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Preface

SAS, standing for Statistical Analysis System, is a powerful software package
for the manipulation and statistical analysis of data. The system is exten-
sively documented in a series of manuals. In the first edition of this book
we estimated that the relevant manuals ran to some 10,000 pages, but
one reviewer described this as a considerable underestimate. Despite the
quality of the manuals, their very bulk can be intimidating for potential
users, especially those relatively new to SAS. For readers of this edition,
there is some good news: the entire documentation for SAS has been
condensed into one slim volume — a Web browseable CD-ROM. The bad
news, of course, is that you need a reasonable degree of acquaintance
with SAS before this becomes very useful.

Here our aim has been to give a brief and straightforward description
of how to conduct a range of statistical analyses using the latest version
of SAS, version 8.1. We hope the book will provide students and research-
ers with a self-contained means of using SAS to analyse their data, and
that it will also serve as a “stepping stone” to using the printed manuals
and online documentation.

Many of the data sets used in the text are taken from A Handbook of
Small Data Sets (referred to in the text as SDS) by Hand et al., also
published by Chapman and Hall/CRC.

The examples and datasets are available on line at: http://www.sas.
com/service/library/onlinedoc/code.samples.html.

We are extremely grateful to Ms. Harriet Meteyard for her usual
excellent word processing and overall support during the preparation and
writing of this book.

Geoff Der
Brian S. Everitt
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Chapter 1

A Brief Introduction
to SAS

1.1 Introduction

The SAS system is an integrated set of modules for manipulating, analysing,
and presenting data. There is a large range of modules that can be added
to the basic system, known as BASE SAS. Here we concentrate on the
STAT and GRAPH modules in addition to the main features of the base
SAS system.

At the heart of SAS is a programming language composed of statements
that specify how data are to be processed and analysed. The statements
correspond to operations to be performed on the data or instructions
about the analysis. A SAS program consists of a sequence of SAS statements
grouped together into blocks, referred to as “steps.” These fall into two
types: data steps and procedure (proc) steps. A data step is used to prepare
data for analysis. It creates a SAS data set and may reorganise the data
and modify it in the process. A proc step is used to perform a particular
type of analysis, or statistical test, on the data in a SAS data set.

A typical program might comprise a data step to read in some raw
data followed by a series of proc steps analysing that data. If, in the
course of the analysis, the data need to be modified, a second data step
would be used to do this.

The SAS system is available for a wide range of different computers
and operating systems and the way in which SAS programs are entered
and run differs somewhat according to the computing environment. We



describe the Microsoft Windows interface, as this is by far the most popular,
although other windowing environments, such as X-windows, are quite
similar.

1.2  The Microsoft Windows User Interface

File Edit View Tools Run Soluions Window Help
Moz &sn tmo Bz X008
£
va_anes
File Shortcuts
] 4%
¥4 Editor - Untitled1 [_[O]x]
y )

SResus | o (Explorer || | BOuput-(United) | ELog=(Uniites) || Editor- Untiied |
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Display 1.1

Display 1.1 shows how SAS version 8 appears running under Windows.

When SAS is started, there are five main windows open, namely the
Editor, Log, Output, Results, and Explorer windows. In Display 1.1, the
Editor, Log, and Explorer windows are visible. The Results window is
hidden behind the Explorer window and the Output window is hidden
behind the Program Editor and Log windows.

At the top, below the SAS title bar, is the menu bar. On the line below
that is the tool bar with the command bar at its left end. The tool bar
consists of buttons that perform frequently used commands. The command
bar allows one to type in less frequently used commands. At the bottom,
the status line comprises a message area with the current directory and
editor cursor position at the right. Double-clicking on the current directory
allows it to be changed.

Briefly, the purpose of the main windows is as follows.



1. Editor: The Editor window is for typing in editing, and running
programs. When a SAS program is run, two types of output are
generated: the log and the procedure output, and these are dis-
played in the Log and Output windows.

2. Log: The Log window shows the SAS statements that have been
submitted together with information about the execution of the
program, including warning and error messages.

3. Output: The Output window shows the printed results of any
procedures. It is here that the results of any statistical analyses are
shown.

4. Results: The Results window is effectively a graphical index to the
Output window useful for navigating around large amounts of
procedure output. Right-clicking on a procedure, or section of
output, allows that portion of the output to be viewed, printed,
deleted, or saved to file.

5. Explorer: The Explorer window allows the contents of SAS data
sets and libraries to be examined interactively, by double-clicking
on them.

When graphical procedures are run, an additional window is opened to
display the resulting graphs.

Managing the windows (e.g., moving between windows, resizing them,
and rearranging them) can be done with the normal windows controls,
including the Window menu. There is also a row of buttons and tabs at
the bottom of the screen that can be used to select a window. If a window
has been closed, it can be reopened using the View menu.

To simplify the process of learning to use the SAS interface, we
concentrate on the Editor, Log, and Output windows and the most impor-
tant and useful menu options, and recommend closing the Explorer and
Results windows because these are not essential.

1.2.1 The Editor Window

In version 8 of SAS, a new editor was introduced, referred to as the
enhanced editor. The older version, known as the program editor, has
been retained but is not recommended. Here we describe the enhanced
editor and may refer to it simply as “the editor.” If SAS starts up using
the program editor rather than the enhanced editor, then from the Tools
menu select Options; Preferences then the Edit tab and select the Use
Enhanced Editor option*.

* At the time of writing, the enhanced editor was not yet available under X-windows.



The editor is essentially a built-in text editor specifically tailored to the
SAS language and with additional facilities for running SAS programs.

Some aspects of the Editor window will be familiar as standard features
of Windows applications. The File menu allows programs to be read from
a file, saved to a file, or printed. The File menu also contains the command
to exit from SAS. The Edit menu contains the usual options for cutting,
copying, and pasting text and those for finding and replacing text.

The program currently in the Editor window can be run by choosing
the Submit option from the Run menu. The Run menu is specific to the
Editor window and will not be available if another window is the active
window. Submitting a program may remove it from the Editor window.
If so, it can be retrieved by choosing Recall Last Submit from the Run
menu.

It is possible to run part of the program in the Editor window by
selecting the text and then choosing Submit from the Run menu. With
this method, the submitted text is not cleared from the Editor window.
When running parts of programs in this way, make sure that a full step
has been submitted. The easiest way to do this is to include a Run
statement as the last statement.

The Options submenu within Tools allows the editor to be configured.
When the Enhanced Editor window is the active window (View, Enhanced
Editor will ensure that it is), Tools; Options; Enhanced Editor Options will
open a window similar to that in Display 1.2. The display shows the
recommended setup, in particular, that the options for collapsible code
sections and automatic indentation are selected, and that Clear text on
submit is not.

1.2.2 The Log and Output Windows

The contents of the Log and Output windows cannot be edited; thus,
several options of the File and Edit menus are disabled when these
windows are active.

The Clear all option in the Edit menu will empty either of these
windows. This is useful for obtaining a “clean” printout if a program has
been run several times as errors were being corrected.

1.2.3 Other Menus

The View menu is useful for reopening a window that has been closed.
The Solutions menu allows access to built-in SAS applications but these
are beyond the scope of this text.
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Display 1.2

The Help menu tends to become more useful as experience in SAS is
gained, although there may be access to some tutorial materials if they
have been licensed from SAS. Version 8 of SAS comes with a complete
set of documentation on a CD-ROM in a format that can be browsed and
searched with an HTML (Web) browser. If this has been installed, it can
be accessed through Help; Books and Training; SAS Online Doc.

Context-sensitive help can be invoked with the F1 key. Within the
editor, when the cursor is positioned over the name of a SAS procedure,
the F1 key brings up the help for that procedure.

1.3  The SAS Language

Learning to use the SAS language is largely a question of learning the
statements that are needed to do the analysis required and of knowing
how to structure them into steps. There are a few general principles that
are useful to know.



Most SAS statements begin with a keyword that identifies the type of
statement. (The most important exception is the assignment statement that
begins with a variable name.) The enhanced editor recognises keywords
as they are typed and changes their colour to blue. If a word remains
red, this indicates a problem. The word may have been mistyped or is
invalid for some other reason.

1.3.1 All SAS Statements Must End with a Semicolon

The most common mistake for new users is to omit the semicolon and
the effect is to combine two statements into one. Sometimes, the result
will be a valid statement, albeit one that has unintended results. If the
result is not a valid statement, there will be an error message in the SAS
log when the program is submitted. However, it may not be obvious that
a semicolon has been omitted before the program is run, as the combined
statement will usually begin with a valid keyword.

Statements can extend over more than one line and there may be more
than one statement per line. However, keeping to one statement per line,
as far as possible, helps to avoid errors and to identify those that do occur.

SAS statements fall into four broad categories according to where in
a program they can be used. These are

Data step statements

Proc step statements

Statements that can be used in both data and proc steps
Global statements that apply to all following steps

N

Because the functions of the data and proc steps are so different, it is
perhaps not surprising that many statements are only applicable to one
type of step.

1.3.2 Program Steps

Data and proc steps begin with a data or proc statement, respectively,
and end at the next data or proc statement, or the next run statement.
When a data step has the data included within it, the step ends after the
data. Understanding where steps begin and end is important because SAS
programs are executed in whole steps. If an incomplete step is submitted,
it will not be executed. The statements that were submitted will be listed
in the log, but SAS will appear to have stopped at that point without
explanation. In fact, SAS will simply be waiting for the step to be completed
before running it. For this reason it is good practice to explicitly mark



the end of each step by inserting a run statement and especially important
to include one as the last statement in the program.

The enhanced editor offers several visual indicators of the beginning
and end of steps. The data, proc, and run keywords are colour-coded in
Navy blue, rather than the standard blue used for other keywords. If the
enhanced editor options for collapsible code sections have been selected
as shown in Display 1.2, each data and proc step will be separated by
lines in the text and indicated by brackets in the margin. This gives the
appearance of enclosing each data and proc step in its own box.

Data step statements must be within the relevant data step, that is,
after the data statement and before the end of the step. Likewise, proc
step statements must be within the proc step.

Global statements can be placed anywhere. If they are placed within
a step, they will apply to that step and all subsequent steps until reset.
A simple example of a global statement is the title statement, which defines
a title for procedure output and graphs. The title is then used until changed
or reset.

1.3.3 Variable Names and Data Set Names

In writing a SAS program, names must be given to variables and data
sets. These can contain letters, numbers, and underline characters, and
can be up to 32 characters in length but cannot begin with a number.
(Prior to version 7 of SAS, the maximum length was eight characters.)
Variable names can be in upper or lower case, or a mixture, but changes
in case are ignored. Thus Height, height, and HEIGHT would all refer to
the same variable.

1.3.4 Variable Lists

When a list of variable names is needed in a SAS program, an abbreviated
form can often be used. A variable list of the form sex - - weight refers
to the variables sex and weight and all the variables positioned between
them in the data set. A second form of variable list can be used where
a set of variables have names of the form scorel, score2, ... scorel0. That
is, there are ten variables with the root score in common and ending in
the digits 1 to 10. In this case, they can be referred to by the variable list
scorel - scorel0 and do not need to be contiguous in the data set.
Before looking at the SAS language in more detail, the short example
shown in Display 1.3 can be used to illustrate some of the preceding material.
The data are adapted from Table 17 of A Handbook of Small Data Sets (SDS)
and show the age and percentage body fat for 14 women. Display 1.4 shows



how the example appears in the Editor window. The Results and Explorer
windows have been closed and the Editor window maximized. The program
consists of three steps: a data step followed by two proc steps. Submitting
this program results in the log and procedure output shown in Displays 1.5
and 1.6, respectively.

From the log one can see that the program has been split into steps
and each step run separately. Notes on how the step ran follow the
statements that comprise the step. Although notes are for information
only, it is important to check them. For example, it is worth checking
that the notes for a data step report the expected number of observations
and variables. The log may also contain warning messages, which should
always be checked, as well as error messages.

The reason the log refers to the SAS data set as WORK.BODYFAT rather
than simply bodyfat is explained later.

data bodyfat;
Input age pctfat;
datalines;
23 28
39 31
41 26
49 25
50 31
53 35
53 42
54 29
56 33
57 30
58 33
58 34
60 41
61 34
proc print data=bodyfat;
run;
proc corr data=bodyfat;
run;

Display 1.3
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1 data bodyfat;
2 Input age pctfat;
3 datalines;

NOTE: The data set WORK.BODYFAT has 14 observations and 2 variables.
NOTE: DATA statement used:

real time 0.59 seconds
18
19 proc print data=bodyfat;
20  run;

NOTE: There were 14 observations read from the data set WORK.BODYFAT.
NOTE: PROCEDURE PRINT used:
real time 0.38 seconds

21 proc corr data=bodyfat;
22 run,;

NOTE: There were 14 observations read from the data set WORK.BODYFAT.
NOTE: PROCEDURE CORR used:
real time 0.33 seconds

Display 1.5




The SAS System

Obs age pctfat
1 23 28
2 39 31
3 41 26
4 49 25
5 50 31
6 53 35
7 53 42
8 54 29
9 56 33

10 57 30

11 58 33

12 58 34

13 60 41

14 61 34

The SAS System
The CORR Procedure
2 Variables: age pctfat

Simple Statistics

Variable N Mean Std Dev Sum Minimum
age 14 50.85714 10.33930 712.00000 23.00000
pctfat 14 32.28571 4.92136 452.00000 25.00000

Pearson Correlation Coefficients, N = 14
Prob > |r| under HO: Rho=0

age pctfat

age 1.00000 0.50125

0.0679

pctfat 0.50125 1.00000
0.0679

Maximum

61.00000
42.00000

Display 1.6




1.4  The Data Step

Before data can be analysed in SAS, they need to be read into a SAS data
set. Creating a SAS data set for subsequent analysis is the primary function
of the data step. The data can be “raw” data or come from a previously
created SAS data set. A data step is also used to manipulate, or reorganise
the data. This can range from relatively simple operations (e.g., transform-
ing variables) to more complex restructuring of the data. In many practical
situations, organising and preprocessing the data takes up a large portion
of the overall time and effort. The power and flexibility of SAS for such
data manipulation is one of its great strengths.

We begin by describing how to create SAS data sets from raw data
and store them on disk before turning to data manipulation. Each of the
subsequent chapters includes the data step used to prepare the data for
analysis and several of them illustrate features not described in this chapter.

1.4.1 Creating SAS Data Sets from Raw Data*

Display 1.7 shows some hypothetical data on members of a slimming
club, giving the membership number, team, starting weight, and current
weight. Assuming these are in the file wgtclubl.dat, the following data
step could be used to create a SAS data set.

data wghtclub;
infile 'n:\handbook2\datasets\wgtclubl.dat';
input idno team $ startweight weightnow;

run;

1023 red 189 165
1049 yellow 145 124
1219 red 210 192
1246 yellow 194 177
1078 red 127 118

1221 yellow 220 .
1095 blue 135 127
1157 green 155 141

* A “raw” data file can also be referred to as a text file, or ASCII file. Such files only
include the printable characters plus tabs, spaces, and end-of-line characters. The
files produced by database programs, spreadsheets, and word processors are not
normally “raw” data, although such programs usually have the ability to “export”
their data to such a file.



1331 Dblue 187 172
1067 green 135 122
1251 blue 181 166
1333 green 141 129
1192 yellow 152 139
1352 green 156 137
1262 Dblue 196 180
1087 red 148 135
1124 green 156 142
1197 red 138 125
1133 blue 180 167
1036 green 135 123
1057 yellow 146 132
1328 red 155 142
1243 blue 134 122
1177 red 141 130
1259 green 189 172
1017 blue 138 127
1099 yellow 148 132
1329 yellow 188 174
Display 1.7

1.4.2 The Data Statement

The data statement often takes this simple form where it merely names
the data set being created, in this case wghtclub.

1.4.3 The Infile Statement

The infile statement specifies the file where the raw data are stored. The
full pathname of the file is given. If the file is in the current directory
(i.e., the one specified at the bottom right of the SAS window), the file
name could have been specified simply as ‘wghtclubl.dat’. Although many
of the examples in this book use the shorter form, the full pathname is
recommended. The name of the raw data file must be in quotes. In many
cases, the infile statement will only need to specify the filename, as in

this example.




In some circumstances, additional options on the infile statement will
be needed. One such instance is where the values in the raw data file
are not separated by spaces. Common alternatives are files in which the
data values are separated by tabs or commas. Most of the raw data files
used in later chapters are taken directly from the Handbook of Small Data
Sets, where the data values are separated by tabs. Consequently, the
expandtabs option, which changes tab characters into a number of spaces,
has been used more often than would normally be the case. The delimiter
option can be used to specify a separator. For example, delimiter="," could
be used for files in which the data values are separated by commas. More
than one delimiter can be specified. Chapter 6 contains an example.

Another situation where additional options may be needed is to specify
what happens when the program requests more data values than a line
in the raw data file contains. This can happen for a number of reasons,
particularly where character data are being read. Often, the solution is to
use the pad option, which adds spaces to the end of each data line as it
is read.

1.4.4 The Input Statement

The input statement in the example specifies that four variables are to be
read in from the raw data file: idno, team, startweight, and weightnow,
and the dollar sign ($) after team indicates that it is a character variable.
SAS has only two types of variables: numeric and character.

The function of the input statement is to name the variables, specify
their type as numeric or character, and indicate where in the raw data
the corresponding data values are. Where the data values are separated
by spaces, as they are here, a simple form of the input statement is possible
in which the variable names are merely listed in order and character
variables are indicated by a dollar sign ($) after their name. This is the
so-called “list” form of input. SAS has three main modes of input:

B List
B Column
B Formatted

(There is a fourth form — named input — but data suitable for this form
of input occur so rarely that its description can safely be omitted.)

List input is the simplest and is usually to be preferred for that reason.
The requirement that the data values be separated by spaces has some
important implications. The first is that missing values cannot be repre-
sented by spaces in the raw data; a period (.) should be used instead. In
the example, the value of weightnow is missing for member number 1221.



The second is that character values cannot contain spaces. With list input,
it is also important to bear in mind that the default length for character
variables is 8.

When using list input, always examine the SAS log. Check that the
correct number of variables and observations have been read in. The
message: “SAS went to a new line when INPUT statement reached past
the end of a line” often indicates problems in reading the data. If so, the
pad option on the infile statement may be needed.

With small data sets, it is advisable to print them out with proc print
and check that the raw data have been read in correctly.

If list input is not appropriate, column input may be. Display 1.8 shows
the slimming club data with members’ names instead of their membership
numbers.

To read in the data in the column form of input statement would be

input name $ 1-18 team $ 20-25 startweight 27-29 weightnow
31-33;

David Shaw red 189 165
Amelia Serrano yellow 145 124
Alan Nance red 210 192
Ravi Sinha yellow 194 177
Ashley McKnight red 127 118
Jim Brown yellow 220

Susan Stewart blue 135 127
Rose Collins green 155 141
Jason Schock blue 187 172
Kanoko Nagasaka green 135 122
Richard Rose blue 181 166
Li-Hwa Lee green 141 129
Charlene Armstrong yellow 152 139
Bette Long green 156 137
Yao Chen blue 196 180
Kim Blackburn red 148 135
Adrienne Fink green 156 142
Lynne Overby red 138 125
John VanMeter blue 180 167
Becky Redding green 135 123
Margie Vanhoy yellow 146 132
Hisashi Ito red 155 142
Deanna Hicks blue 134 122




Holly Choate red 141 130

Raoul Sanchez green 189 172

Jennifer Brooks blue 138 127

Asha Garg yellow 148 132

Larry Goss yellow 188 174
Display 1.8

As can be seen, the difference between the two forms of input statement
is simply that the columns containing the data values for each variable
are specified after the variable name, or after the dollar in the case of a
character variable. The start and finish columns are separated by a hyphen;
but for single column variables it is only necessary to give the one column
number.

With formatted input, each variable is followed by its input format,
referred to as its informat. Alternatively, a list of variables in parentheses
is followed by a format list also in parentheses. Formatted input is the
most flexible, partly because a wide range of informats is available. To
read the above data using formatted input, the following input statement
could be used:

input name $19. team $7. startweight 4. weightnow 3.;

The informat for a character variable consists of a dollar, the number of
columns occupied by the data values and a period. The simplest form of
informat for numeric data is simply the number of columns occupied by
the data and a period. Note that the spaces separating the data values
have been taken into account in the informat.

Where numeric data contain an implied decimal point, the informat
has a second number after the period to indicate the number of digits to
the right of the decimal point. For example, an informat of 5.2 would
read five columns of numeric data and, in effect, move the decimal point
two places to the left. Where the data contain an explicit decimal point,
this takes precedence over the informat.

Formatted input must be used if the data are not in a standard numeric
format. Such data are rare in practice. The most common use of special
SAS informats is likely to be the date informats. When a date is read using
a date informat, the resultant value is the number of days from January
1st 1960 to that date. The following data step illustrates the use of the
ddmmyyw. informat. The width w may be from 6 to 32 columns. There
is also the mmddyyw. informat for dates in American format. (In addition,



there are corresponding output formats, referred to simply as “formats”
to output dates in calendar form.)

data days;

input day ddmmyy8.;
cards;

231090

23/10/90

23 10 90

23101990

run;

Formatted input can be much more concise than column input, par-
ticularly when consecutive data values have the same format. If the first
20 columns of the data line contain the single-digit responses to 20
questions, the data could be read as follows:

input (q1 - q20) (20*1.);

In this case, using a numbered variable list makes the statement even
more concise. The informats in the format list can be repeated by prefixing
them with n*, where n is the number of times the format is to be repeated
(20 in this case). If the format list has fewer informats than there are
variables in the variable list, the entire format list is reused. Thus, the
above input statement could be rewritten as:

input (g1 - g20) (1.);

This feature is useful where the data contain repeating groups. If the
answers to the 20 questions occupied one and two columns alternately,
they could be read with:

input (q1 - g20) (1. 2.);

The different forms of input can be mixed on the same input statement
for maximum flexibility.

Where the data for an observation occupies several lines, the slash
character (/), used as part of the input statement, indicates where to start
reading data from the next line. Alternatively, a separate input statement
could be written for each line of data because SAS automatically goes on
to the next line of data at the completion of each input statement. In some
circumstances, it is useful to be able to prevent SAS from automatically



going on to the next line and this is done by adding an @ character to
the end of the input statement. These features of data input are illustrated
in later chapters.

1.4.5 Reading Data from an Existing SAS Data Set

To read data from a SAS data set, rather than from a raw data file, the
set statement is used in place of the infile and input statements. The
statement

data wgtclub2;
set wghtclub;
run;

creates a new SAS data set wgtclub2 reading in the data from wghtclub.
It is also possible for the new data set to have the same name; for example,
if the data statement above were replaced with

data wghtclub;

This would normally be used in a data step that also modified the data
in some way.

1.4.6 Storing SAS Data Sets on Disk

Thus far, all the examples have shown temporary SAS data sets. They are
temporary in the sense that they will be deleted when SAS is exited. To
store SAS data sets permanently on disk and to access such data sets, the
libname statement is used and the SAS data set referred to slightly differently.

libname db ‘n:\handbook2\sasdata’;
data db.wghtclub;

set wghtclub;
run;

The libname statement specifies that the /ibref db refers to the directory
‘n:\handbook2\sasdata’. Thereafter, a SAS data set name prefixed with ‘db.’
refers to a data set stored in that directory. When used on a data statement,
the effect is to create a SAS data set in that directory. The data step reads
data from the temporary SAS data set wghtclub and stores it in a permanent
data set of the same name.



Because the libname statement is a global statement, the link between
the /ibref db and the directory n:\handbook2\sasdata remains throughout
the SAS session, or until reset. If SAS has been exited and restarted, the
libname statement will need to be submitted again.

In Display 1.5 we saw that the temporary data set bodyfat was referred
to in the log notes as 'WORK.BODYFAT". This is because work is the /ibref
pointing to the directory where temporary SAS data sets are stored.
Because SAS handles this automatically, it need not concern the user.

1.5 Modifying SAS Data

As well as creating a SAS data set, the data step can also be used to
modify the data in a variety of ways.

1.5.1 Creating and Modifying Variables

The assignment statement can be used both to create new variables and
modify existing ones. The statement

weightloss=startweight-weightnow;

creates a new variable weigtloss and sets its value to the starting weight
minus the current weight, and

startweight=startweight * 0.4536;

will convert the starting weight from pounds to kilograms.

SAS has the normal set of arithmetic operators: +, -, / (divide), *
(multiply), and ** (exponentiate), plus various arithmetic, mathematical,
and statistical functions, some of which are illustrated in later chapters.

The result of an arithmetic operation performed on a missing value is
itself a missing value. When this occurs, a warning message is printed in
the log. Missing values for numeric variables are represented by a period
() and a variable can be set to a missing value by an assignment statement
such as:

age = . ;

To assign a value to a character variable, the text string must be
enclosed in quotes; for example:

team='green’;



A missing value can be assigned to a character variable as follows:
Team=""

To modify the value of a variable for some observations and not others,
or to make different modifications for different groups of observations,
the assignment statement can be used within an if then statement.

reward=0;
if weightloss > 10 then reward=1;

If the condition weigtloss > 10 is true, then the assignment statement
reward=1 is executed; otherwise, the variable reward keeps its previously
assigned value of 0. In cases like this, an else statement could be used
in conjunction with the if then statement.

if weightloss > 10 then reward=1;
else reward=0;

The condition in the if then statement can be a simple comparison of
two values. The form of comparison can be one of the following:

Operator Meaning Example
EQ = Equal to a=>b
NE ~= Notequal to aneb
LT <  Less than a<b
GT > Greater than agth
GE >= Greaterthanorequalto a>=b
LE <= Less than or equal to aleb

Comparisons can be combined into a more complex condition using and
(&), or (), and not.

if team="'blue' and weightloss gt 10 then reward=1;

In more complex cases, it may be advisable to make the logic explicit by
grouping conditions together with parentheses.

Some conditions involving a single variable can be simplified. For
example, the following two statements are equivalent:

if age > 18 and age < 40 then agegroup = 1;
if 18 < age < 40 then agegroup = 1;



and conditions of the form:
X=1lorx=3o0rx=5
can be abbreviated to
x in(1, 3, 5)

using the in operator.

If the data contain missing values, it is important to allow for this when
recoding. In numeric comparisons, missing values are treated as smaller
than any number. For example,

if age >= 18 then adult=1;
else adult=0;

would assign the value 0 to adult if age was missing, whereas it may be
more appropriate to assign a missing value. The missing function could
be used do this, by following the else statement with:

if missing(age) then adult=.;

Care needs to be exercised when making comparisons involving char-
acter variables because these are case sensitive and sensitive to leading
blanks.

A group of statements can be executed conditionally by placing them
between a do statement and an end statement:

If weightloss > 10 and weightnow < 140 then do;

target=1;
reward=1;
team ='blue’;
end;

Every observation that satisfies the condition will have the values of target,
reward, and team set as indicated. Otherwise, they will remain at their
previous values.

Where the same operation is to be carried out on several variables, it
is often convenient to use an array and an iterative do loop in combination.
This is best illustrated with a simple example. Suppose we have 20
variables, ql to 20, for which “not applicable” has been coded -1 and
we wish to set those to missing values; we might do it as follows:



array qall {20} q1-gq20;
do i= 1 to 20;

if qall{i}=-1 then qall{i}=.;
end;

The array statement defines an array by specifying the name of the array,
gall here, the number of variables to be included in braces, and the list
of variables to be included. All the variables in the array must be of the
same type, that is, all numeric or all character.

The iterative do loop repeats the statements between the do and the
end a fixed number of times, with an index variable changing at each
repetition. When used to process each of the variables in an array, the
do loop should start with the index variable equal to 1 and end when it
equals the number of variables in the array.

The array is a shorthand way of referring to a group of variables. In
effect, it provides aliases for them so that each variable can be referred
to by using the name of the array and its position within the array in
braces. For example, q12 could be referred to as galf{12} or when the
variable i has the value 12 as qall{i}. However, the array only lasts for the
duration of the data step in which it is defined.

1.5.2 Deleting Variables

Variables can be removed from the data set being created by using the
drop or keep statements. The drop statement names a list of variables that
are to be excluded from the data set, and the keep statement does the
converse, that is, it names a list of variables that are to be the only ones
retained in the data set, all others being excluded. So the statement drop
XYy z; in a data step results in a data set that does not contain the variables
X, ¥, and z, whereas keep x y z; results in a data set that contains only
those three variables.

1.5.3 Deleting Observations

It may be necessary to delete observations from the data set, either because
they contain errors or because the analysis is to be carried out on a subset
of the data. Deleting erroneous observations is best done using the if then
statement with the delete statement.

if weightloss > startweight then delete;



In a case like this, it would also be useful to write out a message giving
more information about the observation that contains the error.

if weightloss > startweight then do;

put 'Error in weight data' idno= startweight= weightloss=;
delete;

end;

The put statement writes text (in quotes) and the values of variables to
the log.

1.5.4 Subsetting Data Sets

If analysis of a subset of the data is needed, it is often convenient to
create a new data set containing only the relevant observations. This can
be achieved using either the subsetting if statement or the where statement.
The subsetting if statement consists simply of the keyword if followed by
a logical condition. Only observations for which the condition is true are
included in the data set being created.

data men;
set survey;
if sex="M";
run;

The statement where sex="M’"; has the same form and could be used
to achieve the same effect. The difference between the subsetting if
statement and the where statement will not concern most users, except
that the where statement can also be used with proc steps, as discussed
below. More complex conditions can be specified in either statement in
the same way as for an if then statement.

1.5.5 Concatenating and Merging Data Sets

Two or more data sets can be combined into one by specifying them in
a single set statement.

data survey;
set men women;
run;



This is also a simple way of adding new observations to an existing data
set. First read the data for the new cases into a SAS data set and then
combine this with the existing data set as follows.

data survey;
set survey newcases;
run;

1.5.6 Merging Data Sets: Adding Variables

Data for a study can arise from more than one source, or at different
times, and need to be combined. For example, demographic details from
a questionnaire may need to be combined with the results of laboratory
tests. To deal with this situation, the data are read into separate SAS data
sets and then combined using a merge with a unique subject identifier
as a key. Assuming the data have been read into two data sets, demo-
graphics and labtests, and that both data sets contain the subject identifier
idnumber, they can be combined as follows:

proc sort data=demographics;
by idnumber;
proc sort data=labtests;
by idnumber;
data combined;
merge demographics (in=indem) labtest (in=inlab);
by idnumber;
if indem and inlab;
run;

First, both data sets must be sorted by the matching variable idnumber.
This variable should be of the same type, numeric or character, and same
length in both data sets. The merge statement in the data step specifies
the data sets to be merged. The option in parentheses after the name
creates a temporary variable that indicates whether that data set provided
an observation for the merged data set. The by statement specifies the
matching variable. The subsetting if statement specifies that only obser-
vations having both the demographic data and the lab results should be
included in the combined data set. Without this, the combined data set
may contain incomplete observations, that is, those where there are
demographic data but no lab results, or vice versa. An alternative would
be to print messages in the log in such instances as follows.



If not indem then put idnumber
If not inlab then put idnumber '

no demographics’;
no lab results’;

This method of match merging is not confined to situations in which
there is a one-to-one correspondence between the observations in the
data sets; it can be used for one-to-many or many-to-one relationships as
well. A common practical application is in the use of look-up tables. For
example, the research data set might contain the respondent’s postal code
(or zip code), and another file contain information on the characteristics
of the area. Match merging the two data sets by postal code would attach
area information to the individual observations. A subsetting if statement
would be used so that only observations from the research data are
retained.

1.5.7 The Operation of the Data Step

In addition to learning the statements that can be used in a data step, it
is useful to understand how the data step operates.

The statements that comprise the data step form a sequence according
to the order in which they occur. The sequence begins with the data
statement and finishes at the end of the data step and is executed
repeatedly until the source of data runs out. Starting from the data
statement, a typical data step will read in some data with an input or set
statement and use that data to construct an observation. The observation
will then be used to execute the statements that follow. The data in the
observation can be modified or added to in the process. At the end of
the data step, the observation will be written to the data set being created.
The sequence will begin again from the data statement, reading the data
for the next observation, processing it, and writing it to the output data
set. This continues until all the data have been read in and processed.
The data step will then finish and the execution of the program will pass
on to the next step.

In effect, then, the data step consists of a loop of instructions executed
repeatedly until all the data is processed. The automatic SAS variable, _n_,
records the iteration number but is not stored in the data set. Its use is
illustrated in later chapters.

The point at which SAS adds an observation to the data set can be
controlled using the output statement. When a data step includes one or
more output statements an observation is added to the data set each time
an output statement is executed, but not at the end of the data step. In
this way, the data being read in can be used to construct several obser-
vations. This is illustrated in later chapters.



1.6  The proc Step

Once data have been read into a SAS data set, SAS procedures can be
used to analyse the data. Roughly speaking, each SAS procedure performs
a specific type of analysis. The proc step is a block of statements that
specify the data set to be analysed, the procedure to be used, and any
further details of the analysis. The step begins with a proc statement and
ends with a run statement or when the next data or proc step starts. We
recommend including a run statement for every proc step.

1.6.1 The proc Statement

The proc statement names the procedure to be used and may also specify
options for the analysis. The most important option is the data= option,
which names the data set to be analysed. If the option is omitted, the
procedure uses the most recently created data set. Although this is usually
what is intended, it is safer to explicitly specify the data set.

Many of the statements that follow particular proc statements are
specific to individual procedures and are described in later chapters as
they arise. A few, however, are more general and apply to a number of
procedures.

1.6.2 The var Statement

The var statement specifies the variables that are to be processed by the
proc step. For example:

proc print data=wghtclub;
var name team weightloss;
run;

restricts the printout to the three variables mentioned, whereas the default
would be to print all variables.

1.6.3 The where Statement

The where statement selects the observations to be processed. The key-
word where is followed by a logical condition and only those observations
for which the condition is true are included in the analysis.

proc print data=wghtclub;
where weightloss > 0;
run;



1.6.4 The by Statement

The by statement is used to process the data in groups. The observations
are grouped according to the values of the variable named in the by
statement and a separate analysis is conducted for each group. To do this,
the data set must first be sorted in the by variable.

proc sort data=wghtclub;
by team;

proc means;
var weightloss;
by team;

run;

1.6.5 The class Statement

The class statement is used with many procedures to name variables that
are to be used as classification variables, or factors. The variables named
can be character or numeric variables and will typically contain a relatively
small range of discreet values. There may be additional options on the
class statement, depending on the procedure.

1.7  Global Statements

Global statements can occur at any point in a SAS program and remain
in effect until reset.

The title statement is a global statement and provides a title that will
appear on each page of printed output and each graph until reset. An
example would be:

title 'Analysis of Slimming Club Data';

The text of the title must be enclosed in quotes. Multiple lines of titles
can be specified with the title2 statement for the second line, title3 for
the third line, and so on up to ten. The title statement is synonymous
with titlel. Titles are reset by a statement of the form:

title2;

This will reset line two of the titles and all lower lines, that is, title3, etc.;
and titlel; would reset all titles.



Comment statements are global statements in the sense that they can
occur anywhere. There are two forms of comment statement. The first
form begins with an asterisk and ends with a semicolon, for example:

* this is a comment;
The second form begins with /* and ends with */.

/* this is also a
comment
*/

Comments can appear on the same line as a SAS statement; for example:
bmi=weight/height**2; /* Body Mass Index */

The enhanced editor colour codes comment green, so it is easier to
see if the */ has been omitted from the end or if the semicolon has been
omitted in the first form of comment.

The first form of comment is useful for “commenting out” individual
statements, whereas the second is useful for commenting out one or more
steps because it can include semicolons.

The options and goptions global statements are used to set SAS system
options and graphics options, respectively. Most of the system options
can be safely left at their default values. Some of those controlling the
procedure output that can be considered useful include:

B nocenter  Aligns the output at the left, rather than centering it
on the page; useful when the output linesize is wider
than the screen.

B nodate Suppresses printing of the date and time on the out-
put.

B ps=n Sets the output pagesize to n lines long.

B [s=n Sets the output linesize to » characters.

B pageno=n Sets the page number for the next page of output
(e.g., pageno=1 at the beginning of a program that is
to be run repeatedly).

Several options can be set on a single options statement; for example:

options nodate nocenter pagegno=1;

The goptions statement is analogous, but sets graphical options. Some
useful options are described below.



1.8  ODS: The Output Delivery System

The Output Delivery System (ODS) is the facility within SAS for formatting
and saving procedure output. It is a relatively complex subject and could
safely be ignored (and hence this section skipped!). This book does not
deal with the use of ODS to format procedure output, except to mention
that it enables output to be saved directly in HTML, pdf, or rtf files*.
One useful feature of ODS is the ability to save procedure output as
SAS data sets. Prior to ODS, SAS procedures had a limited ability to save
output — parameter estimates, fitted values, residuals, etc. — in SAS data
sets, using the out= option on the proc statement, or the output statement.
ODS extends this ability to the full range of procedure output. Each
procedure's output is broken down into a set of tables and one of these
can be saved to a SAS data set by including a statement of the form

ods output table = dataset;

within the proc step that generates the output.

Information on the tables created by each procedure is given in the
“Details” section of the procedure’s documentation. To find the variable
names, use proc contents data=dataset; or proc print if the data set is
small. A simple example is given in Chapter 5.

1.9  SAS Graphics

If the SAS/GRAPH module has been licensed, several of the statistical
procedures can produce high-resolution graphics. Where the procedure
does not have graphical capabilities built in, or different types of graphs
are required, the general-purpose graphical procedures within SAS/GRAPH
may be used. The most important of these is the gplot procedure.

1.9.1 Proc gplot

The simplest use of proc gplot is to produce a scatterplot of two variables,
x and y for example.

proc gplot;
plot y * x;
run;

* Pdf and rtf files from version 8.1 of SAS onwards.



