly continuous. Therefore, letting n | 0, we obtain

(1.4) lim  |u(z) — f(e')] = 0.
zeD—et%0

FEzercise 1. Show that the function w given by (1.2) is harmonic.

We are now happy because (1.1) was solved completely. However, after learning partial
differential equations, we come to feel that perhaps the function space C'(9D) is not so good.
Instead, L?(OD) seems to be a nice candidate for the space of initial data. More advanced
learners may feel it is still good to replace C'(9D) with the Holder class; the Holder class is not
taken up in this part, but it will appear later in this book. Furthermore in view of (1.2) we are
tempted to make an excursion to other function spaces, say L'(9D), L?(0D) and L>° (D). Let
1 <p < oo. We say that f € LP(9D) if

1/p

27
||f||Lp<aD)=(/0 If(ew)pde) “ .

When p = oo, just let us say that LP(9D) is the set of all essentially bounded functions. The
problem is that in these function spaces, we are considering some equivalence relation, that is,
we disregard the difference for the set of Lebesgue measure 0, so the boundary problem (1.1)
does not make sense. However, it is still possible for (1.1) to make sense by stopping identifying
the functions as above.

A skillful use of maximal operators, defined just below (see (1.7)), will lead us to the following
theorem:

Theorem 1.2. Suppose that f € L'(9D) and that u : D — C is defined for t € 0D by (1.1).
Then we have

(1.5) li?llu(r t) = f(¢t) for a.e. t € ID.
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Before we come to the proof of this theorem, let us make some preparatory observations.
First, letting ¢ = €%, we write u(r %) out in full:

27 T
(1.6) u(re?) = ! / 1_—T2f(ei9)d0 ! / if(e“‘”“)o))cw.
0

T or [1 — 7 ei(0—00)|2 T on |1 —re?|?

If we just look at it, there is no way to proceed further. However, the Hardy-Littlewood maximal
operator paves a way: For a measurable function f, let us define the Hardy-Littlewood maximal
function M f, which is a function of ¢ € 9D, by

(1.7) Mf(t) = sup{|}|/l|f(y)|dy ctelcC 3D}

where I runs over all closed intervals in D containing ¢. The mappint f — M f is referred to
as the Hardy-Littlewood maximal operator. Then, from (1.6), we have
1—r?
———df.
| [1—rei?|?

(1.9 utre®) < 5 [ 15

1—r?
An elementary calculation shows |1 —7#? = 1+72 —2cos¥, so if we let P.(0) := —————,
2|1 —rei?|?
then an approximation procedure gives us a sequence of functions { P, y}nen of the form
2N

(1.9) Pon =) 05N X[—j2-N,j2-N]

j=1

with a; v > 0 and P, n(6) T P-(0). Inserting (1.9) to (1.8), we obtain

(1.10) lu(rei®)| < Jim | (e OF0)) | P, (0) dO < M f(t).
—oo J_
Let us summarize (1.10) as a lemma. Here and below given a function F' and a measurable set
E, let us write {t € D : F > A} = {F > A}, / F(t)dt = / F for simplicity. From (1.10) we
E E

obtain the following pointwise estimate.

Lemma 1.3. Let f € L. _(0D) and define:

loc

(1.11) Mf(t) = sup{1/|f(s)|ds : teIC(?ID)} t € 0D,
1] Ji

where I runs over all closed intervals in D containing t. Then,

(1.12) lu(rt)| < Mf(t) (r€(0,1),t € D).

Now we need information of the operator M. To see this, since M is defined by using
intervals on 0D, it will be helpful to summarize a key property of intervals on dD.

Lemma 1.4 (A special geometric structure of intervals in D). Suppose that {Ix}rea is a
finite family of intervals in OD. Then we can select Ag C A so that:

(1.13) XUpenIn S D X, < 2.
AEAQ

Let us clarify what the conclusion (1.13) says. First, the left inequality says {Ix}xea, and
{In}ren covers exactly the same set. Next, the right inequality says the overlapping at each
point never exceeds 2. With this observation in mind, let us prove Lemma 1.4.
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Proof. Suppose that we are given three intervals Iy, Is, I3 meeting in a point. Then one of
them is not necessary because the remaining two intervals cover it. The proof can be obtained
and is easy to understand, once we notice this geometric observation. If there is a superfluous
interval, we have only to throw it away. By induction on the number of intervals we can prove
the proposition. a

Now we prove the following boundedness property of M, which is called the weak-(1,1)
boundedness of M.

Theorem 1.5. For all f € L'(0D) we have

2
(1.14) RISV IEE Y RFCIE

Proof. By the inner regularity of the Lebesgue measure, we have only to prove

2
(1.15) K< 5 [ Il
oD
for any compact set K contained in {M f > A}.

From the definition of M, if ¢ € 0D satisfies M f(t) > A, then there exists an interval I
1
containing ¢ such that T / |f(s)|ds > A. By compactness of K, together with Lemma 1.4,
I

we can find Iy, Io, ..., I} so that
u 1
XKSZXIjSQ,m/ lf(s)|ds >N, j=1,2,... k.
j=1 IV

Thus, we have

k
1 2
(1.16) K<< [ 1r@lds<3 [ 15
= AJr, A Jop
This is the inequality we wish to prove. ]

With (1.14) in mind, let us prove the following theorem concerning with the boundary value
of (1.1).

Theorem 1.6. Let f € L*(0D). Then we have:
(1.17) li%rllu(rt) = f(t) a.e. t € OD.

Proof. , Observe that what we have to prove can be rephrased as follows: The set

(1.18) E. = {t € 0D : limsup |u(rt) — f(¢t)| > O}
rT1

has measure 0 in terms of lim sup. However, since (0,00) = | |(j 7!, 00), it suffices to establish

s

1

J
that:

|{t€ OD : limsup |u(rt) — f(t)] >5}| =0
rT1
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for € > 0 by virtue of the monotonicity of the measures. However, as is easily verified, (1.12) is
true if f is continuous. As a consequence:

{t €D : listlup lu(rt) — f(t)] > 5} = {t €D : listlup|(u —v)(rt) = (f—g)®)] > 5} ;

where v is a solution corresponding to the initial value of g € C'(9D). If we invoke the Hardy-
Littlewood maximal operator control for f — g instead of f, we obtain

(1.19) u(rt) —v(rt)] < M[f — g)(t).
Therefore, it follows that

(1.20) SHMIf =gl +1f —gl > e}

{t € 0D : limsup |u(rt) — f(t)] > 5}

rT1

The set in the right-hand side is contained in the union of {M[f —g] > %} and {|f —g| > %} )

One convenient way to check this is to observe that

(1.21) Mf = gl(t) + |f(t) —g(t)] <e,

whenever M[f — g](t) < g and |f(t) —g(t)| < g (Note that (1.21) follows immediately from
the definition of sup and the triangle inequality.)

Now we note that
€ 2
(122) {ir-a>5}= [ Lds < 2f gl
{ 2} (21f—gl>c} €

2

because 1 < —|f — g| on the set {2|f — g| > €} . By virtue of the Hardy-Littlewood maximal
€

inequality (1.14) established above, we obtain

(1.23) ‘{M[f—g] > %H Sgllf—g\lr

Putting (1.20)—(1.23) together, we conclude

6
< -If =gl
11 3

|{t € 0D : limsup |u(rt) — f(t)] > 8}

for all continuous functions g. Since g € C(9ID) is arbitrary and the set of all continuous
functions forms a dense subset in L*(9D), it follows that:

(1.24)

{t € 0D : limsup |u(rt) — f(t)| > e}‘ =0.

rT1

This is the result we wish to prove. O

Before we conclude this section let us provide some supplemental information on the Hardy-
Littlewood maximal operator M.

Theorem 1.7. Let 1 < p < oo. Then we have

4p »
(1.25) sl < (525) 1

for all f € LP(0D).
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Proof. First, let us fix t € 0D. Then we have
Mf(t)
(1.26) Mf(t)P = / pAPTha)
0

thanks to the fundamental theorem of calculus. Seemingly, (1.26) yields nothing, but with the
help of Fubini’s theorem, we are led to an expression where the level set {M f > A} appears:

Mf(t) oo
(L) M, = /a ) ( / pAP—ldA> dt = /8 ) ( / pAP*X{Mf»}(t,A)dA) dt.
0 0

If we change the order of integration by using the Fubini theorem and we factor out the function
independent of ¢, then the distribution function, which we have considered in Theorem 1.5,
appears.

(1.28) /aD </O PN X (psap(tA) dA) dt:/ pAPTH{Mf > A} |dA.

0
Recall that | {M f > A} | is exactly the right-hand side of Theorem 1.5, which is bounded by

XH fll1- However, it turns out that direct usage of this inequality directly will not work. The

crux of the proof is to combine Theorem 1.5 and the L°°(9D)-boundedness of M, which we
have not been alluding to, for each A. To be precise, observe that

{Mf > A} = {MIx¢ 5150723 + X( 1510720 F1 > XY CT{M [xq 150720 F1 + MIxq p1<a/23 f1 > A},
by virtue of the subadditive inequality
(1.29) M[F + G] < MF + MG.

Since the maximal operator M deals with the average of the functions,

A
Mx¢ri<a2f] < )
holds. The estimate is called the L>°(9D)-boundedness. Thus, it follows that
(1.30) {Mf >} C{MIxqip>a/21 /1 > A/2}

Now we invoke the Hardy-Littlewood maximal inequality (1.14) obtained above. Then we
obtain the key estimate which is valid for our present situation.

4
(1.31) H{MF > M < Slixqissaz fla
If we insert this key inequality, then it follows that
(132 sl <ap [ ([ xieamOuolsoldr) o
0

Changing the order of integrations once more, we are led to

oo [f(0)]
(1.33) 4p/0 A2 (/{m X{|f|>,\/2}()\,t)|f(t)dt) dx =4p/aD <|f(t)|/0 A”‘Qd)\> dt.

Since we are assuming p > 1, the integral

If(t)lp2 1 o
APT2AN = ——|f()P7.
/0 p—1 |
is finite for a.e. t € OD.
Thus, inserting (1.33) to (1.32), we finally see

4p
(1.34) M f][,F < 2ﬁllfl\p”-
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Ezercise 2. Prove (1.29).