A wide range of variations on this basic form of plot can be produced
by varying the plot statement and using one or more symbol statements.
The default plotting symbol is a plus sign. If no other plotting symbol
has been explicitly defined, the default is used and the result is a scatterplot
with the data points marked by pluses. The symbol statement can be used
to alter the plot character, and also to control other aspects of the plot.
To produce a line plot rather than a scatterplot:

symboll i=join;

proc gplot;
ploty * x;
run;

Here, the symboll statement explicitly defines the plotting symbol and
the i (interpolation) option specifies that the points are to be joined. The
points will be plotted in the order in which they occur in the data set,
so it is usually necessary to sort the data by the x-axis variable first.
The data points will also be marked with pluses. The v= (value=) option
in the symbol statement can be used to vary or remove the plot character.
To change the above example so that only the line is plotted without the
individual points being marked, the symbol statement would be:

symboll v=none i=join;

Other useful variations on the plot character are: x, star, square, diamond,
triangle, hash, dot, and circle.

A variation of the plot statement uses a third variable to plot separate
subgroups of the data. Thus,

symboll v=square i=join;
symbol2 v=triangle i=join;
proc gplot;

plot y * x = sex;

run;

will produce two lines with different plot characters. An alternative would
be to remove the plot characters and use different types of line for the
two subgroups. The I= (linetype) option of the symbol statement may be
used to achieve this; for example,

symboll v=none i=join [=1;
symbol2 v=none i=join 1=2;



proc gplot;
plot y * x = sex;
run;

Both of the above examples assume that two symbol definitions are being
generated — one by the symboll statement and the other by symbol2.
However, this is not the case when SAS is generating colour graphics.
The reason is that SAS will use the symbol definition on the symboll
statement once for each colour currently defined before going on to use
symbol2. If the final output is to be in black and white, then the simplest
solution is to begin the program with:

goptions colors=(black);

If the output is to be in colour, then it is simplest to use the c= (color=)
option on the symbol statements themselves. For example:

symboll v=none i=join c=blue;
symbol2 v=none i=join c=red;
proc gplot;

plot y * x = sex;

run;

An alternative is to use the repeat (r=) option on the symbol statement
with r=1. This is also used for the opposite situation, to force a symbol
definition to be used repeatedly.

To plot means and standard deviations or standard errors, the i=std
option can be used. This is explained with an example in Chapter 10.

Symbol statements are global statements and thus remain in effect until
reset. Moreover, all the options set in a symbol statement persist until
reset. If a program contains the statement

symboll i=join v=diamond c=blue;
and a later symbol statement

symboll i=join;
the later plot will also have the diamond plot character as well as the
line, and they will be coloured blue.

To reset a symboll statement and all its options, include

symboll;



before the new symboll statement. To reset all the symbol definitions,
include

goptions reset=symbol,;

1.9.2 Overlaid Graphs

Overlaying two or more graphs is another technique that adds to the
range of graphs that can be produced. The statement

plot y*x z*x / overlay ;

will produce a graph where y and z are both plotted against x on the
same graph. Without the overlay option, two separate graphs would be
produced. Chapter 8 has examples. Note that it is not possible to overlay
graphs of the form y*x=z.

1.9.3 Viewing and Printing Graphics

For any program that produces graphics, we recommend beginning the
program with

goptions reset=all;

and then setting all the options required explicitly. Under Microsoft Win-
dows, a suitable set of graphics options might be:

goptions device=win target=winprtm rotate=landscape
ftext=swiss;

The device=win option specifies that the graphics are to be previewed
on the screen. The target=winprtm option specifies that the hardcopy is
to be produced on a monochrome printer set up in Windows, which can
be configured from the File, Print Setup menu in SAS. For greyscale or
colour printers, use target=winprtg or target=winprtc, respectively*.

The rotate option determines the orientation of the graphs. The alter-
native is rotate=portrait. The ftext=swiss option specifies a sans-serif font
for the text in the graphs.

When a goptions statement such as this is used, the graphs will be
displayed one by one in the graph window and the program will pause

* Under X-windows, the equivalent settings are device=xcolor and target=xprintm,
Xprintg, or xprintc.



between them with the message “Press Forward to see next graph” in the
status line. The Page Down and Page Up keys are used for Forward and
Backward, respectively.

1.10 Some Tips for Preventing and Correcting Errors

When writing programs:

1. One statement per line, where possible.
End each step with a run statement.

3. Indent each statement within a step (i.e., each statement between
the data or proc statement and the run statement) by a couple of
spaces. This is automated in the enhanced editor.

4. Give the full path name for raw data files on the infile statement.

5. Begin any programs that produce graphics with goptions reset=all;
and then set the required options.

Before submitting a program:

1. Check that each statement ends with a semicolon.
2. Check that all opening and closing quotes match.

Use the enhanced editor colour coding to double-check.

3. Check any statement that does not begin with a keyword (blue,
or navy blue) or a variable name (black).

4. Large blocks of purple may indicate a missing quotation mark.

5. Large areas of green may indicate a missing */ from a comment.

“Collapse” the program to check its overall structure. Hold down the
Ctrl and Alt keys and press the numeric keypad minus key. Only the data,
proc statements, and global statements should be visible. To expand the
program, press the numeric keypad plus key while holding down Ctrl
and Alt.

After running a program:

1. Examine the SAS log for warning and error messages.
Check for the message: "SAS went to a new line when INPUT
statement reached past the end of a line" when using list input.
3. Verify that the number of observations and variables read in is
correct.



4. Print out small data sets to ensure that they have been read
correctly.

If there is an error message for a statement that appears to be correct,
check whether the semicolon was omitted from the previous statement.
The message that a variable is “uninitialized” or “not found” usually
means it has been misspelled.
To correct a missing quote, submit:
the program and resubmit it.

;run; or "; run; and then correct



Chapter 2

Data Description and
Simple Inference:
Mortality and Water
Hardness in the U.K.

2.1 Description of Data

The data to be considered in this chapter were collected in an investigation
of environmental causes of diseases, and involve the annual mortality
rates per 100,000 for males, averaged over the years from 1958 to 1964,
and the calcium concentration (in parts per million) in the drinking water
supply for 61 large towns in England and Wales. (The higher the calcium
concentration, the harder the water.) The data appear in Table 7 of SDS
and have been rearranged for use here as shown in Display 2.1. (Towns
at least as far north as Derby are identified in the table by an asterisk.)
The main questions of interest about these data are as follows:

B How are mortality and water hardness related?
B [s there a geographical factor in the relationship?
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2.2 Methods of Analysis

Initial examination of the data involves graphical techniques such as
histograms and normal probability plots to assess the distributional prop-
erties of the two variables, to make general patterns in the data more
visible, and to detect possible outliers. Scatterplots are used to explore
the relationship between mortality and calcium concentration.

Following this initial graphical exploration, some type of correlation
coefficient can be computed for mortality and calcium concentration.
Pearson’s correlation coefficient is generally used but others, for example,
Spearman’s rank correlation, may be more appropriate if the data are not
considered to have a bivariate normal distribution. The relationship
between the two variables is examined separately for northern and south-
ern towns.

Finally, it is of interest to compare the mean mortality and mean calcium
concentration in the north and south of the country by using either a
I-test or its nonparametric alternative, the Wilcoxon rank-sum test.

2.3 Analysis Using SAS

Assuming the data is stored in an ASCII file, water.dat, as listed in Display
2.1 (i.e., including the " to identify the location of the town and the name
of the town), then they can be read in using the following instructions:

Town Mortality Hardness
Bath 1247 105
* Birkenhead 1668 17
Birmingham 1466 5
* Blackburn 1800 14
* Blackpool 1609 18
* Bolton 1558 10
* Bootle 1807 15
Bournemouth 1299 78
* Bradford 1637 10
Brighton 1359 84
Bristol 1392 73
* Burnley 1755 12
Cardiff 1519 21
Coventry 1307 78
Croydon 1254 96
* Darlington 1491 20
* Derby 1555 39
* Doncaster 1428 39
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L *

L R R 3

EE * %

L I N

East Ham
Exeter
Gateshead
Grimsby
Halifax
Huddersfield
Hull

Ipswich
Leeds
Leicester
Liverpool
Manchester
Middlesbrough
Newcastle
Newport
Northampton
Norwich
Nottingham
Oldham
Oxford
Plymouth
Portsmouth
Preston
Reading
Rochdale
Rotherham
St Helens
Salford
Sheffield
Southampton
Southend
Southport
South Shields
Stockport
Stoke
Sunderland
Swansea
Wallasey
Walsall

West Bromwich
West Ham
Wolverhampton
York

1318
1260
1723
1379
1742
1574
1569
1096
1591
1402
1772
1828
1704
1702
1581
1309
1259
1427
1724
1175
1486
1456
1696
1236
1711
1444
1591
1987
1495
1369
1257
1587
1713
1557
1640
1709
1625
1625
1527
1627
1486
1485
1378

122
21
44
94
8
9
91
138
16
37
15
8
26
44
14
59
133
27
6
107
5
90

6

101
13
14
49

8
14
68
50
75
71
13
57
71
13
20
60
53

122
81
71

Display 2.1




data water;
infile ‘'water.dat’;
input flag $ 1 Town $ 2-18 Mortal 19-22 Hardness 25-27;
if flag = '*' then location = 'north’;
else location = 'south’;
run;

The input statement uses SAS's column input where the exact columns
containing the data for each variable are specified. Column input is simpler
than list input in this case for three reasons:

B There is no space between the asterisk and the town name.

B Some town names are longer than eight characters — the default
length for character variables.

B Some town names contain spaces, which would make list input
complicated.

The univariate procedure can be used to examine the distributions of
numeric variables. The following simple instructions lead to the results
shown in Displays 2.2 and 2.3:

proc univariate data=water normal;
var mortal hardness;
histogram mortal hardness /normal,;
probplot mortal hardness;

run;

The normal option on the proc statement results in a test for the normality
of the variables (see below). The var statement specifies which variable(s)
are to be included. If the var statement is omitted, the default is a/l the
numeric variables in the data set. The histogram statement produces
histograms for both variables and the /normal option requests a normal
distribution curve. Curves for various other distributions, including non-
parametric kernel density estimates (see Silverman [1986]) can be produced
by varying this option. Probability plots are requested with the probplot
statement. Normal probability plots are the default. The resulting histo-
grams and plots are shown in Displays 2.4 to 2.7.

Displays 2.2 and 2.3 provide significant information about the distribu-
tions of the two variables, mortality and hardness. Much of this is self-
explanatory, for example, Mean, Std Deviation, Variance, and N. The mean-
ing of some of the other statistics printed in these displays are as follows:

Uncorrected SS: Uncorrected sum of squares; simply the
sum of squares of the observations
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Corrected SS:

Coeff Variation:

Std Error Mean:
Range:

Interquartile Range:

Student’s t:
Pr>|t|:
Sign Test:

Pr> |M|

Signed Rank:

Pr>=|S|:

Shapiro-Wilk W-

Kolmogorov-Smirnov D:

Cramer-von Mises W-sq:

Anderson-Darling A-sq:

Corrected sum of squares; simply the sum
of squares of deviations of the observa-
tions from the sample mean

Coefficient of variation; the standard devi-
ation divided by the mean and multiplied
by 100

Standard deviation divided by the square
root of the number of observations
Difference between largest and smallest
observation in the sample

Difference between the 25% and 75%
quantiles (see values of quantiles given
later in display to confirm)

Student’s #-test value for testing that the
population mean is zero

Probability of a greater absolute value for
the t-statistic

Nonparametric test statistic for testing
whether the population median is zero
Approximation to the probability of a
greater absolute value for the Sign test
under the hypothesis that the population
median is zero

Nonparametric test statistic for testing
whether the population mean is zero
Approximation to the probability of a
greater absolute value for the Sign Rank
statistic under the hypothesis that the pop-
ulation mean is zero

Shapiro-Wilk statistic for assessing the nor-
mality of the data and the corresponding
P-value (Shapiro and Wilk [1965])
Kolmogorov-Smirnov statistic for assess-
ing the normality of the data and the
corresponding P-value (Fisher and Van
Belle [1993])

Cramer-von Mises statistic for assessing
the normality of the data and the associ-
ated P-value (Everitt [1998])
Anderson-Darling statistic for assessing the
normality of the data and the associated
P-value (Everitt [1998])
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N

Mean

Std Deviation
Skewness
Uncorrected SS
Coeff Variation

The UNIVARIATE Procedure
Variable: Mortal

Moments
61 Sum Weights
1524.14754 Sum Observations
187.668754 Variance
-0.0844436  Kurtosis
143817743 Corrected SS

12.3130307

Std Error Mean

Basic Statistical Measures

Location Variability
Mean 1524.148 Std Deviation
Median 1555.000 Variance
Mode 1486.000 Range

Interquartile Range

61

92973
35219.5612
-0.4879484
2113173.67
24.0285217

187.66875

35220
891.00000
289.00000

NOTE: The mode displayed is the smallest of 3 modes with a count of 2.

Test

Student's t
Sign
Signed Ran

Test

Shapiro-Wilk

Kolmogorov-Smirn
Cramer-von Mises
Anderson-Darling

Tests for Location: Mu0=0

-Statistic-  ----- P-value------
t 63.43077 Pr > |f <.0001
M 30.5 Pr >=|M| <.0001
k S 945.5 Pr >= |S]| <.0001
Tests for Normality
--Statistic---  ----- P-value------
W 0.985543 Pr < W 0.6884
ov D 0.073488 Pr>D >0.1500
W-Sq 0.048688 Pr > W-Sgq >0.2500
A-Sq 0.337398 Pr > A-Sq >0.2500
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Quantiles (Definition 5)

Quantile Estimate
100% Max 1987
99% 1987
95% 1800
90% 1742
75% Q3 1668
50% Median 1555
25% Q1 1379
10% 1259
5% 1247
1% 1096
0% Min 1096

Extreme Observations

----Lowest----  ----Highest---
Value Obs Value Obs

1096 26 1772 29

1175 38 1800 4
1236 42 1807 7
1247 1 1828 30

1254 15 1987 46
Fitted Distribution for Mortal
Parameters for Normal Distribution

Parameter Symbol Estimate

Mean Mu 1524.148
Std Dev Sigma 187.6688

Goodness-of-Fit Tests for Normal Distribution

Test ---Statistic----  ----- P-value-----
Kolmogorov-Smirnov D 0.07348799 Pr>D >0.150
Cramer-von Mises W-Sq 0.04868837 Pr > W-Sq >0.250

Anderson-Darling A-Sq 0.33739780 Pr > A-Sq >0.250




Quantiles for Normal Distribution

Percent Observed Estimated

1.0 1096.00 1087.56

5.0 1247.00 1215.46
10.0 1259.00 1283.64
25.0 1379.00 1397.57
50.0 1555.00 1524.15
75.0 1668.00 1650.73
90.0 1742.00 1764.65
95.0 1800.00 1832.84
99.0 1987.00 1960.73

Display 2.2

The UNIVARIATE Procedure

Variable: Hardness

Moments
N 61 Sum Weights
Mean 47.1803279 Sum Observations
Std Deviation 38.0939664 Variance
Skewness 0.69223461 Kurtosis
Uncorrected SS 222854 Corrected SS
Coeff Variation 80.7412074 Std Error Mean

Basic Statistical Measures

61

2878
1451.15027
-0.6657553
87069.0164
4.8774326

Location Variability
Mean 47.18033 Std Deviation 38.09397
Median 39.00000 Variance 1451
Mode 14.00000 Range 133.00000
Interquartile Range 61.00000
Tests for Location: Mu0=0
Test -Statistic-  ----- P-value------
Student's t t 9.673189 Pr > |t <.0001
Sign M 30.5 Pr>=|M| <.0001
Sighed Rank S 945.5 Pr >= |S]| <.0001
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Test

Shapiro-Wilk
Kolmogorov-Smirnov
Cramer-von Mises
Anderson-Darling

Tests for Normality

--Statistic---
W 0.887867
D 0.196662
W-Sq 0.394005
A-Sq 2.399601

----- P-value------
Pr<w <0.0001
Pr>D <0.0100
Pr > W-Sq <0.0050
Pr > A-Sq <0.0050

Quantiles (Definition 5)

Quantile Estimate
100% Max 138
99% 138
95% 122
90% 101
75% Q3 75
50% Median 39
25% Q1 14
10% 8
5% 6
1% 5
0% Min 5

Extreme Observations

----Lowest----
Value Obs
5 39
5 3
6 41
6 37
8 46

----Highest---
Value Obs
107 38
122 19
122 59
133 35
138 26

Fitted Distribution for Hardness

Parameters for Normal Distribution

Parameter Symbol Estimate
Mean Mu 47.18033
Std Dev Sigma 38.09397




Goodness-of-Fit Tests for Normal Distribution

Test ---Statistic----  ----- P-value-----

Kolmogorov-Smirnov D 0.19666241 Pr>D <0.010
Cramer-von Mises W-Sq 0.39400529 Pr > W-Sq <0.005
Anderson-Darling A-Sq 2.39960138 Pr > A-Sq <0.005

Quantiles for Normal Distribution

-------- Quantile-------

Percent Observed Estimated
1.0 5.00000 -41.43949

5.0 6.00000 -15.47867
10.0 8.00000 -1.63905
25.0 14.00000 21.48634
50.0 39.00000 47.18033
75.0 75.00000 72.87432
90.0 101.00000 95.99971

95.0 122.00000 109.83933
99.0 138.00000 135.80015

Display 2.3

The quantiles provide information about the tails of the distribution
as well as including the five number summaries for each variable. These
consist of the minimum, lower quartile, median, upper quartile, and
maximum values of the variables. The box plots that can be constructed
from these summaries are often very useful in comparing distributions
and identifying outliers. Examples are given in subsequent chapters.

The listing of extreme values can be useful for identifying outliers,
especially when used with an id statement. The following section, entitled
“Fitted Distribution for Hardness,” gives details of the distribution fitted to
the histogram. Because a normal distribution is fitted in this instance, it
largely duplicates the output generated by the normal option on the proc
statement.

The numerical information in Display 2.2 and the plots in Displays 2.4
and 2.5 all indicate that mortality is symmetrically, approximately normally,
distributed. The formal tests of normality all result in non-significant values
of the test statistic. The results in Display 2.3 and the plots in Displays
2.6 and 2.7, however, strongly suggest that calcium concentration (hard-
ness) has a skew distribution with each of the tests for normality having
associated P-values that are very small.
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Percent
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257

207

157

107

-
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1275

1575
Mortal
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Display 2.4
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Display 2.5




Percent
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125 375 625 875 125
Hardness
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Display 2.6
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Display 2.7



The first step in examining the relationship between mortality and
water hardness is to look at the scatterplot of the two variables. This can

be found using proc gplot with the following instructions:

proc gplot;
plot mortal*hardness;
run;

The resulting graph is shown in Display 2.8. The plot shows a clear
negative association between the two variables, with high levels of calcium
concentration tending to occur with low mortality values and vice versa.
The correlation between the two variables is easily found using proc corr,

with the following instructions:

proc corr data=water pearson spearman;
var mortal hardness;

run;

Mortal

20001

19001

18001

17001

16001

15001

14001

13001

12007

1100

1000+

++

60 70 80
Hardness

90 100 110 120 130 140

Display 2.8

The pearson and spearman options in the proc corr statement request
that both types of correlation coefficient be calculated. The default, if
neither option is used, is the Pearson coefficient.
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The results from these instructions are shown in Display 2.9. The
correlation is estimated to be —0.655 using the Pearson coefficient and
—0.632 using Spearman’s coefficient. In both cases, the test that the
population correlation is zero has an associated P-value of 0.0001. There
is clearly strong evidence for a non-zero correlation between the two
variables.

The CORR Procedure
2 Variables: Mortal Hardness

Simple Statistics

Variable N Mean Std Dev Median Minimum Maximum
Mortal 61 1524 187.66875 1555 1096 1987
Hardness 61 47.18033 38.09397 39.00000 5.00000 138.00000

Pearson Correlation Coefficients, N = 61
Prob > |r| under HO: Rho=0

Mortal Hardness

Mortal 1.00000 -0.65485

<.0001

Hardness -0.65485 1.00000
<.0001

Spearman Correlation Coefficients, N = 61
Prob > |r| under HO: Rho=0

Mortal Hardness

Mortal 1.00000 -0.63166
<.0001
Hardness -0.63166 1.00000
<.0001
Display 2.9

One of the questions of interest about these data is whether or not
there is a geographical factor in the relationship between mortality and
water hardness, in particular whether this relationship differs between the
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towns in the North and those in the South. To

examine this question, a

useful first step is to replot the scatter diagram in Display 2.8 with northern

and southern towns identified with different
instructions are

symboll value=dot;
symbol2 value=circle;
proc gplot;
plot mortal*hardness = location;
run;

symbols. The necessary

The plot statement of the general form ploty * x = z will result in a
scatter plot of y by x with a different symbol for each value of z. In this
case, location has only two values and the first two plotting symbols used

by SAS are 'X' and '+,
to give more impact to the scattergram.

The resulting plot is shown in Display 2.10.
obvious difference in the form of the relationshi
hardness for the two groups of towns.

Mortal

The symbol statements change the plotting symbols

There appears to be no
p between mortality and

20001
19001
18001

17001
1600
15001

oo

14001
13001
12001
1100

1000,

70 80 90
Hardness
® * * north

10 20 30 40 50 60

location ° ©° south

100 110 120 130 140

Display 2.10
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Separate correlations for northern and southern towns can be produced
using proc corr with a by statement as follows:

proc sort;
by location;

proc corr data=water pearson spearman;
var mortal hardness;
by location;

run;

The by statement has the effect of producing separate analyses for each
subgroup of the data defined by the specified variable, location in this
case. However, the data set must first be sorted by that variable.

The results from this series of instructions are shown in Display 2.11.
The main items of interest in this display are the correlation coefficients
and the results of the tests that the population correlations are zero. The
Pearson correlation for towns in the North is —0.369, and for those in the
South it is —0.602. Both values are significant beyond the 5% level. The
Pearson and Spearman coefficients take very similar values for this example.

The CORR Procedure
2 Variables: Mortal Hardness
Simple Statistics
Variable N Mean Std Dev Median Minimum Maximum

Mortal 35 1634 136.93691 1637 1378 1987
Hardness 35 30.40000 26.13449 17.00000 6.00000 94.00000

Pearson Correlation Coefficients, N = 35
Prob > |r| under HO: Rho=0

Mortal Hardness

Mortal 1.00000 -0.36860
0.0293
Hardness -0.36860 1.00000

0.0293
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Spearman Correlation Coefficients, N = 35
Prob > |r| under HO: Rho=0

Mortal Hardness

Mortal 1.00000 -0.40421

0.0160

Hardness -0.40421 1.00000
0.0160

The CORR Procedure
2 Variables: Mortal Hardness

Simple Statistics
Variable N Mean Std Dev Median Minimum

Mortal 26 1377 140.26918 1364 1096
Hardness 26 69.76923 40.36068 75.50000 5.00000

Pearson Correlation Coefficients, N = 26
Prob > |r| under HO: Rho=0

Mortal Hardness

Mortal 1.00000 -0.60215

0.0011

Hardness -0.60215 1.00000
0.0011

Spearman Correlation Coefficients, N = 26
Prob > |r| under HO: Rho=0

Mortal Hardness

Mortal 1.00000 -0.59572

0.0013

Hardness -0.59572 1.00000
0.0013

Maximum

1627
138.00000

Display 2.11
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Examination of scatterplots often centres on assessing density patterns
such as clusters, gaps, or outliers. However, humans are not particularly
good at visually examining point density and some type of density estimate
added to the scatterplot is frequently very helpful. Here, plotting a bivari-
ate density estimate for mortality and hardness is useful for gaining more
insight into the structure of the data. (Details on how to calculate bivariate
densities are given in Silverman [19806].) The following code produces and
plots the bivariate density estimate of the two variables:

proc kde data=water out=bivest;
var mortal hardness;
proc g3d data=bivest;
plot hardness*mortal=density;
run;

The KDE procedure (proc kde) produces estimates of a univariate or
bivariate probability density function using kernel density estimation (see
Silverman [1986)). If a single variable is specified in the var statement, a
univariate density is estimated and a bivariate density if two are specified.
The out=bivest option directs the density estimates to a SAS data set. These
can then be plotted with the three-dimensional plotting procedure proc
93d. The resulting plot is shown in Display 2.12. The two clear modes in
the diagram correspond, at least approximately, to northern and southern
towns.

Density

0.0000236 1

0.0000157 1

0.0000079 1

Y
717
g7
e

2 L IHT]
,,tlt,”ll""

1987

1690

0.0000000 T
138

Hardness

Display 2.12
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The final question to address is whether or not mortality and calcium
concentration differ in northern and southern towns. Because the distri-
bution of mortality appears to be approximately normal, a #-test can be
applied. Calcium concentration has a relatively high degree of skewness;
thus, applying a Wilcoxon test or a f-test after a log transformation may
be more sensible. The relevant SAS instructions are as follows.

data water;
set water;
lhardnes=log(hardness);
proc ttest;
class location;
var mortal hardness lhardnes;
proc nparlway wilcoxon;
class location;
var hardness;
run;

The short data step computes the (natural) log of hardness and stores
it in the data set as the variable Ihardnes. To use proc ttest, the variable
that divides the data into two groups is specified in the class statement
and the variable (or variables) whose means are to be compared are
specified in the var statement. For a Wilcoxon test, the nparlway procedure
is used with the wilcoxon option.

The results of the #tests are shown in Display 2.13; those for the
Wilcoxon tests in Display 2.14. The #test for mortality gives very strong
evidence for a difference in mortality in the two regions, with that in the
North being considerably larger (the 95% confidence interval for the
difference is 185.11, 328.47). Using a test that assumes equal variances in
the two populations or one that does not make this assumption (Satter-
thwaite [1946]) makes little difference in this case. The ftest on the
untransformed hardness variable also indicates a difference, with the mean
hardness in the North being far less than amongst towns in the South.
Notice here that the test for the equality of population variances (one of
the assumptions of the #test) suggests that the variances differ. In exam-
ining the results for the log-transformed variable, it is seen that the #-test
still indicates a highly significant difference, but in this case the test for
homogeneity is nonsignificant.

The result from the nonparametric Wilcoxon test (Display 2.14) once
again indicates that the mean water hardness of towns in the North differs
from that of towns in the South.
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The TTEST Procedure

Statistics
Lower CL Upper CL Lower CL Upper CL
Variable Class N Mean Mean Mean Std Dev Std Dev Std Dev Std Err
Mortal north 35 1586.6 1633.6 1680.6 110.76 136.94 179.42 23.147
Mortal south 26 1320.2 1376.8 1433.5 110.01 140.27 193.63 27.509
Mortal Diff (1-2) 185.11 256.79 328.47 117.28 138.36 168.75 35.822
Hardness north 35 21.422 30.4 39.378 21.139 26.134 34.241 4.4175
Hardness south 26 53.467 69.769 86.071 31.653 40.361 55.714 7.9154
Hardness Diff (1-2) -56.43 -39.37 -22.31 27.906 32.922 40.154 8.5237
Lhardnes north 35 2.7887 3.0744 3.3601 0.6727 0.8316 1.0896 0.1406
Lhardnes south 26 3.5629 3.9484 4.3339 0.7485 0.9544 1.3175 0.1872
Lhardnes Diff (1-2) -1.333 -0.874 -0.415 0.7508 0.8857 1.0803 0.2293
T-Tests
Variable Method Variances DF t Value Pr > |t]
Mortal Pooled Equal 59 7.17 <.0001
Mortal Satterthwaite Unequal 53.3 7.14 <.0001
Hardness Pooled Equal 59 -4.62 <.0001
Hardness Satterthwaite Unequal 40.1 -4.34 <.0001
lhardnes Pooled Equal 59 -3.81 0.0003
lhardnes Satterthwaite Unequal 49.6 -3.73 0.0005
Equality of Variances
Variable Method Num DF Den DF F Value Pr>F
Mortal Folded F 25 34 1.05 0.8830
Hardness Folded F 25 34 2.39 0.0189
Ilhardnes Folded F 25 34 1.32 0.4496
Display 2.13
The NPAR1WAY Procedure
Wilcoxon Scores (Rank Sums) for Variable Hardness
Classified by Variable location
Sum of Expected Std Dev Mean
location N Scores Under HO Under HO Score
north 35 832.50 1085.0 68.539686 23.785714
south 26 1058.50 806.0 68.539686 40.711538

Average scores were used for ties.
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Wilcoxon Two-Sample Test

Statistic 1058.5000

Normal Approximation

Z 3.6767
One-Sided Pr > Z 0.0001
Two-Sided Pr > |Z| 0.0002

t Approximation
One-Sided Pr > Z 0.0003
Two-Sided Pr > |Z] 0.0005

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square 13.5718

DF 1

Pr > Chi-Square 0.0002
Display 2.14

Exercises

2.1 Rerun proc univariate with the plot option for line printer plots.

2.2 Generate box plots of mortality and water hardness by location (use
proc boxplot).

2.3 Use proc univariate to compare the distribution of water hardness
to the log normal and exponential distributions.

2.4  Produce histograms of both mortality and water hardness with, in
each case, a kernel density estimate of the variable’s distribution
superimposed.

2.5 Produce separate perspective plots of the estimated bivariate den-
sities of northern and southern towns.

2.6 Reproduce the scatterplot in Display 2.10 with added linear regres-

sion fits of mortality and hardness for both northern and southern
towns. Use different line types for the two regions.
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Chapter 3

Simple Inference for
Categorical Data: From
Sandflies to Organic
Particulates in the Air

3.1 Description of Data

This chapter considers the analysis of categorical data. It begins by looking
at tabulating raw data into cross-classifications (i.e. contingency tables)
using the mortality and water hardness data from Chapter 2. It then
examines six data sets in which the data are already tabulated; a description
of each of these data sets is given below. The primary question of interest
in each case involves assessing the relationship between pairs of categor-
ical variables using the chi-square test or some suitable alternative.

The six cross-classified data sets to be examined in this chapter are as
follows:

1. Sandflies (Table 128 in SDS). These data are given in Display
3.1 and show the number of male and female sandflies caught in
light traps set 3 ft and 35 ft above the ground at a site in eastern
Panama. The question of interest is: does the proportion of males
and females caught at a particular height differ?



Sandflies
3ft 35 ft
Males 173 125
Females 150 73
Total 323 198
Display 3.1

2. Acacia ants (Table 27 in SDS). These data, given in Display 3.2,
record the results of an experiment with acacia ants. All but 28
trees of two species of acacia were cleared from an area in Central
America, and the 28 trees were cleared of ants using insecticide.
Sixteen colonies of a particular species of ant were obtained from
other trees of species A. The colonies were placed roughly equi-
distant from the 28 trees and allowed to invade them. The question
of interest is whether the invasion rate differs for the two species
of acacia tree.

Acacia Species Not Invaded  Invaded  Total
A 2 13 15
B 10 3 13
Total 12 16 28
Display 3.2

3. Piston ring failures (Table 15 in SDS). These data are repro-
duced in Display 3.3 and show the number of failures of piston
rings in each of three legs in each of four steam-driven compressors
located in the same building. The compressors have identical
design and are orientated in the same way. The question of interest
is whether the pattern of the location of failures is different for
different compressors.

4. Oral contraceptives. These data appear in Display 3.4 and arise
from a study reported by Sartwell et al. (1969). The study was



conducted in a number of hospitals in several large American cities.
In those hospitals, all those married women identified as suffering
from idiopathic thromboembolism (blood clots) over a 3-year
period were individually matched with a suitable control, those
being female patients discharged alive from the same hospital in
the same 6-month time interval as the case. In addition, they were
individually matched to cases on age, marital status, race, etc.
Patients and controls were then asked about their use of oral
contraceptives.

Compressor No. North Centre South Total
1 17 17 12 46

2 11 9 13 33

3 11 8 19 38

4 14 7 28 49

Total 53 41 72 166

Display 3.3
Controls

Oral Contraceptive Use Used  Not Used

Cases used 10 57
Cases not used 13 95

5.

6.

Display 3.4

Oral lesions. These data appear in Display 3.5; they give the
location of oral lesions obtained in house-to-house surveys in three
geographic regions of rural India.

Particulates in the air. These data are given in Display 3.6; they
arise from a study involving cases of bronchitis by level of organic
particulates in the air and by age (Somes and O’Brien [1985)).



Region

Site of Lesion Keral ~ Gujarat  Andhra

Buccal mucosa

o=}
-
o=}

Labial mucosa
Commissure
Gingiva

Hard palate
Soft palate
Tongue

Floor of mouth
Alveolar ridge

- -0 O O O <o O
O O = 4
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Display 3.5 (Taken from Table 18.1 of the User Manual for Proc.-Stat Xact-4
for SAS Users, Cytel Software Corporation, Cambridge, MA, 2000.)

Bronchitis
Age Particulates
(Years) Level Yes No Total
15-24 High 20 382 402
Low 9 214 223
23-30 High 10 172 182
Low 7 120 127
40+ High 12 327 339
Low 6 183 189

Display 3.6 (Reprinted by permission from the Encyclopedia of Statistical
Sciences, John Wiley & Sons, Inc., New York, Copyright © 1982.)

3.2 Methods of Analysis

Contingency tables are one of the most common ways to summarize
categorical data. Displays 3.1, 3.2, and 3.4 are examples of 2 X 2 contingency
tables (although Display 3.4 has a quite different structure from Displays



3.1 and 3.2 as explained later). Display 3.3 is an example of a 3 x 4 table
and Display 3.5 an example of a 9 X 3 table with very sparse data. Display
3.6 is an example of a series of 2 X 2 tables involving the same two variables.
For all such tables, interest generally lies in assessing whether or not there
is an association between the row variable and the column variable that
form the table. Most commonly, a chi-square test of independence is used
to answer this question, although alternatives such as Fisher’s exact test or
McNemar'’s test may be needed when the sample size is small (Fisher’s test)
or the data consists of matched samples (McNemar’s test). In addition, in
2 x 2 tables, it may be required to calculate a confidence interval for the
difference in two population proportions. For a series of 2 x 2 tables, the
Mantel-Haenszel test may be appropriate (see later). (Details of all the tests
mentioned are given in Everitt [1992].)

3.3 Analysis Using SAS
3.3.1 Cross-Classifying Raw Data

We first demonstrate how raw data can be put into the form of a cross-
classification using the data on mortality and water hardness from Chapter 2.

data water;
infile 'n:\handbook\datasets\water.dat';
input flag $ 1 Town $ 2-18 Mortal 19-22 Hardness 25-27;
if flag="*' then location='north’;

else location="south’;

mortgrp=mortal > 1555;
hardgrp=hardness > 39;

run;

proc freq data=water;
tables mortgrp*hardgrp / chisq;

run;

The raw data are read into a SAS data set water, as described in Chapter
2. In this instance, two new variables are computed — mortgrp and hardgrp
— that dichotomise mortality and water hardness at their medians. Strictly
speaking, the expression mortal > 1555 is a logical expression yielding
the result “true” or “false,” but in SAS these are represented by the values
1 and 0O, respectively.

Proc freq is used both to produce contingency tables and to analyse
them. The tables statement defines the table to be produced and specifies
the analysis of it. The variables that form the rows and columns are joined



with an asterisk (*); these may be numeric or character variables. One-
way frequency distributions are produced where variables are not joined
by asterisks. Several tables can be specified in a single tables statement.
The options after the “/” specify the type of analysis. The chisq option
requests chi-square tests of independence and measures of association
based on chi-square. The output is shown in Display 3.7. We leave
commenting on the contents of this type of output until later.

The FREQ Procedure

Table of mortgrp by hardgrp

mortgrp  hardgrp

Frequency
Percent
Row Pct
Col Pct 0 1 Total
0 11 20 31
8.03 32.79 50.82
35.48 64.52
34.38 68.97
1 21 9 30
34.43 14.75 49.18
70.00 30.00
65.63 31.03
Total 32 29 61

52.46 47.54 100.00

Statistics for Table of mortgrp by hardgrp

Statistic DF Value Prob
Chi-Square 1 7.2830 0.0070
Likelihood Ratio Chi-Square 1 7.4403 0.0064
Continuity Adj. Chi-Square 1 5.9647 0.0146
Mantel-Haenszel Chi-Square 1 7.1636 0.0074
Phi Coefficient -0.3455

Contingency Coefficient 0.3266

Cramer's V -0.3455




Fisher's Exact Test

Cell (1,1) Frequency (F) 11
Left-sided Pr <= F 0.0070
Right-sided Pr >= F 0.9986
Table Probability (P) 0.0056
Two-sided Pr <= P 0.0103

Sample Size = 61

Display 3.7

Now we move on to consider the six data sets that actually arise in
the form of contingency tables. The freq procedure is again used to analyse
such tables and compute tests and measures of association.

3.3.2 Sandflies

The data on sandflies in Display 3.1. can be read into a SAS data set with
each cell as a separate observation and the rows and columns identified
as follows:

data sandflies;
input sex $ height n;
cards;
m 3 173
m 35 125
f 3 150
f 3573

The rows are identified by a character variable sex with values m and
f. The columns are identifed by the variable height with values 3 and 35.

The variable n contains the cell count. proc freq can then be used to analyse
the table.

proc freq data=sandflies;
tables sex*height /chisq riskdiff;
weight n;

run;



The riskdiff option requests differences in risks (or binomial propor-
tions) and their confidence limits.

The weight statement specifies a variable that contains weights for each
observation. It is most commonly used to specify cell counts, as in this
example. The default weight is 1, so the weight statement is not required
when the data set consists of observations on individuals.

The results are shown in Display 3.8. First, the 2 x 2 table of data is
printed, augmented with total frequency, row, and column percentages.
A number of statistics calculated from the frequencies in the table are
then printed, beginning with the well-known chi-square statistic used to
test for the independence of the two variables forming the table. Here,
the P-value associated with the chi-square statistic suggests that sex and
height are not independent. The likelihood ratio chi-square is an alterna-
tive statistic for testing independence (as described in Everitt [1992]). Here,
the usual chi-square statistic and the likelihood ratio statistic take very
similar values. Next the continuity adjusted chi-square statistic is printed.
This involves what is usually known as Yates’s correction, again described
in Everitt (1992). The correction is usually suggested as a simple way of
dealing with what was once perceived as the problem of unacceptably
small frequencies in contingency tables. Currently, as seen later, there are
much better ways of dealing with the problem and really no need to ever
use Yates’s correction. The Mantel-Haenszel statistic tests the hypothesis
of a linear association between the row and column variables. Both should
be ordinal numbers. The next three statistics printed in Display 3.8 —
namely, the Phi coefficient, Contingency coefficient, and Cramer’s V —
are all essentially attempts to quantify the degree of the relationship
between the two variables forming the contingency table. They are all
described in detail in Everitt (1992).