1.2. Conjugate functions on 0D.

In this section, we take up the Hilbert transform on 0, which is concerned indirectly with
the Fourier series. In the previous subsection, we dealt with harmonic functions with boundary
value given beforehand: now, we shall consider their harmonic conjugate.

Definition 1.8 (Harmonic conjugate). Let Q be a domain in C. Then the harmonic conjugate
of the harmonic function v : @ — C is a harmonic function v : @ — C such that u + iv is
holomorphic.

Since D is simply connected, we see that, for any u which is harmonic on D, its harmonic
conjugate always exists. For details we refer to [2, 50]. It is not so hard to see that two different
harmonic conjugates differ by an additive constant, if we use the maximal principle and so on.
In what follows, we say that the conjugate function v is canonical if v(0) = 0.

In this section, starting from a boundary function f : D — C, we consider its harmonic
extension u given by (1.1) and then the harmonic conjugate v of u. We are now going to show

Theorem 1.9. The boundary value of v exists almost everywhere and belongs to LP(0D),
provided f € LP(0OD).

’Lz(é‘]D))—boundedness by way of Fourier series. | The case when p = 2 is considerably easy

and transparent. We begin with starting a canonical value.

Proposition 1.10. The mapping f — f, taking f to the boundary value of the canonical
conjugate function, is L?(OD)-bounded.

Proof. We shall calculate Ej, where Ei(e?) = ¢™*? by expanding the kernel. The result is:

2 s 0 — — o0 1 o0 o0
S _ zZ—Zz _ Z—Z Zj Ek _ ZJ+1 Zk . ZJ 2]{:-{-1
1—2rcosf@+1r2 i(l—2)(1-z2 i Z i Z Z
+ ( ) ) k=0 k=0 4,k=0

Here, we used |z| < 1 to obtain the absolute convergence of the series. We write z = re®.

Then:

2siné o .
1. Iy
(1.35) 1—2rcosf 4+ r? ! j:lz jzlz

2m
Since / eir . ek O0=r) gy — 2mdjy, - e it follows that
0

~ E >1
(1.36) E,={""% =7
—FE, k<-1
Let us denote
1, k>1,
sign(k) :=< -1, k< -1,
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Since any f € L?(0D) can be expressed as f = Z ar Br with [[{ar}32_sollz2 = 5= fll2, we

k=—o0
conclude that:
(1.37) Z ar By € L*(0D) > f = Y sign(k)ay By € L*(9D)
k=—o0 k=—00
is bounded. O

1.3. Alternate version of L!(9D)-boundedness and Calderén-Zygmund operators. In
this section, we shall prove a kind of L!(9D)-boundedness. In order to explain what we mean,
consider the following:

Definition 1.11 (Dyadic interval on dD).

(1) Let I € Ng. Let the integer k satisfy 0 < k < 2!, Define I} as the arc connecting py;
and py i+1, where py; = exp(2mik 27') € OD. Define Dy := {I; : 0 < k < 21}.
(2) Let f € L'(OD) and | € Ny. Then define

(138) Elf = El[f} = Zmlkz(f) : XIk,l? le Zd7 Mdyadicf(t) = ?ug El[|f|](t)
_ €
Lemma 1.12. Suppose that A > 0 satisfies

1
1.39 A> — f@)|dt.
(1.39) ap] /0

Then there exist disjoint dyadic intervals I1, 15, ..., I, ... such that the following are satisfied:

(140) {Mdyadicf > A} = U I,
Jj=1
1
(1.41) NS | Mayaaief () ds < 2.
1| [Tk

Proof. By definition of the dyadic maximal operator, if Mayadic f(t) > A, we can choose a dyadic
interval I; such that

[f(s)[ds > A.

|It| I,
If I 1s not maximal, that is, there exists another dyadic interval J strictly larger than I; such
that |7| / |f(s)| ds > A, then replace I; with J. Thus, if we replace I; with a larger one, then
we may assume

f(s)|ds < 2X;
|It| 1t| (s)]

as a result, (1.41) is satisfied. A geometric observation shows (1.40). O

We decompose the functions into the good part and the bad part.
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Definition 1.13 (Good part and bad part of functions). Keeping the same notation as in
Lemma 1.12, define:

(f |I f(s) ds) X1, (t) (t € ID),
k|
Zbk tea]D)),

k

f) =b(t) (t €ID)

g(t) :
for k € N.

Lemma 1.14. We have |f(t)| < Mayadic f(t) for almost every t € OD.

Proof. ’ Assume that f is continuous. ‘ It is elementary to prove that:

IGD

(1.42) f(t) = lim |I|/|f s)| ds for all t € OD,

where }ir% is a symbolical notation meaning that, for every € > 0, there exists a dyadic interval
c
Jar;

1
Iy containing ¢ such that ‘u/f(s) ds — f(t)‘ < e, whenever I C Iy is a dyadic interval
I

containing ¢.

’Let us pass to the general case. ‘ Fix f € L'(0D). Then, our strategy is to prove that:

i s ‘”

has zero Lebesgue measure for all ¢ > 0. Choose g € C'(9D) arbitrarily. As we have seen above,
g satisfies

(1.43) E.;:=<tecdD : limsup
IeD

(1.44) g(t) = }161% K / ) ds for all ¢t € OD.

Therefore, it follows that
(1.45) E.;=E. ;4.
Next, we claim that

(1.46) E. ;g CqtedD : limsup ‘ /(f —g)(s)ds
€D 1] Ji

e Vofiras 3

To see this, suppose that ¢ € 9D does not belong to the right-hand side; i.e, assume that ¢
satisfies

w\m

imsup | o [ (7~ a)(9)as

1D
It

and that
|f(t) —g(®)] <

N ™

Then we have

lim sup
IeD
It

|11-| /I(f(u) —g(u))du— (f(t) — g(t))’ <

establishing (1.46).
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Putting together (1.45) and (1.46), we obtain

1
|Ecrl < |{t€dD: limsup’/(f—g)(s)ds
1ep | Jr

]

We estimate the first term on the right-hand side by the Hardy-Littlewood maximal operator
M and use the weak-(1,1) boundedness:

€ € 6
Besl < [{0a1 g1 > S} + [{1r =9l > S} < 217 =gl
Since g € C(9D) is arbitrary, we see that |E. r| = 0. From this, we deduce that:

(1.47) f(t) = lim 1 / f(s)ds for almost all ¢ € OD.
g 1] Jr

Proceeding in the same way, we obtain that |f(t)| < Mayadicf(t) if t € OD satisfies (1.47). O

Now that Lemma 1.14 has been proved, the following is immediate:

Corollary 1.15. Using the notation for Lemma 1.14, one has |g(t)| < 2X for almost every
t € oD.

Proof. If t € @); for some j, then

|Ilj| /Ij f(s)ds
If ¢ belongs to none of the I;’s, then this means

(1.49) Mayadgic f(t) < A

Consequently, applying Lemma 1.14, we obtain |g(t)| < Mayaaicf(t) < 2. O
FEzercise 3. Prove (1.49).

Theorem 1.16 (Riesz, 1927). There exists ¢ > 0 such that:

(1.48) g(t) =

Si/ [f(s)]ds < 2.
1151 Ji,

x c
(1.50) {7 >} < 51l
for every A > 0 and f € L'(0D) N L?(D), and:
(1.51) 1 1le o) < €llfl|Loomy

for every A >0 and f € LP(OD) N L?(OD).

Proof. Observe that we can assume |f(s)]ds > A. For, if not, then we have:

1
[0D] Jon
(152 {7>2}| <10m1 < 1111

1 4
Thus, let us assume o] |f(s)|ds > X and let f = g+b as above. Observer that 2 <l|g@)?
aD

A
if t € OD satisfies |g(t)| > 35 Thus,

(1.53) H|f|>A}\§HI§I>;H+HE|>;}

and:

(1.54) {> 3] < 3 [ ora.
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Now that g is L?(0D)-bounded, we have

4 c
1.55) — §(s)]?ds < — g(s)|? ds.
( 2 [ aekas< 5 [ o
Since |g(t)| < 2A for a.e. t € ID, it follows from (1.55) that

1 2
1.56 7/ thdtgf/ g(t)| dt.
(1.56) w2 [ wra< s [ o

Finally let us recall how g was constructed : g was obtained by taking the average of f on each
interval Ij, and g remains intact outside such intervals. Therefore,

(1.57) [ 1@< [ ir)a
) )
Putting together (1.54), (1.56) and (1.57), we finally have:

{éI > ;H < ;LD|g(t)|dt.

Turning to the estimate for b, we first separate the influence of the intervals {Ij }.

- A ~ A
(1.59) Hb|>2}‘32k:|21k|+ <8D\L}€lek>m{|b>2}
Here, 21} is the double of I, which is concentric to Iy, that is, if

I, = {ew :0¢ (ak — hy,ar + hk)},
then 21}, := {e% : 0 € (ay — 2hy, ax + 2hy)} and we have

(1.60) S oLl =2) L =2|| L
k k

k
If we use the boundedness of M, then we obtain

(1.61) > 20 < 21{MF > MY < S flh-
k

(1.58)

= 2[{Mayagicf > A} < 2{Mf > A}

Therefore, the estimate of Z |21} is now valid.
k

For the estimate of the remaining term, as usual, we have:

A 2 -
(aD\LszIk) N { o] > 2} < A/am\ukzzk |b(s)| ds

2
A Jap\U,, 21,

A

1b(s)| ds

J
2/ ~
< — bi(s)|ds.
5 Sy )

Let j be fixed and e? be a point outside 27;. Then:

27 .
~ sin p (0
bi(ef) = b (et 0=P)\ g4
](e ) /0 ]_71COSp J(e ) P

21 . .
sin sin(f — ¢ o
:/0 ( P o ( I) >bj(ez(0 p))dp

1—cosp 1—cos(d—cy)

(1.62) - /027r (cot (g) — cot (9 2‘”)) b;(¢'O=P) dp.
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By the mean value theorem:

(1.63)

14 9—01 |I|
cot(2)—cot( 5 )‘5 T

so by inserting this estimate to (1.62), we find that:

~ . 0 |b(e?(0=r))|
(1.64) / |b;(e*)]df < |1 (/ 2al,o> do :/ |b(t)| dt.
aD\21 oD\2I \JoD 0 — i I;

If we put together (1.57), (1.59), (1.61) and (1.64) as well as the fact that f = g + b, then we
obtain the desired estimate (1.50). O

Ezercise 4. Prove (1.63).

’ L?(0D)-boundedness with 1 < p < 2 by means of interpolation. ‘ Here, we shall not make

use of the intrinsic expression of the conjugate operation, but instead, what we will need is the
so called weak L!(dD)-boundedness and L?(dD)-boundedness. Using the fundamental theorem
of calculus, we obtain:

L1 o
~ 2
(1.65) If(t)\p:p2”/0 AP 1d>\:p2”/0 X{ (1.0 €0mx[0,00): (01522} (B ANT A,

SO

~ _ oo ) .
/am) Lf(@)IP dt —p2p/ (/o X{(t,)\)GB]D)X[O,oo):|f(t)|>2)\}(t7)‘)/\p d)\) dt
) dA

o0
—1
:p2p/o AP (/ X{(t,)\)EBDx[O,oo):|f(t)\>2)\}(t’)‘) dt

:pzp/ooov—1|{|f| > 22} dx.

This leads to estimate the measure of the level set { |f] > 2)\}, so we decompose f € LP(OD)

at height X; that is, we split f by f = fi + fo with f1 := x{jf<a} - f € L*(OD) and f5 :=
X{|f1>ay - f € L'(0D). Then a similar argument to (1.46) gives us:

{171> 2] < [{IA1> A+ {122 > )]

~ £ 2 ~
To deal with f5, observe that 1 < |Jj\22| on {|f2| > )\}, which yields:
- 1 -
(1.66) {5 > ‘g—/ o) 2 dt.
{ 2 } 22 Jop 2

As was established before, the operation g — ¢ is L?(0D)-bounded, so as a consequence, we
obtain

5 c c
(L67) {121> 2} = 5 / [Fa(0)P dt = 55 / X150 (OLF @O dt.
A% Jon A% Jom
Now that we established an alternative version of the L!(9D)-boundedness as well, we have

Cc

(1.65) {i70> o < § [ inola=5 [ xopen@irola.
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(1.67) and (1.68) are valid. Here we explain how we use (1.67) and (1.68). It is convenient to
calculate some integrals beforehand. Since 1 < p < 2, we have

e 1
-2 . =
woy [ ([ xnen-lswia) o= 2 [ a
~ p—3 2 _ 1 P
(1.70) L7 ([ xuem@iopa) o= jopa
Inserting (1.69) and (1.70) to (1.67) and (1.68), we finally get:

/ o a
( AT 1 \fll >/\H dA+/OOOAP—1H|f2| >A}‘ d)\>
SC{/O 3 (/8DX{f|§A}(t)f(t)|dt> dA+/OOOAps (/BDX””}( e )|2> }

=C [ [f@®)Fat.
oD

The L?(0D)-boundedness for 1 < p < 2 is therefore established.
Ezercise 5. Prove (1.69) and (1.70).

’ L?(0D)-boundedness with 2 < p < co by way of duality. ‘ Let us conclude the proof of the
theorem for the case when 2 < p < co. We note that:

(1.71) F@®Fe)dt = | f(t)g(t)dt
B B
for all f,g € C(8D). By the duality L?(9D)-L* (9D) we also have
(1.72) 7= s | [ ot af
gec@n{o} 9]l |/p

If we put (1.71) and (1.72) together and use the Holder inequality, we obtain

2 1 Slp - 9l
) = sw s < s el

g€C(oD)\{0} HQHp geC(aD)\{0} gl

Since 1 < p’ < 2, we have ||g|l,y S |lgllp for all g € C(OD). Inserting (1.73), we see

5 £ 1lp - gl
[fl, <C  sup 2= =Cf|,
gec@pnfor  llglly

Therefore, the proof is now complete.

1.4. Concluding remarks.

Summarize our observations so far, we see that even from this chapter, we have learnt several
things.

(1) The Hardy-Littlewood maximal operator plays a key role when we want to deduce
results of a.e. convergence.

(2) A wonderful geometric observation paved the way to boundedness of maximal operators.

(3) The L'(0D)-boundedness was really difficult to obtain in comparison with the LP(9D)-
boundedness with 1 < p < co.

(4) A “substitute” of L'(0D)-boundedness exists and was proved by a feat, called the
CZ-decomposition.
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(5) The space L%(dD), along with the Hilbert space structure, seems nicest among other
L?(0D)-spaces.

(6) Once we are given two different L?(JD)-estimates, we can interpolate them to yield
boundedness for other parameters.

(7) To obtain deep results, it is not sufficient to rely only on the triangle inequality: We
have to take into account the distribution functions.

(8) Duality LP(dD)-L* (dD) with 1 < p < oo also helped us obtain the boundedness of
operators.

(9) A weaker variant of the differentiation theorem still holds for L!(9D).

Notes and references for Chapter 1.
Section 1. Theorem 1.2 Theorem 1.5 Theorem 1.6 Theorem 1.9

M. Riesz established Theorem 1.7, which asserts that the conjugation operator f — f is
LP(T)-bounded in 1927 [409].

Theorem 1.16



30 YOSHIHIRO SAWANO

Part 2. Fundamental facts of Fourier analysis
Part 3. Measure theory

The aim of this chapter is to deal with the fundamental material on harmonic analysis.
That is, we are going to build up a theory on measure theory and Fourier analysis. In Section
3 we deal with measure theory on general measure spaces based on Section 2. In Section 4
the function space LP(R?) is taken up, where we will give some fundamental inequalities used
throughout this book. Section 5 is devoted to dealing with key material, the properties of
Schwartz distributions. For example, we discuss the integrability, the differential features of
function spaces and so on. Section 8 is the first example of discussing smoothness. Sobolev
spaces are widely used in partial differential equations. Since this chapter is intended for those
who are not familiar with these topics, the readers who are accustomed to these fields may skip
this part.

2. A QUICK REVIEW OF GENERAL TOPOLOGY

First let us review fundamental facts on topological spaces. The proofs are omitted.
Metric space.

As important examples of topological spaces, we have metric spaces.
Definition 2.1 (Metric spaces). Let X be a set and d : X x X — [0,00) be a mapping. The

function d is said to be a distance function, if for all x,y,z € X

y) > 0 and d(z,y) = 0 implies = = y,
) = d(y, z),
< d(z,y) +d(y, 2).
Let z € X and r > 0. Then define B(z,r) :={y € X : d(z,y) < r}.

Definition 2.2 (Open sets in metric spaces). Let (X, d) be a metric space. A subset O of X is
said to be an open set, if for all z € O we can find a real number r, > 0 such that B(x,r;) C O.

Topological space. Now we make a quick review topological spaces.
Definition 2.3 (Topological space). A collection of subsets Ox of a set X is said to be a

topology on X, if it satisfies three axioms listed below.

(1) @,X € Ox.
(2) Ox is closed under finite intersection, that is, U,V € Ox implies UNV € Ox.
(3) Ox is closed under union, that is, {Uy}rea € Ox implies U U, € Ox.

AEA

Here and below in this section we assume that X is a set and that Ox is a system of open
sets in X.
Definition 2.4 (Closed set). A subset A of X is closed, if A° € Ox.
Exercise 6. Denote by Fx the set of all closed sets. Prove the following.

(1) @,X € Fx.
(2) Fx is closed under finite union, namely, U,V € Fx implies UUV € Fx.
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(3) Fx is closed under intersection, namely, {Uy}xea C Fx implies ﬂ Uy, € Fx.
AeA
Here we shall collect some elementary facts used in this book concerning general topology.

Exercise 7. Let X be a set and X C 2%. Then there exists the weakest topology that contains
X. Prove that the open sets U in this topology are characterized by the following condition :
For all z € U there exist N, € Nand Uy,Us,...,Uy € X such that x €e UyNU;N...NUN C U.

Ezercise 8. Let X be a set and Y be a topological space. Suppose that we are given a family
of mappings {fr}rea from X to Y. Then prove that the weakest topology under which each
f is continuous is generated by the following family of subsets.

(2.1) {fA""(U) : X€ A, U is an open set in Y} .

Let us recall the definition of compact sets.

Definition 2.5 (Compact set). A subset A of a topological space X is said to be compact, if
every open covering of A has a finite subcovering.

A subset in R? is compact precisely when it is bounded and closed, by the Heine-Borel
theorem.

Definition 2.6 (Hausdorff space). A topological space X is said to be Hausdorff, if for every
pair of distinct points x,y € X there exist disjoint open sets U,V € Ox withx € U andy € V.

In this book, we use the following definition and notation about the closure and the interior
of sets.

Definition 2.7 (Closure and interior). Let A be a subset of a topological space X.
(1) The closure of A is the smallest closed set containing A, that is, the intersection of all
closed sets containing A. In this book one writes A for the closure of A.

(2) The interior of A is the largest open set contained in A, that is, the union of all open
sets contained in A. In this book we write Int (A) for the interior of A.

We fix the terminology “neighborhood”.
Definition 2.8 (Neighborhood). A neighborhood of a set A is an open set containing A.

Some authors use the word neighborhood to mean a subset whose interior contains A. How-
ever, for the sake of consistency, we shall use it only for open sets.

Next, we recall dense subsets.
Definition 2.9 (Dense subset). A subset A of a topological space X is said to be dense in X,
if A=X.

Sometimes, we need the notion of separability.

Definition 2.10 (Separable topological space). A topological space X is said to be separable,
if there exists a countable subset that is dense in X.

The following is a good criterion for non-separability.

Proposition 2.11. Let A be a subset of a metric space (X, d). If the distance between any two
distinct points A is more than 1, then any dense set of X has cardinality greater than A.
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Proof. Let Y be a dense subset of X. Then, there exists a mapping x : A — Y such that
1
d(a,z(a)) < 3 for each a € A. If a and b are distinct, then so are z(a) and z(b). Therefore

a € A— z(a) €Y is an injection and as a result Y is greater than A in cardinality. O
Ezercise 9. Let £>°(N) be the set of all bounded sequence indexed by N. Define
(2.2) d(a,b) = sup laj — bjl, a = {aj}jen, b= {bj}jen € LZ(N).