Following these statistics in Display 3.8 is information on Fisher’s exact
test. This is more relevant to the data in Display 3.2 and thus its discussion
comes later. Next come the results of estimating a confidence interval for
the difference in proportions in the contingency table. Thus, for example,
the estimated difference in the proportion of female and male sandflies
caught in the 3-ft light traps is 0.0921 (0.6726-0.5805). The standard error
of this difference is calculated as:

Jo.6726(1 —0.6726) , 0.5805(1 =0.5805)
223 298

that is, the value of 0.0425 given in Display 3.8. The confidence interval
for the difference in proportions is therefore:

0.0921 + 1.96 x 0.0425 = (0.0088, 0.1754)



as given in Display 3.8. The proportion of female sandflies caught in the
3-ft traps is larger than the corresponding proportion for males.

The FREQ Procedure

Table of sex by height

Sex height

Frequency

Percent

Row Pct

Col Pct 3 35 Total

f 150 73 223
28.79 14.01 42.80
67.26 | 32.74
46.44 | 36.87

m 173 125 298
33.21 23.99 57.20
58.05 |41.95
53.56 |63.13

Total 323 198 521

62.00 38.00 100.00

Statistics for Table of sex by height

Statistic DF Value Prob
Chi-Square 1 4.5930 0.0321
Likelihood Ratio Chi-Square 1 4.6231 0.0315
Continuity Adj. Chi-Square 1 4.2104 0.0402
Mantel-Haenszel Chi-Square 1 4.5842 0.0323
Phi Coefficient 0.0939
Contingency Coefficient 0.0935
Cramer's V 0.0939

Fisher's Exact Test

Cell (1,1) Frequency (F) 150
Left-sided Pr <= F 0.9875
Right-sided Pr >= F 0.0199
Table Probability (P) 0.0073

Two-sided Pr <= P 0.0360




Column 1 Risk Estimates

(Asymptotic) 95% (Exact) 95%
Risk ASE Confidence Limits Confidence Limits
Row 1 0.6726 0.0314 0.6111 0.7342 0.6068 0.7338
Row 2 0.5805 0.0286 0.5245 0.6366 0.5223 0.6372
Total 0.6200 0.0213 0.5783 0.6616 0.5767 0.6618

Difference  0.0921 0.0425 0.0088 0.1754

Difference is (Row 1 — Row 2)

Column 2 Risk Estimates

(Asymptotic) 95% (Exact) 95%
Risk ASE Confidence Limits Confidence Limits
Row 1 0.3274 0.0314 0.2658 0.3889 0.2662 0.3932
Row 2 0.4195 0.0286 0.3634 0.4755 0.3628 0.4777
Total 0.3800 0.0213 0.3384 0.4217 0.3382 0.4233

Difference -0.0921 0.0425 -0.1754 -0.0088

Difference is (Row 1 - Row 2)

Sample Size = 521

Display 3.8

3.3.3 Acacia Ants

The acacia ants data are also in the form of a contingency table and are
read in as four observations representing cell counts.

data ants;
input species $ invaded $ n;
cards;
A no 2
A yes 13



B no 10

B no 3

proc freq data=ants;
tables species*invaded / chisq expected,;
weight n;

run;

In this example, the expected option in the tables statement is used
to print expected values under the independence hypothesis for each cell.

The results are shown in Display 3.9. Here, because of the small
frequencies in the table, Fisher’s exact test might be the preferred option,
although all the tests of independence have very small associated P-values
and thus, very clearly, species and invasion are not independent. A higher
proportion of ants invaded species A than species B.

The FREQ Procedure

Table of species by invaded

species invaded
Frequency
Expected
Percent
Row Pct
Col Pct no yes Total
A 2 13 15
8.0357 6.9643
7.14 46.43 53.57
13.33 86.67
13.33 100.00
B 13 0 13
6.9643 6.0357
46.43 0.00 46.43
100.00 0.00
86.67 0.00
Total 15 13 28

53.57 46.43 100.00




Statistics for Table of species by invaded

Statistic DF Value Prob

Chi-Square

Likelihood Ratio Chi-Square
Continuity Adj. Chi-Square
Mantel-Haenszel Chi-Square

21.0311 <.0001
26.8930 <.0001
17.6910 <.0001
20.2800 <.0001

_ A A

Phi Coefficient -0.8667
Contingency Coefficient 0.6549
Cramer's V -0.8667

Fisher's Exact Test

Cell (1,1) Frequency (F) 2
Left-sided Pr <= F 2.804E-06
Right-sided Pr >= F 1.0000
Table Probability (P) 1.0000
Two-sided Pr <= P 2.831E-06

Sample Size = 28

Display 3.9

3.3.4 Piston Rings

Moving on to the piston rings data, they are read in and analysed as
follows:

data pistons;
input machine site $ n;
cards;
1 North 17
1 Centre 17



South 12
North 11
Centre 9
South 13
North 11
Centre 8
South 19
North 14
Centre 7
South 28
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proc freq data=pistons order=data;

tables machine*site / chisq deviation cellchi2 norow nocol
nopercent;

weight n;
run;

The order=data option in the proc statement specifies that the rows
and columns of the tables follow the order in which they occur in the
data. The default is number order for numeric variables and alphabetical
order for character variables.

The deviation option in the tables statement requests the printing of
residuals in the cells, and the cellchi2 option requests that each cell’s
contribution to the overall chi-square be printed. To make it easier to
view the results the, row, column, and overall percentages are suppressed
with the norow, nocol, and nopercent options, respectively.

Here, the chi-square test for independence given in Display 3.10
shows only relatively weak evidence of a departure from independence.
(The relevant P-value is 0.069). However, the simple residuals (the
differences between an observed frequency and that expected under
independence) suggest that failures are fewer than might be expected
in the South leg of Machine 1 and more than expected in the South leg
of Machine 4. (Other types of residuals may be more useful — see
Exercise 3.2.)



The FREQ Procedure

Table of machine by site

Machine Site
Frequency
Deviation
Cell Chi-Square North Centre South | Total
1 7 17 12 46
2.3133 5.6386 -7.952
0.3644 2.7983 3.1692
2 11 9 13 33
0.4639 0.8494 -1.313

0.0204 0.0885 0.1205

-1.133 -1.386 2.5181
0.1057 0.2045 0.3847

-1.645 -5.102 6.747
0.1729 2.1512 2.1419

Total 53 41 72 166

Statistics for Table of machine by site

Statistic DF Value Prob
Chi-Square 6 11.7223 0.0685
Likelihood Ratio Chi-Square 6 12.0587 0.0607
Mantel-Haenszel Chi-Square 1 5.4757 0.0193
Phi Coefficient 0.2657
Contingency Coefficient 0.2568
Cramer's V 0.1879

Sample Size = 166

Display 3.10

3.3.5 Oral Contraceptives

The oral contraceptives data involve matched observations. Consequently,
they cannot be analysed with the usual chi-square statistic. Instead, they
require application of McNemar’s test, as described in Everitt (1992). The
data can be read in and analysed with the following SAS commands:



data the_pill;
input caseuse $ contruse $ n;

cards;

YY 10

Y N 57

NY 13

N N 95

proc freq data=the_pill order=data;
tables caseuse*contruse / agree;
weight n;

run;

The agree option on the tables statement requests measures of agreement,
including the one of most interest here, the McNemar test. The results appear
in Display 3.11. The test of no association between using oral contraceptives
and suffering from blood clots is rejected. The proportion of matched pairs
in which the case has used oral contraceptives and the control has not is
considerably higher than pairs where the reverse is the case.

The FREQ Procedure

Table of caseuse by contruse

caseuse contruse

Frequency

Percent

Row Pct

Col Pct Y N Total

Y 10 57 67
5.71 32.57 38.29

14.93 85.07
43.48 37.50

N 13 95 108
7.43 54.29 61.71
12.04 87.96
56.52 62.50

Total 23 152 175
13.14 86.86 100.00




Statistics for Table of caseuse by contruse

McNemar's Test

Statistic (S)  27.6571
DF 1
Pr>S <.0001

Simple Kappa Coefficient

Kappa 0.0330
ASE 0.0612
95% Lower Conf Limit -0.0870
95% Upper Conf Limit 0.1530

Sample Size = 175

Display 3.11

3.3.6 Oral Cancers

The data on the regional distribution of oral cancers is read in using the
following data step:

data lesions;
length region $8.;
input site $ 1-16 n1 n2 n3;
region="'Keral';
n=n1;
output;
region='Gujarat";
n=n2;
output;
region='Anhara’;
n=n3;
output;
drop n1-n3;
cards;
Buccal Mucosa 8 1 8
Labial Mucosa 0 1 0



Commissure
Gingiva

Hard palate
Soft palate
Tongue

Floor of mouth
Alveolar ridge
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This data step reads in the values for three cell counts from a single line
of instream data and then creates three separate observations in the output
data set. This is achieved using three output statements in the data step.
The effect of each output statement is to create an observation in the data
set with the data values that are current at that point. First, the input
statement reads a line of data that contains the three cell counts. It uses
column input to read the first 16 columns into the site variable, and then
the list input to read the three cell counts into variables n1 to n3. When
the first output statement is executed, the region variable has been assigned
the value ‘Keral’ and the variable n has been set equal to the first of the
three cell counts read in. At the second output statement, the value of
region is ‘Gujarat’, and n equals n2, the second cell count, and so on for
the third output statement. When restructuring data like this, it is wise to
check the results, either by viewing the resultant data set interactively or
using proc print. The SAS log also gives the number of variables and
observations in any data set created and thus can be used to provide a
check.

The drop statement excludes the variables mentioned from the lesions
data set.

proc freq data=lesions order=data;
tables site*region /exact;
weight n;

run;

For 2 x 2 tables, Fisher’s exact test is calculated and printed by default.
For larger tables, exact tests must be explicitly requested with the exact
option on the tables statement. Here, because of the very sparse nature
of the data, it is likely that the exact approach will differ from the usual
chi-square procedure. The results given in Display 3.12 confirm this. The
chi-square test has an associated P-value of 0.14, indicating that the
hypothesis of independence site and region is acceptable. The exact test
has an associated P-value of 0.01, indicating that the site of lesion and



region are associated. Here, the chi-square test is unsuitable because of
the very sparse nature of the data.

The FREQ Procedure
Table of site by region

site region
Frequency
Percent
Row Pct
Col Pct Keral Gujarat Anhara Total
Buccal Mucosa 8 1 8 17
29.63 3.70 29.63 62.96
47.06 5.88 47.06
80.00 14.29 80.00
Labial Mucosa 0 1 0 1
0.00 3.70 0.00 3.70
0.00 100.00 0.00
0.00 14.29 0.00
Commissure 0 1 0 1
0.00 3.70 0.00 3.70
0.00 100.00 0.00
0.00 14.29 0.00
Gingiva 0 1 0 1
0.00 3.70 0.00 3.70
0.00 100.00 0.00
0.00 14.29 0.00
Hard palate 0 1 0 1
0.00 3.70 0.00 3.70
0.00 100.00 0.00
0.00 14.29 0.00
Soft palate 0 1 0 1
0.00 3.70 0.00 3.70
0.00 100.00 0.00
0.00 14.29 0.00
Tongue 0 1 0 1
0.00 3.70 0.00 3.70
0.00 100.00 0.00
0.00 14.29 0.00




Floor of mouth 1 0 1 2
3.70 0.00 3.70 7.41

50.00 0.00 50.00

10.00 0.00 10.00
Alveolar ridge 1 0 1 2
3.70 0.00 3.70 7.41

50.00 0.00 50.00

10.00 0.00 10.00
Total 10 7 10 27

37.04 25.93 37.04 100.00

Statistics for Table of site by region

Statistic DF Value Prob
Chi-Square 16 22.0992 0.1400
Likelihood Ratio Chi-Square 16 23.2967 0.1060
Mantel-Haenszel Chi-Square 1 0.0000 1.0000
Phi Coefficient 0.9047
Contingency Coefficient 0.6709
Cramer's V 0.6397

WARNING: 93% of the cells have expected counts less
than 5. Chi-Square may not be a valid test.

The FREQ Procedure
Statistics for Table of site by region

Fisher's Exact Test

Table Probability (P)  5.334E-06
Pr <=P 0.0101

Sample Size = 27

Display 3.12

3.3.7 Particulates and Bronchitis

The final data set to be analysed in this chapter, the bronchitis data in
Display 3.6, involves 2 x 2 tables for bronchitis and level of organic
particulates for three age groups. The data could be collapsed over age
and the aggregate 2 x 2 table analysed as described previously. However,
the potential dangers of this procedure are well-documented (see, for



example, Everitt [1992]). In particular, such pooling of contingency tables
can generate an association when in the separate tables there is none. A
more appropriate test in this situation is the Mantel-Haenszel test. For a
series of k& 2 X 2 tables, the test statistic for testing the hypothesis of no
association is:

{z Z(a +b)(a +c)}

- - (3.1
(a,+b;)(c;+d)(a,+c;)(b+d,)

z ”?(”i_l)

i=1

2 _

where a, b, c, d; represent the counts in the four cells of the ith table
and 7, is the total number of observations in the ith table. Under the null
hypothesis of independence in all tables, this statistic has a chi-squared
distribution with a single degree of freedom.

The data can be read in and analysed using the following SAS code:

data bronchitis;
input agegrp level $ bronch $ n;

cards;

1 H Y 20
1 H N 382
1 L Y 9

1 L N 214
2 H Y 10
2 H N 172
2 L Y 7

2 L N 120
3 H Y 12
3 H N 327
3 L Y 6

3 L N 183

proc freq data=bronchitis order=data;
Tables agegrp*level*bronch / cmh noprint;
weight n;

run;



The tables statement specifies a three-way tabulation with agegrp
defining the strata. The cmh option requests the Cochran-Mantel-Haenszel
statistics and the noprint option suppresses the tables. The results are
shown in Display 3.13. There is no evidence of an association between
level of organic particulates and suffering from bronchitis. The P-value
associated with the test statistic is 0.64 and the assumed common odds
ratio calculated as:

_ 2(a,d/n;)

lppoolcd - Z(bic,'/n,') (32)

takes the value 1.13 with a confidence interval of 0.67, 1.93. (Since the
Mantel-Haenszel test will only give sensible results if the association
between the two variables is both the same size and same direction in
each 2 x 2 table, it is generally sensible to look at the results of the
Breslow-Day test for homogeneity of odds ratios given in Display 3.13.
Here there is no evidence against homogeneity. The Breslow-Day test is
described in Agresti [1990)).

The FREQ Procedure

Summary Statistics for level by bronch
Controlling for agegrp

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic  Alternative Hypothesis DF Value Prob
1 Nonzero Correlation 1 0.2215 0.6379
2 Row Mean Scores Differ 1 0.2215 0.6379
3 General Association 1 0.2215 0.6379

Estimates of the Common Relative Risk (Row1/Row2)

Type of Study Method Value 95% Confidence Limits
Case-Control Mantel-Haenszel 1.1355 0.6693 1.9266
(Odds Ratio) Logit 1.1341 0.6678 1.9260
Cohort Mantel-Haenszel 1.1291 0.6808 1.8728
(Col1 Risk) Logit 1.1272 0.6794 1.8704
Cohort | Mantel-Haenszel 0.9945 0.9725 1.0170

(Col2 Risk) Logit 0.9945 0.9729 1.0166




Breslow-Day Test for
Homogeneity of the Odds Ratios

Chi-Square 0.1173
DF 2
Pr > ChiSq 0.9430

Total Sample Size = 1462

Display 3.13

Exercises

3.1

3.2

3.3

For the oral contraceptives data, construct a confidence interval for
the difference in the proportion of women suffering blood clots
who used oral contraceptives and the corresponding proportion for
women not suffering blood clots.

For the piston ring data, the “residuals” used in the text were simply
observed frequency minus expected under independence. Those
are not satisfactory for a number of reasons, as discussed in Everitt
(1992). More suitable residuals are r and 7, given by:

_ Observed —Expected

~JExpected

and

% _Row total [j El Column totalf
Sample Sample sizdl ™ Sample size ‘Sample size

Calculate both for the piston ring data and compare what each of
the three types have to say about the data.

In the data given in Display 3.5, the frequencies for the Keral and
Andhra regions are identical. Reanalyse the data after simply sum-
ming the frequencies for those two regions and reducing the number
of columns of the table by one.



Chapter 4

Multiple Regression:
Determinants of Crime
Rate in the United States

4.1 Description of Data

The data set of interest in this chapter is shown in Display 4.1 and consists

of crime rates for 47 states in the United States, along with the values of

13 explanatory variables possibly associated with crime. (The data were

originally given in Vandaele [1978] and also appear in Table 134 of SDS.)
A full description of the 14 variables in these data is as follows:

R Crime rate: the number of offences known to the police per
1,000,000 population

Age Age distribution: the number of males aged 14 to 24 years
per 1000 of total state population

S Binary variable distinguishing southern states (S = 1) from
the rest

Ed Educational level: mean number of years of schooling %X 10
of the population 25 years old and over

Ex0  Police expenditure: per capita expenditure on police pro-
tection by state and local governments in 1960

Ex1 Police expenditure: as Ex0, but for 1959



LF

Ul

U2

Labour force participation rate per 1000 civilian urban males
in the age group 14 to 24 years

Number of males per 1000 females

State population size in hundred thousands

Number of non-whites per 1000

Unemployment rate of urban males per 1000 in the age
group 14 to 24 years

Unemployment rate of urban males per 1000 in the age
group 35 to 39 years

Wealth, as measured by the median value of transferable
goods and assets or family income (unit 10 dollars)
Income inequality: the number of families per 1000 earning
below one half of the median income

The main question of interest about these data concerns how the crime
rate depends on the other variables listed. The central method of analysis
will be multiple regression.

R Age S Ed ExO Ex1 LF M N NW Ul U2z w X

79.1 151
163.5 143
57.8 142
196.9 136
123.4 141
68.2 121
96.3 127
1555 131
85.6 157
70.5 140
167.4 124
849 134
511 128
66.4 135
79.8 152
943 142
539 143
929 135
75.0 130
1225 125
742 126
439 157
121.6 132

91 58 56 510 950 33 301 108 41 394 261
113 103 95 583 1012 13 102 96 36 557 194
89 45 44 533 969 18 219 94 33 318 250
121 149 141 577 994 157 80 102 39 673 167
121 109 101 591 985 18 30 91 20 578 174
110 118 115 547 964 25 44 84 29 689 126
M 82 79 519 982 4 139 97 38 620 168
109 115 109 542 969 50 179 79 35 472 206
90 65 62 553 955 39 286 81 28 421 239
118 71 68 632 1029 7 15 100 24 526 174
105 121 116 580 966 101 106 77 35 657 170
108 75 71 595 972 47 59 83 31 580 172
113 67 60 624 972 28 10 77 25 507 206
117 62 61 595 986 22 46 77 27 529 190
87 57 53 530 986 30 72 92 43 405 264
88 81 77 497 956 33 321 116 47 427 157
110 66 63 537 977 10 6 114 35 487 166
104 123 115 537 978 31 170 89 34 631 165
116 128 128 536 934 51 24 78 34 627 135
108 113 105 567 985 78 94 130 58 626 166
108 74 67 602 984 34 12 102 33 557 195
89 47 44 512 962 22 423 97 34 288 276
9% 87 83 564 953 43 92 83 32 513 227

O ) OO0 O ) ) OO0 A 2 OO = 0O =




968 131 0 116 78 73 574 1038 7 36 142 42 540 179
523 130 0 116 63 57 641 984 14 26 70 21 486 196
199.3 131 0 121 160 143 631 1071 3 77 102 41 674 152
342 135 0 109 69 71 540 965 6 4 80 22 564 139
1216 152 0 112 82 76 571 1018 10 79 103 28 537 215
1043 119 0 107 166 157 521 928 168 89 92 36 637 154
696 166 1 89 58 54 521 973 46 2554 72 26 396 237
373 140 0 93 55 54 535 1045 6 20 135 40 453 200
754 125 0 109 90 81 586 964 97 82 105 43 617 163
1072 147 1 104 63 64 560 972 23 95 76 24 462 233
923 126 0 118 97 97 542 990 18 21 102 35 589 166
653 123 0 102 97 87 526 958 113 76 124 50 572 158
1272 150 0 100 109 98 531 964 9 24 87 38 559 153
831 177 1 87 58 56 638 974 24 349 76 28 382 254
566 133 0 104 51 47 599 1024 7 40 99 27 425 225
826 149 1 88 61 54 515 953 36 165 86 35 395 251
1151 145 1 104 82 74 560 981 96 126 88 31 488 228
88.0 148 0 122 72 66 601 998 9 19 84 20 590 144
542 141 0 109 56 54 523 968 4 2 107 37 489 170
823 162 1 99 74 70 522 99 40 208 73 27 496 221
103.0 136 0 121 95 96 574 1012 29 36 111 37 622 162
455 139 1 88 46 41 480 9968 19 49 135 53 457 249
508 126 0 104 106 97 599 989 40 24 78 25 593 171
849 130 0 121 90 91 623 1049 3 22 113 40 588 160
Display 4.1
4.2 The Multiple Regression Model
The multiple regression model has the general form:
Vi = By + Buxy + By + o Bp‘xpi + [, 4.1

where y; is the value of a continuous response variable for observation
are the values of p explanatory variables for the
same observation. The term [J, is the residual or error for individual ¢ and
represents the deviation of the observed value of the response for this
individual from that expected by the model. The regression coefficients,

Z'a and xli? ‘x21'7

X,

'pi

By, By, -+, By, are generally estimated by least-squares.




Significance tests for the regression coefficients can be derived by
assuming that the residual terms are normally distributed with zero mean
and constant variance 0% The estimated regression coefficient correspond-
ing to a particular explanatory variable gives the change in the response
variable associated with a unit change in the explanatory variable, con-
ditional on all other explanatory variables remaining constant.

For n observations of the response and explanatory variables, the
regression model can be written concisely as:

y=XB+0 (4.2)

where y is the n x 1 vector of responses; X is an n X (p + 1) matrix of
known constraints, the first column containing a series of ones corre-
sponding to the term 3, in Eq. (4.1); and the remaining columns containing
values of the explanatory variables. The elements of the vector B are the
regression coefficients By, 3, -+, B,, and those of the vectoiD], the residual
terms O, 0O,, ---, O,.

The regression coefficients can be estimated by least-squares, resulting
in the following estimator for B:

A

B=XX'Xy (4.3)

The variances and covariances of the resulting estimates can be found
from

Sp = XX 4.4

where §? is defined below.

The variation in the response variable can be partitioned into a part
due to regression on the explanatory variables and a residual. These can
be arranged in an analysis of variance table as follows:

Source DF SS MS F

Regression p RGSS RGSS/p RGMS/RSMS
Residual n-p—1 RSS RSS/(n—p-1)

Note: DF: degrees of freedom, SS: sum of squares, MS: mean
square.

The residual mean square s? gives an estimate of 02, and the F-statistic is
a test that B,, B,, -+, B, are all zero.



A measure of the fit of the model is provided by the multiple correlation
coefficient, R, defined as the correlation between the observed values of
the response variable and the values predicted by the model; that is

V= Bo + ﬁlxil o éjfxip (4.5)

The value of R? gives the proportion of the variability of the response
variable accounted for by the explanatory variables.
For complete details of multiple regression, see, for example, Rawlings

(1988).

4.3 Analysis Using SAS

Assuming that the data are available as an ASCII file uscrime.dat, they
can be read into SAS for analysis using the following instructions:

data uscrime;

infile 'uscrime.dat' expandtabs;

input R Age S Ed Ex0 Ex1 LF M N NW U1l U2 W X;
run;

Before undertaking a formal regression analysis of these data, it may
be helpful to examine them graphically using a scatterplot matrix. This is
essentially a grid of scatterplots for each pair of variables. Such a display
is often useful in assessing the general relationships between the variables,
in identifying possible outliers, and in highlighting potential multicollinea-
rity problems amongst the explanatory variables (i.e., one explanatory
variable being essentially predictable from the remainder). Although this
is only available routinely in the SAS/INSIGHT module, for those with
access to SAS/IML, we include a macro, listed in Appendix A, which can
be used to produce a scatterplot matrix. The macro is invoked as follows:

%include 'scattmat.sas’;
%scattmat(uscrime,R--X);

This assumes that the macro is stored in the file ‘scattmat.sas’ in the
current directory. Otherwise, the full pathname is needed. The macro is
called with the %scattmat statement and two parameters are passed: the
name of the SAS data set and the list of variables to be included in the
scatterplot matrix. The result is shown in Display 4.2.

The individual relationships of crime rate to each of the explanatory
variables shown in the first column of this plot do not appear to be
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Display 4.2

particularly strong, apart perhaps from Ex0 and Ex1. The scatterplot matrix
also clearly highlights the very strong relationship between these two
variables. Highly correlated explanatory variables, multicollinearity, can
cause several problems when applying the multiple regression model,
including:

1. It severely limits the size of the multiple correlation coefficient R
because the explanatory variables are primarily attempting to
explain much of the same variability in the response variable (see
Dizney and Gromen [1967] for an example).

2. It makes determining the importance of a given explanatory vari-
able (see later) difficult because the effects of explanatory variables
are confounded due to their intercorrelations.

3. It increases the variances of the regression coefficients, making use
of the predicted model for prediction less stable. The parameter
estimates become unreliable.

Spotting multicollinearity amongst a set of explanatory variables might
not be easy. The obvious course of action is to simply examine the
correlations between these variables, but whilst this is often helpful, it is



by no means foolproof — more subtle forms of multicollinearity may be
missed. An alternative and generally far more useful approach is to
examine what are known as the variance inflation factors of the explan-
atory variables. The variance inflation factor VIF, for the jth variable is
given by

VIF, = —— (4.6)

1-£

where R? is the square of the multiple correlation coefficient from the
regression of the jth explanatory variable on the remaining explanatory
variables. The variance inflation factor of an explanatory variable indicates
the strength of the linear relationship between the variable and the
remaining explanatory variables. A rough rule of thumb is that variance
inflation factors greater than 10 give some cause for concern.

How can multicollinearity be combatted? One way is to combine in
some way explanatory variables that are highly correlated. An alternative
is simply to select one of the set of correlated variables. Two more complex
possibilities are regression on principal components and ridge regression,
both of which are described in Chatterjee and Price (1991).

The analysis of the crime rate data begins by looking at the variance
inflation factors of the 13 explanatory variables, obtained using the fol-
lowing SAS instructions:

proc reg data=uscrime;
model R= Age--X / vif;
run;

The vif option in the model statement requests that variance inflation
factors be included in the output shown in Display 4.3.

The REG Procedure
Model: MODEL1
Dependent Variable: R

Analysis of Variance

Sum of Mean
Source DF  Squares Square F Value Pr > F
Model 13 52931 4071.58276 8.46 <.0001
Error 33 15879 481.17275

Corrected Total 46 68809




Root MSE 21.93565 R-Square 0.7692
Dependent Mean 90.50851 Adj R-Sq 0.6783
Coeff Var 24.23601
Parameter Estimates
Parameter Standard Variance
Variable DF Estimate Error t Value Pr > |t| Inflation
Intercept 1 -691.83759 155.88792 -4.44 <.0001 0
Age 1 1.03981 0.42271 2.46 0.0193 2.69802
S 1 -8.30831 14.91159 -0.56 0.5812 4.87675
Ed 1 1.80160 0.64965 2.77 0.0091 5.04944
Ex0 1 1.60782 1.05867 1.52 0.1384 94.63312
Ex1 1 -0.66726 1.14877 -0.58 0.5653 98.63723
LF 1 -0.04103 0.15348 -0.27 0.7909 3.67756
M 1 0.16479 0.20993 0.78 0.4381 3.65844
N 1 -0.04128 0.12952 -0.32 0.7520 2.32433
NW 1 0.00717 0.06387 0.11 0.9112 4.12327
Ul 1 -0.60168 0.43715 -1.38 0.1780 5.93826
U2 1 1.79226 0.85611 2.09 0.0441 4.99762
w 1 0.13736 0.10583 1.30 0.2033 9.96896
X 1 0.79293 0.23509 3.37 0.0019 8.40945

Concentrating for now on the variance inflation factors in Display 4.3,
we see that those for ExO and Ex1 are well above the value 10. As a
consequence, we simply drop variable EXO from consideration and now
regress crime rate on the remaining 12 explanatory variables using the

following:

Display 4.3

proc reg data=uscrime;
model R= Age--Ed Ex1--X / vif;

run;

The output is shown in Display 4.4. The square of the multiple
correlation coefficient is 0.75, indicating that the 12 explanatory variables
account for 75% of the variability in the crime rates of the 47 states. The

variance inflation factors are now all less than 10.




The REG Procedure
Model: MODEL1
Dependent Variable: R

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr>F
Model 12 51821 4318.39553 8.64 <.0001
Error 34 16989 499.66265
Corrected Total 46 68809

Root MSE 22.35314 R-Square 0.7531

Dependent Mean 90.50851 Adj R-Sq 0.6660

Coeff Var 24.69727

Parameter Estimates

Parameter Standard Variance
Variable DF Estimate Error t Value Pr > |t Inflation
Intercept 1 -739.89065 155.54826 -4.76 <.0001 0
Age 1 1.08541 0.42967 2.53 0.0164 2.68441
S 1 -8.16412 15.19508 -0.54 0.5946 4.87655
Ed 1 1.62669 0.65153 2.50 0.0175 4.89076
Ex1 1 1.02965 0.27202 3.79 0.0006 5.32594
LF 1 0.00509 0.15331 0.03 0.9737 3.53357
M 1 0.18686 0.21341 0.88 0.3874 3.64093
N 1 -0.01639 0.13092 -0.13 0.9011 2.28711
NW 1 -0.00213 0.06478 -0.03 0.9740 4.08533
Ul 1 -0.61879 0.44533 -1.39 0.1737 5.93432
u2 1 1.94296 0.86653 2.24 0.0316 4.93048
w 1 0.14739 0.10763 1.37 0.1799 9.93013
X 1 0.81550 0.23908 3.41 0.0017 8.37584

Display 4.4

The adjusted R? statistic given in Display 4.4 is the square of the
multiple correlation coefficient adjusted for the number of parameters in
the model. The statistic is calculated as:



_(n=1)(1-K)
n—p

adjiR> = 1 (4.7)

where 7 is the number of observations used in fitting the model and i is
an indicator variable that is 1 if the model includes an intercept and 0
otherwise.

The main features of interest in Display 4.4 are the analysis of variance
table and the parameter estimates. In the former, the F-test is for the
hypothesis that all the regression coefficients in the regression equation
are zero. Here, the evidence against this hypothesis is very strong (the
relevant P-value is 0.0001). In general, however, this overall test is of little
real interest because it is most unlikely in general that none of the
explanatory variables will be related to the response. The more relevant
question is whether a subset of the regression coefficients is zero, implying
that not all the explanatory variables are informative in determining the
response. It might be thought that the nonessential variables can be
identified by simply examining the estimated regression coefficients and
their standard errors as given in Display 4.4, with those regression coef-
ficients significantly different from zero identifying the explanatory vari-
ables needed in the derived regression equation, and those not different
from zero corresponding to variables that can be omitted. Unfortunately,
this very straightforward approach is not in general suitable, simply
because the explanatory variables are correlated in most cases. Conse-
quently, removing a particular explanatory variable from the regression
will alter the estimated regression coefficients (and their standard errors)
of the remaining variables. The parameter estimates and their standard
errors are conditional on the other variables in the model. A more involved
procedure is thus necessary for identifying subsets of the explanatory
variables most associated with crime rate. A number of methods are
available, including:

B Forward selection. This method starts with a model containing
none of the explanatory variables and then considers variables one
by one for inclusion. At each step, the variable added is one that
results in the biggest increase in the regression sum of squares. An
F-type statistic is used to judge when further additions would not
represent a significant improvement in the model.

B Backward elimination. This method starts with a model containing
all the explanatory variables and eliminates variables one by one,
at each stage choosing the variable for exclusion as the one leading
to the smallest decrease in the regression sum of squares. Once
again, an F-type statistic is used to judge when further exclusions
would represent a significant deterioration in the model.



B Stepwise regression. This method is, essentially, a combination of
forward selection and backward elimination. Starting with no vari-
ables in the model, variables are added as with the forward
selection method. Here, however, with each addition of a variable,
a backward elimination process is considered to assess whether
variables entered earlier might now be removed because they no
longer contribute significantly to the model.

In the best of all possible worlds, the final model selected by each of
these procedures would be the same. This is often the case, but it is in
no way guaranteed. It should also be stressed that none of the automatic
procedures for selecting subsets of variables are foolproof. They must be
used with care, and warnings such as the following given in Agresti (1996)
must be noted:

Computerized variable selection procedures should be used
with caution. When one considers a large number of terms for
potential inclusion in a model, one or two of them that are not
really important may look impressive simply due to chance.
For instance, when all the true effects are weak, the largest
sample effect may substantially overestimate its true effect. In
addition it often makes sense to include certain variables of
special interest in a model and report their estimated effects
even if they are not statistically significant at some level.

In addition, the comments given in McKay and Campbell (1982a;b) con-
cerning the validity of the F-tests used to judge whether variables should
be included or eliminated, should be considered.

Here, we apply a stepwise procedure using the following SAS code:

proc reg data=uscrime;

model R= Age--Ed Ex1--X / selection=stepwise sle=.05
sls=.05;

plot student.*(ex1 x ed age u2);

plot student.*predicted. cookd.*obs.;

plot npp.*residual.;
run;

The proc, model, and run statements specify the regression analysis and
produce the output shown in Display 4.5. The significance levels required
for variables to enter and stay in the regression are specified with the sle
and sls options, respectively. The default for both is P = 0.15. (The plot
statements in this code are explained later.)



Display 4.5 shows the variables entered at each stage in the variable
selection procedure. At step one, variable Ex1 is entered. This variable is
the best single predictor of the crime rate. The square of the multiple
correlation coefficient is observed to be 0.4445. The variable Ex1 explains
44% of the variation in crime rates. The analysis of variance table shows
both the regression and residual or error sums of squares. The F-statistics
is highly significant, confirming the strong relationship between crime rate
and Ex1. The estimated regression coefficient is 0.92220, with a standard
error of 0.15368. This implies that a unit increase in Ex1 is associated
with an estimated increase in crime rate of 0.92. This appears strange but
perhaps police expenditures increase as the crime rate increases.

At step two, variable X is entered. The R-square value increases to
0.5550. The estimated regression coefficient of X is 0.42312, with a standard
error of 0.12803. In the context of regression, the type II sums of squares
and F-tests based on them are equivalent to type III sums of squares
described in Chapter 6.

In this application of the stepwise option, the default significance levels
for the F-tests used to judge entry of a variable into an existing model
and to judge removal of a variable from a model are each set to 0.05.
With these values, the stepwise procedure eventually identifies a subset
of five explanatory variables as being important in the prediction of the
crime rate. The final results are summarised at the end of Display 4.5.
The selected five variables account for just over 70% of the variation in
crime rates compared to the 75% found when using 12 explanatory
variables in the previous analysis. (Notice that in this example, the stepwise
procedure gives the same results as would have arisen from using forward
selection with the same entry criterion value of 0.05 because none of the
variables entered in the “forward” phase are ever removed.)

The statistic C, was suggested by Mallows (1973) as a possible alternative
criterion useful for selecting informative subsets of variables. It is defined as:

SS

N

t

c, =

gt

—(n-2p) (4.8)

where s? is the mean square error from the regression, including all the
explanatory variables available; and SSE, is the error sum of squares for
a model that includes just a subset of the explanatory variable. If C, is
plotted against p, Mallows recommends accepting the model where C,
first approaches p (see Exercise 4.2).

(The Bounds on condition number given in Display 4.5 are fully
explained in Berk [1977]. Briefly, the condition number is the ratio of the
largest and smallest eigenvalues of a matrix and is used as a measure of
the numerical stability of the matrix. Very large values are indicative of
possible numerical problems.)



The REG Procedure
Model: MODEL1
Dependent Variable: R

Stepwise Selection: Step 1
Variable Ex1 Entered: R-Square = 0.4445 and C(p) = 33.4977

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 1 30586 30586 36.01 <.0001
Error 45 38223 849.40045
Corrected Total 46 68809

Parameter Standard

Variable Estimate Error Type I SS F Value Pr>F
Intercept 16.51642 13.04270 1362.10230 1.60 0.2119
Ex1 0.92220 0.15368 30586 36.01 <.0001

Bounds on condition number: 1, 1

Stepwise Selection: Step 2
Variable X Entered: R-Square = 0.5550 and C(p) = 20.2841

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr>F
Model 2 38188 19094 27.44 <.0001
Error 44 30621 695.94053
Corrected Total 46 68809

Parameter Standard

Variable Estimate Error Type Il SS F Value Pr>F
Intercept  -96.96590 36.30976 4963.21825 7.13 0.0106
Ex1 1.31351 0.18267 35983 51.70 <.0001
X 0.42312 0.12803 7601.63672 10.92 0.0019

Bounds on condition number: 1.7244, 6.8978




Stepwise Selection: Step 3
Variable Ed Entered: R-Square = 0.6378 and C(p) = 10.8787

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr>F
Model 3 43887 14629 25.24 <.0001
Error 43 24923 579.59373
Corrected Total 46 68809

The REG Procedure
Model: MODEL1
Dependent Variable: R
Stepwise Selection: Step 3

Parameter Standard

Variable Estimate Error Type Il SS F Value Pr > F
Intercept -326.10135 80.23552 9574.04695 16.52 0.0002
Ed 1.55544 0.49605 5698.85308 9.83 0.0031
Ex1 1.31222 0.16671 35912 61.96 <.0001
X 0.75779 0.15825 13291 22.93 <.0001

Bounds on condition number: 3.1634, 21.996
Stepwise Selection: Step 4
Variable Age Entered: R-Square = 0.6703 and C(p) = 8.4001

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr>F
Model 4 46125 11531 21.35 <.0001
Error 42 22685 540.11277

Corrected Total 46 68809




Parameter Standard

Variable Estimate Error Type Il SS F Value Pr>F
Intercept -420.16714 90.19340 11721 21.70 <.0001
Age 0.73451 0.36085 2237.79373 4.14 0.0481
Ed 1.63349 0.48039 6245.05569 11.56 0.0015
Ex1 1.36844 0.16328 37937 70.24 <.0001
X 0.65225 0.16132 8829.50458 16.35 0.0002

Bounds on condition number: 3.5278, 38.058
Stepwise Selection: Step 5
Variable U2 Entered: R-Square = 0.7049 and C(p) = 5.6452

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr>F
Model 5 48500 9700.08117 19.58 <.0001
Error 41 20309 495.33831
Corrected Total 46 68809

Parameter Standard

Variable Estimate Error Type Il SS F Value Pr > F
Intercept -528.85572 99.61621 13961 28.18 <.0001
Age 1.01840 0.36909 3771.26606 7.61 0.0086
Ed 2.03634 0.49545 8367.48486 16.89 0.0002
Ex1 1.29735 0.15970 32689 65.99 <.0001
u2 0.99014 0.45210 2375.86580 4.80 0.0343
X 0.64633 0.15451 8667.44486 17.50 0.0001

The REG Procedure
Model: MODEL1
Dependent Variable: R

Stepwise Selection: Step 5

Bounds on condition number: 3.5289, 57.928




All variables left in the model are significant at the 0.0500 level.
No other variable met the 0.0500 significance level for entry into the model.