J

Then show that the metric space (¢°°(N), d) is not separable.
3. INTEGRATION THEORY

In this section we give some elementary facts on integration integration, along with some
warm-up exercises. The readers who are familiar with the elementary integration theory can
skip this section.

3.1. Measures and outer measures.

o-algebra and measure. We just define the integral for functions. The starting point is to define
the integral for x4, the function that equals 1 on A and vanishes outside of A. Recall that
the volume is obtained by “height” x “area”. in R3. Therefore, if the height equals 1, then
the volume and the area agree up to scale. Thus, to determine the value of the integral of x4
is the same as to determine the volume of A. First we begin with determining what sets are
measurable. The o-algebra, whose definition will be presented below, is our answer. That is,
we assign to every element in a o-algebra its volume. A measure will be a tool to do this.

Definition 3.1 (0-algebra). Let X be a set. B C 2% is said to be a o-algebra if the following
three properties hold.

(1) 0,X € B.
(2) B is closed under complement, that is, A € B = A° € B.

(3) B is closed under countable union, that is, U A; € B, whenever Ay, A, ..., A;,... € B.
j=1

The measurable sets are sets which can consider their volumes. We do not consider volumes
for other sets. Now we consider the problem of what the “volume” should satisfy.

Definition 3.2 (measure). Let B be a o-algebra over X. u: B — [0,00] is a measure if the
following two properties hold.

(1) ul0) =0,
(2) If Ay, Ay, ..., Aj,... € B are disjoint, that is, A; N A; =0 for all ¢ # j, then

oo

(1) Suta)=u | U4,

Let us give some examples of additive measures.

Example 3.3 (Counting measure). Let X be a set and B = 2X. Then if we define u(A) = $4,
then (X, B, u) is a measure space. We call u the counting measure (of X).
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We would like to construct a measure p on R? such that u(I) = |I|. However, the existence
of such a measure is not trivial at all. Outer measures can be used to construct measures.

Definition 3.4 (Outer measure). I': 2% — [0, 00] is an outer measure, if

(1) T(0) = 0.
(2) A C B implies u(A) < p(B).

(3) For any countable family Ay, As, ..., A;,... € 2% we have ZF(Aj) >T U Aj
j=1 j=1

Note that the outer measure can be defined on 2%. After fixing the outer measure I, we can
define the measurability and B.

Definition 3.5 (Measurable set for an outer measure I'). Suppose that I' is an outer measure

on X. A subset A of X is said to be I-measurable, if ['(E) = (AN E) + T(A°N E) for all
E € 2X.

We remark that A C X is I'-measurable precisely when I'(E) > T (AN E) + T'(A° N E) for
all E € 2%, Because the reverse inequality always holds from the definition of outer measures.

Theorem 3.6. Suppose that ' is an outer measure. Then the set of all I'-measurable sets
forms a o-algebra.

Proof. Denote by B the set of all I'-measurable sets. It is easy toshow ) € B, A € B=— A° € B.

’B is closed under finite intersection. ‘ Let us prove A1 N Ay € B, if Ay, A; € B. As we have
remarked, our present task is to show that T'(E) > T' (A1 NA3NE)+T ((A1NA)°NE) for
all E C X. By virtue of the measurability of A; and As we have

I'E)=T(A1NE)+T(A1°NE)
TAINANE)+T(A1NANE)+T(A1°NANE)+T(A1°NANE)

T(A; N A N E) + T(A;° N Ay N E) + T(A,° N A° N E).

The subadditivity of I' yields

TNE)>T(A1NANE)+T(EN((A1NA)U(A1°N Az) U (419N As9)))
=T(A1NANE)+T((A1NA)NE).

Therefore, we obtain I'(E) > T'(A;NA3NE)+T'((A1NA2)°NE), which shows that A; N Ay € B.

B is closed under countably many intersections.‘ Now that B is shown to be closed un-

der finite intersection, the matter is reduced to establishing that U;il A; € B, as long as

Aq,Ag, ... Aj, ... € B are mutually disjoint. Our target is to show I'(E) > T' U A;NE | +
j=1

I'(()4,°NE| forall E C X.

Jj=1
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Keeping the disjointness of {A;};en in mind, we proceed as follows.
I'E)=T(A1NE)+T(A1°NE)
=T(ANE)+T(A2NE)+T(A1°NAXNE)

J
N(A;NE)+T [ () 4,°NE

1 j=1

|
KM“

J

N(A;NE)+T [ () 4,°NE

1 j=1

M

>

J

Note that the extreme right-hand side of the above formula is increasing with respect to J € N.
Thus, letting J — 0o, we obtain

(3.2) I(E)>Y T(A;NE)+T [ [()4NE
j=1 j=1
Countable subadditivity of I" leads us to
(33) T(E)=> T4NE)+T [ (V4nE|>T (| J4nE|+T | (A NE
Jj=1 j=1 j=1 j=1

As we have remarked above, (3.3) is sufficient to show measurability of E. Thus, the proof is
finished. O

Theorem 3.7. Under the same setting as before, the mapping T'|B : B — [0,00] is a measure
on X.

Proof. Indeed, we have shown (3.2) for any disjoint family A, Ao, ... and for all E € 2%, If we

o0
put £ = U Aj, we obtain the countable additivity. O
j=1

Examples. Before we finish this section, we give examples of outer measures.

Example 3.8. Let I': 28" — [0, 00] be given by

o0 o0
(3.4) I(E):=sup{ Y |Rj| : R;eR, EC |JR, ¢,

j=1 j=1
where R is the set of open rectangules in R%. Then I' is an outer measure. I is said to be the
Lebesgue outer measure, which is a prototype of measures.

Proof. Tt is easy to see that I' is monotone and I'(})) = 0. Thus, it remains to show that T'
enjoys the subadditivity.

(3.5) r GEj < OOF(EJ-)

j=1

for all £y, Es,... € oR?, Suppose that the right-hand side of (3.5) is infinite. In this case the
inequality is obvious, no matter what the right-hand side of (3.5) is. Assume that the right-
hand side of (3.5) is finite. Let £ > 0. Then we can choose a sequence of open rectangulars
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{Rf}jeN so that

o0 o0 c
(3.6) Ep < |J B} YIRS < T(Ex) + o
j=1 j=1
Adding the above relation over k£ € N, we have
(3.7) UEc U R D T(E) < | YIRS +e,
k=1 k=1 k=1 4ok=1

which shows

(3.8) r (G Ek> < i R[] +e.
k=1

Ji.k=1
Since € > 0 is arbitrary, we see that I' is subadditive. O

Example 3.9. This example generalizes Example 3.8 with d = 1. Let f : R — R be a right
continuous function. Let T': RY — [0, 00] be given by

o0

(3.9) I'(E) := inf Z(f(bj) — f(a;)) + B C |J(a;,b;]

j=1
Then I' is an outer measure. This example is used to define the Stielsties integral.

Ezercise 10. Reexamine the proof of Example 3.8 to prove that T, given by (3.9), is an outer
measure.

We are working on something connected with countable sets. So we are naturally led to the
following notion:

Definition 3.10 (o-finiteness). Let (X, B, ) be a measure space. A measure p is said to
be o-finite, if X can be partitioned into a countable collection of disjoint subsets with finite
j-measure.

Ezercise 11. Let (X, B, ) be a measure space. Then pu is o-finite, if and only if there exists
an exhausting sequence {X;};cy with finite y-measure of X, that is, X can be expressed as
follows :
(3.10) X =J X, X; C Xju forall j €N, p(X;) < oc.

jeN

m-A system. To familiarize ourselves with o-algebras, we deal with 7-systems and A-systems.
They are of much importance in their own right.

Definition 3.11 (7-system, A-system). Let A" be a subset of 2%, where X is a set.

(1) N is said to be m-system if it is closed under finite intersection.
(2) N is said to be A-system if it satisfies the following conditions.

(a) U N; € N whenever N1, No, ... is an increasing sequence in N/
=1

(b) NNM e N and N C M imply M\ N € N.

Theorem 3.12 (7-\ system). Let C be a w-system and A be a A-system. Assume that C C A.
Then we have

(3.11) o(C) C A
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Proof. Let D be the smallest A-system that contains C. Then it suffices to show D is a o-algebra
for the purpose of (3.11). To verify that D is a o-algebra, it suffices to show D is closed under
finite intersection.

Let B € C. Then define
(3.12) Dp:={CeD:BNC €D}

Then Dp is a A-system that contains C. Therefore, taking into account the minimality, we
obtain Dg D D. Or equivalently, for all B € C and C € D, we obtain BN C € D.

Let C € D. Now consider
(3.13) Dc:={BeD:BNC €D}

Then by the above paragraph, we see that D¢ contains C. Furthermore, it is the same as
before that D¢ is a A-system. Hence we obtain De D D. Hence for all B,C' € D, we have
BNCeD. |

3.2. Construction of measures starting from a content.

In this subsection we shall present a way of constructing a measure starting from a set
function called a content. The origin of content dates back to [23, 81]. Ambrose defined regular
contents in his unpublished article [81]. Motivated by his article, Halmos defined contents. This
method covers most examples of interest and contains some beautiful applications in measure
theory. We postulate a certain assumption on the underlying space X. In this subsection we
assume that X is a locally compact space. That is, for all x € X and all open sets U containing
x we can find a compact set K such that z € Int (K) C K C U.

Ezercise 12. Show that R? is locally compact.

Definitions. Let us begin with presenting some definitions. The notation of content came about
in the textbook of [23].

Definition 3.13 (Content). Denote by Kx the set of all compact sets in X and Ox the set of
all open sets in X. A set function A : Lx — [0,00) is said to be a content, if

0.
L) ML), if K € Ky and L € Ky is disjoint.
L

A(K)
A ML) for all K, L € Kx.

_|_
(K) +

Starting from a content, we are going to define a measure. This job is too heavy and we
need to decompose the job into several steps. First, by using the topological structure that
underlies X, we consider something close to the desired measure.