Summary of Stepwise Selection

Variable Variable Number Partial Model
Step Entered Removed Vars In R-Square R-Square C(p) F Vvalue Pr>F
1  Ex1 1 0.4445 0.4445  33.4977 36.01 <.0001
2 X 2 0.1105 0.5550 20.2841 10.92 0.0019
3 Ed 3 0.0828 0.6378 10.8787 9.83 0.0031
4  Age 4 0.0325 0.6703 8.4001 4.14 0.0481
5 U2 5 0.0345 0.7049 5.6452 4.80 0.0343

Display 4.5

Having arrived at a final multiple regression model for a data set, it is
important to go further and check the assumptions made in the modelling
process. Most useful at this stage is an examination of residuals from the
fitted model, along with many other regression diagnostics now available.
Residuals at their simplest are the difference between the observed and
fitted values of the response variable — in our example, crime rate. The
most useful ways of examining the residuals are graphical, and the most
useful plots are

B A plot of the residuals against each explanatory variable in the
model; the presence of a curvilinear relationship, for example,
would suggest that a higher-order term (e.g., a quadratic) in the
explanatory variable is needed in the model.

B A plot of the residuals against predicted values of the response
variable; if the variance of the response appears to increase with
the predicted value, a transformation of the response may be in
order.

B A normal probability plot of the residuals; after all systematic
variation has been removed from the data, the residuals should
look like a sample from the normal distribution. A plot of the
ordered residuals against the expected order statistics from a normal
distribution provides a graphical check of this assumption.

Unfortunately, the simple observed-fitted residuals have a distribution that
is scale dependent (see Cook and Weisberg [1982]), which makes them
less helpful than they might be. The problem can be overcome, however,



by using standardised or studentised residuals (both are explicitly defined
in Cook and Weisberg [1982)) .

A variety of other diagnostics for regression models have been devel-
oped in the past decade or so. One that is often used is the Cook’s distance
statistic (Cook [1977; 1979]). This statistic can be obtained for each of the
n observations and measures the change to the estimates of the regression
coefficients that would result from deleting the particular observation. It
can be used to identify any observations having an undue influence of
the estimation and fitting process.

Plots of residuals and other diagnostics can be found using the plot
statement to produce high-resolution diagnostic plots. Variables mentioned
in the model or var statements can be plotted along with diagnostic
statistics. The latter are represented by keywords that end in a period.
The first plot statement produces plots of the studentised residual against
the five predictor variables. The results are shown in Display 4.6 through
Display 4.10. The next plot statement produces a plot of the studentised
residuals against the predicted values and an index plot of Cook’s distance
statistic. The resulting plots are shown in Displays 4.11 and 4.12. The final
plot statement specifies a normal probability plot of the residuals, which
is shown in Display 4.13.
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Display 4.6 suggests increasing variability of the residuals with increas-
ing values of Ex1. And Display 4.13 indicates a number of relatively large
values for the Cook’s distance statistic although there are no values greater
than 1, which is the usually accepted threshold for concluding that the
corresponding observation has undue influence on the estimated regres-
sion coefficients.

Exercises

4.1  Find the subset of five variables considered by the C, option to be
optimal. How does this subset compare with that chosen by the
stepwise option?

4.2 Apply the C, criterion to exploring all possible subsets of the five
variables chosen by the stepwise procedure (see Display 4.5).
Produce a plot of the number of variables in a subset against the
corresponding value of €,

4.3 Examine some of the other regression diagnostics available with
proc reg on the U.S. crime rate data.

44 1In the text, the problem of the high variance inflation factors
associated with variables ExO and Ex1 was dealt with by excluding



4.5

Ex0. An alternative is to use the average of the two variables as an
explanatory variable. Investigate this possibility.

Investigate the regression of crime rate on the two variables Age
and S. Consider the possibility of an interaction of the two variables
in the regression model, and construct some plots that illustrate the
models fitted.



Chapter 5

Analysis of Variance I:
Treating Hypertension

5.1 Description of Data

Maxwell and Delaney (1990) describe a study in which the effects of three
possible treatments for hypertension were investigated. The details of the
treatments are as follows:

Treatment Description Levels

Drug Medication Drug X, drug Y, drug Z
Biofeed Psychological feedback  Present, absent

Diet Special diet Present, absent

All 12 combinations of the three treatments were included ina 3 x 2 X 2
design. Seventy-two subjects suffering from hypertension were recruited
to the study, with six being randomly allocated to each of 12 treatment
combinations. Blood pressure measurements were made on each subject
after treatment, leading to the data in Display 5.1.



Treatment

Special Diet

Biofeedback Drug

No

Yes

Present X

Absent

N < X N <

170 175 165 180 160 158
186 194 201 215 219 209
180 187 199 170 204 194
173 194 197 190 176 198
189 194 217 206 199 195
202 228 190 206 224 204

161 173 157 152 181 190
164 166 159 182 187 174
162 184 183 156 180 173
164 190 169 164 176 175
171 173 196 199 180 203
205 199 170 160 179 179

Display 5.1

Questions of interest concern differences in mean blood pressure for
the different levels of the three treatments and the possibility of interactions
between the treatments.

5.2 Analysis of Variance Model

A possible model for these data is
Yy = B+ 0, + B+ y, + (@B, + (ay), + By, + By, + Ou G.D

where y,,, represents the blood pressure of the /th subject for the ith drug,
the jth level of biofeedback, and the kth level of diet; Y is the overall
mean; O, B, and Y, are the main effects of drugs, biofeedback, and diets;
(aP)y, (ay),, and (By), are the first-order interaction terms between pairs
of treatments, (0fy),, represents the second-order interaction term of the
three treatments; and [, represents the residual or error terms assumed
to be normally distributed with zero mean and variance 02. (The model
as specified is over-parameterized and the parameters have to be con-
strained in some way, commonly by requiring them to sum to zero or
setting one parameter at zero; see Everitt [2001] for details.)

Such a model leads to a partition of the variation in the observations
into parts due to main effects, first-order interactions between pairs of
factors, and a second-order interaction between all three factors. This
partition leads to a series of F-tests for assessing the significance or
otherwise of these various components. The assumptions underlying these
F-tests include:



B The observations are independent of one another.

B The observations in each cell arise from a population having a
normal distribution.

B The observations in each cell are from populations having the
same variance.

5.3 Analysis Using SAS

It is assumed that the 72 blood pressure readings shown in Display 5.1
are in the ASCII file hypertension.dat. The SAS code used for reading and
labelling the data is as follows:

data hyper;

infile 'hypertension.dat’;
input n1-n12;
if _n_<4 then biofeed="P’;

else biofeed="A";
if _n_ in(1,4) then drug="'X";
if _n_in(2,5) then drug="Y";
if _n_in(3,6) then drug='Z";
array nall {12} n1-n12;
do i=1 to 12;

if i>6 then diet="Y";

else diet="N";

bp=nall{i};
cell=drug||biofeed||diet;
output;
end;
drop i n1-n12;
run;

The 12 blood pressure readings per row, or line, of data are read into
variables nl - n12 and used to create 12 separate observations. The row
and column positions in the data are used to determine the values of the
factors in the design: drug, biofeed, and diet.

First, the input statement reads the 12 blood pressure values into
variables nl to n2. It uses list input, which assumes the data values to be
separated by spaces.

The next group of statements uses the SAS automatic variable _n_ to
determine which row of data is being processed and hence to set the



values of drug and biofeed. Because six lines of data will be read, one
line per iteration of the data step _n_ will increment from 1 to 6,
corresponding to the line of data read with the input statement.

The key elements in splitting the one line of data into separate
observations are the array, the do loop, and the output statement. The
array statement defines an array by specifying the name of the array (nall
here), the number of variables to be included in braces, and the list of
variables to be included (nl to nl12 in this case).

In SAS, an array is a shorthand way of referring to a group of variables.
In effect, it provides aliases for them so that each variable can be referred
to using the name of the array and its position within the array in braces.
For example, in this data step, n12 could be referred to as nal{12} or,
when the variable i has the value 12 as nall{i}. However, the array only
lasts for the duration of the data step in which it is defined.

The main purpose of an iterative do loop, like the one used here, is
to repeat the statements between the do and the end a fixed number of
times, with an index variable changing at each repetition. When used to
process each of the variables in an array, the do loop should start with
the index variable equal to 1 and end when it equals the number of
variables in the array.

Within the do loop, in this example, the index variable i is first used
to set the appropriate values for diet. Then a variable for the blood pressure
reading (bp) is assigned one of the 12 values input. A character variable
(cell) is formed by concatenating the values of the drug, biofeed, and diet
variables. The double bar operator (||) concatenates character values.

The output statement writes an observation to the output data set with
the current value of all variables. An output statement is not normally
necessary because, without it an observation is automatically written out
at the end of the data step. Putting an output statement within the do
loop results in 12 observations being written to the data set.

Finally, the drop statement excludes the index variable i and nl to n12
from the output data set because they are no longer needed.

As with any relatively complex data manipulation, it is wise to check
that the results are as they should be, for example, by using proc print.

To begin the analysis, it is helpful to look at some summary statistics
for each of the cells in the design.

proc tabulate data=hyper;
class drug diet biofeed,;
var bp;
table drug*diet*biofeed,
bp*(mean std n);
run;



The tabulate procedure is useful for displaying descriptive statistics in
a concise tabular form. The variables used in the table must first be
declared in either a class statement or a var statement. Class variables are
those used to divide the observations into groups. Those declared in the
var statement (analysis variables) are those for which descriptive statistics
are to be calculated. The first part of the table statement up to the comma
specifies how the rows of the table are to be formed, and the remaining
part specifies the columns. In this example, the rows comprise a hierar-
chical grouping of biofeed within diet within drug. The columns comprise
the blood pressure mean and standard deviation and cell count for each
of the groups. The resulting table is shown in Display 5.2. The differences
between the standard deviations seen in this display may have implications
for the analysis of variance of these data because one of the assumptions
made is that observations in each cell come from populations with the
same variance.

bp
Mean Std N
drug | diet | biofeed
X N A 188.00 | 10.86 | 6.00
P 168.00 8.60 | 6.00
Y A 173.00 9.80 | 6.00
P 169.00 | 14.82 | 6.00
Y N A 200.00 | 10.08 | 6.00
P 204.00 | 12.68 | 6.00
Y A 187.00 | 14.01 | 6.00
P 172.00 | 10.94 | 6.00
Z N A 209.00 | 14.35 | 6.00
P 189.00 | 12.62 | 6.00
Y A 182.00 | 17.11 | 6.00
P 173.00 | 11.66 | 6.00

Display 5.2

There are various ways in which the homogeneity of variance assump-
tion can be tested. Here, the hovtest option of the anova procedure is
used to apply Levene’s test (Levene [1960]). The cell variable calculated
above, which has 12 levels corresponding to the 12 cells of the design,
is used:

proc anova data=hyper;
class cell,



model bp=cell;
means cell / hovtest;
run;

The results are shown in Display 5.3. Concentrating on the results of
Levene’s test given in this display, we see that there is no formal evidence
of heterogeneity of variance, despite the rather different observed standard
deviations noted in Display 5.2.

The ANOVA Procedure
Class Level Information
Class Levels Values
cell 12 XAN XAY XPN XPY YAN YAY YPN YPY ZAN ZAY ZPN ZPY
Number of observations 72
The ANOVA Procedure

Dependent Variable: bp

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 11 13194.00000 1199.45455 7.66 <.0001
Error 60 9400.00000 156.66667

Corrected Total 71 22594.00000

R-Square  Coeff Var Root MSE bp Mean

0.583960 6.784095 12.51666 184.5000

Source DF Anova SS Mean Square F Value Pr>F

cell 11 13194.00000 1199.45455 7.66 <.0001




The ANOVA Procedure

Levene's Test for Homogeneity of bp Variance
ANOVA of Squared Deviations from Group Means

Sum of Mean
Source DF Squares Square F Value Pr > F

cell 11 180715 16428.6 1.01 0.4452
Error 60 971799 16196.6

The ANOVA Procedure

Level of  mmeemmeeeees bp-------------

cell N  Mean Std Dev
XAN 6 188.000000 10.8627805
XAY 6 173.000000 9.7979590
XPN 6 168.000000 8.6023253
XPY 6 169.000000 14.8189068
YAN 6 200.000000 10.0796825
YAY 6 187.000000 14.0142784
YPN 6 204.000000 12.6806940
YPY 6 172.000000 10.9361785
ZAN 6 209.000000 14.3527001
ZAY 6 182.000000 17.1113997
ZPN 6 189.000000 12.6174482
ZPY 6 173.000000 11.6619038

Display 5.3

To apply the model specified in Eq. (5.1) to the hypertension data,
proc anova can now be used as follows:

proc anova data=hyper,;
class diet drug biofeed;
model bp=diet|drug|biofeed,;
means diet*drug*biofeed,;
ods output means=outmeans;
run;

The anova procedure is specifically for balanced designs, that is, those
with the same number of observations in each cell. (Unbalanced designs
should be analysed using proc glm, as illustrated in a subsequent chapter.)
The class statement specifies the classification variables, or factors. These



may be numeric or character variables. The model statement specifies the
dependent variable on the left-hand side of the equation and the effects
(i.e., factors and their interactions) on the right-hand side of the equation.
Main effects are specified by including the variable name and interactions
by joining the variable names with an asterisk. Joining variable names
with a bar is a shorthand way of specifying an interaction and all the
lower-order interactions and main effects implied by it. Thus, the model
statement above is equivalent to:

model bp=diet drug diet*drug biofeed diet*biofeed drug*biofeed
diet*drug*biofeed;

The order of the effects is determined by the expansion of the bar operator
from left to right.

The means statement generates a table of cell means and the ods
output statement specifies that this is to be saved in a SAS data set called
outmeans.

The results are shown in Display 5.4. Here, it is the analysis of variance
table that is of most interest. The diet, biofeed, and drug main effects are
all significant beyond the 5% level. None of the first-order interactions are
significant, but the three-way, second-order interaction of diet, drug, and
biofeedback is significant. Just what does such an effect imply, and what
are its implications for interpreting the analysis of variance results?

First, a significant second-order interaction implies that the first-order
interaction between two of the variables differs in form or magnitude in
the different levels of the remaining variable. Second, the presence of a
significant second-order interaction means that there is little point in drawing
conclusions about either the non-significant first-order interactions or the
significant main effects. The effect of drug, for example, is not consistent
for all combinations of diet and biofeedback. It would therefore be poten-
tially misleading to conclude, on the basis of the significant main effect,
anything about the specific effects of these three drugs on blood pressure.

The ANOVA Procedure

Class Level Information

Class Levels Values
diet 2 NY
drug 3 XYz

biofeed 2 AP




Number of observations 72

The ANOVA Procedure

Dependent Variable: bp

Sum of
Source DF Squares
Model 11 13194.00000
Error 60 9400.00000

Corrected Total 71 22594.00000

R-Square  Coeff Var

0.583960 6.784095

Mean Square

1199.45455

156.66667

F Value Pr > F

7.66 <.0001

Root MSE bp Mean

12.51666 184.5000

Source DF Anova SS Mean Square F Value Pr > F
diet 1 5202.000000 5202.000000 33.20 <.0001
drug 2 3675.000000 1837.500000 11.73 <.0001
diet*drug 2 903.000000 451.500000 2.88 0.0638
biofeed 1 2048.000000 2048.000000 13.07 0.0006
diet*biofeed 1 32.000000 32.000000 0.20 0.6529
drug*biofeed 2 259.000000 129.500000 0.83 0.4425
diet*drug*biofeed 2 1075.000000 537.500000 3.43 0.0388
The ANOVA Procedure

Level of Level of Level of = —--coemmeemees bp-------------

diet drug biofeed N Mean Std Dev
N X A 6 188.000000 10.8627805
N X P 6 168.000000 8.6023253
N Y A 6 200.000000 10.0796825
N Y P 6 204.000000 12.6806940
N z A 6 209.000000 14.3527001
N z P 6 189.000000 12.6174482
Y X A 6 173.000000 9.7979590
Y X P 6 169.000000 14.8189068
Y Y A 6 187.000000 14.0142784
Y Y P 6 172.000000 10.9361785
Y 4 A 6 182.000000 17.1113997
Y z P 6 173.000000 11.6619038

Display 5.4




Understanding the meaning of the significant second-order interaction
is facilitated by plotting some simple graphs. Here, the interaction plot of
diet and biofeedback separately for each drug will help.

The cell means in the outmeans data set are used to produce interaction
diagrams as follows:

proc print data=outmeans;
proc sort data=outmeans;
by drug;

symboll i=join v=none |=2;
symbol2 i=join v=none I=1;

proc gplot data=outmeans;
plot mean_bp*biofeed=diet ;
by drug;

run;

First the outmeans data set is printed. The result is shown in Display
5.5. As well as checking the results, this also shows the name of the
variable containing the means.

To produce separate plots for each drug, we use the by statement
within proc gplot, but the data set must first be sorted by drug. Plot
statements of the form plot y*x=z were introduced in Chapter 1 along
with the symbol statement to change the plotting symbols used. We
know that diet has two values, so we use two symbol statements to
control the way in which the means for each value of diet are plotted.
The i (interpolation) option specifies that the means are to be joined by
lines. The v (value) option suppresses the plotting symbols because
these are not needed and the I (linetype) option specifies different types
of line for each diet. The resulting plots are shown in Displays 5.6
through 5.8. For drug X, the diet x biofeedback interaction plot indicates
that diet has a negligible effect when biofeedback is given, but substan-
tially reduces blood pressure when biofeedback is absent. For drug Y,
the situation is essentially the reverse of that for drug X. For drug Z,
the blood pressure difference when the diet is given and when it is not
is approximately equal for both levels of biofeedback.



Obs Effect diet drug biofeed N Mean_bp SD_bp
1 diet_drug_biofeed N X A 6 188.000000 10.8627805
2 diet_drug_biofeed N X P 6 168.000000 8.6023253
3 diet_drug_biofeed N Y A 6 200.000000 10.0796825
4 diet_drug_biofeed N Y P 6 204.000000 12.6806940
5 diet_drug_biofeed N z A 6 209.000000 14.3527001
6 diet_drug_biofeed N z P 6 189.000000 12.6174482
7 diet_drug_biofeed Y X A 6 173.000000 9.7979590
8 diet_drug_biofeed Y X P 6 169.000000 14.8189068
9 diet_drug_biofeed Y \% A 6 187.000000 14.0142784
10 diet_drug_biofeed Y Y P 6 172.000000 10.9361785
11 diet_drug_biofeed Y z A 6 182.000000 17.1113997
12 diet_drug_biofeed Y Zz P 6 173.000000 11.6619038

Display 5.5
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Display 5.6
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Display 5.8




In some cases, a significant high-order interaction may make it difficult
to interpret the results from a factorial analysis of variance. In such cases,
a transformation of the data may help. For example, we can analyze the
log-transformed observations as follows:

data hyper,;
set hyper;
logbp=Ilog(bp);
run;

proc anova data=hyper;

class diet drug biofeed,;

model logbp=diet|drug|biofeed;
run;

The data step computes the natural log of bp and stores it in a new
variable logbp. The anova results for the transformed variable are given
in Display 5.9.

The ANOVA Procedure

Class Level Information

Class Levels Values
diet 2 N Y
drug 3 XYZ
biofeed 2 AP

Number of observations 72
The ANOVA Procedure

Dependent Variable: loghp

Sum of
Source DF Squares Mean Square F Value Pr>F
Model 11  0.37953489 0.03450317 7.46 <.0001
Error 60 0.27754605 0.00462577

Corrected Total 71 0.65708094




R-Square Coeff Var Root MSE logbp Mean

0.577608 1.304662 0.068013 5.213075
Source DF Anova SS Mean Square F Value Pr>F
diet 1 0.14956171 0.14956171 32.33 <.0001
drug 2 0.10706115 0.05353057 11.57 <.0001
diet*drug 2 0.02401168 0.01200584 2.60 0.0830
biofeed 1 0.06147547 0.06147547 13.29 0.0006
diet*biofeed 1 0.00065769 0.00065769 0.14 0.7075
drug*biofeed 2 0.00646790 0.00323395 0.70 0.5010
diet*drug*biofeed 2 0.03029929 0.01514965 3.28 0.0447

Display 5.9

Although the results are similar to those for the untransformed obser-
vations, the three-way interaction is now only marginally significant. If no
substantive explanation of this interaction is forthcoming, it might be
preferable to interpret the results in terms of the very significant main
effects and fit a main-effects-only model to the log-transformed blood
pressures. In addition, we can use Scheffe’s multiple comparison test
(Fisher and Van Belle, 1993) to assess which of the three drug means

actually differ.

proc anova data=hyper,;
class diet drug biofeed,;
model logbp=diet drug biofeed;
means drug / scheffe;

run;

The results are shown in Display 5.10. Each of the main effects is seen
to be highly significant, and the grouping of means resulting from the
application of Scheffe’s test indicates that drug X produces lower blood

pressures than the other two drugs, whose means do not differ.




The ANOVA Procedure

Class Level Information

Class Levels Values
diet 2 N Y
drug 3 XYz
biofeed 2 AP

Number of observations 72
The ANOVA Procedure

Dependent Variable: loghp

Sum of
Source DF Squares Mean Square F Value
Model 4 0.31809833 0.07952458 15.72
Error 67 0.33898261 0.00505944

Corrected Total 71 0.65708094

R-Square  Coeff Var Root MSE logbp Mean

0.484108 1.364449 0.071130 5.213075

Pr>F

<.0001

Source DF Anova SS Mean Square F Value Pr>F

diet 1 0.14956171 0.14956171 29.56 <.0001
drug 2 0.10706115 0.05353057 10.58 0.0001
biofeed 1 0.06147547 0.06147547 12.15 0.0009

The ANOVA Procedure

Scheffe's Test for logbp

NOTE: This test controls the Type | experimentwise error rate.




Alpha 0.05
Error Degrees of Freedom 67
Error Mean Square 0.005059
Critical Value of F 3.13376
Minimum Significant Difference 0.0514

Means with the same letter are not significantly different.

Scheffe Grouping

Mean N drug

A 524709 24 Y

A

A 5.23298 24 Z

B 5.15915 24 X
Display 5.10

Exercises

5.1

5.2

Compare the results given by Bonferonni #-tests and Duncan’s
multiple range test for the three drug means, with those given by

Scheffe’s test as reported in Display 5.10.

Produce box plots of the log-transformed blood pressures for (a)
diet present, diet absent; (b) biofeedback present, biofeedback

absent; and (¢) drugs X, Y, and Z.




Chapter 6

Analysis of Variance II:
School Attendance
Amongst Australian

Children

6.1 Description of Data

The data used in this chapter arise from a sociological study of Australian
Aboriginal and white children reported by Quine (1975); they are given
in Display 6.1. In this study, children of both sexes from four age groups
(final grade in primary schools and first, second, and third form in
secondary school) and from two cultural groups were used. The children
in each age group were classified as slow or average learners. The
response variable of interest was the number of days absent from school
during the school year. (Children who had suffered a serious illness during
the year were excluded.)



Cell  Origin  Sex  Crade  Type Days Absent
1 A M FO SL 2,11,14
2 A M FO AL 5,5,13,20,22
3 A M F1 SL 6,6,15
4 A M F1 AL 714
5 A M F2 SL 6,32,53,57
6 A M F2 AL 14,16,16,17,40,43,46
7 A M F3 SL 12,15
8 A M F3 AL 8,23,23,28,34,36,38
9 A F FO SL 3
10 A F FO AL 5,11,24,45
11 A F F1 SL 5,6,6,9,13,23,25,32,53,54
12 A F F1 AL 5,5,11,17,19
13 A F F2 SL 8,13,14,20,47,48,60,81
14 A F F2 AL 2
15 A F F3 SL 59,7
16 A F F3 AL 0,2,3,5,10,14,21,36,40
17 N M FO SL 6,17,67
18 N M FO AL 0,0,2,7,11,12
19 N M F1 SL 0,0,5,5,5,11,17
20 N M F1 AL 3,3
21 N M F2 SL 22,30,36
22 N M F2 AL 8,0,1,5,7,16,27
23 N M F3 SL 12,15
24 N M F3 AL 0,30,10,14,27,41,69
25 N F FO SL 25
26 N F FO AL 10,11,20,33
27 N F F1 SL 5,7,0,1,5,5,5,5,7,11,15
28 N F F1 AL 5,14,6,6,7,28
29 N F F2 SL 0,5,14,2,2,3,8,10,12
30 N F F2 AL 1
31 N F F3 SL 8
32 N F F3 AL 1,9,22,3,3,5,15,18,22,37
Note: A, Aboriginal; N, non-Aboriginal; F, female; M, male; FO,

primary; F1, first form; F2, second form; F3, third form; SL,
slow learner; AL, average learner.

Display 6.1




6.2 Analysis of Variance Model

The basic design of the study is a 4 x 2 x 2 x 2 factorial. The usual model
for Y4, the number of days absent for the ith child in the jth sex group,
the kth age group, the /th cultural group, and the mth learning group, is

ylj/elm =pt G]’ + B/e + YP + 6m + (GB)j/e + (ay)jp + (aé)jm + (By)/el
+ (Bé)/em + (yé)lm + (aBy)/lel + (aBa)]Iem + (aya)jlm + (Byé)/elm
+ (GBV5)jlelm + D(f/elm (61)

where the terms represent main effects, first-order interactions of pairs of
factors, second-order interactions of sets of three factors, and a third-order
interaction for all four factors. (The parameters must be constrained in
some way to make the model identifiable. Most common is to require
they sum to zero over any subscript.) The U, represent random error
terms assumed to be normally distributed with mean zero and variance 02

The unbalanced nature of the data in Display 6.1 (there are different
numbers of observations for the different combinations of factors) presents
considerably more problems than encountered in the analysis of the
balanced factorial data in the previous chapter. The main difficulty is that
when the data are unbalanced, there is no unique way of finding a “sums
of squares” corresponding to each main effect and each interaction
because these effects are no longer independent of one another. It is now
no longer possible to partition the total variation in the response variable
into non-overlapping or orthogonal sums of squares representing factor
main effects and factor interactions. For example, there is a proportion
of the variance of the response variable that can be attributed to (explained
by) either sex or age group, and, consequently, sex and age group together
explain less of the variation of the response than the sum of which each
explains alone. The result of this is that the sums of squares that can be
attributed to a factor depends on which factors have already been allocated
a sums of squares; that is, the sums of squares of factors and their
interactions depend on the order in which they are considered.

The dependence between the factor variables in an unbalanced fac-
torial design and the consequent lack of uniqueness in partitioning the
variation in the response variable has led to a great deal of confusion
regarding what is the most appropriate way to analyse such designs. The
issues are not straightforward and even statisticians (yes, even statisticians!)
do not wholly agree on the most suitable method of analysis for all
situations, as is witnessed by the discussion following the papers of Nelder
(1977) and Aitkin (1978).



Essentially the discussion over the analysis of unbalanced factorial
designs has involved the question of what type of sums of squares should
be used. Basically there are three possibilities; but only two are considered
here, and these are illustrated for a design with two factors.

6.2.1 Type I Sums of Squares

These sums of squares represent the effect of adding a term to an existing
model in one particular order. Thus, for example, a set of Type I sums
of squares such as:

Source Type | SS

A SSA
B SSBJA
AB SSAB|A,B

essentially represent a comparison of the following models:

SSAB/A, B Model including an interaction and main effects with
one including only main effects

SSB‘A Model including both main effects, but no interaction,
with one including only the main effect of factor A

SSA Model containing only the A main effect with one

containing only the overall mean

The use of these sums of squares in a series of tables in which the
effects are considered in different orders (see later) will often provide the
most satisfactory way of answering the question as to which model is
most appropriate for the observations.

6.2.2 Type Ill Sums of Squares

Type III sums of squares represent the contribution of each term to a
model including all other possible terms. Thus, for a two-factor design,
the sums of squares represent the following:

Source Type Il SS
A SSAB,AB
B SSBIA,AB

AB SSAB|A,B




(SAS also has a Type IV sum of squares, which is the same as Type III
unless the design contains empty cells.)

In a balanced design, Type I and Type III sums of squares are equal,
but for an unbalanced design, they are not and there have been numerous
discussions regarding which type is most appropriate for the analysis of
such designs. Authors such as Maxwell and Delaney (1990) and Howell
(1992) strongly recommend the use of Type III sums of squares and these
are the default in SAS. Nelder (1977) and Aitkin (1978), however, are
strongly critical of “correcting” main effects sums of squares for an inter-
action term involving the corresponding main effect; their criticisms are
based on both theoretical and pragmatic grounds. The arguments are
relatively subtle but in essence go something like this:

B When fitting models to data, the principle of parsimony is of critical
importance. In choosing among possible models, we do not adopt
complex models for which there is no empirical evidence.

B Thus, if there is no convincing evidence of an AB interaction, we
do not retain the term in the model. Thus, additivity of A and B
is assumed unless there is convincing evidence to the contrary.

B So the argument proceeds that Type III sum of squares for A in
which it is adjusted for AB makes no sense.

B First, if the interaction term is necessary in the model, then the
experimenter will usually want to consider simple effects of A at
each level of B separately. A test of the hypothesis of no A main
effect would not usually be carried out if the AB interaction is
significant.

B If the AB interaction is not significant, then adjusting for it is of
no interest, and causes a substantial loss of power in testing the
A and B main effects.

(The issue does not arise so clearly in the balanced case, for there the
sum of squares for A say is independent of whether or not interaction
is assumed. Thus, in deciding on possible models for the data, the
interaction term is not included unless it has been shown to be necessary,
in which case tests on main effects involved in the interaction are not
carried out; or if carried out, not interpreted — see biofeedback example
in Chapter 5.)

The arguments of Nelder and Aitkin against the use of Type III sums
of squares are powerful and persuasive. Their recommendation to use
Type I sums of squares, considering effects in a number of orders, as
the most suitable way in which to identify a suitable model for a data
set is also convincing and strongly endorsed by the authors of this book.



6.3 Analysis Using SAS

It is assumed that the data are in an ASCII file called ozkids.dat in the
current directory and that the values of the factors comprising the design
are separated by tabs, whereas those recoding days of absence for the
subjects within each cell are separated by commas, as in Display 6.1. The
data can then be read in as follows:

data ozkids;
infile 'ozkids.dat' dim="'," expandtabs missover,;
input cell origin $ sex $ grade $ type $ days @;
do until (days=.);
output;
input days @;
end;
input;
run;

The expandtabs option on the infile statement converts tabs to spaces
so that list input can be used to read the tab-separated values. To read
the comma-separated values in the same way, the delimiter option (abbre-
viated dim) specifies that both spaces and commas are delimiters. This is
done by including a space and a comma in quotes after dim=. The missover
option prevents SAS from reading the next line of data in the event that
an input statement requests more data values than are contained in the
current line. Missing values are assigned to the variable(s) for which there
are no corresponding data values. To illustrate this with an example,
suppose we have an input statement input x1-x7;. If a line of data only
contains five numbers, by default SAS will go to the next line of data to
read data values for x6 and x7. This is not usually what is intended; so
when it happens, there is a warning message in the log: “SAS went to a
new line when INPUT statement reached past the end of a line.” With
the missover option, SAS would not go to a new line but x6 and x7 would
have missing values. Here we utilise this to determine when all the values
for days of absence from school have been read.

The input statement reads the cell number, the factors in the design,
and the days absent for the first observation in the cell. The trailing @
at the end of the statement holds the data line so that more data can be
read from it by subsequent input statements. The statements between the
do until and the following end are repeatedly executed until the days
variable has a missing value. The output statement creates an observation
in the output data set. Then another value of days is read, again holding
the data line with a trailing @. When all the values from the line have



been read, and output as observations, the days variable is assigned a
missing value and the do until loop finishes. The following input statement
then releases the data line so that the next line of data from the input
file can be read.

For unbalanced designs, the glm procedure should be used rather than
proc anova. We begin by fitting main-effects-only models for different
orders of main effects.

proc glm data=ozkids;
class origin sex grade type;
model days=origin sex grade type /ssl ss3;

proc glm data=ozkids;
class origin sex grade type;
model days=grade sex type origin /ss1;

proc glm data=ozkids;
class origin sex grade type;
model days=type sex origin grade /ss1;

proc glm data=ozkids;

class origin sex grade type;

model days=sex origin type grade /ss1;
run;

The class statement specifies the classification variables, or factors.
These can be numeric or character variables. The model statement specifies
the dependent variable on the left-hand side of the equation and the
effects (i.e., factors and their interactions) on the right-hand side of the
equation. Main effects are specified by including the variable name.

The options in the model statement in the first glm step specify that
both Type I and Type III sums of squares are to be output. The subsequent
proc steps repeat the analysis, varying the order of the effects; but because
Type III sums of squares are invariant to the order, only Type I sums of
squares are requested. The output is shown in Display 6.2. Note that
when a main effect is ordered last, the corresponding Type I sum of
squares is the same as the Type III sum of squares for the factor. In fact,
when dealing with a main-effects only model, the Type III sums of squares
can legitimately be used to identify the most important effects. Here, it
appears that origin and grade have the most impact on the number of
days a child is absent from school.



Dependent Variable: days

Source

Model

Error

Corrected Total

Source

origin
sex
grade

type
Source

origin
sex
grade

type

The GLM Procedure

Class Level Information

Class Levels
origin 2
sex 2
grade 4
type 2

Number of observations

Values

AN

FM

FO F1 F2 F3

AL SL

154

The GLM Procedure

Sum of
DF Squares Mean Square F Value Pr>F
6 4953.56458 825.59410 3.60 0.0023
147 33752.57179 229.60933
153 38706.13636
R-Square Coeff Var Root MSE days Mean
0.127979  93.90508 15.15287 16.13636
DF Type | SS Mean Square F Value Pr>F
1 2645.652580 2645.652580 11.52 0.0009
1 338.877090 338.877090 1.48 0.2264
3 1837.020006 612.340002 2.67 0.0500
1 132.014900 132.014900 0.57 0.4495
DF Type Il SS Mean Square F Value Pr>F
1 2403.606653 2403.606653 10.47 0.0015
1 185.647389 185.647389 0.81 0.3700
3 1917.449682 639.149894 2.78 0.0430
1 132.014900 132.014900 0.57 0.4495




The GLM Procedure

Class Level Information

Class Levels Values

origin 2 A N

sex 2 FM

grade 4 FO F1 F2 F3
type 2 AL SL

Number of observations 154
The GLM Procedure

Dependent Variable: days

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 6 4953.56458 825.59410 3.60 0.0023
Error 147 33752.57179 229.60933

Corrected Total 153 38706.13636

R-Square Coeff Var Root MSE days Mean

0.127979 93.90508 15.15287 16.13636

Source DF Type | SS Mean Square F Value Pr > F
grade 3 2277.172541 759.057514 3.31 0.0220
sex 1 124.896018 124.896018 0.54 0.4620
type 1 147.889364 147.889364 0.64 0.4235
origin 1 2403.606653 2403.606653 10.47 0.0015




The GLM Procedure

Class Level Information

Class Levels Values

origin 2 A N

sex 2 FM

grade 4 FO F1 F2 F3
type 2 AL SL

Number of observations 154
The GLM Procedure

Dependent Variable: days

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 6 4953.56458 825.59410 3.60 0.0023
Error 147 33752.57179 229.60933

Corrected Total 153 38706.13636

R-Square Coeff Var Root MSE

0.127979 93.90508 15.15287
Source DF Type | SS Mean Square
type 1 19.502391 19.502391
sex 1 336.215409 336.215409
origin 1 2680.397094 2680.397094
grade 3 1917.449682 639.149894

days Mean

16.13636

F Value Pr > F

0.08 0.7711
1.46 0.2282
11.67 0.0008
2.78 0.0430




The GLM Procedure

Class Level Information

Class Levels

origin 2
sex 2
grade 4
type 2

Values

AN

F M

FO F1 F2 F3

AL SL

Number of observations 154

The GLM Procedure

Dependent Variable: days

Sum of
Source DF Squares
Model 6 4953.56458
Error 147 33752.57179

Corrected Total 153 38706.13636

R-Square Coeff Var

0.127979 93.90508

Mean Square F Value
825.59410 3.60

229.60933

Root MSE  days Mean

15.15287 16.13636

Source DF Type | SS Mean Square F Value
sex 1 308.062554 308.062554 1.34
origin 1 2676.467116 2676.467116 11.66
type 1 51.585224 51.585224 0.22
grade 3 1917.449682 639.149894 2.78

Pr>F

0.0023

Pr>F

0.2486
0.0008
0.6362
0.0430

Display 6.2




Next we fit a full factorial model to the data as follows:

proc glm data=ozkids;

class origin sex grade type;

model days=origin sex grade type origin|sex|grade|type /ss1
Ss3;
run;

Joining variable names with a bar is a shorthand way of specifying an
interaction and all the lower-order interactions and main effects implied
by it. This is useful not only to save typing but to ensure that relevant
terms in the model are not inadvertently omitted. Here we have explicitly
specified the main effects so that they are entered before any interaction
terms when calculating Type I sums of squares.

The output is shown in Display 6.3. Note first that the only Type I
and Type III sums of squares that agree are those for the origin * sex *
grade * type interaction. Now consider the origin main effect. The Type
I sum of squares for origin is “corrected” only for the mean because it
appears first in the proc glm statement. The effect is highly significant.
But using Type III sums of squares, in which the origin effect is corrected
for all other main effects and interactions, the corresponding F value has
an associated P-value of 0.2736. Now origin is judged nonsignificant, but
this may simply reflect the loss of power after “adjusting” for a lot of
relatively unimportant interaction terms.

Arriving at a final model for these data is not straightforward (see
Aitkin [1978] for some suggestions), and the issue is not pursued here
because the data set will be the subject of further analyses in Chapter 9.
However, some of the exercises encourage readers to try some alternative
analyses of variance.

The GLM Procedure

Class Level Information

Class Levels Values

origin 2 AN

se 2 FM

grade 4 FO F1 F2 F3
type 2 AL SL

Number of observations 154




Dependent Variable: days

Source

Model

Error

Corrected Total

R-Square

0.392171

Source

origin

sex

grade

type
origin*sex
origin*grade
sex*grade

origin*sex*grade

origin*type
sex*type

origin*sex*type

grade*type

origin*grade*type
sex*grade*type
origi*sex*grade*type

The GLM Procedure

Sum of
Squares Mean Square F Value

15179.41930 489.65869 2.54
23526.71706 192.84194
38706.13636

Coeff Var Root MSE days Mean

86.05876 13.88675 16.13636
DF Type | SS Mean Square F Value
1 2645.652580 2645.652580 13.72
1 338.877090 338.877090 1.76
3 1837.020006 612.340002 3.18
1 132.014900 132.014900 0.68
1 142.454554  142.454554 0.74
3 3154.799178 1051.599726 5.45
3 2009.479644 669.826548 3.47
3 226.309848 75.436616 0.39
1 38.572890 38.572890 0.20
1 69.671759 69.671759 0.36
1 601.464327 601.464327 3.12
3 2367.497717 789.165906 4.09
3 887.938926  295.979642 1.53
3 375.828965 125.276322 0.65
3 351.836918 117.278973 0.61

Pr>F

0.0002

Pr>F

0.0003
0.1874
0.0266
0.4096
0.3918
0.0015
0.0182
0.7596
0.6555
0.5489
0.0799
0.0083
0.2089
0.5847
0.6109




Source DF Type Il SS Mean Square F Value Pr > F
origin 1 233.201138 233.201138 1.21 0.2736
sex 1 344.037143 344.037143 1.78 0.1841
grade 3 1036.595762 345.531921 1.79 0.1523
type 1 181.049753 181.049753 0.94 0.3345
origin*sex 1 3.261543 3.261543 0.02 0.8967
origin*grade 3 1366.765758 455.588586 2.36 0.0746
sex*grade 3 1629.158563 543.052854 2.82 0.0420
origin*sex*grade 3 32.650971 10.883657 0.06 0.9823
origin*type 1 55.378055 55.378055 0.29 0.5930
sex*type 1 1.158990 1.158990 0.01 0.9383
origin*sex*type 1 337.789437  337.789437 1.75 0.1881
grade*type 3 2037.872725 679.290908 3.52 0.0171
origin*grade*type 3 973.305369 324.435123 1.68 0.1743
sex*grade*type 3 410.577832 136.859277 0.71 0.5480
origi*sex*grade*type 3 351.836918 117.278973 0.61 0.6109
Display 6.3

Exercises

6.1

6.2

0.3

0.4

Investigate simpler models for the data used in this chapter by
dropping interactions or sets of interactions from the full factorial
model fitted in the text. Try several different orders of effects.
The outcome for the data in this chapter — number of days absent
— is a count variable. Consequently, assuming normally distributed
errors may not be entirely appropriate, as we will see in Chapter
9. Here, however, we might deal with this potential problem by
way of a transformation. One possibility is a log transformation.
Investigate this possibility.

Find a table of cell means and standard deviations for the data used
in this chapter.

Construct a normal probability plot of the residuals from fitting a
main-effects-only model to the data used in this chapter. Comment
on the results.



Chapter 7

Analysis of Variance
of Repeated Measures:
Visual Acuity

7.1 Description of Data

The data used in this chapter are taken from Table 397 of SDS. They are
reproduced in Display 7.1. Seven subjects had their response times mea-
sured when a light was flashed into each eye through lenses of powers
6/6, 6/18, 6/36, and 6/60. Measurements are in milliseconds, and the
question of interest was whether or not the response time varied with
lens strength. (A lens of power a/b means that the eye will perceive as
being at “a” feet an object that is actually positioned at “b” feet.)

7.2 Repeated Measures Data

The observations in Display 7.1 involve repeated measures. Such data
arise often, particularly in the behavioural sciences and related disciplines,
and involve recording the value of a response variable for each subject
under more than one condition and/or on more than one occasion.



Visual Acuity and Lens Strength
Left Eye Right Eye
Subject 6/6 6/18 6/36 6/60 6/6 6/18 6/36 6/60
1 116 119 116 124 120 117 114 122
2 110 110 114 115 106 112 110 110
3 117 118 120 120 120 120 120 124
4 112 16 115 113 115 116 116 119
5 113 114 114 118 114 117 116 112
6 119 115 94 116 100 99 94 97
7 110 110 105 118 105 105 115 115
Display 7.1

Researchers typically adopt the repeated measures paradigm as a means
of reducing error variability and/or as the natural way of measuring certain
phenomena (e.g., developmental changes over time, learning and memory
tasks, etc). In this type of design, the effects of experimental factors giving
rise to the repeated measures are assessed relative to the average response
made by a subject on all conditions or occasions. In essence, each subject
serves as his or her own control and, accordingly, variability due to
differences in average responsiveness of the subjects is eliminated from
the extraneous error variance. A consequence of this is that the power to
detect the effects of within-subjects experimental factors is increased
compared to testing in a between-subjects design.

Unfortunately, the advantages of a repeated measures design come at
a cost, and that cost is the probable lack of independence of the repeated
measurements. Observations made under different conditions involving
the same subjects will very likely be correlated rather than independent.
This violates one of the assumptions of the analysis of variance procedures
described in Chapters 5 and 6, and accounting for the dependence
between observations in a repeated measures designs requires some
thought. (In the visual acuity example, only within-subject factors occur;
and it is possible — indeed likely — that the lens strengths under which
a subject was observed were given in random order. However, in examples
where time is the single within-subject factor, randomisation is not, of
course, an option. This makes the type of study in which subjects are
simply observed over time rather different from other repeated measures
designs, and they are often given a different label — longitudinal designs.
Owing to their different nature, we consider them specifically later in
Chapters 10 and 11.)



7.3 Analysis of Variance for Repeated Measures
Designs

Despite the lack of independence of the observations made within subjects
in a repeated measures design, it remains possible to use relatively
straightforward analysis of variance procedures to analyse the data if three
particular assumptions about the observations are valid; that is

1. Normality: the data arise from populations with normal distribu-
tions.

2. Homogeneity of variance: the variances of the assumed normal
distributions are equal.

3. Sphericity: the variances of the differences between all pairs of the
repeated measurements are equal. This condition implies that the
correlations between pairs of repeated measures are also equal,
the so-called compound symmetry pattern.

It is the third assumption that is most critical for the validity of the
analysis of variance F-tests. When the sphericity assumption is not regarded
as likely, there are two alternatives to a simple analysis of variance: the
use of correction factors and multivariate analysis of variance. All three
possibilities will be considered in this chapter.

We begin by considering a simple model for the visual acuity obser-
vations, y;;, where y,, represents the reaction time of the ith subject for
eye j and lens strength k& The model assumed is

Yo = K+ 0+ B+ @By, + Y, + (Yoo + (YR, + (yaR)y, + O, (7.1

where a; represents the effect of eye j, B, is the effect of the kth lens
strength, and (ap), is the eye X lens strength interaction. The term v, is
a constant associated with subject 7 and (ya),, (YB),, and (yap),, represent
interaction effects of subject 7 with each factor and their interaction. The
terms O, B, and (af), are assumed to be fixed effects, but the subject
and error terms are assumed to be random variables from normal distri-
butions with zero means and variances specific to each term. This is an
example of a mixed model.

Equal correlations between the repeated measures arise as a conse-
quence of the subject effects in this model; and if this structure is valid,
a relatively straightforward analysis of variance of the data can be used.
However, when the investigator thinks the assumption of equal correla-
tions is too strong, there are two alternatives that can be used:



Correction factors. Box (1954) and Greenhouse and Geisser (1959)
considered the effects of departures from the sphericity assumption
in a repeated measures analysis of variance. They demonstrated
that the extent to which a set of repeated measures departs from
the sphericity assumption can be summarised in terms of a param-
eter [, which is a function of the variances and covariances of the
repeated measures. And an estimate of this parameter can be used
to decrease the degrees of freedom of F-tests for the within-subjects
effect to account for deviation from sphericity. In this way, larger
F-values will be needed to claim statistical significance than when
the correction is not used, and thus the increased risk of falsely
rejecting the null hypothesis is removed. Formulae for the correc-
tion factors are given in Everitt (2001).

Multivariate analysis of variance. An alternative to the use of
correction factors in the analysis of repeated measures data when
the sphericity assumption is judged to be inappropriate is to use
multivariate analysis of variance. The advantage is that no assump-
tions are now made about the pattern of correlations between the
repeated measurements. A disadvantage of using MANOVA for
repeated measures is often stated to be the technique’s relatively
low power when the assumption of compound symmetry is actually
valid. However, Davidson (1972) shows that this is really only a
problem with small sample sizes.

7.4 Analysis Using SAS

Assuming the ASCII file ‘'visual.dat' is in the current directory, the data
can be read in as follows:

data vision;
infile 'visual.dat' expandtabs;
input idno x1-x8;

run;

The data are tab separated and the expandtabs option on the infile
statement converts the tabs to spaces as the data are read, allowing a
simple list input statement to be used.

The glm procedure is used for the analysis:

proc glm data=vision;
model x1-x8= / nouni;
repeated eye 2, strength 4 /summary;

run;



The eight repeated measures per subject are all specified as response
variables in the model statement and thus appear on the left-hand side of
the equation. There are no between-subjects factors in the design, so the
right-hand side of the equation is left blank. Separate univariate analyses
of the eight measures are of no interest and thus the nouni option is
included to suppress them.

The repeated statement specifies the within-subjects factor structure.
Each factor is given a name, followed by the number of levels it has.
Factor specifications are separated by commas. The order in which they
occur implies a data structure in which the factors are nested from right
to left; in this case, one where lens strength is nested within eye. It is
also possible to specify the type of contrasts to be used for each within-
subjects factor. The default is to contrast each level of the factor with the
previous. The summary option requests ANOVA tables for each contrast.

The output is shown in Display 7.2. Concentrating first on the univariate
tests, we see that none of the effects — eye, strength, or eye X strength
— are significant, and this is so whichever P-value is used, unadjusted,
Greenhouse and Geisser (G-G) adjusted, or Huynh-Feldt (H-F) adjusted.
However, the multivariate tests have a different story to tell; now the
strength factor is seen to be highly significant.

Because the strength factor is on an ordered scale, we might investigate
it further using orthogonal polynomial contrasts, here a linear, quadratic,
and cubic contrast.

The GLM Procedure
Number of observations 7

The GLM Procedure
Repeated Measures Analysis of Variance

Repeated Measures Level Information
Dependent Variable x1 x2 x3 x4 x5 x6 x7 x8

Level of eye 1 1 1 1 2 2 2 2
Level of strength 1 2 3 4 1 2 3 4

Manova Test Criteria and Exact F Statistics for the Hypothesis of no
eye Effect
H = Type Ill SSCP Matrix for eye
E = Error SSCP Matrix

S=1 M=-0.5 N=2




Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.88499801 0.78 1 6 0.4112
Pillai's Trace 0.11500199 0.78 1 6 0.4112
Hotelling-Lawley Trace 0.12994604 0.78 1 6 0.4112
Roy's Greatest Root 0.12994604 0.78 1 6 0.4112
Manova Test Criteria and Exact F Statistics for the Hypothesis of no
strength Effect
H = Type IlIl SSCP Matrix for strength
E = Error SSCP Matrix
S=1 M=0.5 N=1
Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.05841945 21.49 3 4 0.0063
Pillai's Trace 0.94158055 21.49 3 4 0.0063
Hotelling-Lawley Trace 16.11758703 21.49 3 4 0.0063
Roy's Greatest Root 16.11758703 21.49 3 4 0.0063
Manova Test Criteria and Exact F Statistics for the Hypothesis of no eye*
strength Effect
H = Type Ill SSCP Matrix for eye*strength
E = Error SSCP Matrix
S=1 M=0.5 N=1
Statistic Value F Value Num DF Den DF Pr>F
Wilks' Lambda 0.70709691 0.55 3 4 0.6733
Pillai's Trace 0.29290309 0.55 3 4 0.6733
Hotelling-Lawley Trace 0.41423331 0.55 3 4 0.6733
Roy's Greatest Root 0.41423331 0.55 3 4 0.6733
The GLM Procedure
Repeated Measures Analysis of Variance
Univariate Tests of Hypotheses for Within Subject Effects
Source DF Type Il SS Mean Square F Value Pr>F
eye 1 46.4464286 46.4464286 0.78 0.4112

Error(eye) 6 357.4285714 59.5714286




Adj Pr > F
Source DF Type Ill SS Mean Square F Value Pr>F G -G

H-F
strength 3 140.7678571 46.9226190 2.25 0.1177 0.1665 0.1528
Error(strength) 18 375.8571429 20.8809524

Greenhouse-Geisser Epsilon 0.4966
Huynh-Feldt Epsilon 0.6229
Adj Pr > F
Source DF Type Ill SS Mean Square F Value Pr>F G-G H-F
eye*strength 3 40.6250000 13.5416667 1.06 0.3925 0.3700 0.3819
Error(eye*strength) 18 231.0000000 12.8333333
Greenhouse-Geisser Epsilon  0.5493
Huynh-Feldt Epsilon 0.7303

The GLM Procedure
Repeated Measures Analysis of Variance
Analysis of Variance of Contrast Variables

eye_N represents the contrast between the nth level of eye and the last

Contrast Variable: eye_1

Source DF Type Il SS Mean Square F Value Pr>F
Mean 1

371.571429
Error 6

371.571429 0.78
2859.428571

0.4112
476.571429

The GLM Procedure
Repeated Measures Analysis of Variance
Analysis of Variance of Contrast Variables

strength_N represents the contrast between the nth level of strength and the last

Contrast Variable: strength_1

Source DF Type Il SS Mean Square F Value Pr>F

Mean 1

302.2857143
Error 6

302.2857143 5.64
321.7142857

0.0552
53.6190476




Contrast Variable: strength_2

Source DF Type Il SS Mean Square F Value Pr>F
Mean 1 175.0000000 175.0000000 3.55 0.1086
Error 6 296.0000000 49.3333333

Contrast Variable: strength_3
Source DF Type Il SS Mean Square F Value Pr>F
Mean 1 514.2857143 514.2857143 5.57 0.0562
Error 6 553.7142857 92.2857143

The GLM Procedure
Repeated Measures Analysis of Variance
Analysis of Variance of Contrast Variables

eye_N represents the contrast between the nth level of eye and the last

strength_N represents the contrast between the nth level of strength and the
last

Contrast Variable: eye_1*strength_1

Source DF Type Il SS Mean Square F Value Pr>F
Mean 1 9.14285714 9.14285714 0.60 0.4667
Error 6 90.85714286 15.14285714

Contrast Variable: eye_1*strength_2
Source DF Type Il SS Mean Square F Value Pr>F
Mean 1 11.5714286 11.5714286 0.40 0.5480
Error 6 171.4285714 28.5714286

Contrast Variable: eye_1*strength_3
Source DF Type Il SS Mean Square F Value Pr>F
Mean 1 146.2857143 146.2857143 1.79 0.2291
Error 6 489.7142857 81.6190476

Display 7.2




Polynomial contrasts for lens strength can be obtained by re-submitting
the previous glm step with the following repeated statement:

repeated eye 2, strength 4 (1 3 6 10) polynomial /summary;

The specification of the lens strength factor has been expanded: numeric
values for the four levels of lens strength have been specified in paren-
theses and orthogonal polynomial contrasts requested. The values speci-
fied will be used as spacings in the calculation of the polynomials.

The edited results are shown in Display 7.3. None of the contrasts are
significant, although it must be remembered that the sample size here is
small, so that the tests are not very powerful. The difference between the
multivariate and univariate tests might also be due to the covariance
structure departing from the univariate assumption of compound symme-
try. Interested readers might want to examine this possibility.

The GLM Procedure
Number of observations 7

The GLM Procedure
Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable x1 x2 x3 x4 x5 x6 x7 x8

Level of eye 1 1 1 1 2 2 2 2
Level of strength 1 3 6 10 1 3 6 10

Manova Test Criteria and Exact F Statistics for the Hypothesis of no
eye Effect
H = Type Ill SSCP Matrix for eye
E = Error SSCP Matrix

S=1 M=-0.5 N=2
Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.88499801 0.78 1 6 0.4112
Pillai's Trace 0.11500199 0.78 1 6 0.4112
Hotelling-Lawley Trace 0.12994604 0.78 1 6 0.4112
Roy's Greatest Root 0.12994604 0.78 1 6 0.4112

Manova Test Criteria and Exact F Statistics for the Hypothesis of no
strength Effect
H = Type IlIl SSCP Matrix for strength
E = Error SSCP Matrix




Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.05841945 21.49 3 4 0.0063
Pillai's Trace 0.94158055 21.49 3 4 0.0063
Hotelling-Lawley Trace 16.11758703 21.49 3 4 0.0063
Roy's Greatest Root 16.11758703 21.49 3 4 0.0063

Manova Test Criteria and Exact F Statistics for the Hypothesis of no eye*
strength Effect
H = Type Ill SSCP Matrix for eye*strength
E = Error SSCP Matrix

S=1 M=0.5 N=1
Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.70709691 0.55 3 4 0.6733
Pillai's Trace 0.29290309 0.55 3 4 0.6733
Hotelling-Lawley Trace 0.41423331 0.55 3 4 0.6733
Roy's Greatest Root 0.41423331 0.55 3 4 0.6733
The GLM Procedure
Repeated Measures Analysis of Variance
Univariate Tests of Hypotheses for Within Subject Effects
Source DF Type Il SS Mean Square F Value Pr>F
eye 1 46.4464286 46.4464286 0.78 0.4112
Error(eye) 6 357.4285714 59.5714286
Adj Pr > F
Source DF Type Il SS Mean Square F Value Pr>F G-G H-F
strength 3 140.7678571 46.9226190 2.25 0.1177 0.1665 0.1528
Error(strength) 18 375.8571429  20.8809524
Greenhouse-Geisser Epsilon 0.4966
Huynh-Feldt Epsilon 0.6229
Adj Pr > F
Source DF Type lll SS Mean Square F Value Pr>F G-G H-F
eye*strength 3  40.6250000 13.5416667 1.06 0.3925 0.3700 0.3819

Error(eye*strength) 18 231.0000000 12.8333333




Greenhouse-Geisser Epsilon  0.5493
Huynh-Feldt Epsilon 0.7303

The GLM Procedure
Repeated Measures Analysis of Variance
Analysis of Variance of Contrast Variables
eye_N represents the contrast between the nth level of eye and the last
Contrast Variable: eye_1

Source DF Type Il SS Mean Square F Value Pr>F

Mean 1 371.571429 371.571429 0.78 0.4112
Error 6 2859.428571 476.571429

The GLM Procedure
Repeated Measures Analysis of Variance
Analysis of Variance of Contrast Variables
strength_N represents the nth degree polynomial contrast for strength
Contrast Variable: strength_1

Source DF Type Il SS Mean Square F Value Pr>F

Mean 1 116.8819876 116.8819876 2.78 0.1468
Error 6 252.6832298 42.1138716

Contrast Variable: strength_2
Source DF Type Il SS Mean Square F Value Pr>F

Mean 1 97.9520622 97.9520622 1.50 0.2672
Error 6 393.0310559 65.5051760

Contrast Variable: strength_3
Source DF Type Il SS Mean Square F Value Pr>F

Mean 1 66.7016645 66.7016645 3.78 0.1000
Error 6 106.0000000 17.6666667




The GLM Procedure
Repeated Measures Analysis of Variance
Analysis of Variance of Contrast Variables

eye_N represents the contrast between the nth level of eye and the last
strength_N represents the nth degree polynomial contrast for strength

Contrast Variable: eye_1*strength_1
Source DF Type Il SS Mean Square F Value Pr>F

Mean 1 1.00621118 1.00621118 0.08 0.7857
Error 6 74.64596273 12.44099379

Contrast Variable: eye_1*strength_2
Source DF Type Il SS Mean Square F Value Pr>F

Mean 1 56.0809939 56.0809939 1.27 0.3029
Error 6 265.0789321 44.1798220

Contrast Variable: eye_1*strength_3

Source DF Type Il SS Mean Square F Value Pr > F
Mean 1 24.1627950 24.1627950 1.19 0.3180
Error 6 122.2751052 20.3791842
Display 7.3
Exercises

7.1  Plot the left and right eye means for the different lens strengths.
Include standard error bias on the plot.

7.2 Examine the raw data graphically in some way to assess whether
there is any evidence of outliers. If there is repeat the analyses
described in the text.

7.3  Find the correlations between the repeated measures for the data
used in this chapter. Does the pattern of the observed correlations
lead to an explanation for the different results produced by the
univariate and multivariate treatment of these data?



Chapter 8

Logistic Regression:
Psychiatric Screening,
Plasma Proteins, and
Danish Do-It-Yourself

8.1 Description of Data

This chapter examines three data sets. The first, shown in Display 8.1,
arises from a study of a psychiatric screening questionnaire called the
GHQ (General Health Questionnaire; see Goldberg [1972]). Here, the
question of interest is how “caseness” is related to gender and GHQ score.

The second data set, shown in Display 8.2, was collected to examine
the extent to which erythrocyte sedimentation rate (ESR) (i.e., the rate at
which red blood cells [erythocytes] settle out of suspension in blood
plasma) is related to two plasma proteins: fibrinogen and y-globulin, both
measured in gm/l. The ESR for a “healthy” individual should be less than
20 mm/h and, because the absolute value of ESR is relatively unimportant,
the response variable used here denotes whether or not this is the case.
A response of zero signifies a healthy individual (ESR < 20), while a
response of unity refers to an unhealthy individual (ESR = 20). The aim
of the analysis for these data is to determine the strength of any relationship
between the ESR level and the levels of the two plasmas.



GHQ Score  Sex Number of Cases  Number of Non-cases
0 F 4 80
1 F 4 29
2 F 8 15
3 F 6 3
4 F 4 2
5 F 6 1
6 F 3 1
7 F 2 0
8 F 3 0
9 F 2 0

10 F 1 0
0 M 1 36
1 M 2 25
2 M 2 8
3 M 1 4
4 M 3 1
5 M 3 1
6 M 2 1
7 M 4 2
8 M 3 1
9 M 2 0

10 M 2 0

Note: F: Female, M: Male.

Display 8.1

The third data set is given in Display 8.3 and results from asking a
sample of employed men, ages 18 to 67, whether, in the preceding year,
they had carried out work in their home that they would have previously
employed a craftsman to do. The response variable here is the answer
(yes/no) to that question. In this situation, we would like to model the
relationship between the response variable and four categorical explana-
tory variables: work, tenure, accommodation type, and age.



Fibrinogen  yGlobulin

ESR

2.52 38
2.56 31
2.19 33
2.18 31
341 37
2.46 36
3.22 38
2.21 37
3.15 39
2.60 Ey|
2.29 36
2.35 29
5.06 37
3.34 32
2.38 37
3.15 36
3.53 46
2.68 34
2.60 38
223 37
2.88 30
2.65 46
2.09 44
2.28 36
2.67 39
2.29 31
215 31
2.54 28
3.93 32
3.34 30
2.99 36
3.32 35
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Accommodation Type and Age Groups
Apartment House
Work Tenure Response <30 31-45 46+ <30 31-45 46+
Skilled Rent Yes 18 15 6 34 10 2
No 15 13 9 28 4 6
Own Yes 5 3 1 56 56 35
No 1 1 1 12 21 8
Unskilled Rent Yes 17 10 15 29 3 7
No 34 17 19 44 13 16
Own Yes 2 0 3 23 52 49
No 3 2 0 9 31 51
Office Rent Yes 30 23 21 22 13 1
No 25 19 40 25 16 12
Own Yes 8 5 1 54 191 102
No 4 2 2 19 76 61
Display 8.3

8.2 The Logistic Regression Model

In linear regression (see Chapter 3), the expected value of a response
variable y is modelled as a linear function of the explanatory variables:

EQ) =By + Bx, + Box, + oo + Bﬁxp 8.1

For a dichotomous response variable coded 0 and 1, the expected value
is simply the probability Tt that the variable takes the value 1. This could
be modelled as in Eq. (8.1), but there are two problems with using linear
regression when the response variable is dichotomous:

1. The predicted probability must satisfy 0 < 1< 1, whereas a linear
predictor can yield any value from minus infinity to plus infinity.

2. The observed values of y do not follow a normal distribution with
mean T{ but rather a Bernoulli (or binomial [1, 11) distribution.

In logistic regression, the first problem is addressed by replacing the
probability T = E(») on the left-hand side of Eq. (8.1) with the logit
transformation of the probability, log TV/(1 — 0. The model now becomes:



lOgit(T[) = IOgI'l_TT_[= [3() + lel ot Bp'xp (8.2)

The logit of the probability is simply the log of the odds of the event
of interest. Setting ' = [B,, B,, -+, B,] and the augmented vector of scores
for the ith individual as x; = [1, x,;, x5, -+, x,,), the predicted probabilities
as a function of the linear predictor are:

vy _exp(Bxy)
m(Bx,) = I:m (8.3)

Whereas the logit can take on any real value, this probability always
satisfies 0 < T(B'x,) < 1. In a logistic regression model, the parameter [3;
associated with explanatory variable x; is such that exp(f3) is the odds
that y = 1 when x; increases by 1, conditional on the other explanatory
variables remaining the same.

Maximum likelihood is used to estimate the parameters of Eq. (8.2),
the log-likelihood function being:

IB; » =Zyi loglm(P'x,)] + (1 — y) log(l — T x))] (8.4)

where y' = [y,, ¥,, -+, »,] are the n observed values of the dichotomous
response variable. This log-likelihood is maximized numerically using an
iterative algorithm. For full details of logistic regression, see, for example,
Collett (1991).

8.3 Analysis Using SAS
8.3.1 GHQ Data

Assuming the data are in the file 'ghg.dat' in the current directory and
that the data values are separated by tabs, they can be read in as follows:

data ghq;
infile 'ghg.dat' expandtabs;
input ghq sex $ cases noncases;
total=cases+noncases;
prcase=cases/total;

run;



The variable prcase contains the observed probability of being a case.
This can be plotted against ghq score as follows:

proc gplot data=ghq;
plot prcase*ghq;
run;

The resulting plot is shown in Display 8.4. Clearly, as the GHQ score
increases, the probability of being considered a case increases.

prcase
1.01 T + + 3

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2 * *

0.11

0.04, . : : : : i : : ,
0 1 2 3 4 5 6 7 8 9 10
ghq
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It is a useful exercise to compare the results of fitting both a simple
linear regression and a logistic regression to these data using the single
explanatory variable GHQ score. First we perform a linear regression using
proc reg:

proc reg data=ghgq;
model prcase=ghq;
output out=rout p=rpred;
run;

The output statement creates an output data set that contains all the original
variables plus those created by options. The p=rpred option specifies that



the predicted values are included in a variable named rpred. The out=rout
option specifies the name of the data set to be created.

We then calculate the predicted values from a logistic regression, using
proc logistic, in the same way:

proc logistic data=ghgq;
model cases/total=ghq;
output out=lout p=lpred;
run;

There are two forms of model statement within proc logistic. This example
shows the events/trials syntax, where two variables are specified separated
by a slash. The alternative is to specify a single binary response variable
before the equal sign.

The two output data sets are combined in a short data step. Because
proc gplot plots the data in the order in which they occur, if the points
are to be joined by lines it may be necessary to sort the data set into the
appropriate order. Both sets of predicted probabilities are to be plotted
on the same graph (Display 8.5), together with the observed values; thus,
three symbol statements are defined to distinguish them:

Estimated Probability
1.2

11
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0+

ghq

Display 8.5



data lIrout;
set rout;
set lout;

proc sort data=lrout;
by ghq;

symboll i=join v=none I=1;
symbol2 i=join v=none |=2;
symbol3 v=circle;

proc gplot data=lIrout;
plot (rpred Ipred prcase)*ghq /overlay;
run;

The problems of using the unsuitable linear regression model become
apparent on studying Display 8.5. Using this model, two of the predicted
values are greater than 1, but the response is a probability constrained to
be in the interval (0,1). Additionally, the model provides a very poor fit
for the observed data. Using the logistic model, on the other hand, leads
to predicted values that are satisfactory in that they all lie between 0 and
1, and the model clearly provides a better description of the observed data.

Next we extend the logistic regression model to include both ghq score
and sex as explanatory variables:

proc logistic data=ghq;

class sex;
model cases/total=sex ghq;
run;

The class statement specifies classification variables, or factors, and
these can be numeric or character variables. The specification of explan-
atory effects in the model statement is the same as for proc glm:, with
main effects specified by variable names and interactions by joining
variable names with asterisks. The bar operator can also be used as an
abbreviated way of entering interactions if these are to be included in the
model (see Chapter 5).

The output is shown in Display 8.6. The results show that the estimated
parameters for both sex and GHQ are significant beyond the 5% level.
The parameter estimates are best interpreted if they are converted into
odds ratios by exponentiating them. For GHQ, for example, this leads to



an odds ratio estimate of exp(0.7791) (i.e., 2.180), with a 95% confidence
interval of (1.795, 2.646). A unit increase in GHQ increases the odds of
being a case between about 1.8 and 3 times, conditional on sex.

The same procedure can be applied to the parameter for sex, but more
care is needed here because the Class Level Information in Display 8.5
shows that sex is coded 1 for females and —1 for males. Consequently,
the required odds ratio is exp(2 x 0.468) (i.e., 2.55), with a 95% confidence
interval of (1.088, 5.974). Being female rather than male increases the
odds of being a case between about 1.1 and 6 times, conditional on GHQ.

The LOGISTIC Procedure
Model Information
Data Set WORK.GHQ

Response Variable (Events) cases
Response Variable (Trials) total

Number of Observations 22
Link Function Logit
Optimization Technique Fisher's scoring

Response Profile

Ordered Binary Total
Value Outcom Frequency

1 Event 68

2 Nonevent 210

Class Level Information

Design

Variables

Class Value 1
sex F 1
M -1

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics




Intercept

Intercept and
Criterion Only Covariates
AlC 311.319 196.126
SC 314.947 207.009

-2 Log L 309.319 190.126

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 119.1929 2 <.0001
Score 120.1327 2 <.0001
Wald 61.9555 2 <.0001

Type Il Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

sex 1 4.6446 0.0312
ghg 1 61.8891 <.0001

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Standard
Parameter DF  Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -2.9615 0.3155 88.1116 <.0001
sex F 1 0.4680 0.2172 4.6446 0.0312
ghqg 1 0.7791 0.0990 61.8891 <.0001

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits
sex F vs M 2.550 1.088 5.974

ghq 2.180 1.795 2.646




Association of Predicted Probabilities and Observed Responses

Percent Concordant 85.8 Somers' D 0.766

Percent Discordant 9.2 Gamma 0.806

Percent Tied 5.0 Tau-a 0.284

Pairs 14280 c 0.883
Display 8.6

8.3.2 ESR and Plasma Levels

We now move on to examine the ESR data in Display 8.2. The data are
first read in for analysis using the following SAS code:

data plasma;
infile 'n:\handbook2\datasets\plasma.dat’;
input fibrinogen gamma esr;

run;

We can try to identify which of the two plasma proteins — fibrinogen
or y-globulin — has the strongest relationship with ESR level by fitting a
logistic regression model and allowing here, backward elimination of
variables as described in Chapter 3 for multiple regression, although the
elimination criterion is now based on a likelihood ratio statistic rather
than an F-value.

proc logistic data=plasma desc;

model esr=fibrinogen gamma fibrinogen*gamma / selec-
tion=backward;
run;

Where a binary response variable is used on the model statement, as
opposed to the events/trials used for the GHQ data, SAS models the lower
of the two response categories as the “event.” However, it is common
practice for a binary response variable to be coded 0,1 with 1 indicating
a response (or event) and 0 indicating no response (or a non-event). In
this case, the seemingly perverse, default in SAS will be to model the
probability of a non-event. The desc (descending) option in the proc
statement reverses this behaviour.

It is worth noting that when the model selection option is forward,
backward, or stepwise, SAS preserves the hierarchy of effects by default.



For an interaction effect to be allowed in the model, all the lower-order
interactions and main effects that it implies must also be included.

The results are given in Display 8.7. We see that both the fibrinogen
x y-globulin interaction effect and the y-globulin main effect are eliminated
from the initial model. It appears that only fibrinogen level is predictive
of ESR level.

The LOGISTIC Procedure
Model Information

Data Set WORK.PLASMA
Response Variable esr

Number of Response Levels 2

Number of Observations 32

Link Function Logit
Optimisation Technique Fisher's scoring

Response Profile

Ordered Total
Value esr Frequency

1 1 6

2 0 26

Backward Elimination Procedure
Step 0. The following effects were entered:
Intercept fibrinogen gamma fibrinogen*gamma
Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept

Intercept and
Criterion Only Covariates
AlC 32.885 28.417
SC 34.351 34.280
-2 Log L 30.885 20.417




Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 10.4677 3 0.0150
Score 8.8192 3 0.0318
Wald 4.7403 3 0.1918

Step 1. Effect fibrinogen*gamma is removed:

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
The LOGISTIC Procedure

Model Fit Statistics

Intercept
Intercept and
Criterion Only Covariates
AlIC 32.885 28.971
SC 34.351 33.368
-2 Log L 30.885 22.971

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 7.9138 2 0.0191
Score 8.2067 2 0.0165
Wald 4.7561 2 0.0927

Residual Chi-Square Test
Chi-Square DF Pr > ChiSq

2.6913 1 0.1009

Step 2. Effect gamma is removed:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.




Model Fit Statistics

Intercept
Intercept and
Criterion Only Covariates
AlC 32.885 28.840
SC 34.351 31.772
-2 Log L 30.885 24.840

Testing Global Null Hypothesis: BETA=0-

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 6.0446 1 0.0139
Score 6.7522 1 0.0094
Wald 4.1134 1 0.0425

Residual Chi-Square Test
Chi-Square DF Pr > ChiSq
4.5421 2 0.1032

NOTE: No (additional) effects met the 0.05 significance level for removal from
the model.

The LOGISTIC Procedure

Summary of Backward Elimination

Effect Number Wald
Step Removed DF In Chi-Square Pr > ChiSq
1 fibrinogen*gamma 1 2 2.2968 0.1296
2 gamma 1 1 1.6982 0.1925

Analysis of Maximum Likelihood Estimates

Standard
Parameter DF  Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -6.8451 2.7703 6.1053 0.0135

fibrinogen 1 1.8271 0.9009 4.1134 0.0425




Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits
fibrinogen 6.216 1.063 36.333

Association of Predicted Probabilities and Observed Responses

Percent Concordant 71.2 Somers' D 0.429

Percent Discordant 28.2 Gamma 0.432

Percent Tied 0.6 Tau-a 0.135

Pairs 156 ¢ 0.715
Display 8.7

It is useful to look at a graphical display of the final model selected
and the following code produces a plot of predicted values from the
fibrinogen-only logistic model along with the observed values of ESR
(remember that these can only take the values of 0 or 1). The plot is
shown in Display 8.8.
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proc logistic data=plasma desc;
model esr=fibrinogen;
output out=lout p=lpred;

proc sort data=lout;
by fibrinogen;

symboll i=none v=circle;
symbol2 i=join v=none;
proc gplot data=lout;
plot (esr Ipred)*fibrinogen /overlay ;
run;

Clearly, an increase in fibrinogen level is associated with an increase in
the probability of the individual being categorised as unhealthy.

8.3.3 Danish Do-It-Yourself

Assuming that the data shown in Display 8.3 are in a file 'diy.dat' in the
current directory and the values are separated by tabs, the following data
step can be used to create a SAS data set for analysis. As in previous
examples, the values of the grouping variables can be determined from
the row and column positions in the data. An additional feature of this
data set is that each cell of the design contains two data values: counts
of those who answered “yes” and “no” to the question about work in the
home. Each observation in the data set needs both of these values so that
the events/trials syntax can be used in proc logistic. To do this, two rows
of data are input at the same time: six counts of “yes” responses and the
corresponding “no” responses.

data diy;
infile 'diy.dat' expandtabs;
input y1-y6 / nl1-n6;
length work $9.;
work="'Skilled";
if _n_ > 2 then work='Unskilled";
if _n_ > 4 then work="Office’;
if _n_in(1,3,5) then tenure='rent’;
else tenure='own';
array yall {6} y1-y6;



array nall {6} n1-n6;
do i=1 to 6;
if i>3 then type='house’;
else type='flat’;
agegrp=1;
if i in(2,5) then agegrp=2;
if i in(3,6) then agegrp=3;
yes=yall{i};
no=nall{i};
total=yes+no;
prdiy=yes/total;

output;
end;
drop i y1--n6;

run;

The expandtabs option in the infile statement allows list input to be used.
The input statement reads two lines of data from the file. Six data values
are read from the first line into variables y1 to y6. The slash that follows
tells SAS to go to the next line and six values from there are read into
variables nl to n6.