Definition 3.14. Given a content \, write

(3.14) M(A) :=sup{\(K) : Ae Kx, AC K}, pe(A) :=inf{\(0) : AC O € Ox}.

It will be understood that ) C () and ) C A for every A € 2X.

The outer measure associated with a content. In this paragraph, given a content A\, we shall
show . is an outer measure. After proving this, we shall investigate some properties.

We note that p.(O) = A\ (O) for all O € Ox.

Theorem 3.15. The set function e is an outer measure.
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Proof. We deduce easily that u()) = 0 from our agreement that ) C (). Let Ey, Es,... € 2% be
arbitrary. We have to show the subadditive inequality

(3.15) e U E;| < Zue(E )

It can be assumed that the right-hand side is finite to prove (3.15).

For each j take V; € Ox arbitrarily so that E; C V;. Then (3.15) is immediate, once we
show

(3.16) pe | Vi | €D ne(V))
j=1 j=1
Taking into account the definition of p. U Vj |, we see (3.16) is reduced to showing
j=1
(3.17) AK) < pe(V;)
j=1

o0
for any compact sets K contained in U V;. Let J taken so large that K C U;-le V;

j=1
Since we are assuming that X is locally compact, we can take W; € Ox,j =1,2,...,J so
that W; € V;. Here and below we use A € B to denote A C Int(B) for subsets A and B. Then
J o
(3.18) Z (KOW;) < (Vi) < pe(V))
j=1 j=1 j=1
Thus (3.17) is established. U

Theorem 3.16. Let A € 2X. Then A is p.-measurable if and only if
(3.19) 1(0) = (AN 0) + 1. (A° N 0)
for all O € Ox.

Before we come to the proof, let us remark that A is p.-measurable if and only if (3.19)
holds for all O € 2%, which is just a definition of measurability.

Proof. Assume (3.19). Let E € 2X. We have to show that (3.19) holds even for E instead of
0. Since we are assuming (3.19), we have

He(E) = O:EéI(ljfer #e(0) = O:Eggeox(ME(O NA)+p (0N AY).

Let us use a trivial inequality
.2 inf > inf inf
(3.20) inf (f(A) +9(A)) = inf f(A) + inf g(A)
for all real-valued functions f, g defined on a set A. We deduce from (3.20) that
> i i > > .
pe(B) 2 | inf | pe(ONA)+ | inf | pe(ONA") 2 pe(ENA)+ pe(ENAT) 2 pe(E)

Thus, A is measurable. O

Theorem 3.17. Any open set is p.-measurable.
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Proof. Let V € Ox. We have to show
te(0) = pe(ONV) + p(ONVE)
for any subset O. By the definition of u. and subadditivity of u. this amounts to showing

(3.21) 1.(0) = A(K) + A(L)
forall K € Kx and L € Kx with K C ONV and L C ONV® Since K C ONV and
LcOonVe K and L are disjoint. Thus A(K) + A(L) = A(K U L) < u(0). O

Given a topological space X, we want to assign the volume to all open sets. So we start
from the definition of a o-algebra on X.

Definition 3.18 (Borel o-field). Let X be a topological space. Then B(X) denotes the smallest
o-field and it is called the Borel o-field of X.

Denote by pu the restriction of p. to the Borel sets B(X).
Theorem 3.19. Let E be a measurable set.
(1) p(E)=inf{u(0) : O € Ox, E C O}.
(2) wE)=sup{u(K) : KeKx, KCFE},if E€ Ox or u(E) < oco.

(3) Assume in addition that X is separable. Then X is o-finite, that is, X can be written
as the countable sum of sets of finite measure.

The property (2) is said to be outer reqularity and (3) is said to be compact regularity.

Proof. (3) is immediate: Indeed, X is locally compact and separable. Therefore it can be
written as the sum of countable compact sets. As we have established, the p-measure of any
compact set is finite. Hence, (3) is established.

(1) is also easy. By the definition we have
(3.22)  wu(E) = pe(E) =inf{p.(0) : O € Ox, EC O} =inf{u(0) : O € Ox, EC O}.

It remains to prove (2) only.

’ 2-a Any element in Ox satisfies (2). ‘ This follows from the construction of ji.

’2—b Any finite measurable set F satisfies (2). ‘ Take O € Ox so that E C O, u(O\ E) < 1.
Set

(3.23) M :={E€B(X): ECO and (2) holds }.

Our claim is that M is a g-algebra on O which contains Ox N O. Here we have defined

(3.24) OxNO:={AN0 : AeOx}={U :Ue0x,UCO}.

Our present task is to prove the following.

() O e M.

(8) A€ M implies O\ A € M.

() A1, Az, Ag, ... € M implies | | Ax € M.
)

k=1
(0) TV € Ox, then VNO € M.
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Conditions («) and () are easy to verify. Also, the remaining assertion (J) is 2 — a itself.
Therefore it remains to show that (8) holds. For this purpose we take € > 0. Let K be a
compact set such that u(O \ K) < e. Then

(3.25) H(O\ A) < u((K N O)\ A) + (0 \ (K UA)) < (K \ A) +e.

As we have shown (1), there exists an open set U which engulfs A such that p(U \ A) < e.
Note that K \ U is compact and contained in O \ A. Observe also that

(3.26) p(K\NA) =p(KNU\A)+pu(K\U) <e+pu(K\U).

Consequently

(3.27) uw(O\ A) <sup{u(L) : Le Kx, K CO\ A} + 2¢.

Thus, it follows that () is established and (2) was completely proved. O

Before we finish this section, we give a sufficient condition of inner regularity.

Corollary 3.20. Assume in addition that X is separable. Then p is inner regular, that is, for
every F € B,

(3.28) w(E) =sup{u(K) : K CE,K € Kx}.

Proof. According to the proof of (3) of the previous theorem, we see that X is o-finite. Therefore
X can be partitioned into a countable collection of sets with finite y-measure. Let us write

X = ZXj, where 11(X;) < oo for every j € N.
jEN

Using this partition and (3) in the previous theorem, we obtain
o0 o0
wE)=> wENX;) =Y sup{u(KNX;): KCENX; KeKx}
j=1 =1

Let us write out the sum as a limit of partial sum. The partial sum being made up of finite
sums, we obtain

J
w(E) = lim Z sup  u(KNXj) :Jh_)rrgosup wK): KCEN UXj,KélCX

=1 \ KcEnX; i=1
Therefore, we obtain
(3.29) w(E) <sup{u(K) : K CE,K € Kx}.

The reverse inequality being trivial, we obtain the desired result. O

It is important that we rephrase the above results for the Lebesgue measure. We take the
liberty of repeating them.

Theorem 3.21. Suppose that E C R is dx-measurable and that E has finite dx-measure.
Then, given € > 0, we can find a compact set K and an open set U such that

(3.30) KCECU, |[U\K|<e.

Proof. This is a special case of Theorem 3.19 and Corollary 3.20. ]
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Having cleared up the definition of the measurable sets, we are now in the position of defining
the functions which admit integration.

Throughout this section we assume that (X, B, 1) is a measure space. We adopt the following
notation. Denote by R the two-sided compactification of R: R = RU{=+o00}. It is also convenient
to set K = R when K denotes R and K = C when K denotes C. Let f be a function from X to
R or from X to C. Then we write

(3.31) {feA}={xeX : f(x)e A}
for A € 2% respectively.

3.3. Measurable functions.

Below we use the following convention.

Definition 3.22 (Operations in R.). Let a,3 € R. Suppose that {a;}jen and {b;}jen are
sequences converging to « and [ respectively.

(1) Define

(3.32) a+f:= (aj +bj), « — B := lim (a; — b;), a- B := lim a;b,.
j—00

lim
j—o0 Jj—o0

whenever each limit exists and does not depend on the particular choice of {a;};en and

{bj}jen-
(2) As an exception, define 000 =00-0=0.

According to our definition, we have the following.

Example 3.23.

(1) The addition, subtraction and the multiplication are the usual ones for finite values.
(2) facRand b>0,thena+oco=00+a=b-c0o=00-b=00-00=00
(3) oo — oo does not make sense. Because on the one hand

(3.33) oco—oo= lim j— lim j= lim(j —j)=0
J—00

Jj—roo Jj—oo
and on the other hand
(3.34) co—oco=lim(j+1)— lim j=lim(j+1—j)=1.
j—o0 j—roo j—o0
Therefore, the operation oo — oo does depend on the choice of the sequence.

FEzxercise 13.

(1) Show that b- 0o = —o0, whenever b < 0.
(2) Explain why 200 — 0o does not make sense.

Measurable functions. We begin with the definition and a key property concerning the defini-
tion.

Theorem 3.24. Let f : X — R be a function. Then the following are equivalent.
) {f > A}t eB forallXeR.

) {f <A} eB foralXeR.
)

(1
(2

(3) {f > A} €B forall A\ € R.
(4) {f <A} €B forall X e R.

FEzxercise 14. Prove Theorem 3.24.
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Keeping Theorem 3.24 in mind, we define measurable functions.

Definition 3.25 (Real-valued measurable function). Let f : X — R be a function. If all of
the above conditions in Theorem 3.24 are fulfilled, then f is said to be y-measurable. In this
case one writes f € B.

The notion of measurability of real functions can be readiliy extended to complex-valued
functions.

Definition 3.26 (Complex-valued measurable function). Let f : X — C be a function. The
function f is said to be measurable, if both Re (f) and Im (f) are measurable. If this is the
case, we write again f € B.

Having clarified the definition of measurability of functions, we prove Theorem 3.24.

Proof of Theorem 3.24. Now that B is closed under complement, (1) and (4) are equivalent.
Similarly (2) and (3) are equivalent. Let us prove that (1) implies (3) and that (2) implies (4).