There are 12 lines of data in the file; but because each pass through
the data step is reading a pair of lines, the automatic variable _n_ will
range from 1 to 6. The appropriate values of the work and tenure variables
can then be assigned accordingly. Both are character variables and the
length statement specifies that work is nine characters. Without this, its
length would be determined from its first occurrence in the data step.
This would be the statement work="skilled’;and a length of seven characters
would be assigned, insufficient for the value 'unskilled'.

The variables containing the yes and no responses are declared as
arrays and processed in parallel inside a do loop. The values of age group
and accommodation type are determined from the index of the do loop
(i.e., from the column in the data). Counts of yes and corresponding no
responses are assigned to the variables yes and no, their sum assigned
to total, and the observed probability of a yes to prdiy. The output statement
within the do loop writes six observations to the data set. (See Chapter
5 for a more complete explanation.)

As usual with a complicated data step such as this, it is wise to check
the results; for example, with proc print.

A useful starting point in examining these data is a tabulation of the
observed probabilities using proc tabulate:



proc tabulate data=diy order=data f=6.2;
class work tenure type agegrp;
var prdiy;
table work*tenure all,
(type*agegrp all)*prdiy*mean;
run;

Basic use of proc tabulate was described in Chapter 5. In this example,
the f= option specifies a format for the cell entries of the table, namely
six columns with two decimal places. It also illustrates the use of the
keyword all for producing totals. The result is shown in Display 8.9. We
see that there are considerable differences in the observed probabilities,
suggesting that some, at least, of the explanatory variables may have an
effect.

type
flat house
agegrp agegrp
1 2 3 1 2 3 All
prdiy | prdiy | prdiy | prdiy| prdiy| prdiy| prdiy
Mean | Mean | Mean | Mean | Mean | Mean | Mean
work tenure

Skilled rent 0.55| 0.54| 0.40| 0.55| 0.71| 0.25| 0.50
own 0.83| 0.75| 0.50| 0.82| 0.73| 0.81| 0.74
Unskilled |[rent 0.33| 0.37| 0.44| 0.40| 0.19| 0.30| 0.34
own 0.40| 0.00| 1.00| 0.72| 0.63| 0.49| 0.54
Office rent 0.55| 0.55| 0.34| 0.47| 0.45| 0.48| 0.47
own 0.67| 0.71| 0.33| 0.74| 0.72| 0.63| 0.63
All 0.55| 0.49| 0.50| 0.62| 0.57| 0.49| 0.54

Display 8.9

We continue our analysis of the data with a backwards elimination
logistic regression for the main effects of the four explanatory variables
only.

proc logistic data=diy;
class work tenure type agegrp /param=ref ref=first;

model yes/total=work tenure type agegrp / selection=back
ward;

run;



All the predictors are declared as classfication variables, or factors, on the
class statement. The param option specifies reference coding (more com-
monly referred to as dummy variable coding), with the ref option setting
the first category to be the reference category. The output is shown in
Display 8.10.

The LOGISTIC Procedure

Model Information

Data Set WORK.DIY
Response Variable (Events) yes

Response Variable (Trials) total

Number of Observations 36

Link Function Logit
Optimization Technique Fisher's scoring

Response Profile

Ordered Binary Total
Value Outcome Frequency

1 Event 932
2 Nonevent 659

Backward Elimination Procedure

Class Level Information

Design

Variables

Class Value 1 2

work Office 0 0

Skilled 1 0

Unskilled 0 1
tenure own 0
rent 1
type flat 0
house 1

agegrp 1 0 0
2 1




Step 0. The following effects were entered:
Intercept work tenure type agegrp
Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept

Intercept and
Criterion Only Covariates
AlC 2160.518 2043.305
SC 2165.890 2080.910

-2 Log L 2158.518 2029.305
The LOGISTIC Procedure

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 129.2125 6 <.0001
Score 126.8389 6 <.0001
Wald 119.6073 6 <.0001

Step 1. Effect type is removed:
Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept

Intercept and
Criterion Only Covariates
AlIC 2160.518 2041.305
SC 2165.890 2073.538

-2 Log L 2158.518 2029.305




Testing Global Null Hypothesis
Test Chi-Square DF
Likelihood Ratio 129.2122 5
Score 126.8382 5
Wald 119.6087 5

: BETA=0
Pr > ChiSq
<.0001

<.0001
<.0001

Residual Chi-Square Test

Chi-Square DF

0.0003 1 0.98

Pr > ChiSq

65

NOTE: No (additional) effects met the 0.05 significance level for removal from

the model.
Summary of Backward Elimination
Effect Number Wald
Step Removed DF In  Chi-Square Pr > ChiSq
1 type 1 3 0.0003 0.9865
Type Il Analysis of Effects
Wald

Effect DF Chi-Square Pr > ChiSq

work 2 27.0088 <.0001

tenure 1 78.6133 <.0001

agegrp 2 10.9072 0.0043

The LOGISTIC Procedure
Analysis of Maximum Likelihood Estimates
Standard

Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 1.0139 0.1361 55.4872 <.0001
work Skilled 1 0.3053 0.1408 4.7023 0.0301
work Unskilled 1 -0.4574 0.1248 13.4377 0.0002
tenure rent 1 -1.0144 0.1144 78.6133 <.0001
agegrp 2 1 -0.1129 0.1367 0.6824 0.4088
agegrp 3 1 -0.4364 0.1401 9.7087 0.0018




Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits
work Skilled vs Office 1.357 1.030 1.788
work Unskilled vs Office 0.633 0.496 0.808
tenure rent vs own 0.363 0.290 0.454
agegrp 2 vs 1 0.893 0.683 1.168
agegrp 3vs 1 0.646 0.491 0.851

Association of Predicted Probabilities and Observed Responses

Percent Concordant 62.8 Somers' D 0.327

Percent Discordant 30.1 Gamma 0.352

Percent Tied 7.1 Tau-a 0.159

Pairs 614188 ¢ 0.663
Display 8.10

Work, tenure, and age group are all selected in the final model; only
the type of accommodation is dropped. The estimated conditional odds
ratio suggests that skilled workers are more likely to respond “yes” to the
question asked than office workers (estimated odds ratio 1.357 with 95%
confidence interval 1.030, 1.788). And unskilled workers are less likely than
office workers to respond “yes” (0.633, 0.496-0.808). People who rent their
home are far less likely to answer “yes” than people who own their home
(0.363, 0.290-0.454). Finally, it appears that people in the two younger age
groups are more likely to respond “yes” than the oldest respondents.

Exercises

8.1 In the text, a main-effects-only logistic regression was fitted to the
GHQ data. This assumes that the effect of GHQ on caseness is the
same for men and women. Fit a model where this assumption is
not made, and assess which model best fits the data.

8.2  For the ESR and plasma protein data, fit a logistic model that includes
quadratic effects for both fibrinogen and y-globulin. Does the model
fit better than the model selected in the text?

8.3 Investigate using logistic regression on the Danish do-it-yourself
data allowing for interactions among some factors.



Chapter 9

Generalised Linear
Models: School
Attendance Amongst
Australian School

Children

9.1 Description of Data

This chapter reanalyses a number of data sets from previous chapters, in
particular the data on school attendance in Australian school children used
in Chapter 6. The aim of this chapter is to introduce the concept of
generalized linear models and to illustrate how they can be applied in
SAS using proc genmod.

9.2 Generalised Linear Models

The analysis of variance models considered in Chapters 5 and 6 and the
multiple regression model described in Chapter 4 are, essentially, com-
pletely equivalent. Both involve a linear combination of a set of explan-
atory variables (dummy variables in the case of analysis of variance) as



a model for an observed response variable. And both include residual
terms assumed to have a normal distribution. (The equivalence of analysis
of variance and multiple regression models is spelt out in more detail in
Everitt [2001].)

The logistic regression model encountered in Chapter 8 also has
similarities to the analysis of variance and multiple regression models.
Again, a linear combination of explanatory variables is involved, although
here the binary response variable is not modelled directly (for the reasons
outlined in Chapter 8), but via a logistic transformation.

Multiple regression, analysis of variance, and logistic regression models
can all, in fact, be included in a more general class of models known as
generalised linear models. The essence of this class of models is a linear
predictor of the form:

n=R+Bwx; + - +Bx,=Px 9.1

where B' = [B,, B,, -, Bl and &’ = [1, x;, x,, -, x,]. The linear predictor
determines the expectation, M, of the response variable. In linear regres-
sion, where the response is continuous, M is directly equated with the
linear predictor. This is not sensible when the response is dichotomous
because in this case the expectation is a probability that must satisfy 0 <
M < 1. Consequently, in logistic regression, the linear predictor is equated
with the logistic function of W, log p/(1 — .

In the generalised linear model formulation, the linear predictor can
be equated with a chosen function of M, g(W), and the model now
becomes:

n =gl 9.2

The function g is referred to as a link function.

In linear regression (and analysis of variance), the probability distri-
bution of the response variable is assumed to be normal with mean .
In logistic regression, a binomial distribution is assumed with probability
parameter J. Both distributions, the normal and binomial distributions,
come from the same family of distributions, called the exponential family,
and are given by:

f; 8, @ = expl() — b(O)/al@ + <y, P} (9.3)

For example, for the normal distribution,



018, 9= —— exp{~(y—)*/ 20

J(2nd)
g 2 2 1,2, 2 0
= expM-WU/2)/0"-3(/0 +log(2ma’))g (9.4
[l 0

so that 8 = Y4, b(B) = 6%/2, @ = 6% and a(®) = @.

The parameter 6, a function of W, is called the canonical link. The
canonical link is frequently chosen as the link function, although the
canonical link is not necessarily more appropriate than any other link.
Display 9.1 lists some of the most common distributions and their canonical
link functions used in generalised linear models.

Variance Dispersion Link
Distribution Function Parameter Function g =6
Normal 1 o? Identity i
Binomial K1 - ) 1 Logit log(W/(1 - )
Poisson M 1 Log log(p)
Gamma 2 v Reciprocal 1/u
Display 9.1

The mean and variance of a random variable Y having the distribution
in Eq. (9.3) are given, respectively, by:

EY) =b'(0) = 9.5
and
var(Y) = b"(0) a(@ = V(W al@ (9.6)

where 5'(0) and b"(0) denote the first and second derivative of &(8) with
respect to 0, and the variance function W) is obtained by expression
b"(0@) as a function of WM. It can be seen from Eq. (9.4) that the variance
for the normal distribution is simply 02 regardless of the value of the
mean W, that is, the variance function is 1.

The data on Australian school children will be analysed by assuming
a Poisson distribution for the number of days absent from school. The
Poisson distribution is the appropriate distribution of the number of events



observed if these events occur independently in continuous time at a
constant instantaneous probability rate (or incidence rate); see, for exam-
ple, Clayton and Hills (1993). The Poisson distribution is given by:

S = eyl y=0,1,2, - C)

Taking the logarithm and summing over observations y,, y,, -+, ¥,, the
log likelihood is

l(u7 Yo Vo yn) = Z{(.yilnui_“i) - ln(_y1')} 9.8)

Where Y’ = [H,---H,] gives the expected values of each observation. Here
0 =1Inp, O = exp(®, @ = 1, and var()) = exp(B) = . Therefore, the
variance of the Poisson distribution is not constant, but equal to the mean.
Unlike the normal distribution, the Poisson distribution has no separate
parameter for the variance and the same is true of the Binomial distribution.
Display 9.1 shows the variance functions and dispersion parameters for
some commonly used probability distributions.

9.2.1 Model Selection and Measure of Fit

Lack of fit in a generalized linear model can be expressed by the deviance,
which is minus twice the difference between the maximized log-likelihood
of the model and the maximum likelihood achievable, that is, the maxi-
mized likelihood of the full or saturated model. For the normal distribution,
the deviance is simply the residual sum of squares. Another measure of
lack of fit is the generalized Pearson X2,

X' = Z(y,-—ﬁ,»)z/ V(L) 9.9

which, for the Poisson distribution, is just the familiar statistic for two-
way cross-tabulations (since V(ﬂ) = ﬂ). Both the deviance and Pearson
X? have chi-square distributions when the sample size tends to infinity.
When the dispersion parameter @ is fixed (not estimated), an analysis of
variance can be used for testing nested models in the same way as analysis
of variance is used for linear models. The difference in deviance between
two models is simply compared with the chi-square distribution, with
degrees of freedom equal to the difference in model degrees of freedom.

The Pearson and deviance residuals are defined as the (signed) square
roots of the contributions of the individual observations to the Pearson



X? and deviance, respectively. These residuals can be used to assess the
appropriateness of the link and variance functions.

A relatively common phenomenon with binary and count data is
overdispersion, that is, the variance is greater than that of the assumed
distribution (binomial and Poisson, respectively). This overdispersion may
be due to extra variability in the parameter M, which has not been
completely explained by the covariates. One way of addressing the
problem is to allow M to vary randomly according to some (prior) distri-
bution and to assume that conditional on the parameter having a certain
value, the response variable follows the binomial (or Poisson) distribution.
Such models are called random effects models (see Pinheiro and Bates
[2000] and Chapter 11).

A more pragmatic way of accommodating overdispersion in the model
is to assume that the variance is proportional to the variance function, but
to estimate the dispersion rather than assuming the value 1 appropriate for
the distributions. For the Poisson distribution, the variance is modelled as:

var(Y) = QU 9.10)

where @ is the estimated from the deviance or Pearson X?. (This is
analogous to the estimation of the residual variance in linear regression
models from the residual sums of squares.) This parameter is then used
to scale the estimated standard errors of the regression coefficients. This
approach of assuming a variance function that does not correspond to
any probability distribution is an example of quasi-likelihood. See McCul-
lagh and Nelder (1989) for more details on generalised linear models.

9.3 Analysis Using SAS

Within SAS, the genmod procedure uses the framework described in the
previous section to fit generalised linear models. The distributions covered
include those shown in Display 9.1, plus the inverse Gaussian, negative
binomial, and multinomial.

To first illustrate the use of proc genmod, we begin by replicating the
analysis of U.S. crime rates presented in Chapter 4 using the subset of
explanatory variables selected by stepwise regression. We assume the data
have been read into a SAS data set uscrime as described there.

proc genmod data=uscrime;
model R=ex1 x ed age u2 / dist=normal link=identity;
run;



The model statement specifies the regression equation in much the same
way as for proc glm described in Chapter 6. For a binomial response, the
events/trials syntax described in Chapter 8 for proc logistic can also be
used. The distribution and link function are specified as options in the
model statement. Normal and identity can be abbreviated to N and id,
respectively. The output is shown in Display 9.2. The parameter estimates
are equal to those obtained in Chapter 4 using proc reg (see Display 4.5),
although the standard errors are not identical. The deviance value of
495.3383 is equal to the error mean square in Display 4.5.

The GENMOD Procedure

Model Information

Data Set WORK.USCRIME
Distribution Normal
Link Function Identity
Dependent Variable R
Observations Used 47

Criteria For Assessing Goodness-Of-Fit

Criterion DF Value Value/DF
Deviance 41  20308.8707 495.3383
Scaled Deviance 41 47.0000 1.1463
Pearson Chi-Square 41 20308.8707 495.3383
Scaled Pearson X2 41 47.0000 1.1463
Log Likelihood -209.3037

Algorithm converged.

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq
Intercept 1 -528.856 93.0407 -711.212 -346.499 32.31 <.0001
Ex1 1 1.2973 0.1492 1.0050 1.5897 75.65 <.0001
X 1 0.6463 0.1443 0.3635 0.9292 20.06 <.0001
Ed 1 2.0363 0.4628 1.1294 2.9433 19.36 <.0001
Age 1 1.0184 0.3447 0.3428 1.6940 8.73 0.0031
u2 1 0.9901 0.4223 0.1625 1.8178 5.50 0.0190
Scale 1 20.7871 2.1440 16.9824 25.4442

NOTE: The scale parameter was estimated by maximum likelihood.

Display 9.2



Now we can move on to a more interesting application of generalized
linear models involving the data on Australian children’s school atten-
dance, used previously in Chapter 6 (see Display 6.1). Here, because the
response variable — number of days absent — is a count, we will use a
Poisson distribution and a log link.

Assuming that the data on Australian school attendance have been
read into a SAS data set, ozkids, as described in Chapter 6, we fit a main
effects model as follows.

proc genmod data=ozkids;

class origin sex grade type;

model days=sex origin type grade / dist=p link=log typel
type3;
run;

The predictors are all categorical variables and thus must be declared as
such with a class statement. The Poisson probability distribution with a
log link are requested with Type 1 and Type 3 analyses. These are
analogous to Type I and Type III sums of squares discussed in Chapter
6. The results are shown in Display 9.3. Looking first at the LR statistics
for each of the main effects, we see that both Type 1 and Type 3 analyses
lead to very similar conclusions, namely that each main effect is significant.
For the moment, we will ignore the Analysis of Parameter Estimates part
of the output and examine instead the criteria for assessing goodness-of-
fit. In the absence of overdispersion, the dispersion parameters based on
the Pearson X? of the deviance should be close to 1. The values of 13.6673
and 12.2147 given in Display 9.3 suggest, therefore, that there is over-
dispersion; and as a consequence, the P-values in this display may be
too low.

The GENMOD Procedure

Model Information

Data Set WORK.OZKIDS
Distribution Poisson
Link Function Log
Dependent Variable days

Observations Used 154




Class Level Information

Class Levels Values

origin 2 A N

sex 2 FM

grade 4 FO F1 F2 F3
type 2 AL SL

Criteria For Assessing Goodness-Of-Fit

Criterion DF Value Value/DF
Deviance 147 1795.5665 12.2147
Scaled Deviance 147 1795.5665 12.2147

Pearson Chi-Square 147 2009.0882 13.6673
Scaled Pearson X2 147 2009.0882 13.6673
Log Likelihood 4581.1746

Algorithm converged.

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq
Intercept 1 2.7742 0.0628 2.6510 2.8973 1949.78 <.0001
sex F 1 -0.1405 0.0416 -0.2220 -0.0589 11.39 0.0007
sex M 0 0.0000 0.0000 0.0000 0.0000 . .
origin A 1 0.4951 0.0412 0.4143 0.5758 144.40 <.0001
origin N 0 0.0000 0.0000 0.0000 0.0000 . .
type AL 1 -0.1300 0.0442 -0.2166 -0.0435 8.67 0.0032
type SL O 0.0000 0.0000 0.0000 0.0000 . .
grade FO 1 -0.2060 0.0629 -0.3293 -0.0826 10.71 0.0011
grade F1 1 -0.4718 0.0614 -0.5920 -0.3515 59.12 <.0001
grade F2 1 0.1108 0.0536 0.0057 0.2158 4.27 0.0387
grade F3 0 0.0000 0.0000 0.0000 0.0000

Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

LR Statistics For Type 1 Analysis

Chi-
Source Deviance DF Square Pr > ChiSq
Intercept 2105.9714
sex 2086.9571 1 19.01 <.0001
origin 1920.3673 1 166.59 <.0001
type 1917.0156 1 3.35 0.0671
grade 1795.5665 3 121.45 <.0001




The GENMOD Procedure
LR Statistics For Type 3 Analysis

Chi-
Source DF Square Pr > ChiSq

sex 1 11.38 0.0007

origin 1 148.20 <.0001

type 1 8.65 0.0033

grade 3 121.45 <.0001
Display 9.3

To rerun the analysis allowing for overdispersion, we need an estimate
of the dispersion parameter . One strategy is to fit a model that contains
a sufficient number of parameters so that all systematic variation is removed,
estimate @ from this model as the deviance of Pearson X? divided by its
degrees of freedom, and then use this estimate in fitting the required model.

Thus, here we first fit a model with all first-order interactions included,
simply to get an estimate of @. The necessary SAS code is

proc genmod data=ozkids;

class origin sex grade type;

model days=sex|origin|type|grade@?2 / dist=p link=log
scale=d;
run;

The scale=d option in the model statement specifies that the scale
parameter is to be estimated from the deviance. The model statement also
illustrates a modified use of the bar operator. By appending @2, we limit
its expansion to terms involving two effects. This leads to an estimate of
@ of 3.1892.

We now fit a main effects model allowing for overdispersion by
specifying scale =3.1892 as an option in the model statement.

proc genmod data=ozkids;
class origin sex grade type;
model days=sex origin type grade / dist=p link=log typel
type3 scale=3.1892;
output out=genout pred=pr_days stdreschi=resid;
run;



The output statement specifies that the predicted values and standardized
Pearson (Chi) residuals are to be saved in the variables pr_days and resid,
respectively, in the data set genout.

The new results are shown in Display 9.4. Allowing for overdispersion
has had no effect on the regression coefficients, but a large effect on the
P-values and confidence intervals so that sex and type are no longer
significant. Interpretation of the significant effect of, for example, origin
is made in terms of the logs of the predicted mean counts. Here, the
estimated coefficient for origin 0.4951 indicates that the log of the predicted
mean number of days absent from school for Aboriginal children is 0.4951
higher than for white children, conditional on the other variables. Expo-
nentiating the coefficient yield count ratios, that is, 1.64 with corresponding
95% confidence interval (1.27, 2.12). Aboriginal children have between
about one and a quarter to twice as many days absent as white children.

The standardized residuals can be plotted against the predicted values
using proc gplot.

proc gplot data=genout;
plot resid*pr_days;
run;

The result is shown in Display 9.5. This plot does not appear to give any
cause for concern.

The GENMOD Procedure

Model Information

Data Set WORK.OZKIDS
Distribution Poisson
Link Function Log
Dependent Variable days
Observations Used 154

Class Level Information

Class Levels Values

origin 2 AN

sex 2 F M

grade 4 FO F1 F2 F3
type 2 AL SL




Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF
Deviance 147 1795.5665 12.2147
Scaled Deviance 147 176.5379 1.2009
Pearson Chi-Square 147 2009.0882 13.6673
Scaled Pearson X2 147 197.5311 1.3437
Log Likelihood 450.4155

Algorithm converged.
Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq
Intercept 1 2.7742 0.2004 2.3815 3.1669 191.70 <.0001
sex F 1 -0.1405 0.1327 -0.4006 0.1196 1.12 0.2899
sex M 0 0.0000 0.0000 0.0000 0.0000 . .
origin A 1 0.4951 0.1314 0.2376 0.7526  14.20 0.0002
origin N 0 0.0000 0.0000 0.0000 0.0000 . .
type AL 1 -0.1300 0.1408 -0.4061 0.1460 0.85 0.3559
type SL O 0.0000 0.0000 0.0000 0.0000 . .
grade FO 1 -0.2060 0.2007 -0.5994 0.1874 1.05 0.3048
grade F1 1 -0.4718 0.1957 -0.8553 -0.0882 5.81 0.0159
grade F2 1 0.1108 0.1709 -0.2242 0.4457 0.42 0.5169
grade F3 0 0.0000 0.0000 0.0000 0.0000

Scale 0 3.1892 0.0000 3.1892 3.1892

NOTE: The scale parameter was held fixed.

LR Statistics For Type 1 Analysis

Chi-
Source Deviance DF Square Pr > ChiSq
Intercept 2105.9714
sex 2086.9571 1 1.87 0.1715
origin 1920.3673 1 16.38 <.0001
type 1917.0156 1 0.33 0.5659
grade 1795.5665 3 11.94 0.0076




The GENMOD Procedure
LR Statistics For Type 3 Analysis

Chi-
Source DF Square Pr > ChiSq

sex 1 1.12 0.2901
origin 1 14.57 0.0001
type 1 0.85 0.3565
grade 3 11.94 0.0076
Display 9.4
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Exercises

9.1  Test the significance of the interaction between class and race when
using a Poisson model for the Australian school children data.



9.2  Dichotomise days absent from school by classifying 14 days or more
as frequently absent. Analyse this new response variable using both
the logistic and probit link and the binomial family.



Chapter 10

Longitudinal Data I: The
Treatment of Postnatal
Depression

10.1 Description of Data

The data set to be analysed in this chapter originates from a clinical trial
of the use of oestrogen patches in the treatment of postnatal depression.
Full details of the study are given in Gregoire et al. (1998). In total, 61
women with major depression, which began within 3 months of childbirth
and persisted for up to 18 months postnatally, were allocated randomly
to the active treatment or a placebo (a dummy patch); 34 received the
former and the remaining 27 received the latter. The women were assessed
twice pretreatment and then monthly for 6 months after treatment on the
Edinburgh postnatal depression scale (EPDS), higher values of which
indicate increasingly severe depression. The data are shown in Display
10.1. A value of -9 in this table indicates that the corresponding obser-
vation was not made for some reason.
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1 15 22 15 17 12 9 8 6
1 26 20 7 2 1 0 0 2
1 22 20 12 8 6 3 2 3
1 24 25 15 24 18 15 13 12
1 22 18 17 6 2 2 0 1
1 27 26 1 18 10 13 12 10
1. 22 20 27 13 9 8 4 5
1. 20 17 20 10 8 8 7 6
1 22 22 12 -9 -9 -9 -9 -9
1 20 22 15 2 4 6 3 3
1 21 23 11 9 10 8 7 4
1 17 17 15 -9 -9 -9 -9 -9
1 18 22 7 12 15 -9 -9 -9
1. 23 26 24 -9 -9 -9 -9 -9
0 = Placebo, 1 = Active

Display 10. 1

10.2 The Analyses of Longitudinal Data

The data in Display 10.1 consist of repeated observations over time on
each of the 61 patients; they are a particular form of repeated measures
data (see Chapter 7), with time as the single within-subjects factor. The
analysis of variance methods described in Chapter 7 could be, and
frequently are, applied to such data; but in the case of longitudinal data,
the sphericity assumption is very unlikely to be plausible — observations
closer together in time are very likely more highly correlated than those
taken further apart. Consequently, other methods are generally more
useful for this type of data. This chapter considers a number of relatively
simple approaches, including:

B Graphical displays
B Summary measure or response feature analysis

Chapter 11 discusses more formal modelling techniques that can be
used to analyse longitudinal data.

10.3 Analysis Using SAS

Data sets for longitudinal and repeated measures data can be structured
in two ways. In the first form, there is one observation (or case) per



subject and the repeated measurements are held in separate variables.
Alternatively, there may be separate observations for each measurement,
with variables indicating which subject and occasion it belongs to. When
analysing longitudinal data, both formats may be needed. This is typically
achieved by reading the raw data into a data set in one format and then
using a second data step to reformat it. In the example below, both
types of data set are created in the one data step.

We assume that the data are in an ASCII file ‘channi.dat' in the current
directory and that the data values are separated by spaces.

data pndep(keep=idno group x1-x8) pndep2(keep=idno group
time dep);

infile '‘channi.dat’;

input group x1-x8;

idno=_n_;
array xarr {8} x1-x8;
do i=1 to 8;
if xarr{i}=-9 then xarr{i}=.;
time=i;
dep=xarr{i};
output pndep?2;
end;
output pndep;
run;

The data statement contains the names of two data sets, pndep and
pndep2, indicating that two data sets are to be created. For each, the
keep= option in parentheses specifies which variables are to be retained
in each. The input statement reads the group information and the eight
depression scores. The raw data comprise 61 such lines, so the automatic
SAS variable _n_ will increment from 1 to 61 accordingly. The variable
idno is assigned its value to use as a case identifier because _n_ is not
stored in the data set itself.

The eight depression scores are declared an array and a do loop
processes them individually. The value -9 in the data indicates a missing
value and these are reassigned to the SAS missing value by the if-then
statement. The variable time records the measurement occasion as 1 to
8 and dep contains the depression score for that occasion. The output
statement writes an observation to the data set pndep2. From the data
statement we can see that this data set will contain the subject identifier,
idno, plus group, time, and dep. Because this output statement is within



the do loop, it will be executed for each iteration of the do loop (i.e.,
eight times).

The second output statement writes an observation to the pndep data
set. This data set contains idno, group, and the eight depression scores
in the variables x1 to x8.

Having run this data step, the SAS log confirms that pndep has 61
observations and pndep2 488 (i.e., 61 x 8).

To begin, let us look at some means and variances of the observations.
Proc means, proc summary, or proc univariate could all be used for this,
but proc tabulate gives particularly neat and concise output. The second,
one case per measurement, format allows a simpler specification of the
table, which is shown in Display 10.2.

proc tabulate data=pndep2 f=6.2;
class group time;
var dep;
table time,
group*dep*(mean var n);
run;

group
0 1
dep dep
Mean Var N Mean Var N

time
1 21.92 10.15 | 26.00 | 21.94 | 10.54 | 34.00
2 20.78 15.64 | 27.00 | 21.24 | 12.61 | 34.00
3 16.48 | 27.87 | 27.00 13.35 | 30.84 | 34.00
4 15.86 | 37.74 | 22.00 11.71 | 43.01 | 31.00
5 14.12 | 24.99 17.00 9.10 30.02 | 29.00
6 12.18 | 34.78 17.00 8.80 21.71 | 28.00
7 11.35 | 20.24 | 17.00 7.29 33.10 | 28.00
8 10.82 | 22.15 17.00 6.46 22.48 | 28.00

Display 10.2

There is a general decline in the EPDS over time in both groups, with
the values in the active treatment group (group = 1) being consistently
lower.



10.3.1  Graphical Displays

Often, a useful preliminary step in the analysis of longitudinal data is to
graph the observations in some way. The aim is to highlight two particular
aspects of the data: how they evolve over time and how the measurements
made at different times are related. A number of graphical displays might
be helpful here, including:

B Separate plots of each subject’s response against time, differenti-
ating in some way between subjects in different groups

B Box plots of the observations at each time point for each group

B A plot of means and standard errors by treatment group for every
time point

B A scatterplot matrix of the repeated measurements

These plots can be produced in SAS as follows.

symboll i=join v=none I=1 r=27;
symbol2 i=join v=none |=2 r=34;
proc gplot data=pndep2;
plot dep*time=idno /nolegend skipmiss;
run;

Plot statements of the form plot y*x=z were introduced in Chapter 1.
To produce a plot with a separate line for each subject, the subject
identifier idno is used as the z variable. Because there are 61 subjects,
this implies 61 symbol definitions, but it is only necessary to distinguish
the two treatment groups. Thus, two symbol statements are defined, each
specifying a different line type, and the repeat (r=) option is used to
replicate that symbol the required number of times for the treatment group.
In this instance, the data are already in the correct order for the plot.
Otherwise, they would need to be sorted appropriately.

The graph (Display 10.3), although somewhat “messy,” demonstrates
the variability in the data, but also indicates the general decline in the
depression scores in both groups, with those in the active group remaining
generally lower.

proc sort data=pndep2;
by group time;

proc boxplot data=pndep2;
plot dep*time;
by group;

run;
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Display 10.3

The data are first sorted by group and time within group. To use the
by statement to produce separate box plots for each group, the data must
be sorted by group. Proc boxplot also requires the data to be sorted by
the x-axis variable, time in this case. The results are shown in Displays
10.4 and 10.5. Again, the decline in depression scores in both groups is
clearly seen in the graphs.

goptions reset=symbol,
symboll i=stdm1lj I=1;
symbol2 i=stdm1lj 1=2;
proc gplot data=pndep2;

plot dep*time=group;
run;

The goptions statement resets symbols to their defaults and is recom-
mended when redefining symbol statements that have been previously
used in the same session. The std interpolation option can be used to
plot means and their standard deviations for data where multiple values
of y occur for each value of x: stdl, std2, and std3 result in a line 1, 2,
and 3 standard deviations above and below the mean. Where m is suffixed,
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as here, it is the standard error of the mean that is used. The j suffix
specifies that the means should be joined. There are two groups in the
data, so two symbol statements are used with different | (linetype) options
to distinguish them. The result is shown in Display 10.6, which shows
that from the first visit after randomisation (time 3), the depression score
in the active group is lower than in the control group, a situation that
continues for the remainder of the trial.

dep
30

0 T T T
1 2 3 4 5 6 7 8
time
goup —— 0 ——— 1
Display 10.6

The scatterplot matrix is produced using the scattmat SAS macro
introduced in Chapter 4 and listed in Appendix A. The result is shown
in Display 10.7. Clearly, observations made on occasions close together
in time are more strongly related than those made further apart, a phe-
nomenon that may have implications for more formal modelling of the
data (see Chapter 11).

%include 'scattmat.sas’;
%scattmat(pndep,x1-x8);
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Display 10.7

10.3.2 Response Feature Analysis

A relatively straightforward approach to the analysis of longitudinal data
is that involving the use of summary measures, sometimes known as
response feature analysis. The repeated observations on a subject are used
to construct a single number that characterises some relevant aspect of
the subject’s response profile. (In some situations, more than a single
summary measure may be needed to characterise the profile adequately.)
The summary measure to be used does, of course, need to be decided
upon prior to the analysis of the data.

The most commonly used summary measure is the mean of the
responses over time because many investigations (e.g., clinical trials) are
most concerned with differences in overall level rather than more subtle
effects. However, other summary measures might be considered more
relevant in particular circumstances, and Display 10.8 lists a number of
alternative possibilities.



Type of
Data Questions of Interest Summary Measure

Peaked Is overall value of outcome Overall mean (equal time
variable the same in different intervals) or area under
groups? curve (unequal intervals)

Peaked Is maximum (minimum) Maximum (minimum) value
response different between
groups?

Peaked Is time to maximum (minimum)  Time to maximum
response different between (minimum) response
groups?

Growth s rate of change of outcome Regression coefficient
different between groups?

Growth Is eventual value of outcome Final value of outcome or
different between groups? difference between lastand

first values or percentage
change between first and
last values

Growth  Is response in one group Time to reach a particular
delayed relative to the other? value (e.g., a fixed

percentage of baseline)

Display 10.8

Having identified a suitable summary measure, the analysis of the
repeated measures data reduces to a simple univariate test of group
differences on the chosen measure. In the case of two groups, this will
involve the application of a two-sample #-test or perhaps its nonparametric
equivalent.

Returning to the oestrogen patch data, we will use the mean as the
chosen summary measure, but there are two further problems to consider:

1. How to deal with the missing values
2. How to incorporate the pretreatment measurements into an analysis

The missing values can be dealt with in at least three ways:
1. Take the mean over the available observations for a subject; that

is, if a subject has only four post-treatment values recorded, use
the mean of these.



2. Include in the analysis only those subjects with all six post-
treatment observations.

3. Impute the missing values in some way; for example, use the last
observation carried forward (LOCF) approach popular in the phar-
maceutical industry.

The pretreatment values might be incorporated by calculating change
scores, that is, post-treatment mean — pretreatment mean value, or as
covariates in an analysis of covariance of the post-treatment means. Let
us begin, however, by simply ignoring the pretreatment values and deal
only with the post-treatment means.

The three possibilities for calculating the mean summary measure can
be implemented as follows:

data pndep;
set pndep;
array xarr {8} x1-x8;
array locf {8} locfl-locf8;
do i=3 to 8;
locf{i}=xarr{i};
if xarr{i}=. then locf{i}=locf{i-1};
end;
mnbase=mean(x1,x2);
mnresp=mean(of x3-x8);
mncomp=(x3+x4+x5+x6+x7+x8)/6;
mnlocf=mean(of locf3-locf8);
chscore=mnbase-mnresp;
run;

The summary measures are to be included in the pndep data set, so
this is named in the data statement. The set statement indicates that the
data are to be read from the current version of pndep. The eight depression
scores X1-x8 are declared as an array and another array is declared for
the LOCF values. Eight variables are declared, although only six will be
used. The do loop assigns LOCF values for those occasions when the
depression score was missing. The mean of the two baseline measures
is then computed using the SAS mean function. The next statement
computes the mean of the recorded follow-up scores. When a variable
list is used with the mean function, it must be preceded with 'of. The
mean function will only result in a missing value if @/l the variables are
missing. Otherwise, it computes the mean of the non-missing values.
Thus, the mnresp variable will contain the mean of the available follow-up



scores for a subject. Because an arithmetic operation involving a missing
value results in a missing value, mncomp will be assigned a missing value

if any of the variables is missing.

A t-test can now be applied to assess difference between treatments
for each of the three procedures. The results are shown in Display 10.9.

proc ttest data=pndep;
class group;
var mnresp mnlocf mncomp;

run;
The TTEST Procedure
Statistics
Lower CL Upper CL Lower CL Upper CL
Variable group N Mean Mean Mean Std Dev Std Dev Std Dev Std Err
mnresp 0 27 12.913 14.728 16.544 3.6138 4.5889 6.2888 0.8831
mnresp 1 34 8.6447 10.517 12.39 4.3284 5.3664 7.0637 0.9203
mnresp  Diff (1-2) 1.6123 4.2112 6.8102 4.2709 5.0386 6.1454 1.2988
mnlocf 0 27 13.072 14.926 16.78 3.691 4.6868 6.423  0.902
mnlocf 1 34 8.6861 10.63 12.574 4.4935 55711 7.3331 0.9554
mnlocf Diff (1-2) 1.6138 4.296 6.9782 4.4077 5.2 6.3422 1.3404
mncomp 0 17 11.117 13.333 15.55 3.2103 4.3104 6.5602 1.0454
mncomp 1 28 7.4854 9.2589 11.032 3.616 4.5737 6.2254 0.8643
mncomp Diff (1-2) 1.298 4.0744 6.8508 3.6994 4.4775 5.6731 1.3767
T-Tests

Variable Method Variances DF t Value Pr > |t

mnresp Pooled Equal 59 3.24 0.0020

mnresp Satterthwaite  Unequal 58.6 3.30 0.0016

mnlocf Pooled Equal 59 3.20 0.0022

mnlocf Satterthwaite  Unequal 58.8 3.27 0.0018

mncomp  Pooled Equal 43 2.96 0.0050

mncomp  Satterthwaite  Unequal 35.5 3.00 0.0049

Equality of Variances

Variable Method Num DF Den DF F Value Pr>F

mnresp Folded F 33 26 1.37 0.4148

mnlocf Folded F 33 26 1.41 0.3676

mncomp  Folded F 27 16 1.13 0.8237

Display 10.9



Here, the results are similar and the conclusion in each case the same;
namely, that there is a substantial difference in overall level in the two
treatment groups. The confidence intervals for the treatment effect given
by each of the three procedures are:

B Using mean of available observations (1.612, 6.810)
m Using LOCF (1.614, 6.987)
B Using only complete cases (1.298, 6.851)

All three approaches lead, in this example, to the conclusion that the
active treatment considerably lowers depression. But, in general, using
only subjects with a complete set of measurements and last observation
carried forward are not to be recommended. Using only complete
observations can produce bias in the results unless the missing observa-
tions are missing completely at random (see Everitt and Pickles [1999D.
And the LOCF procedure has little in its favour because it makes highly
unlikely assumptions; for example, that the expected value of the (unob-
served) remaining observations remain at their last recorded value. Even
using the mean of the values actually recorded is not without its problems
(see Matthews [1993]), but it does appear, in general, to be the least
objectionable of the three alternatives.

Now consider analyses that make use of the pretreatment values
available for each woman in the study. The change score analysis and
the analysis of covariance using the mean of available post-treatment
values as the summary and the mean of the two pretreatment values as
covariate can be applied as follows:

proc glm data=pndep;
class group;
model chscore=group /solution;

proc glm data=pndep;

class group;

model mnresp=mnbase group /solution;
run;

We use proc glm for both analyses for comparability, although we
could also have used a t-test for the change scores. The results are shown
in Display 10.10. In both cases for this example, the group effect is highly
significant, confirming the difference in depression scores of the active
and control group found in the previous analysis.

In general, the analysis of covariance approach is to be preferred for
reasons outlined in Senn (1998) and Everitt and Pickles (2000).



The GLM Procedure
Class Level Information
Class Levels Values
group 2 01

Number of observations 61

The GLM Procedure

Dependent Variable: chscore

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 1 310.216960 310.216960 12.17 0.0009
Error 59 1503.337229 25.480292

Corrected Total 60 1813.554189

R-Square Coeff Var Root MSE chscore Mean

0.171055 55.70617 5.047801 9.061475
Source DF Type | SS Mean Square F Value Pr > F
group 1 310.2169603 310.2169603 12.17 0.0009

Source DF Type Il SS Mean Square F Value Pr>F

group 1 310.2169603 310.2169603 12.17 0.0009
Standard
Parameter Estimate Error t Value Pr > |t]

Intercept 11.07107843 B 0.86569068 12.79 <.0001
group O -4.54021423 B 1.30120516 -3.49 0.0009
group 1 0.00000000 B

NOTE: The X'X matrix has been found to be singular, and a generalized inverse
was used to solve the normal equations. Terms whose estimates are
followed by the letter 'B' are not uniquely estimable.




The GLM Procedure

Class Level Information

Class

group

Number of observations

Levels

Values

2 01

The GLM Procedure

Dependent Variable: mnresp

61

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 2 404.398082 202.199041 8.62 0.0005
Error 58 1360.358293 23.454453
Corrected Total 60 1764.756375
R-Square Coeff Var Root MSE mnresp Mean
0.229152 39.11576 4.842980 12.38115
Source DF Type | SS Mean Square F Value Pr>F
mnbase 1 117.2966184 117.2966184 5.00 0.0292
group 1 287.1014634 287.1014634 12.24 0.0009
Source DF Type Il SS Mean Square F Value Pr>F
mnbase 1 137.5079844 137.5079844 5.86 0.0186
group 1 287.1014634 287.1014634 12.24 0.0009




Standard

Parameter Estimate Error t Value Pr > |t]
Intercept -0.171680099 B 4.49192993 -0.04 0.9696
mnbase 0.495123238 0.20448526 2.42 0.0186
group 0 4.374121879 B 1.25021825 3.50 0.0009
group 1 0.000000000 B

NOTE: The X'X matrix has been found to be singular, and a generalized inverse
was used to solve the normal equations. Terms whose estimates are
followed by the letter 'B' are not uniquely estimable.

Display 10.10

Exercises

10.1 The graph in Display 10.3 indicates the phenomenon known as
“tracking,” the tendency of women with higher depression scores
at the beginning of the trial to be those with the higher scores at
the end. This phenomenon becomes more visible if standardized
scores are plotted [i.e., (depression scores — visit mean)/visit S.D.].
Calculate and plot these scores, differentiating on the plot the
women in the two treatment groups.

10.2  Apply the response feature approach described in the text, but now
using the slope of each woman’s depression score on time as the
summary measure.



Chapter 11

Longitudinal Data II: The
Treatment of Alzheimer’s
Disease

11.1 Description of Data

The data used in this chapter are shown in Display 11.1. They arise from
an investigation of the use of lecithin, a precursor of choline, in the
treatment of Alzheimer’s disease. Traditionally, it has been assumed that
this condition involves an inevitable and progressive deterioration in all
aspects of intellect, self-care, and personality. Recent work suggests that
the disease involves pathological changes in the central cholinergic system,
which might be possible to remedy by long-term dietary enrichment with
lecithin. In particular, the treatment might slow down or perhaps even
halt the memory impairment associated with the condition. Patients suf-
fering from Alzheimer’s disease were randomly allocated to receive either
lecithin or placebo for a 6-month period. A cognitive test score giving the
number of words recalled from a previously given standard list was
recorded monthly for 5 months.

The main question of interest here is whether the lecithin treatment
has had any effect.
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Display 11.1

11.2 Random Effects Models

Chapter 10 considered some suitable graphical methods for longitudinal
data, and a relatively straightforward inferential procedure. This chapter
considers a more formal modelling approach that involves the use of
random effects models. In particular, we consider two such models: one
that allows the participants to have different intercepts of cognitive score
on time, and the other that also allows the possibility of the participants
having different slopes for the regression of cognitive score on time.

Assuming that y,, represents the cognitive score for subject k on visit
J in group i, the random intercepts model is

Vi = By + a,) + B, Visit, + B, Group, + Uy, (11.D

where B, B,, and B, are respectively the intercept and regression coeffi-
cients for Visit and Group (where Visit takes the values 1, 2, 3, 4, and 5,
and Group the values 1 for placebo and 2 for lecithin); a, are random
effects that model the shift in intercept for each subject, which because
there is a fixed change for visit, are preserved for all values of visit; and
the 0, are residual or error terms. The a, are assumed to have a normal
distribution with mean zero and variance ;. The [, are assumed to
have a normal distribution with mean zero and variance 2. Such a model
implies a compound symmetry covariance pattern for the five repeated
measures (see Everitt [2001] for details).

The model allowing for both random intercept and random slope can
be written as:

Ve = By + @) + (B, + by) Visit, + B, Group, + 0, (11.2)



Now a further random effect has been added to the model compared to
Eq. (11.1). The terms b, are assumed to be normally distributed with mean
zero and variance 07 . In addition, the possibility that the random effects
are not independent is allowed for by introducing a covariance term for
them, 0,

The model in Eq. (11.2) can be conveniently written in matrix notation
as:

Y = XB + Zb, +1J, (11.3)

where now

11
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Z =113
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b, = [%7 b/e]
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The model implies the following covariance matrix for the repeated
measures:

2=272ZW7 + o (11.4)

where
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Details of how to fit such models are given in Pinheiro and Bates (2000).

11.3  Analysis Using SAS

We assume that the data shown in Display 11.1 are in an ASCII file,
alzheim.dat, in the current directory. The data step below reads the data
and creates a SAS data set alzheim, with one case per measurement. The
grouping variable and five monthly scores for each subject are read in
together, and then split into separate o bservations using the array, iterative
do loop, and output statement. This technique is described in more detail
in Chapter 5. The automatic SAS variable _n_ is used to form a subject
identifier. With 47 subjects and 5 visits each, the resulting data set contains
235 observations.

data alzheim;
infile 'alzheim.dat’;
input group scorel-scoreb;
array sc {5} scorel-scoreb5;
idno=_n_;
do visit=1 to 5;
score=sc{visit};
output;
end;
run;

We begin with some plots of the data. First, the data are sorted by
group so that the by statement can be used to produce separate plots for
each group.

proc sort data=alzheim;

by group;
run;

symboll i=join v=none r=25;
proc gplot data=alzheim;
plot score*visit=idno / nolegend;



by group;
run;

To plot the scores in the form of a line for each subject, we use plot
score*visit=idno. There are 25 subjects in the first group and 22 in the
second. The plots will be produced separately by group, so the symbol
definition needs to be repeated 25 times and the r=25 options does this.
The plots are shown in Displays 11.2 and 11.3.

group=1
score
20
10

0+, ‘
1 2 3 4
visit
Display 11.2

Next we plot mean scores with their standard errors for each group
on the same plot. (See Chapter 10 for an explanation of the following
SAS statements.) The plot is shown in Display 11.4.

goptions reset=symbol,
symboll i=stdlmj v=none I=1;
symbol2 i=std1mj v=none [=3;
proc gplot data=alzheim;

plot score*visit=group;
run;
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The random intercepts model specified in Eq. (11.1) can be fitted using
proc mixed, as follows:

proc mixed data=alzheim method=ml;
class group idno;
model score=group visit /s outpred=mixout;
random int /subject=idno;

run;

The proc statement specifies maximum likelihood estimation (method=ml)
rather than the default, restricted maximum likelihood (method=reml), as
this enables nested models to be compared (see Pinheiro and Bates, 2000).
The class statement declares the variable group as a factor, but also the
subject identifier idno. The model statement specifies the regression equa-
tion in terms of the fixed effects. The specification of effects is the same
as for proc glm described in Chapter 6. The s (solution) option requests
parameter estimates for the fixed effects and the outpred option specifies
that the predicted values are to be saved in a data set mixout. This will
also contain all the variables from the input data set alzheim.

The random statement specifies which random effects are to be
included in the model. For the random intercepts model, int (or intercept)
is specified. The subject= option names the variable that identifies the
subjects in the data set. If the subject identifier, idno in this case, is not
declared in the class statement, the data set should be sorted into subject
identifier order.

The results are shown in Display 11.5. We see that the parameters
02 and @2 are estimated to be 15.1284 and 8.2462, respectively (see “Cova-
riance Parameter Estimates”). The tests for the fixed effects in the model
indicate that both group and visit are significant. The parameter estimate
for group indicates that group 1 (the placebo group) has a lower average
cognitive score. The estimated treatment effect is —3.06, with a 95% confi-
dence interval of —3.06 + 1.96 x 1.197, that is, (-5.41, —0.71). The goodness-
of-fit statistics given in Display 11.5 can be used to compare models (see
later). In particular the AIC (Akaike’s Information Criterion) tries to take
into account both the statistical goodness-of-fit and the number of param-
eters needed to achieve this fit by imposing a penalty for increasing the
number of parameters (for more details, see Krzanowski and Marriott [1995]).

Line plots of the predicted values for each group can be obtained as
follows:

symboll i=join v=none |=1 r=30;
proc gplot data=mixout;
plot pred*visit=idno / nolegend;



by group;
run;

The plots are shown in Displays 11.6 and 11.7.

The Mixed Procedure

Model Information

Data Set WORK.ALZHEIM
Dependent Variable score
Covariance Structure Variance Components
Subject Effect idno
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

group 2 12
idno 47 1234567891011 12 13
14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43
44 45 46 47

Dimensions

Covariance Parameters 2
Columns in X 4
Columns in Z Per Subject 1
Subjects 47
Max Obs Per Subject 5
Observations Used 235
Observations Not Used 0
Total Observations 235

Iteration History
Iteration  Evaluations -2 Log Like Criterion

0 1 1407.53869769
1 1 1271.71980926 0.00000000




Convergence criteria met.
Covariance Parameter Estimates
Cov Parm Subject Estimate

Intercept idno 15.1284
Residual 8.2462

Fit Statistics
-2 Log Likelihood 1271.7
AIC (smaller is better) 1281.7
AICC (smaller is better) 1282.0
BIC (smaller is better) 1291.0

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect group  Estimate Error DF t Value Pr > |t
Intercept 9.9828 0.9594 45 10.40 <.0001
group 1 -3.0556 1.1974 187 -2.55 0.0115
group 2 0 . . . .
visit 0.4936 0.1325 187 3.73 0.0003

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr>F

group 1 187 6.51 0.0115
visit 1 187 13.89 0.0003
Display 11.5

The predicted values for both groups under the random intercept
model indicate a rise in cognitive score with time, contrary to the pattern
in the observed scores (see Displays 11.2 and 11.3), in which there appears
to be a decline in cognitive score in the placebo group and a rise in the
lecithin group.

We can now see if the random intercepts and slopes model specified
in Eq. (11.3) improve the situation. The model can be fitted as follows:
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Display 11.7



proc mixed data=alzheim method=ml covtest;
class group idno;
model score=group visit /s outpred=mixout;
random int visit /subject=idno type=un;
run;

Random slopes are specified by including visit on the random statement.
There are two further changes. The covtest option in the proc statement
requests significance tests for the random effects.

The type option in the random statement specifies the structure of the
covariance matrix of the parameter estimates for the random effects. The
default structure is type=vc (variance components), which models a dif-
ferent variance component for each random effect, but constrains the
covariances to zero. Unstructured covariances, type=un, allow a separate
estimation of each element of the covariance matrix. In this example, it
allows an intercept-slope covariance to be estimated as a random effect,
whereas the default would constrain this to be zero.

The results are shown in Display 11.8. First, we see that 62, 07, 0,
and 0? are estimated to be 38.7228, 2.0570, —6.8253, and 3.1036, respec-
tively. All are significantly different from zero. The estimated correlation
between intercepts and slopes resulting from these values is —0.76. Again,
both fixed effects are found to be significant. The estimated treatment
effect, —3.77, is very similar to the value obtained with the random-
intercepts-only model. Comparing the AIC values for the random intercepts
model (1281.7) and the random intercepts and slopes model (1197.4)
indicates that the latter provides a better fit for these data. The predicted
values for this second model, plotted exactly as before and shown in
Displays 11.9 and 11.10, confirm this because they reflect far more
accurately the plots of the observed data in Displays 11.2 and 11.3.

The Mixed Procedure

Model Information

Data Set WORK.ALZHEIM
Dependent Variable score
Covariance Structure Unstructured
Subject Effect idno
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based

Degrees of Freedom Method Containment




Class

group
idno

Iteration

[N

Cov Parm

UN(1,1)
UN(2,1)
UN(2,2)
Residual

Class Level Information

Levels Values
2 12
47 1234567891011 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43
44 45 46 47
Dimensions
Covariance Parameters 4
Columns in X 4
Columns in Z Per Subject 2
Subjects 47
Max Obs Per Subject 5
Observations Used 235
Observations Not Used 0
Total Observations 235
Iteration History
Evaluations -2 Log Like Criterion
1 1407.53869769
2 1183.35682556 0.00000349
1 1183.35550402 0.00000000
Convergence criteria met.
Covariance Parameter Estimates
Standard Z
Subject Estimate Error Value Pr z
idno 38.7228 12.8434 3.01 0.0013
idno -6.8253 2.3437 -2.91 0.0036
idno 2.0570 0.4898 4.20 <.0001

3.1036 0.3696 8.40 <.0001




Effect

Intercept
group

group
visit

Fit Statistics

-2 Log Likelihood

AIC (smaller is better)
AICC (smaller is better)
BIC (smaller is better)

1183.4
1197.4
1197.8
1210.3

The Mixed Procedure

Null Model Likelihood Ratio Test

DF Chi-Square

3 224.18

Pr > ChiSq

<.0001

Solution for Fixed Effects

Standard

group Estimate Error
10.3652 1.1406

1 -3.7745 1.1955
2 0 .
0.4936 0.2244

DF t Value
45 9.09
141 -3.16
46 2.20

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr>F
group 1 141 9.97 0.0019
visit 1 46 4.84 0.0329

Pr > |t]

<.0001
0.0019

0.0329

Display 11.8
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Exercises

11.1

11.2

11.3

11.4

Investigate the effect of adding a fixed effect for the Group X Visit
interaction to the models specified in Eqgs. (11.1) and (11.2).
Regress each subject’s cognitive score on time and plot the estimated
slopes against the estimated intercepts, differentiating the observa-
tions by P and L, depending on the group from which they arise.
Fit both a random intercepts and a random intercepts and random
slope model to the data on postnatal depression used in Chapter
10. Include the pretreatment values in the model. Find a confidence
interval for the treatment effect.

Apply a response feature analysis to the data in this chapter using
both the mean and the maximum cognitive score as summary
measures. Compare your results with those given in this chapter.



Chapter 12

Survival Analysis: Gastric
Cancer and Methadone
Treatment of Heroin

Addicts

12.1 Description of Data

In this chapter we analyse two data sets. The first, shown in Display 12.1,
involves the survival times of two groups of 45 patients suffering from
gastric cancer. Group 1 received chemotherapy and radiation, group 2
only chemotherapy. An asterisk denotes censoring, that is, the patient was
still alive at the time the study ended. Interest lies in comparing the
survival times of the two groups. (These data are given in Table 467 of
SDS.)

However, “survival times” do not always involve the endpoint death.
This is so for the second data set considered in this chapter and shown
in Display 12.2. Given in this display are the times that heroin addicts
remained in a clinic for methadone maintenance treatment. Here, the
endpoint of interest is not death, but termination of treatment. Some
subjects were still in the clinic at the time these data were recorded and
this is indicated by the variable status, which is equal to 1 if the person
had departed the clinic on completion of treatment and 0 otherwise.



Possible explanatory variables for time to complete treatment are maxi-
mum methadone dose, whether the addict had a criminal record, and the
clinic in which the addict was being treated. (These data are given in
Table 354 of SDS.)

For the gastric cancer data, the primary question of interest is whether
or not the survival time differs in the two treatment groups; and for the
methadone data, the possible effects of the explanatory variables on time
to completion of treatment are of concern. It might be thought that such
questions could be addressed by some of the techniques covered in
previous chapters (e.g., t-tests or multiple regression). Survival times,
however, require special methods of analysis for two reasons:

1. They are restricted to being positive so that familiar parametric
assumptions (e.g., normality) may not be justifiable.

2. The data often contain censored observations, that is, observations
for which, at the end of the study, the event of interest (death in
the first data set, completion of treatment in the second) has not
occurred; all that can be said about a censored survival time is
that the unobserved, uncensored value would have been greater
than the value recorded.

Group 1 Group 2

17 185 542 1 383 778
42 193 567 63 383 786
44 195 577 105 388 797
48 197 580 125 394 955
60 208 795 182 408 968
72 234 855 216 460 977
74 235 1174* 250 489 1245
95 254 1214 262 523 1271
103 307 1232* 301 524 1420
108 315 1366 301 535 1460*
122 401 1455* 342 562 1516*
144 445 1585* 354 569 1551
167 464 1622* 356 675 1690*
170 484 1626* 358 676 1694
183 528 1736* 380 748

Display 12.1



ID  Clinic Status Time Prison Dose

ID  Clinic Status Time Prison Dose

70
40

633
661
232

132
133
134
135
137
138
143
144
145
146
148
149
150
153
156
158
159
160
161

50
55

0

428
275
262
183
259

70
60

55

13
563

30
65

0

70
80

969
1052

55

714

80

0

0

65

438
796
892
393
161

80

944
881

60
50

65

80

0

50
40

190

10
11

79
884
170
286
358
326

80
60
55

50
40

836
523
612

12
13
14
15
16
17
18

45

70
60
60
75

0

60

212

60

399
771

40

769
161

40

80

514

80

564
268
611

80
80
60
60
55

0

512

19
21

70
40

162
163

624
209
341

22
23

55
80

322
1076

164
165

1

0

299

24
25

40

166
168
169
170
171

80
65

0

826
262
566
368
302
602
652
293
564
394
755
591

70
80

788
575

26
27

45

70
80

109
730
790
456
231

55

28
30

31

50
60
80
65

90
70
60

172
173
175

0
0

32
33
34
36
37
38
39
40
41

70
40

143

176
177
178
179
180
181

60

55

0

86
1021

80

0

0

65

80

684
878
216

55

60

80
60
60
60
65

0
0

787
739
550

100
60

808
268
222
683
496

182
183

40

0

837
612
581

42

40

184
186
187

43

100
40

70
60

0
0

44
45

523




ID Clinic Status Time Prison Dose

ID  Clinic Status Time Prison Dose

55
75

389
126

188
189
190
192
193
194
195
196
197
198
199
60 200
60 201
70 202
60 203
60 204

60
80
65
65

504
785

46
48
49

40

17
350
531

774
560

60

65

50
51

65

35

160
482
518

50
75

317
461

30
65

0

52
53
54
55
57
58
59
60
61

60

37
167
358

50
65

0

683

55
45

147
563

70
60

60

49
457

646
899

40

1
1
1
1
1

0
0
1

20

127

857

40

180
452

60

29
62
150
223

0
0

62
63
64
65
66

40

760
496
258
181

60

205

40

1
1
1
1

40 206
60 207
60 208
80 209

1
1

40

129
204

65

0
0

386
439

67
68
69
70
71

50
65

129
581

210

211
60 212
80 213
80 214
50 215
80 216
70 217
80 218

75

563

55
60

176

65

337
613

30
41
543
210

1
1
1
1
1
1
1

1
1

60

192
405

72

40

0
0
0
0
0

73

50
70
55
45

667
905

74
75

193
434

247
821
821

76
77
78
79
80
81

367
348

60

219
220
60 221

75

50
40

28
337
175

45

517

1

1

346
294
244

60

222
60 223
60 224

65

80

149
546

2
1

1
1

82
83
84
85
86

50
45

95
376
212

84
283
533

225
40 226
70 227
80 228
70 229

55
35

80

1
1
1
1

0
0
0
1

55
50
50
50

96
532
522
679

207
216

87
88
89

28

230




ID  Clinic Status Time Prison Dose ID Clinic Status Time Prison Dose

90 1 0 408 0 50 231 1 1 67 1 50

91 1 0 840 0 80 232 1 0 62 1 60

92 1 0 148 1 65 233 1 0 111 0 55

93 1 1 168 0 65 234 1 1 257 1 60

94 1 1 489 0 80 235 1 1 136 1 55

95 1 0 541 0 80 236 1 0 342 0 60

96 1 1 205 0 50 237 2 1 41 0 40

97 1 0 475 1 75 238 2 0 531 1 45

98 1 1 237 0 45 239 1 0 98 0 40

99 1 1 517 0 70 240 1 1 145 1 55
100 1 1 749 0 70 241 1 1 50 0 50
101 1 1 150 1 80 242 1 0 53 0 50
102 1 1 465 0 65 243 1 0 103 1 50
103 2 1 708 1 60 244 1 0 2 1 60
104 2 0 713 0 50 245 1 1 157 1 60
105 2 0 146 0 50 246 1 1 75 1 55
106 2 1 450 0 55 247 1 1 19 1 40
109 2 0 555 0 80 248 1 1 35 0 60
110 2 1 460 0 50 249 2 0 394 1 80
" 2 0 53 1 60 250 1 1 117 0 40
113 2 1 122 1 60 251 1 1 175 1 60
114 2 1 35 1 40 252 1 1 180 1 60
118 2 0 532 0 70 253 1 1 314 0 70
119 2 0 684 0 65 254 1 0 480 0 50
120 2 0 769 1 70 255 1 0 325 1 60
121 2 0 591 0 70 256 2 1 280 O 90
122 2 0 769 1 40 257 1 1 204 O 50
123 2 0 609 1 100 258 2 1 366 0 55
124 2 0 932 1 80 259 2 0 531 1 50
125 2 0 932 1 80 260 1 1 59 1 45
126 2 0 587 0 110 261 1 1 33 1 60
127 2 1 26 0 40 262 2 1 540 0 80
128 2 0 72 1 40 263 2 0 551 0 65
129 2 0 641 0 70 264 1 1 90 0 40
131 2 0 367 0 70 266 1 1 47 0 45

Display 12.2




12.2 Describing Survival and Cox’s Regression Model

Of central importance in the analysis of survival time data are two functions
used to describe their distribution, namely, the survival function and the
bhazard function.

12.2.1 Survival Function

Using 7 to denote survival time, the survival function S(2) is defined as
the probability that an individual survives longer than .

S@®H =Pu(T>1 (12.D

The graph of S(t) vs. t is known as the survival curve and is useful in
assessing the general characteristics of a set of survival times.

Estimating S(2) from sample data is straightforward when there are no
censored observations, when S(¢) is simply the proportion of survival
times in the sample greater than #. When, as is generally the case, the
data do contain censored observations, estimation of S(#) becomes more
complex. The most usual estimator is now the Kaplan-Meier or product
limit estimator. This involves first ordering the survival times from the
smallest to the largest, #,, < I, < ... £ {,,, and then applying the following
formula to obtain the required estimate.

S(1) = |‘| 1—511} (12.2)

igy=t !

where 7; is the number of individuals at risk just before 7, and d, is the
number Who experience the event of interest at #,, (individuals Censored
at f, are included in 7). The variance of the Kaplan-Meir estimator can
be estimated as:

Vm’[S(z‘)] = [S(l‘)] z G .—d) (12.3)
m g

Plotting estimated survival curves for different groups of observations
(e.g., males and females, treatment A and treatment B) is a useful initial
procedure for comparing the survival experience of the groups. More
formally, the difference in survival experience can be tested by either a
log-rank test or Mantel-Haenszel test. These tests essentially compare the
observed number of “deaths” occurring at each particular time point with



the number to be expected if the survival experience of the groups is the
same. (Details of the tests are given in Hosmer and Lemeshow, 1999.)

12.2.2 Hazard Function

The hazard function A(?) is defined as the probability that an individual
experiences the event of interest in a small time interval s, given that the
individual has survived up to the beginning of this interval. In mathematical
terms:

b() = limPr (event in (1, t +s), given survival up to t)
s-0 N

(12.4)

The hazard function is also known as the instantaneous failure rate
or age-specific failure rate. It is a measure of how likely an individual is
to experience an event as a function of the age of the individual, and is
used to assess which periods have the highest and which the lowest
chance of “death” amongst those people alive at the time. In the very
old, for example, there is a high risk of dying each year among those
entering that stage of their life. The probability of any individual dying
in their 100th year is, however, small because so few individuals live to
be 100 years old.

The hazard function can also be defined in terms of the cumulative
distribution and probability density function of the survival times as
follows:

(1) = 1/:(?0) = {% (12.5)
It then follows that:
b(1) = —%{ InS(2)} (12.6)
and 50
S(t) = expl-HD) (12.7)

where H(t) is the integrated or cumulative hazard given by:

H(t) = [ b(u)du (12.8)
0



The hazard function can be estimated as the proportion of individuals
experiencing the event of interest in an interval per unit time, given that
they have survived to the beginning of the interval; that is:

“h(H) = Number of individuals experiencing an event
in the interval beginning at time t + [(Number of
patients surviving at £ x (Interval width)] (12.9)

In practice, the hazard function may increase, decrease, remain constant,
or indicate a more complicated process. The hazard function for deaths
in humans has, for example, the “bathtub” shape shown in Display 12.3.
It is relatively high immediately after birth, declines rapidly in the early
years, and remains approximately constant before beginning to rise again
during late middle age.

h(f)

Display 12.3

12.2.3 Cox’s Regression

Cox’s regression is a semi-parametric approach to survival analysis in
which the hazard function is modelled. The method does not require the
probability distribution of the survival times to be specified; however,
unlike most nonparametric methods, Cox’s regression does use regression
parameters in the same way as generalized linear models. The model can
be written as:



b(D) = hy(t) exp(BTx) (12.10)
or
loglh(f)] = loglh, (D] + (BTx) (12.1D)

where B is a vector of regression parameters and x a vector of covariate
values. The hazard functions of any two individuals with covariate vectors
x; and x; are assumed to be constant multiples of each other, the multiple
being explf(x, — x)l, the hazard ratio or incidence rate ratio. The
assumption of a constant hazard ratio is called the proportional hazards
assumption. The set of parameters b () is called the baseline hazard
JSunction, and can be thought of as nuisance parameters whose purpose
is merely to control the parameters of interest B for any changes in the
hazard over time. The parameters B are estimated by maximising the
partial log-likelibood given by:

T
)y O
S log3 eXp(BX/)T 0
7 [EiDr(f)eXp(B Xz)[l

(12.12)

where the first summation is over all failures f'and the second summation
is over all subjects r(f) still alive (and therefore “at risk”) at the time of
failure. It can be shown that this log-likelihood is a log profile likelihood
(i.e., the log of the likelihood in which the nuisance parameters have
been replaced by functions of B which maximise the likelihood for fixed
B). The parameters in a Cox model are interpreted in a similar fashion to
those in other regression models met in earlier chapters; that is, the
estimated coefficient for an explanatory variable gives the change in the
logarithm of the hazard function when the variable changes by one. A
more appealing interpretation is achieved by exponentiating the coeffi-
cient, giving the effect in terms of the hazard function. An additional aid
to interpretation is to calculate

100[exp(coefficient) — 1] (12.13)

The resulting value gives the percentage change in the hazard function
with each unit change in the explanatory variable.

The baseline hazards can be estimated by maximising the full log-
likelihood with the regression parameters evaluated at their estimated
values. These hazards are nonzero only when a failure occurs. Integrating
the hazard function gives the cumulative hazard function



H = H() exp(f=) 12149

where Hy(#) is the integral of b (). The survival curve can be obtained
from H(#) using Eq. (12.7).

It follows from Eq. (12.7) that the survival curve for a Cox model is
given by:

S(t) - S(}(t)exp(ﬂTx) (1215)

The log of the cumulative hazard function predicted by the Cox model
is given by:

loglH(D] = logH,(D) + B'x (12.16)

so that the log cumulative hazard functions of any two subjects i and j
are parallel with constant difference given by Bf(x; — x;).

If the subjects fall into different groups and we are not sure whether
we can make the assumption that the group’s hazard functions are
proportional to each other, we can estimate separate log cumulative hazard
functions for the groups using a stratified Cox model. These curves can
then be plotted to assess whether they are sufficiently parallel. For a
stratified Cox model, the partial likelihood has the same form as in
Eq. (12.11) except that the risk set for a failure is not confined to subjects
in the same stratum.

Survival analysis is described in more detail in Collett (1994) and in
Clayton and Hills (1993).

12.3 Analysis Using SAS
12.3.1 Gastric Cancer

The data shown in Display 12.1 consist of 89 survival times. There are
six values per line except the last line, which has five. The first three
values belong to patients in the first treatment group and the remainder
to those in the second group. The following data step constructs a suitable
SAS data set.

data cancer;
infile 'n:\handbook2\datasets\time.dat' expandtabs missover;
doi =1 to 6;
input temp $ @;
censor=(index(temp,'*')>0);



temp=substr(temp,1,4);
days=input(temp,4.);
group=i>3;
if days>0 then output;
end;
drop temp i;
run;

The infile statement gives the full path name of the file containing the
ASCII data. The values are tab separated, so the expandtabs option is
used. The missover option prevents SAS from going to a new line if the
input statement contains more variables than there are data values, as is
the case for the last line. In this case, the variable for which there is no
corresponding data is set to missing.

Reading and processing the data takes place within an iterative do
loop. The input statement reads one value into a character variable, temp.
A character variable is used to allow for processing of the asterisks that
indicate censored values, as there is no space between the number and
the asterisk. The trailing @ holds the line for further data to be read from it.

If temp contains an asterisk, the index function gives its position; if
not, the result is zero. The censor variable is set accordingly. The substr
function takes the first four characters of temp and the input function reads
this into a numeric variable, days.

If the value of days is greater than zero, an observation is output to
the data set. This has the effect of excluding the missing value generated
because the last line only contains five values.

Finally, the character variable temp and the loop index variable i are
dropped from the data set, as they are no longer needed.

With a complex data step like this, it would be wise to check the
resulting data set, for example, with proc print.

Proc lifetest can be used to estimate and compare the survival functions
of the two groups of patients as follows:

proc lifetest data=cancer plots=(s);
time days*censor(1);
strata group;

symboll [=1;
symbol2 [=3;
run;

The plots=(s) option on the proc statement specifies that survival curves
be plotted. Log survival (Is), log-log survival (lls), hazard (h), and PDF



(p) are other functions that may be plotted as well as a plot of censored
values by strata (c). A list of plots can be specified; for example,
plots=(s,Is,lIs).

The time statement specifies the survival time variable followed by an
asterisk and the censoring variable, with the value(s) indicating a censored
observation in parentheses. The censoring variable must be numeric, with
non-missing values for both censored and uncensored observations.

The strata statement indicates the variable, or variables, that determine
the strata levels.

Two symbol statements are used to specify different line types for the
two groups. (The default is to use different colours, which is not very
useful in black and white!)

The output is shown in Display 12.4 and the plot in Display 12.5. In
Display 12.4, we find that the median survival time in group 1 is 254 with
95% confidence interval of (193, 484). In group 2, the corresponding
values are 506 and (383, 676). The log-rank test for a difference in the
survival curves of the two groups has an associated P-value of 0.4521.
This suggests that there is no difference in the survival experience of the
two groups. The likelihood ratio test (see Lawless [1982]) leads to the
same conclusion, but the Wilcoxon test (see Kalbfleisch and Prentice
[1980D has an associated P-value of 0.0378, indicating that there is a
difference in the survival time distributions of the two groups. The reason
for the difference is that the log-rank test (and the likelihood ratio test)
are most useful when the population survival curves of the two groups
do not cross, indicating that the hazard functions of the two groups are
proportional (see Section 12.2.3). Here the sample survival curves do cross
(see Display 12.5) suggesting perhaps that the population curves might
also cross. When there is a crossing of the survival curves, the Wilcoxon
test is more powerful than the other tests.

The LIFETEST Procedure

Stratum 1: group = 0

Product-Limit Survival Estimates

Survival
Standard Number Number
days Survival Failure Error Failed Left
0.00 1.0000 0 0 0 45
17.00 0.9778 0.0222 0.0220 1 44
42.00 0.9556 0.0444 0.0307 2 43
44.00 0.9333 0.0667 0.0372 3 42
48.00 0.9111 0.0889 0.0424 4 41




60.00 0.8889 0.1111 0.0468 5 40
72.00 0.8667 0.1333 0.0507 6 39
74.00 0.8444 0.1556 0.0540 7 38
95.00 0.8222 0.1778 0.0570 8 37
103.00 0.8000 0.2000 0.0596 9 36
108.00 0.7778 0.2222 0.0620 10 35
122.00 0.7556  0.2444 0.0641 11 34
144.00 0.7333 0.2667 0.0659 12 33
167.00 0.7111 0.2889 0.0676 13 32
170.00 0.6889 0.3111 0.0690 14 31
183.00 0.6667 0.3333 0.0703 15 30
185.00 0.6444 0.3556 0.0714 16 29
193.00 0.6222 0.3778 0.0723 17 28
195.00 0.6000 0.4000 0.0730 18 27
197.00 0.5778 0.4222 0.0736 19 26
208.00 0.5556  0.4444 0.0741 20 25
234.00 0.5333 0.4667 0.0744 21 24
235.00 0.5111 0.4889 0.0745 22 23
254.00 0.4889 0.5111 0.0745 23 22
307.00 0.4667 0.5333 0.0744 24 21
315.00 0.4444  0.5556 0.0741 25 20
401.00 0.4222 0.5778 0.0736 26 19
445.00 0.4000 0.6000 0.0730 27 18
464.00 0.3778 0.6222 0.0723 28 17
484.00 0.3556 0.6444 0.0714 29 16
528.00 0.3333 0.6667 0.0703 30 15
542.00 0.3111 0.6889 0.0690 31 14
567.00 0.2889 0.7111 0.0676 32 13
577.00 0.2667 0.7333 0.0659 33 12
580.00 0.2444 0.7556 0.0641 34 11
795.00 0.2222 0.7778 0.0620 35 10
855.00 0.2000 0.8000 0.0596 36 9
1174.00* . . . 36 8
1214.00 0.1750 0.8250 0.0572 37 7
1232.00* . . . 37 6
1366.00 0.1458 0.8542 0.0546 38 5
1455.00* . . . 38 4
1585.00* . . . 38 3
1622.00* . . . 38 2
1626.00* . . . 38 1
1736.00* . . . 38 0

NOTE: The marked survival times are censored observations.




Summary Statistics for Time Variable days
The LIFETEST Procedure
Quartile Estimates

Point 95% Confidence Interval

Percent Estimate (Lower) (Upper)
75 580.00 464.00 .
50 254.00 193.00 484.00
25 144.00 74.00 195.00

Mean Standard Error
491.84 71.01

NOTE: The mean survival time and its standard error were underestimated
because the largest observation was censored and the estimation was restricted
to the largest event time.

The LIFETEST Procedure
Stratum 2: group = 1

Product-Limit Survival Estimates

Survival
Standard Number Number

Days Survival Failure Error Failed Left
0.00 1.0000 0 0 0 44
1.00 0.9773 0.0227 0.0225 1 43
63.00 0.9545 0.0455 0.0314 2 42
105.00 0.9318 0.0682 0.0380 3 41
125.00 0.9091 0.0909 0.0433 4 40
182.00 0.8864 0.1136 0.0478 5 39
216.00 0.8636 0.1364 0.0517 6 38
250.00 0.8409 0.1591 0.0551 7 37
262.00 0.8182 0.1818 0.0581 8 36
301.00 . . . 9 35
301.00 0.7727 0.2273 0.0632 10 34
342.00 0.7500 0.2500 0.0653 11 33
354.00 0.7273 0.2727 0.0671 12 32
356.00 0.7045 0.2955 0.0688 13 31
358.00 0.6818 0.3182 0.0702 14 30
380.00 0.6591 0.3409 0.0715 15 29
383.00 16 28




383.00
388.00
394.00
408.00
460.00
489.00
523.00
524.00
535.00
562.00
569.00
675.00
676.00
748.00
778.00
786.00
797.00
955.00
968.00
977.00
1245.00
1271.00
1420.00
1460.00*
1516.00*
1551.00
1690.00*
1694.00

0.6136
0.5909
0.5682
0.5455
.5227
5000
4773
.4545
.4318
4091
.3864
.3636
3409
.3182
.2955
.2727
2500
.2273
.2045
.1818
.1591
.1364
.1136
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0.0758

0

0.3864
0.4091
0.4318
0.4545
0.4773
0.5000
0.5227
0.5455
0.5682
0.5909
0.6136
0.6364
0.6591
0.6818
0.7045
0.7273
0.7500
0.7727
0.7955
0.8182
0.8409
0.8636
0.8864

0.9242

1.0000

0.0734 17
0.0741 18
0.0747 19
0.0751 20
0.0753 21
0.0754 22
0.0753 23
0.0751 24
0.0747 25
0.0741 26
0.0734 27
0.0725 28
0.0715 29
0.0702 30
0.0688 31
0.0671 32
0.0653 33
0.0632 34
0.0608 35
0.0581 36
0.0551 37
0.0517 38
0.0478 39
39

. 39
0.0444 40
. 40

0 41

NOTE: The marked survival times are censored observations.