(1) = (3) | Note that B is closed under countable intersections. Since we are assuming (1),
we have {f > q} € B for all ¢ € Q. Therefore, we claim that
(3.35) {r=x= (1 r>a
q€Q, g<A

Once this is proved, then f is u-measurable, the right side belonging to B. Since {f > A} C
{f > ¢}, we have

(3.36) {(r=xc () {f>a-
q€Q, g<A
Let z € ﬂ {f > q}. Then we have f(x) > ¢, whenever ¢ € Q and ¢ < A. Let [-] be the
Gauss syﬁ%oi?’i‘hat is, [z] denotes the largest integer not exceeding x. Define
(3.37) Aj = [qﬂj_l

Then \; € @ and A\; T A as j — oo. Therefore, letting j — oo in f(z) > A; for all j € N, we
obtain f(x) > A. Therefore the reverse inclusion

(3.38) {(r=x> () {f>a-
q€Q, g<A

is established and hence we obtain

(3.39) {(r=x= () {f>a
q€Q, g<A

belongs to B.

(2) = (4) | We pass to the complement of (3.39), which is always true regardless of mea-
surability of f. The result is

(3.40) F<x= ) <a

q€Q, g>A

Therefore, assuming (2), we obtain (4).

In view of the above observations, (1)—(4) are equivalent. O
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Exzxercise 15. Express the following sets without using U and N:

o0 oo oo [ee]

A= U[Oa.] +27j)a Ay = ﬂ[_ja2ij]a A3 = ﬂ(_j72727j]7 Ay = U(Oz.]]a A5 = U(Ov.])

j=1 j=1 j=1 j=1 j=1
Take care of the endpoints in each of your answers.

The following theorem is useful in considering the theory of integration on R.

Theorem 3.27. Any open set U C R can be expressed as a disjoint union of countable open
intervals.

A minor modification of the proof below extends Theorem 3.27 to R.

Proof. Let U = } ., Ux be the decomposition of connected components. Then each Uy is
open. Indeed, let z € Uy. Then there exists r > 0 such that (z—r,z+r) C U. Since (x—r,x+7)
is connected, (x —r,z + 1) C Us.

Since any connected open set in R is an open interval, Uy is an open interval. Since Q is
countable, A is countable. O

Using Theorem 3.27, we can rephrase the measurability.

Theorem 3.28. Let f: X — R be a function on a measure space (X, B, ). Then the following
are equivalent.

(1) f is measurable.
(2) f~Y(E) is measurable for any measurable set E C R.

Proof. | (2) => (1) | Let A € R. Then {f > A} = f~1((\, 00]) € B, proving f is measurable.

(1) = (2) | Denote by B(R) the Borel algebra in R. We define
(3.41) C:={E€BR): f'(F)eB}.

Then using elementary formulae of set theory

oo oo

Ba2) VB = (Ve U B | = Ut @), i) = e

j=1 j=1

for all E, E1, E,, ... € 28 we see that C is a o-algebra.

Let O € R? be an open set. Then O can be partitioned into a disjoint union of countable
open intervals. The set O admits the following expression:

(3.43) 0= i(aj, b;)

oo

Since f~! U(aj’bj) = U 7' ((a;,b;)), it follows that O € C.
j=1 j=1

Thus, C is a o-algebra containing all the intervals in R. Since B(R) is the smallest o-algebra
containing all the intervals in R, we conclude B(R) C C. By definition of C we have C C B(R).
Thus, B(R) = C. As a result any element in B(R) belongs to C, that is, any Borel set E satisfies
f~1(E)eB. O
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Ezercise 16. Prove (3.42).

Properties of measurable functions. Having set down the definition of measurability of functions,
let us investigate its properties.

Theorem 3.29 (Properg of real measurable functions). Suppose that we are given the func-
tions f, f1, fo,...: X = R.

(1) fis--., fn € B implies sup f; € B and inf f; € B.
JEN JeN
(2) Both limsup f;,liminf f; are measurable. In particular, if the limit lim f; exists, then
j—00 j—o0 Jj—oo
we have lim f; € B.
7o
) Let G: R — R be a continuous function. Then Go f € B.
) Assume that f,g € B and that the operation f + g makes sense. Then f + g € B.
) Assume that f,g € B and that the operation f g makes sense. Then fg € B.
) Any constant function is measurable.

(1). The fact that sup,cy f; belongs to B is easy to establish. The argument is straightforward.

To check that sup f; € B, we have to prove {sup fi> )\} € B. Note that {sup fi > )\} =
JjEN JjEN jEN

U {f; > A}. Since each f; is measurable, we see that {f; > A} € B. Thus, we conclude that

j€eN

{sup fi> )\} € B.
jEN

In the same way, we establish {ing fi> )\} € B when we prove inlt;] f; € B. However, it is
JE Jj€

not the case that {i_nlg fi> )\} =[] {f; > A}. To be sure, one inclusion
JjE :
JEN

(3.44) {}ggfj > A} c (>N

JEN
is correct. However, {i_nlgI fi> )\} D ﬂ {f; > A} fails. We need to change our point of view.
JjE

jEN
What is correct is the relation

(3.45) {22 =N 20
JEN
Using (3.45), we see that i_nlf\'T fi €B. O
Jje

(2). Observe that limsup f; = inf | sup f | , liminf f; = sup ( inf fi ). By (1) for each k we
JEN \ k>j Jj—o0 k=>j

j—o0 JEN
have sup fi, inf fr € B. Applying (1) to sup fx, inf fr € B,j € N again, we conclude
k>j k>j k>j k>j

(3.46) limsup f;,liminf f; € B.
j—oo J—00
Suppose the limit lim f;(z) exists for all z € X. Since we have lim f; = limsup f; in this
j—o0 j—roo j—o0
case, it follows that lim f; € B. |

J—00
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(3). Since G is continuous, G~1((), 0c]) is an open set and it is partitioned into a disjoint union
of open intervals (see Theorem 3.27):

(3.47) GH (N oo)) =D,
jeJd
where .J is at most countable, yielding {Gof > A} = {f € G7*((\,00])} = U{f eliteB. O

jed

(4). Let f; := max(—j, min(f, 7)) and g; := max(—j, min(g, j)). Below we fix j € N. Instead of
showing measurability of f + g directly, we prove that for f; + g;. According to the definition
of the operation in R, it follows that f + ¢ = lim; o (fj + g;). Our strategy for the proof is to
pass to the limit. Observe that

(3.48) {(fi+g>M= U dfi>anig>r}.

q,mr€Q
q+r>A

Indeed, the inclusion

(3.49) {ti+g,>2> |J {fi>an{g>r}).

q,m7€Q
q+r>A

is obvious. Let us prove the converse inclusion. Suppose that f;(z) + g;(x) > A. Then there
exists ¢o € Q such that f;(x) + g;(z) > go > A. Note that f;(z) > go — g;(x). Thus, there
exists ¢1 € Q such that f;(z) > ¢1 > qo — g;(x). Setting ¢ = ¢1 and r = g9 — ¢1, we obtain
fi(z) > q and g;(x) > ¢1 —qo = r. Now that ¢ +r = g1 > go > A, we see that

(3.50) {(fi+g>Mc U df>anig>r}.
q,7€Q
q+r>A
As a result (3.48) is established and we obtain
(3.51) {(fi+g>M= U {f>an{g>r}eB
q,7€Q
q+r>A

Thus, f;j+g; is measurable. A passage to the limit along with (2) shows that f+ g is measurable
as well. (]

(5). We may assume that f and ¢ are finite by passing to the limit as we did in (4). We may
even assume that f = g because we have proved (4) and

(3.52) f-gzé((f+g)2—f2—92)~
It is rather easy to prove f2 € B. Indeed,
(3.53)  {If)? > A} = {|f[? > max(),0)} = {f > \/max()\,O)} U {f < —\/max()\,O)} € B.

As a consequence (5) is established. O

(6). Let f(z) =k, a constant function. Then {f > A} =X if A<k and {f > A} =0if A > k.
Thus, whether X is larger than & or not we have {f > A} € B. O
Ezercise 17. Suppose that f : X — R is measurable. Use |a| = 2sup{0,a} — a, a € R to give

an alternative proof that |f| : X — R is measurable.

We can transplant the assertions of the above theorem into the complex-valued functions.
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Theorem 3.30 (Property of complex measurable functions). In this theorem by a function we
mean a complex-valued function.

(1) Any constant function is measurable.

(2) Let f,geB. Then f+g€ B and f-g € B.

(3) Let fj : X — C, j =1,2,... be measurable functions. If the limit lim f; ewxists, then
j—o0

we have lim f; € B.
j—o0o

Proof. The matters are reduced to the real-valued case because we have only to split the
function into real and complex parts. O

Example 3.31. It is convenient for later considerations that we construct a sign function of
a complex valued function f. We are going to construct a measurable function g such that
g f=|f]- Such a function can be described explicitly : We just put

. f(z)
3.54 g(x) := lim - zeX).
(354 = M )
Then, g is a measurable function satisfying g- f = | f|.

Given a measurable function f, we want to consider its modulus |f|. So the following
definition is of use.

Definition 3.32 (sgn). Given a measurable function f: X — C, define sgn(f) as a function g
in Example 3.31.

Simple functions. Now we prepare to define the integral for measurable functions. We intend to
define the integral for general measurable functions via some approximation procedure. That is,
we define the integral first for nice functions called simple functions. Let us begin by presenting
the definition.

Definition 3.33 (Simple functions). A measurable function is simple, if it assumes only a
finite number of values.

We welcome positive functions because positive sequences are easy to handle when we con-
sider doubly indexed series.

Definition 3.34 (B;). Write By :={f € B : f >0}.

As the next theorem asserts, it is quite important to consider simple functions instead of
measurable functions in some cases.

Theorem 3.35. Let f € By. Then there exists a sequence of positive simple functions {f;};en
such that 0 < f; < f and lim f; = f pointwise.
J—00

[27 ]
BY;
gives us that f; is increasing. Since f;(X) C {0,277,2-279,...,j27 .27} we conclude that f;

is simple. Since

Proof. We set f; := min (j, for each j € N. Then inequality [2a] > 2[a] for a € [0, c0)

(3.55) min (jzjf(;])_1> < fi(x) < f(x)
for each x € X and lim min (j, W(;C])_l> = f(z) for all x € X, we have lim f;(z) = f(x).
j—o0o J—o0

Thus, {f;};en is an increasing sequence of simple functions converging to f pointwise. |
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Support of a measurable function f. Finally we define support of a measurable function f, when
X is a topological space and p : B(X) — [0, 0] is a Borel measure.

Definition 3.36 (supp(f)). Suppose that f : X — R is a measurable function. Then the
support of f is the set of all points x for which the following property fails: There exists a
neighborhood U of x such that u(U N {f # 0}) = 0. Below, supp(f) denotes the support of f.

Exercise 18. If f : R? — C is a continuous function, then prove that supp(f) = {f # 0}, the
topological closure of {f # 0}. Here it will be understood that supp(f) is given in Definition
3.36 with respect to the Lebesgue measure.

3.4. Definition of the integral.

Integral of positive simple functions.

Having made clear what “simple” stands for, we now turn to the definition of integral for
such functions. Recall that series consisting of positive numbers behave well. This is why we
start with positive simple functions.

Definition 3.37 (Integral for positive functions). Suppose that f € B, is simple. Then define

(3.56) | s@ante) = [ gau= Y auE).

n
where f is represented as f = ZanEJ" The sum f = ZanEj is said to be an admissible
j=1 j=1
expression.

The point is that the definition does not depend on the choice of the representation.

Lemma 3.38. Suppose that f € By is simple. Then the definition of/ f(z) du(z) does not
X
depend on the choice of the representation in (3.56).

Proof. First, we shall verify the following.

Claim 3.39. We can assume X = ZEj = ZFk’

j=1 k=1

n
By symmetry, it suffices to treat {Ej};?zl. Given an expression f = ZanEi’ we shall
j=1

n
construct an admissible representation f = chxgj such that {G;}7_, is disjoint and that

j=1
> ain(Ey) = cin(Gy).
j=1 j=1
j—1
To do this, setting Ey := ) for convenience, we define and G; := E; \ U E;. Then we have
1=0

n n
Gj = U Ej and {G;}_, is disjoint.
= j=1

Jj=1
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Observe that F; = G1 UG2U...UG;. Inserting this formula and changing the order of the
summations, we have

n

n n J n
2 aixe, =2 ) aixe =) | 24 | xan
j=1 j=1k=1

k=1 \j=k

Set
n
Cj = Z aj.
=3

n

Then we have f = Z cixg; and

j=1
n n n n n J n
> _ciu(Gy) =YD (G = Zaj w(Gr) =D Y aiu(Gr) =D aju(E))
j=1 k=1 j=k k=1 \j=k j=1k=1 j=1

If we set By = X\ (E1UE,U...UE,) and an =0, we obtain the desired expression.

Therefore, it was justified that we can assume X = Z E; = Z Fy.
j=1 k=1

Suppose that f is represented as two different admissible representations :

(3.57) = Zaijj = Z beX P
j=1 k=1

with X = ZEj = ZFk Then we have to show
j=1 k=1

(3.58) > aju(Ey) =Y byu(Ey).
j=1 k=1

Since {£;}7_; and {F}}L, are disjoint, we have

n m m n n m
SO bixman, = bixE = Y aixE, = DY a4;XE,0F,

j=1k=1 k=1 j=1 j=1k=1
Thus, we have
(3.59) a; = by, provided E; N Fy, # 0.
By using once more the fact that both {E;}7_; and {F}}}L, partition X, we have
(3.60) Z%# =3 > auENF) = Y aju(E;NFy).
j=1k=1 §=1,2,.0.,m
k=1,2,....m
EJI'TF]C75®
By symmetry we have
n m
i = j :
(3.61) Z bep(Br) =Y ) buEj N F) = D bep(E; N Fy)
j=1k=1 J=1,2,.0m
k=1,2,....m
E;NF#0

In view of (3.59), (3.60) and (3.61), we obtain (3.58). O
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Integral of positive measurable functions. In the previous paragraph we have set down the

definition of the integral for the nicest functions. The definition of simple positive functions
are now complete. We now pass to the general function taking its value in [0, oo].

Definition 3.40 (Definition of integral for positive functions). Let f € By. Define the integral

[ ran= /fw /f ) dia(z) by

/f(x) dp(x) = sup {/ g(x)du(z) : g is a simple function with 0 < g < f} .
X

Unless possible confusion can occur, we adopt the simplest expression.

The monotonicity of the integral is easy to see.

Lemma 3.41. Let f,g € By and f > g. Then /Xf(x) du(z) > /Xg(a:) dp(x).

Proof. Taking into account that the set appearing in the supremum defining [ f(z)du(z) is
contained in that defining [ g(x)du(z), we obtain

/ f(z)du(x) = sup {/ h(z)dp(z) : h is simple and satisfies 0 < h < f}
X X

IN

sup {/ h(x)dp(z) : h is simple and satisfies 0 < h < g}
X

=Ammwm.

This is the desired result. |

At first glance the integral operation is not linear. However, the linearity does hold. To
prove this, we need the following theorem, which is important of its own right.

Theorem 3.42 (Monotone convergence theorem). Suppose that {f]} 2, C By satisfies f; <
fix1. Then, if we write f = sup f;, we have / fi(z)dp(z / f(@)du(zx), as j — oo.
jeN

Proof. Let g be a simple function such that 0 < g < f. It suffices to show that

(3.62) / min(g(z), f;(x)) du(z) — /

Indeed, once we prove (3.62), we obtain

/Xf(x) dp(x) = sup {/X g(x)dp(z) : 0<g < f}
— sup { <j1ggofxmm(g,fj) du) 0<g< f}
< Jim [ fi@)due)

gﬂﬂmwm

As a result we have only to show the theorem when f is simple.
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The function f can be represented admissibly as f(z ZalXEz , where (Ep)j, is

disjoint and a; > 0 for all [ =1,2,...,n. Set

n
k _ .
(3.63) f; )= Zal(l —k XEnsa0-k-y SE=1,2--.

(3.64) | 1P @ e < [ f@dne < [ 1@ dut)

As j — oo we have

/ f(k) Zal 1—k Elﬂ{fj >al(1_k )})
=1

*)Zal].f El /f dﬂ

Consequently, it follows from (3.64) that

(3.65) / f(z)du(x) < hm mf/ fi(x) du(x / f(z) du(z
Since k is arbitrary as well, letting £ — oo, we obtain lim / fi(x)du(z / fz)du(z). O
Jj—o0

Now we prove the additivity of integral for positive functions.

Lemma 3.43. Let f,g € B.. Then / (f+9g)(x / f(z) du(z / g(x) du(z).

Proof. ’ Case 1: Assume that f and g are simple. ‘ Consider admissible representations of f and
g.

(3.66) F=> aixe, 9= bixs,.
j=1 k=1
As we did in Lemma 3.38;, we may assume X = Z = > iy Fi. Since {E;}7_, and

{F}7r, are partitions of X, it follows that

(3.67) F=>3 ajxe,nm. 9=Y_ Y bixenk,-

j=1k=1 j=1k=1
Let aj, :=a; and bj;, :=by for j =1,2,...,nand k=1,2,...,m. Then we have
n m n m n m
(3:68)  f=>_> ajxEnr. g Z Z bjrXE;nFy,, [+9= Z > (@i + bjk)XE,NF, -
j=1k=1 j=1k=1 j=1k=1

Using (3.68), we have

/X f(a) du(z) + /X P)= 32 (e + by 0 Fi) = /X (f + 9)(&) dpu(z).

j=1k=1
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23 27
have f; 1 f and g; T g. Therefore, a repeated application of Theorem 3.42 gives us

J J
’Case 2: General case‘ Set f; = min (j, 2 f(x)]) and g; = min <j, 2 g(x)]) Then we

/ (f +9)(&) du(z) = lim / (f; + 05) (@) du(x)
X )= Jx

=i ([ gyt + [ o) dute) )
- [ @@ + [ o duta).

Here for the second inequality we have used the fact that f; and g; are simple. Additivity for
simple functions is already established. This is the desired result. O

Positive homogeneity is much easier to prove than additivity.
Lemma 3.44. Let f € By and a > 0. Then we have / a- f(x)du(z) = a/ f(z) du(x).
X X

FEzxercise 19. Prove Lemma 3.44.

Integral of real-valued functions. Given an R-valued function f, we can separate it into a dif-
ference of two positive functions. For example, a simple candidate for such a decomposition
is

(3.69) f=F=7f

Therefore, it looks sensible to define

(3.70) / F(&) dun( / fo(2) du(e / /(@) du(z

However, this definition (3.70) will not do as it stands. For example, we hope that the integral
is linear. If we begin with this definition, then we will face a problem in proving linearity.

Actually, we overcome this difficulty by establishing Lemma 3.46.

Definition 3.45 (Integrable functions). Let f € B. The function f is said to be (u-)integrable
or (p-)summable, if/ |f(z)]du(x) < oo. If either fi or f_ is integrable, one defines
X

(3.71) | 1@ = [ fi@au) = [ 1@ dute

The space L!(u) denotes the set of all u-integrable functions and L*(u), denotes the set of all
positive p-integrable functions.

The crux of the proof of linearity lies in the following lemma.

Lemma 3.46. Let f € B be integrable and assume that it is decomposed as f = g — h where

g,h € L' (). Then
[ 1@ dnte) = [ g@)duta) = [ hw) duto).
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Proof. Since g—h = fi — f—, we have g+ f_ = h+ f1. Therefore, it follows from Lemma 3.43
that
[ s@duw)+ [ 1@ dute) = [ (g4 1)) da)
X X X
= [+ £)(@) dnto)

:/Xh(x) du(x)—l—/Xer(x) dp(z)

Since all the integrals above are finite, we are in the position of subtracting

[ @)+ [ oy dnto) < oc
X X

from both sides. The result is

[ @ duta) = [ n@du@) = [ @) = [ @ dnte) = [ s duta

proving the lemma. U

Linearity of ingegral carries over to integrable functions, of course.

Corollary 3.47. Let f,g € L*(u). Then

|G+ a@duo = [ 1@ )+ [ gt duta).

Proof. We use equality fz) + ( ) = fi(x) + g+(x) — f-(2) — g—(z) and Lemma 3.43 to
calculate [y f(x)du(z) + [y g(z) du(x). By Definition 3.45 we have

/f@ﬂ%ﬂf/%@@@
- [ @ n) - [ £ @)+ [ gi@dn) - [ o @ duta).

Observe that all the integrals are finite and that the functions are positive. Thus, the order of
the summation and the integration can be exchanged :

| £@dn@ = [ 1@ duta J/ +(2) du() — J/ (2) du(a)
= [ re@dut@)+ [ gv@ dute) = [ 1@ duta) = [ g-@ duta)

:/mﬁﬂmmwwffu;wamm»
X X

Now we invoke Lemma 3.46 with g = f 4+ g4 and h = f_ + g_ and we obtain

/uwﬁmm@m—/U;wqu=/kﬁ+m—ﬁ—mxmww.
X X X

The integrand of the right-hand side being equal to f — g, we conclude the proof with all the
observations above. ]

Homegeneity of integral is immediate and we leave the proof for interested readres (see
Exercise 20).

Lemma 3.48. Let f € L'(u) and a € R. Then /X a- f(x)du(z) = a/X fz)du(x).

FEzxercise 20. Prove Lemma 3.48.
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Our observation can be summarized as follows:

Theorem 3.49.

(1) The integral operation [ : L'(u) — R is linear.

(2) Suppose that f,g € L*(u) satisfy f > g. Then/
b's

f(w) dp(a) > / o(x) du(z).

X

Integral of complex-valued functions.

In Fourier analysis, for example, it is convenient to define the integrals taking value in C.
Having made an elaborate treatment, we are readily to extend our definition to such function.
However, in this case it is important to rule out the possibility for the integral to be co. It is
the case that in complex analysis co is added as a special point to C to define the Riemann
sphere. However, in integration theory we do not add oo to C to extend our operation.

Definition 3.50 (L!(u)). Suppose that f € B is a complex valued function. Then f is
integrable, if |f| is integrable. One still denotes L*(u) by the set of complex valued integrable
functions. By linearity one extends the integral.

We need to make what we obtained applicable on subsets. To this end, we use the charac-
teristic functions.

Definition 3.51 (L'(E, u)). Suppose that f € B and that E € B satisfy xgf € L' (n). (Write
£ € LI(E ) Then define [ fdp= [ fa)due) i= [ xe(o)f(@) dula),
E X

E

Following this notation, we have

Proposition 3.52. Suppose that E, F € B are disjoint. Then
(3.72) f@)duto) = [ f@dn+ [ o) duta)
EUF E F

forall f € LX(EUF,p).

Needless to say, this corresponds to the formula

(3.73) /acf(x)dx:/abf(sc)d:r—i—/bcf(a:)dx

for Riemannian integrals.

Proof. Note that xgur = xE + xr characterizes the disjointness of £ and F. Therefore, we
obtain

f(w) du(z) = /X xmor(@) f(z) du(z)

EUF

_ / xe(@) f(x) + xr (@) f () du(z)

X
— [ 1@ dute) + [ (@) duo)
E F
This is the desired result. O

Ezxercise 21. Let f : X — C be a complex-valued measurable function. Show that the following
are equivalent.

(1) feL'(p.
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(2) Re(f) € L1 (1) and I (f) € L' (u).
(3) Re(f)x € L' (1) and Im (f) € L' (1).

In considering the integral or something related to integral, there is no need to know the
value of function at all points. Indeed, we just need to know them at almost all points. The
next definition makes this more precise.

Definition 3.53 (Almost all e.t.c.). Let (X, B, u) be a measure space. A property holds for
almost all / almost everywhere / almost every etc., if there exists a set A of y-measure 0 such
that the property holds outside A. That is, the word “almost” means that the set of all points
such that the property fails has y-measure 0. A null set means a set of measure 0.

Example 3.54. Below we exhibit examples of the usage of “almost”
(1) Let (X, B, i) be a measure space. f(z) < g(z) p-a.e. means that there exists a p-null
set A such that f(z) < g(x) for all x € X \ A.
(2) Let (Q,F,u) be a probability space, that is, #(X) = 1. Then we use almost surely

instead of almost every. We abbreviate this to a.s. in probability theory. For example
lim X (w) exists almost surely means there exists a null set Qg such that lim X;(w)
J—00 J—00

exists on Q \ Q.
(3) The above two example are just rephrasing the definition. Let us see how this notion
is used actually. For example, lim sin(27jx) diverges for dz-almost everywhere x € R.
Jj—o0

(Indeed, the limit does not exist if and only if 6 is irrational.)

Before proceeding, let us see another example of “almost”.
Lemma 3.55. Let (X, B, p) be a measure space and f : X — [0,00] be a measurable function.

Assume the integral is finite: / f(@)du(x) < co. Then f is finite a.e.
b's

Proof. Suppose instead that f = co on a set A of positive p-measure. Then since p(A) > 0,
we have

(3.74) [ 1@ @)= [ @) duta) = u(4) o0 = .
X
This runs counter to the assumption. O

Exercise 22. Show that it is possible that f assumes oo at some point even when

/X f(@) dp(a) < o0

in Lemma 3.55.

Here we present a routine way with which to enlarge the class of sets for which we can
consider its volume.

Definition 3.56 (Completion). Let (X, B, ) be a measure space.

(1) Define
(3.75) B*:={Be€2X : Ay C B C A, with Ay, A; € B and pu(Ag) = u(A;)}
and
(3.76) w*(B) = pu(Ap) = u(Ay), if Ag C B C Ay with Ag, A1 € B and u(Ag) = p(Aq).
The completion of (X, B, u) is, by definition, (X, B*, u*).
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(2) The space X is said to be complete whenever a set which is contained in a p-null set is
measurable.

Ezercise 23. Show that (X,B*,u*) is a measure space. If X is complete, then prove that
B* =B.

Ezercise 24. Show that the set of all Lebesgue measurable sets is the completion of B(RY).

3.5. Convergence theorems.

In this section we deal with convergence theorems. Here and below for the sake of simplicity
we use f < g to mean not only f(z) < g(z) for all z € X but also f(x) < g(z) for u-almost all
x € X. Here we harvest the consequences of the complicated definitions we have made all the
way.

Theorems dealing with the change of lim and / . This is one of the most important theorems

in integration theory. Apart from their proofs, it is absolutely necessary that we utilize them
throughout this book.

Theorem 3.57. Suppose that (X, B, p) is a measure space. Let {f;}jen be a sequence of
R-valued p-measurable functions.

(1) (Monotone convergence theorem.) Suppose that {f;}jen is a positive and increasing
sequence: We have 0 < f; < fit1, p—a.e.. Then

(3.77) iim [ @)f;duta) = [ Jim fy(e) duo).

j—o0 X

(2) (Fatou’s lemma.) Suppose {f;};en is a positive measurable sequence. Then we have

(3.78) [ timint £y due) < mint [ f(0) duto).

(3) (Dominated convergence theorem, Lebesgue’s convergence theorem.) Suppose that
{f;}jen converges p-almost everywhere to f. Assume further that there exists g € L' (u)
such that | f;| < g a.e. for all j € N. Then

(3.79) tim [ @) duta) = [ @) duta).

j—o0

(1). (3.77) is taken up as Theorem 3.42, which is a starting point of (3.78) and (3.79). In
Theorem 3.42 we have assumed that 0 < f;(z) < fj41(z) for all z € X and j € N. However,
if we dilate a set of u-measure zero, we can go through the same argument as before. Thus,
(3.77) is complete. O

(2). Now we shall prove (3.78). If we set g;(z) := ér>1f fr(z) for z € X, then {g;},en satisfies
>j

the assumption of Theorem 3.42 and lim g¢; = liminf f; for all x € X. Therefore, (3.78) gives
j—o0 j—o0

J—00

[ tmint fy@) duta) = [ im gy(2) du(o)

— tim [ g;(@)du(x)

Jj—o0 X

=liminf [ g;(z)du(z)
b'e

J—00

< liminf/ fidp(x).
j—oo Jx
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This is the desired result. O

(3). To prove (3.79), note that g — f; is positive. Thus, we are in the position of using (3.78)
to have

(3.80) [ timint(o - 1)) duo) <timint [ (g~ 1)) duo).
x J—roo j—oo Jx
that is,
(3.81) / g(x) du(z) —/ limsup f;(z) du(x) S/ g(x) du(z —hmsup/ fi(x) du(x
X X J—o0 X J—00

Equating (3.81), we obtain
(3.82) / limsup fj(x) du(z) > hmsup/ fi(x) du(x

X j—oo j—o0
Going through the same argument by using {g + f;},en, we obtain
(3.83) / liminf f;(z) dp(x) < liminf/ fi(z) dp(x).

x Jj—oo j—oo Jx
By assumption that {f;};en converges to f, we have
(3.84) hm mf f; =limsup f; = hm f] = f.

Jj—o0

Also it is trivial that

(3.85) hmlnf/ fi(z) du(z <hmsup/ fi(x) du(x
j—oo
Putting together (3.82)—(3.85), we obtain
(3.86) hjrggf/ fi(z)du(z —h;r;s;p/ fi(x)dp(z /f )du(x
Thus, it follows that hm / fi(z)dp(z / f(x)dp(x |

Before we proceed further, two helpful remarks may be in order.

Remark 3.58. It is important that we extend the Lebesgue convergence theorem to complex-
valued functions. Suppose that {f; 521 1s a sequence of complex-valued functions on a measure
space (X, B, ) and f is a a complex-valued measurable function on X. Assume that the limit

lim f;(x) exists and coincides with f(x) for p-almost all z € X and that there exists a function
_]4)

g € L' (i) such that
(3.87) |fjl <gforall jeN
holds for p-almost all x € X. Then we have

(3.88) lim / f(@) dp( / fz) du(x

Jj—o0
Ezercise 25. Prove (3.88).

Remark 3.59. It is also important that we extend (3.79) to continuous variables. Let I be an
open interval in R and F': X x I — R measurable. Assume the following.

(1)  lm F(z,t) = F(xz,t9) for almost every z € X.
t—sto, tel

(2) There exists an integrable function G : X — [0,00] such that, for almost every z,
|F(z,t)] < G(x) for all t € I.
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Then we have

lim [ F(x,t)du(x /thodu)

t—to X

Below we call this assertion Lebesgue’s convergence theorem as well.

Proof. Since the continuity of the function on I is equivalent to its sequential continuity, the
assertion is immedi