Summary Statistics for Time Variable days

Quartile Estimates

Point

Percent Estimate
75 876.00

50 506.00

25 348.00

95% Confidence Interval

(Lower) (Upper)
569.00 1271.00
383.00 676.00
250.00 388.00

The LIFETEST Procedure

Mean Standard Error

653.22

72.35
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Summary of the Number of Censored and Uncensored Values

Percent

Stratum group Total Failed Censored Censored
1 0 45 38 7 5.56

2 1 44 41 3 6.82

Total 89 79 10 11.24

The LIFETEST Procedure
Testing Homogeneity of Survival Curves for days over Strata

Rank Statistics

group Log-Rank Wilcoxon

0 3.3043 502.00
1 -3.3043 -502.00

Covariance Matrix for the Log-Rank Statistics

group 0 1
0 19.3099 -19.3099
1 -19.3099 19.3099

Covariance Matrix for the Wilcoxon Statistics

group 0 1
0 58385.0 -58385.0
1 -58385.0 58385.0

Test of Equality over Strata

Pr >
Test Chi-Square DF Chi-Square
Log-Rank 0.5654 1 0.4521
Wilcoxon 4.3162 1 0.0378
-2Log(LR) 0.3574 1 0.5500

Display 12.4
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12.3.2 Methadone Treatment of Heroin Addicts

The data on treatment of heroin addiction shown in Display 12.2 can be
read in with the following data step.

data heroin;
infile 'n:\handbook2\datasets\heroin.dat' expandtabs;
input id clinic status time prison dose @ @;

run;

Each line contains the data values for two observations, but there is no
relevant difference between those that occur first and second. This being
the case, the data can be read using list input and a double trailing @.
This holds the current line for further data to be read from it. The difference
between the double trailing @ and the single trailing @, used for the
cancer data, is that the double @ will hold the line across iterations of
the data step. SAS will only go on to a new line when it runs out of data
on the current line.



The SAS log will contain the message "NOTE: SAS went to a new line
when INPUT statement reached past the end of a line," which is not a cause
for concern in this case. It is also worth noting that although the ID
variable ranges from 1 to 266, there are actually 238 observations in the
data set.

Cox regression is implemented within SAS in the phreg procedure.

The data come from two different clinics and it is possible, indeed
likely, that these clinics have different hazard functions which may well
not be parallel. A Cox regression model with clinics as strata and the
other two variables, dose and prison, as explanatory variables can be
fitted in SAS using the phreg procedure.

proc phreg data=heroin;
model time*status(0)=prison dose / rl;
strata clinic;

run;

In the model statement, the response variable (i.e., the failure time) is
followed by an asterisk, the name of the censoring variable, and a list of
censoring value(s) in parentheses. As with proc reg, the predictors must
all be numeric variables. There is no built-in facility for dealing with
categorical predictors, interactions, etc. These must all be calculated as
separate numeric variables and dummy variables.

The rl (risklimits) option requests confidence limits for the hazard ratio.
By default, these are the 95% limits.

The strata statement specifies a stratified analysis with clinics forming
the strata.

The output is shown in Display 12.6. Examining the maximum likeli-
hood estimates, we find that the parameter estimate for prison is 0.38877
and that for dose —0.03514. Interpretation becomes simpler if we concen-
trate on the exponentiated versions of those given under Hazard Ratio.
Using the approach given in Eq. (12.13), we see first that subjects with a
prison history are 47.5% more likely to complete treatment than those
without a prison history. And for every increase in methadone dose by
one unit (1mg), the hazard is multiplied by 0.965. This coefficient is very
close to 1, but this may be because 1 mg methadone is not a large quantity.
In fact, subjects in this study differ from each other by 10 to 15 units,
and thus it may be more informative to find the hazard ratio of two
subjects differing by a standard deviation unit. This can be done simply
by rerunning the analysis with the dose standardized to zero mean and
unit variance;



The PHREG Procedure

Model Information

Data Set WORK.HEROIN
Dependent Variable time

Censoring Variable status
Censoring Value(s) 0

Ties Handling BRESLOW

Summary of the Number of Event and Censored Values

Percent
Stratum  clinic Total Event Censored Censored

1 1 163 122 41 25.15
2 2 75 28 47 62.67
Total 238 150 88 36.97

Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 1229.367 1195.428

AlC 1229.367 1199.428
SBC 1229.367 1205.449

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 33.9393 2 <.0001
Score 33.3628 2 <.0001

Wald 32.6858 2 <.0001




Analysis of Maximum Likelihood Estimates
Parameter Standard Chi- Pr > Hazard 95% Hazard Ratio
Variable DF Estimate Error Square ChiSq Ratio Confidence Limits
prison 1 0.38877 0.16892 5.2974 0.0214 1.475 1.059 2.054
dose 1 -0.03514 0.00647 29.5471 <.0001 0.965 0.953 0.978
Display 12.6

The analysis can be repeated with dose standardized to zero mean
and unit variance as follows:

proc stdize data=heroin out=heroin2;
var dose;

proc phreg data=heroin2;
model time*status(0)=prison dose / rl;
strata clinic;
baseline out=phout loglogs=Ills / method=ch;

symboll i=join v=none I=1;

symbol2 i=join v=none |=3;

proc gplot data=phout;
plot lls*time=clinic;

run;

The stdize procedure is used to standardize dose (proc standard could
also have been used). Zero mean and unit variance is the default method
of standardization. The resulting data set is given a different name with
the out= option and the variable to be standardized is specified with the
var statement.

The phreg step uses this new data set to repeat the analysis. The
baseline statement is added to save the log cumulative hazards in the data
set phout. loglogs=lls specifies that the log of the negative log of survival
is to be computed and stored in the variable lIs. The product limit estimator
is the default and method=ch requests the alternative empirical cumulative
hazard estimate.

Proc gplot is then used to plot the log cumulative hazard with the
symbol statements defining different linetypes for each clinic.



The output from the phreg step is shown in Display 12.7 and the plot
in Display 12.8. The coefficient of dose is now —0.50781 and the hazard
ratio is 0.602. This can be interpreted as indicating a decrease in the
hazard by 40% when the methadone dose increases by one standard
deviation unit. Clearly, an increase in methadone dose decreases the
likelihood of the addict completing treatment.

In Display 12.8, the increment at each event represents the estimated
logs of the hazards at that time. Clearly, the curves are not parallel,
underlying that treating the clinics as strata was sensible.

The PHREG Procedure

Model Information

Data Set WORK.HEROIN2
Dependent Variable time

Censoring Variable status
Censoring Value(s) 0

Ties Handling BRESLOW

Summary of the Number of Event and Censored Values

Percent
Stratum  Clinic  Total Event Censored Censored

1 1 163 122 41 25.15
2 2 75 28 47 62.67
Total 238 150 88 36.97

Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates  Covariates

-2 LOG L 1229.367 1195.428
AlC 1229.367 1199.428
SBC 1229.367 1205.449




Variable DF

prison
dose

1

Testing Global Null Hypothesis
Test Chi-Square DF
Likelihood Ratio 33.9393 2
Score 33.3628 2
Wald 32.6858 2

Analysis of Maximum Likelihood

Parameter Standard Chi-
Estimate Error Square ChiSq
0.38877 0.16892 5.2974 0.0214
-0.50781 0.09342 29.5471 <.0001

Pr > Hazard

: BETA=0
Pr > ChiSq
<.0001
<.0001
<.0001

Estimates

95% Hazard Ratio

Ratio Confidence Limits
1.475 1.059 2.054
0.602 0.501 0.723

Log of Negative Log of SURVIVAL

Display 12.7
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Exercises

12.1

12.2

12.3

12.4

In the original analyses of the data in this chapter (see Caplehorn
and Bell, 1991), it was judged that the hazards were approximately
proportional for the first 450 days (see Display 12.8). Consequently,
the data for this time period were analysed using clinic as a covariate
rather than by stratifying on clinic. Repeat this analysis using clinic,
prison, and standardized dose as covariates.

Following Caplehorn and Bell (1991), repeat the analyses in Exercise
12.1 but now treating dose as a categorical variable with three levels
(<60, 60-79, 280) and plot the predicted survival curves for the
three dose categories when prison takes the value 0 and clinic the
value 1.

Test for an interaction between clinic and methadone using both
continuous and categorical scales for dose.

Investigate the use of residuals in fitting a Cox regression using
some of the models fitted in the text and in the previous exercises.



Chapter 13

Principal Components
Analysis and Factor
Analysis: The Olympic
Decathlon and
Statements about Pain

13.1 Description of Data

This chapter concerns two data sets: the first, given in Display 13.1 (8DS,
Table 357), involves the results for the men’s decathlon in the 1988
Olympics, and the second, shown in Display 13.2, arises from a study
concerned with the development of a standardized scale to measure beliefs
about controlling pain (Skevington [1990]). Here, a sample of 123 people
suffering from extreme pain were asked to rate nine statements about
pain on a scale of 1 to 6, ranging from disagreement to agreement. It is
the correlations between these statements that appear in Display 13.2
(SDS, Table 492). The nine statements used were as follows:

1. Whether or not I am in pain in the future depends on the skills
of the doctors.



100 m Llong High 400 m 100 m Pole 1500 m

Athlete Run Jump Shot Jump Run Hurdles Discus Vault Javelin  Run  Score
Schenk 11.25 7.43 1548 227 4890 15.13 49.28 4.7 6132 268.95 8488
Voss 10.87 745 14.97 1.97 4771 1446 4436 51 61.76 273.02 8399
Steen 1118 7.44 1420 1.97 4829 14.81 43.66 52 6416 263.20 8328
Thompson 10.62 738 15.02 2.03 49.06 1472 4480 49 64.04 28511 8306
Blondel 11.02 743 1292 197 4744 1440 41.20 5.2 57.46 256.64 8286
Plaziat 10.83 7.72 13.58 212 4834 1418 43.06 49 5218 274.07 8272
Bright 1118 7.05 1412 2.06 4934 1439 4168 57 6160 291.20 8216
De wit 11.05 6.95 1534 2.00 4821 1436 4132 48 63.00 26586 8189

Johnson 1115 712 1452 2.03 49.15 1466 4236 49 6646 269.62 8180
Tarnovetsky 11.23 7.28 1525 1.97 48.60 1476 48.02 52 5948 29224 8167
Keskitalo 1094 745 1534 1.97 4994 1425 4186 48 66.64 29589 8143
Gaehwiler 1118 7.34 14.48 194 49.02 15.11 4276 4.7 65.84 256.74 8114

Szabo 11.02 729 1292 2.06 4823 1494 3954 50 56.80 257.85 8093
Smith 1099 737 13.61 197 4783 1470 43.88 43 6654 268.97 8083
Shirley 11.03 745 1420 197 4894 1544 4166 4.7 6400 267.48 8036

Poelman 11.09 7.08 1451 2.03 49.89 1478 4320 49 5718 268.54 8021
Olander 1146 6.75 16.07 2.00 5128 16.06 50.66 48 72.60 30242 7869
Freimuth 1157 7.00 16.60 1.94 49.84 15.00 46.66 49 60.20 286.04 7860
Warming 11.07 7.04 1341 194 4797 1496 4038 45 5150 26241 7859

Hraban 10.89 7.07 15.84 1.79 49.68 1538 4532 49 6048 277.84 7781
Werthner 1152 736 1393 1.94 4999 1564 3882 46 67.04 26642 7753
Gugler 1149 7.02 13.80 2.03 5060 1522 39.08 47 6092 26293 7745
Penalver 1138 7.08 14.31 2.00 5024 1497 4634 44 5568 272.68 7743
Kruger 1130 6.97 13.23 215 4998 1538 3872 4.6 5434 277.84 7623

Lee Fu-An  11.00 7.23 13.15 2.03 49.73 1496 38.06 4.5 5282 28557 7579
Mellado 1133 6.83 11.63 2.06 4837 1539 3752 46 5542 270.07 7517
Moser 1110 6.98 12.69 1.82 4863 1513  38.04 4.7 4952 26190 7505
Valenta 1151 7.01 1417 194 5116 1518 4584 4.6 56.28 303.17 7422
O'Connell 1126 690 1241 1.88 4824 15.61 38.02 44 5268 272.06 7310
Richards 1150 7.09 1294 1.82 49.27 1556 4232 45 5350 293.85 7237

Gong 1143 6.22 13.98 191 5125 1588 46,18 4.6 57.84 29499 7231
Miller 1147 643 1233 194 5030 15.00 3872 4.0 57.26 293.72 7016
Kwang-lk 1157 719 1027 191 5071 1620 3436 41 5494 269.98 6907
Kunwar 1212 583 971 170 5232 1705 2710 26 39.10 281.24 5339

Display 13.1

2. Whenever I am in pain, it is usually because of something I have
done or not done.

3. Whether or not I am in pain depends on what the doctors do for
me.

4. T cannot get any help for my pain unless I go to seek medical
advice.



5. When I am in pain, I know that it is because I have not been
taking proper exercise or eating the right food.

People’s pain results from their own carelessness.

I am directly responsible for my pain.

Relief from pain is chiefly controlled by the doctors.

People who are never in pain are just plain lucky.

YO 0NN

For the decathlon data, we will investigate ways of displaying the data
graphically, and, in addition, see how a statistical approach to assigning
an overall score agrees with the score shown in Display 13.1, which is
calculated using a series of standard conversion tables for each event.

For the pain data, the primary question of interest is: what is the
underlying structure of the pain statements?

1 2 3 4 5 6 7 8 9
1.0000
—-.0385 1.0000

.6066 -.0693 1.0000
4507 -1167 5916 1.0000
.0320 4881 .0317 -.0802 1.0000
-2877 4271 -1336 -.2073 4731 1.0000
-2974 3045 -2404 -1850 4138 .6346 1.0000
4526 -3090 .5886 .6286 -.1397 -1329 -2599 1.0000
2952 -1704 3165 3680 -.2367 -.1541 -2893  .4047 1.000

O 0 N O Ul A WIN =
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13.2 Principal Components and Factor Analyses

Two methods of analysis are the subject of this chapter: principal com-
ponents analysis and factor analysis. In very general terms, both can be
seen as approaches to summarising and uncovering any patterns in a set
of multivariate data. The details behind each method are, however, quite
different.

13.2.1 Principal Components Analysis

Principal components analysis is amongst the oldest and most widely used
multivariate technique. Originally introduced by Pearson (1901) and inde-
pendently by Hotelling (1933), the basic idea of the method is to describe
the variation in a set of multivariate data in terms of a set of new,



uncorrelated variables, each of which is defined to be a particular linear
combination of the original variables. In other words, principal compo-
nents analysis is a transformation from the observed variables, x;, --- x;,
to variables, yy, -, »,, where:

V= apXy +oapX, + o+ oaX,

Vo = Ay + dpX, + oo+ ody X,

Vp = GuXy T Gy + o+ Ay X, (13.D

The coefficients defining each new variable are chosen so that the
following conditions hold:

B The y variables (the principal components) are arranged in decreas-
ing order of variance accounted for so that, for example, the first
principal component accounts for as much as possible of the
variation in the original data.

B The y variables are uncorrelated with one another.

The coefficients are found as the eigenvectors of the observed cova-
riance matrix, §, although when the original variables are on very different
scales it is wiser to extract them from the observed correlation matrix, R,
instead. The variances of the new variables are given by the eigenvectors
of Sor R.

The usual objective of this type of analysis is to assess whether the
first few components account for a large proportion of the variation in
the data, in which case they can be used to provide a convenient summary
of the data for later analysis. Choosing the number of components ade-
quate for summarising a set of multivariate data is generally based on one
or another of a number of relative ad hoc procedures:

B Retain just enough components to explain some specified large
percentages of the total variation of the original variables. Values
between 70 and 90% are usually suggested, although smaller values
might be appropriate as the number of variables, p, or number of
subjects, 7, increases.

B Exclude those principal components whose eigenvalues are less
than the average. When the components are extracted from the
observed correlation matrix, this implies excluding components
with eigenvalues less than 1.

B Plot the eigenvalues as a scree diagram and look for a clear “elbow”
in the curve.



Principal component scores for an individual i with vector of variable
values x; can be obtained from the equations:

Y = a/(x; - X

a/(x,— X (13.2)

y ip
where a/ = [a,, a,, ---, a,)], and ¥ is the mean vector of the observations.
(Full details of principal components analysis are given in Everitt and
Dunn [2001].)

13.2.2 Factor Analysis

Factor analysis is concerned with whether the covariances or correlations
between a set of observed variables can be “explained” in terms of a
smaller number of unobservable latent variables or common factors.
Explanation here means that the correlation between each pair of mea-
sured (manifest) variables arises because of their mutual association with
the common factors. Consequently, the partial correlations between any
pair of observed variables, given the values of the common factors, should
be approximately zero.

The formal model linking manifest and latent variables is essentially
that of multiple regression (see Chapter 3). In detail,

X = Ay AL+ F Ay
3.Cz=)‘21f1+7\22fz+ e Ayl Uy

X, = Apfy + Ao + e+ Ay + o, (13.3)

where f,, f,, -+, f. are the latent variables (common factors) and & < p.
These equations can be written more concisely as:

x=N+u (13.4
where
A )\]/e fl Uy
A= SE | u=
)\pl ) )\ple fle up



The residual terms u,, -+, u,, (also known as specific variates), are assumed
uncorrelated with each other and with the common factors. The elements
of A are usually referred to in this context as factor loadings.

Because the factors are unobserved, we can fix their location and scale
arbitrarily. Thus, we assume they are in standardized form with mean
zero and standard deviation one. (We also assume they are uncorrelated,
although this is not an essential requirement.)

With these assumptions, the model in Eq. (13.4) implies that the
population covariance matrix of the observed variables, Z, has the form:

=M\ +V¥ (13.5)

where W is a diagonal matrix containing the variances of the residual
terms, P, =1 -+ p.

The parameters in the factor analysis model can be estimated in a
number of ways, including maximum likelihood, which also leads to a
test for number of factors. The initial solution can be “rotated” as an aid
to interpretation, as described fully in Everitt and Dunn (2001). (Principal
components can also be rotated but then the defining maximal proportion
of variance property is lost.)

13.2.3 Factor Analysis and Principal Components Compared

Factor analysis, like principal components analysis, is an attempt to explain
a set of data in terms of a smaller number of dimensions than one starts
with, but the procedures used to achieve this goal are essentially quite
different in the two methods. Factor analysis, unlike principal components
analysis, begins with a hypothesis about the covariance (or correlational)
structure of the variables. Formally, this hypothesis is that a covariance
matrix Z, of order and rank p, can be partitioned into two matrices AN
and W. The first is of order p but rank k& (the number of common factors),
whose off-diagonal elements are equal to those of Z. The second is a
diagonal matrix of full rank p, whose elements when added to the diagonal
elements of AN give the diagonal elements of Z. That is, the hypothesis
is that a set of k latent variables exists (k < p), and these are adequate
to account for the interrelationships of the variables although not for their
full variances. Principal components analysis, however, is merely a trans-
formation of the data and no assumptions are made about the form of
the covariance matrix from which the data arise. This type of analysis has
no part corresponding to the specific variates of factor analysis. Conse-
quently, if the factor model holds but the variances of the specific variables
are small, we would expect both forms of analysis to give similar results.
If, however, the specific variances are large, they will be absorbed into



all the principal components, both retained and rejected; whereas factor
analysis makes special provision for them. It should be remembered that
both forms of analysis are similar in one important respect: namely, that
they are both pointless if the observed variables are almost uncorrelated
— factor analysis because it has nothing to explain and principal com-
ponents analysis because it would simply lead to components that are
similar to the original variables.

13.3 Analysis Using SAS
13.3.1 Olympic Decathlon

The file olympic.dat (SDS, p. 357) contains the event results and overall
scores shown in Display 13.1, but not the athletes' names. The data are
tab separated and may be read with the following data step.

data decathlon;
infile 'n:\handbook2\datasets\olympic.dat' expandtabs;

input run100 Ljump shot Hjump run400 hurdle discus polevlt
javelin runl1500 score;

run;

Before undertaking a principal components analysis of the data, it is
advisable to check them in some way for outliers. Here, we examine the
distribution of the total score assigned to each competitor with proc
univariate.

proc univariate data=decathlon plots;
var score;
run;

Details of the proc univariate were given in Chapter 2. The output of proc
univariate is given in Display 13.3.

The UNIVARIATE Procedure
Variable: score

Moments
N 34 Sum Weights 34
Mean 7782.85294 Sum Observations 264617
Std Deviation 594.582723 Variance 353528.614
Skewness -2.2488675 Kurtosis 7.67309194
Uncorrected SS 2071141641 Corrected SS 11666444.3

Coeff Variation 7.63964997 Std Error Mean 101.970096




Basic Statistical Measures

Location

Mean 7782.853
Median 7864.500
Mode

Variability
Std Deviation 594.58272
Variance 353529
Range 3149

Interquartile Range 663.00000

Tests for Location: Mu0=0

Test -Statistic-  ----- p Value------
Student's t t 76.32486 Pr > |t| <.0001
Sign M 17 Pr>= M| <.0001

Signed Rank S

297.5 Pr>=|S| <.0001

Quantiles (Definition 5)
Quantile Estimate
100% Max 8488.0
99% 8488.0
95% 8399.0
90% 8306.0
75% Q3 8180.0
50% Median 7864.5
25% Q1 7517.0
10% 7231.0
5% 6907.0
1% 5339.0
0% Min 5339.0

Extreme Observations

----Lowest----  ----Highest---

Value Obs Value Obs

5339
7016
7231
7237

34 8286 5
32 8328 3
31 8399 2
30 8488 1




The UNIVARIATE Procedure
Variable: score

Stem Leaf # Boxplot
84 09 2
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The athlete Kunwar with the lowest score is very clearly an outlier
and will now be removed from the data set before further analysis. And
it will help in interpreting results if all events are “scored” in the same
direction; thus, we take negative values for the four running events. In
this way, all ten events are such that small values represent a poor
performance and large values the reverse.

data decathlon;
set decathlon;
if score > 6000;
runl100=runl100*-1;
run400=run400*-1;
hurdle=hurdle*-1;
runl500=run1500*-1;
run;

A principal components can now be applied using proc princomp:

proc princomp data=decathlon out=pcout;
var runl100--run1500;
run;

The out= option on the proc statement names a data set that will contain
the principal component scores plus all the original variables. The analysis
is applied to the correlation matrix by default.

The output is shown as Display 13.4. Notice first that the components
as given are scaled so that the sums of squares of their elements are equal
to 1. To rescale them so that they represent correlations between variables
and components, they would need to be multiplied by the square root
of the corresponding eigenvalue. The coefficients defining the first com-
ponent are all positive and it is clearly a measure of overall performance
(see later). This component has variance 3.42 and accounts for 34% of
the total variation in the data. The second component contrasts perfor-
mance on the “power” events such as shot and discus with the only really
“stamina” event, the 1500-m run. The second component has variance
2.61; so between them, the first two components account for 60% of the
total variance.

Only the first two components have eigenvalues greater than one,
suggesting that the first two principal component scores for each athlete
provide an adequate and parsimonious description of the data.



The PRINCOMP Procedure

Observations 33
Variables 10

Simple Statistics
run100 Ljump shot Hjump run400

Mean -11.19636364 7.133333333 13.97636364 1.982727273 -49.27666667
StD 0.24332101 0.304340133 1.33199056 0.093983799 1.06966019

Simple Statistics
hurdle discus polevit javelin run1500

Mean -15.04878788 42.35393939 4.739393939 59.43878788 -276.0384848
StD 0.50676522 3.71913123 0.334420575 5.49599841 13.6570975

Correlation Matrix

run100 Ljump shot Hjump run400 hurdle discus polevlt javelin run1500

runl100 1.0000 0.5396 0.2080 0.1459 0.6059 0.6384 0.0472 0.3891 0.0647 0.2610
Ljiump 0.5396 1.0000 0.1419 0.2731 0.5153 0.4780 0.0419 0.3499 0.1817 0.3956
shot 0.2080 0.1419 1.0000 0.1221 -.0946 0.2957 0.8064 0.4800 0.5977 -.2688
Hjump 0.1459 0.2731 0.1221 1.0000 0.0875 0.3067 0.1474 0.2132 0.1159 0.1141
run400 0.6059 0.5153 -.0946 0.0875 1.0000 0.5460 -.1422 0.3187 -.1204 0.5873
hurdle 0.6384 0.4780 0.2957 0.3067 0.5460 1.0000 0.1105 0.5215 0.0628 0.1433
discus  0.0472 0.0419 0.8064 0.1474 -.1422 0.1105 1.0000 0.3440 0.4429 -.4023
polevit  0.3891 0.3499 0.4800 0.2132 0.3187 0.5215 0.3440 1.0000 0.2742 0.0315
javelin  0.0647 0.1817 0.5977 0.1159 -.1204 0.0628 0.4429 0.2742 1.0000 -.0964
runl1500 0.2610 0.3956 -.2688 0.1141 0.5873 0.1433 -.4023 0.0315 -.0964 1.0000

Eigenvalues of the Correlation Matrix

Eigenvalue Difference  Proportion  Cumulative

1 3.41823814 0.81184501 0.3418 0.3418
2 2.60639314 1.66309673 0.2606 0.6025
3 0.94329641 0.06527516 0.0943 0.6968
4 0.87802124 0.32139459 0.0878 0.7846
5 0.55662665 0.06539914 0.0557 0.8403
6 0.49122752 0.06063230 0.0491 0.8894
7 0.43059522 0.12379709 0.0431 0.9324
8 0.30679812 0.03984871 0.0307 0.9631
9 0.26694941 0.16509526 0.0267 0.9898
10 0.10185415 0.0102 1.0000




We can use the first two principal component scores to produce a
useful plot of the data, particularly if we label the points in an informative
manner. This can be achieved using an annotate data set on the plot
statement within proc gplot. As an example, we label the plot of the
principal component scores with the athlete's overall position in the event.

proc rank data=pcout out=pcout descending;
var score;

ranks posn;

data labels;

Eigenvectors
Prinl Prin2 Prin3 Prin4 Prin5
runl00 0.415882 -.148808 -.267472 -.088332 -.442314
Ljump 0.394051 -.152082 0.168949 0.244250 -.368914
shot 0.269106 0.483537 -.098533 0.107763 0.009755
Hjump 0.212282 0.027898 0.854987 -.387944 0.001876
run400 0.355847 -.352160 -.189496 0.080575 0.146965
hurdle 0.433482 -.069568 -.126160 -.382290 -.088803
discus 0.175792 0.503335 -.046100 -.025584 -.019359
polevit 0.384082 0.149582 -.136872 -.143965 0.716743
javelin 0.179944 0.371957 0.192328 0.600466 -.095582
runl500 0.170143 -.420965 0.222552 0.485642 0.339772

The PRINCOMP Procedure

Eigenvectors
Prin6 Prin7 Prin8 Prin9 Prin10
runl00 -.030712 0.254398 0.663713 -.108395 0.109480
Ljump -.093782 -.750534 -.141264 -.046139 -.055804
shot 0.230021 0.110664 -.072506 -.422476 -.650737
Hjump 0.074544 0.135124 0.155436 0.102065 -.119412
run400 0.326929 0.141339 -.146839 0.650762 -.336814
hurdle -.210491 0.272530 -.639004 -.207239 0.259718
discus 0.614912 -.143973 -.009400 0.167241 0.534503
polevit -.347760 -.273266 0.276873 0.017664 0.065896
javelin -.437444 0.341910 -.058519 0.306196 0.130932
runl500 0.300324 0.186870 0.007310 -.456882 0.243118

Display 13.4




set pcout;

retain xsys ysys '2';
y=prinl;

X=prin2;
text=put(posn,2.);

keep xsys ysys x y text;

proc gplot data=pcout;
plot prinl*prin2 / annotate=labels;
symbol v=none;

run;

proc rank is used to calculate the finishing position in the event. The
variable score is ranked in descending order and the ranks stored in the
variable posn.

The annotate data set labels has variables x and y which hold the
horizontal and vertical coordinates of the text to be plotted, plus the
variable text which contains the label text. The two further variables that
are needed, xsys and ysys, define the type of coordinate system used. A
value of '2' means that the coordinate system for the annotate data set is
the same as that used for the data being plotted, and this is usually what
is required. As xsys and ysys are character variables, the quotes around
‘2" are necessary. The assignment statement text=put(posn,2.); uses the put
function to convert the numeric variable posn to a character variable text
that is two characters in length.

In the gplot step, the plotting symbols are suppressed by the v=none
option in the symbol statement, as the aim is to plot the text defined in
the annotate data set in their stead. The resulting plot is shown in Display
13.5. We comment on this plot later.

Next, we can plot the total score achieved by each athlete in the
competition against each of the first two principal component scores and
also find the corresponding correlations. Plots of the overall score against
the first two principal components are shown in Displays 13.6 and 13.7
and the correlations in Display 13.8.

goptions reset=symbol,;
proc gplot data=pcout;

plot score*(prinl prin2);
run;

proc corr data=pcout;
var score prinl prin2;
run;
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Display 13.6 shows the very strong relationship between total score
and first principal component score — the correlation of the two variables
is found from Display 13.8 to be 0.96 which is, of course, highly significant.
But the total score does not appear to be related to the second principal

Display 13.7

component score (see Display 13.7 and » = 0.16).

And returning to Display 13.5, the first principal component score is
seen to largely rank the athletes in finishing position, confirming its

interpretation as an overall measure of performance.

Variable N

score 33
Prinl 33
Prin2 33

The CORR Procedure
3 Variables: score Prinl Prin2

Simple Statistics

Mean Std Dev Sum  Minimum
7857 415.06945 259278 6907
0 1.84885 0 -4.12390
0 1.61443 0 -2.40788

Maximum

8488
2.78724
4.77144




Pearson Correlation Coefficients, N = 33
Prob > |r| under HO: Rho=0

score Prinl Prin2

score 1.00000 0.96158 0.16194
<.0001 0.3679

Prinl  0.96158 1.00000 0.00000
<.0001 1.0000

Prin2  0.16194 0.00000 1.00000
0.3679 1.0000

Display 13.8

13.3.2 Statements about Pain

The SAS procedure proc factor can accept data in the form of a correlation,
or covariance matrix, as well as in the normal rectangular data matrix. To
analyse a correlation or covariance matrix, the data need to be read into
a special SAS data set with type=corr or type=cov. The correlation matrix
shown in Display 13.2 was edited into the form shown in Display 13.9
and read in as follows:

data pain (type = corr);

infile 'n:\handbook2\datasets\pain.dat' expandtabs missover,;
input _type_ $ _name_ $ pl - p9;

run;

The type=corr option on the data statement specifies the type of SAS data
set being created. The value of the _type_ variable indicates what type
of information the observation holds. When _type =CORR, the values of
the variables are correlation coefficients. When _type_=N, the values are
the sample sizes. Only the correlations are necessary but the sample sizes
have been entered because they will be used by the maximum likelihood
method for the test of the number of factors. The _name_ variable identifies
the variable whose correlations are in that row of the matrix. The missover
option in the infile statement obviates the need to enter the data for the
upper triangle of the correlation matrix.



CORR p1l 1.0

CORR p2 -.0385 1.0

CORR p3 .6066 -.0693 1.0

CORR p4 .4507 -.1167 .5916 1.0

CORR p5 .0320 .4881 .0317 -.0802 1.0

CORR p6 -.2877 .4271 -.1336 -.2073 .4731 1.0

CORR p7 -.2974 .3045 -.2404 -.1850 .4138 .6346 1.0

CORR p8 .4526 -.3090 .5886 .6286 -.1397 -.1329 -.2599 1.0
CORR p9 .2952 -.1704 .3165 .3680 -.2367 -.1541 -.2893 .4047 1.0
N N 123 123 123 123 123 123 123 123 123

Display 13.9

Both principal components analysis and maximum likelihood factor
analysis might be applied to the pain statement data using proc factor.
The following, however, specifies a maximum likelihood factor analysis
extracting two factors and requesting a scree plot, often useful in selecting
the appropriate number of components. The output is shown in Display

13.10.

proc factor data=pain method=ml n=2 scree;

var pl-p9;
run,;
The FACTOR Procedure
Initial Factor Method: Maximum Likelihood
Prior Communality Estimates: SMC
pl p2 p3 p4 p5

0.46369858 0.37626982 0.54528471 0.51155233 0.39616724

p6é p7 p8 p9

0.55718109 0.48259656 0.56935053 0.25371373




Preliminary Eigenvalues: Total = 8.2234784 Average = 0.91371982

Eigenvalue Difference  Proportion  Cumulative
1 5.85376325 3.10928282 0.7118 0.7118
2 2.74448043 1.96962348 0.3337 1.0456
3 0.77485695 0.65957907 0.0942 1.1398
4 0.11527788 0.13455152 0.0140 1.1538
5 -.01927364 0.13309824 -0.0023 1.1515
6 -.15237189 0.07592411 -0.0185 1.1329
7 -.22829600 0.10648720 -0.0278 1.1052
8 -.33478320 0.19539217 -0.0407 1.0645
9 -.53017537 -0.0645 1.0000

2 factors will be retained by the NFACTOR criterion.

The FACTOR Procedure
Initial Factor Method: Maximum Likelihood

Scree Plot of Eigenvalues
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Iteration  Criterion

1 0.5068620

2 0.5050936

3 0.5047129

4 0.5046043

5 0.5045713

6 0.5045610

7 0.5045578

Ridge

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Number

The FACTOR Procedure
Initial Factor Method: Maximum Likelihood

Change

0.1321

0.0228

0.0115

0.0050

0.0030

0.0015

0.0009

Communalities

0.43833 0.31605 0.67742 0.56410 0.46025 0.61806

0.57225 0.24191

0.45691 0.31638 0.67459 0.55648 0.43749 0.62559

0.56905 0.23600

0.45716 0.30839 0.67721 0.55492 0.43109 0.63711

0.56677 0.23488

0.45798 0.30536 0.67706 0.55454 0.42611 0.64126

0.56634 0.23385

0.45800 0.30332 0.67687 0.55454 0.42357 0.64424

0.56637 0.23354

0.45795 0.30229 0.67662 0.55464 0.42206 0.64569

0.56649 0.23335

0.45787 0.30169 0.67644 0.55473 0.42124 0.64656

0.56661 0.23327

Convergence criterion satisfied.

Significance Tests Based on 123 Observations

Pr >
Test DF Chi-Square ChiSq
HO: No common factors 36 400.8045 <.0001
HA: At least one common factor
HO: 2 Factors are sufficient 19 58.9492 <.0001
HA: More factors are needed
Chi-Square without Bartlett's Correction 61.556052
Akaike's Information Criterion 23.556052
Schwarz's Bayesian Criterion -29.875451

Tucker and Lewis's Reliability Coefficient 0.792510

Squared Canonical Correlations

Factorl

0.86999919

Factor2

0.76633961

0.51629

0.53374

0.53678

0.54067

0.54202

0.54297

0.54342




Eigenvalues of the Weighted Reduced Correlation Matrix: Total = 9.97197304
Average = 1.107997

Eigenvalue Difference Proportion  Cumulative

1 6.69225960 3.41254398 0.6711 0.6711
2 3.27971562 2.44878855 0.3289 1.0000
3 0.83092707 0.68869546 0.0833 1.0833
4 0.14223161 0.07800630 0.0143 1.0976
5 0.06422532 0.16781356 0.0064 1.1040
6 -.10358825 0.01730569 -0.0104 1.0936
7 -.12089394 0.19579997 -0.0121 1.0815
8 -.31669391 0.17951618 -0.0318 1.0498
9 -.49621009 -0.0498 1.0000

The FACTOR Procedure
Initial Factor Method: Maximum Likelihood

Factor Pattern

Factorl Factor2

pl 0.64317 0.21013
p2 -0.36053 0.41411
p3 0.71853 0.40014
p4 0.68748 0.28658
p5 -0.31016 0.56992
p6 -0.51975 0.61363
p7 -0.56193 0.47734
p8 0.70918 0.25240
p9 0.48230 0.02495

Variance Explained by Each Factor
Factor Weighted Unweighted

Factorl 6.69225960 2.95023735
Factor2  3.27971562 1.45141080




Final Communality Estimates and Variable Weights
Total Communality: Weighted = 9.971975 Unweighted = 4.401648
Variable  Communality Weight
pl 0.45782727 1.84458678
p2 0.30146582 1.43202409
p3 0.67639995 3.09059720
p4 0.55475992  2.24582480
p5 0.42100442 1.72782049
p6 0.64669210 2.82929965
p7 0.54361175 2.19019950
p8 0.56664692 2.30737576
p9 0.23324000 1.30424476
Display 13.10

Here, the scree plot suggests perhaps three factors, and the formal sig-
nificance test for number of factors given in Display 13.10 confirms that
more than two factors are needed to adequately describe the observed
correlations. Consequently, the analysis is now extended to three factors,
with a request for a varimax rotation of the solution.

proc factor data=pain method=ml n=3 rotate=varimax;
var pl-p9;
run;

The output is shown in Display 13.11. First, the test for number factors
indicates that a three-factor solution provides an adequate description of
the observed correlations. We can try to identify the three common factors
by examining the rotated loading in Display 13.11. The first factor loads
highly on statements 1, 3, 4, and 8. These statements attribute pain relief
to the control of doctors, and thus we might label the factor doctors’
control of pain. The second factor has its highest loadings on statements
6 and 7. These statements associated the cause of pain as one’s own
actions, and the factor might be labelled individual’s responsibility for
pain. The third factor has high loadings on statements 2 and 5. Again,
both involve an individual’s own responsibility for their pain but now
specifically because of things they have not done; the factor might be
labelled lifestyle responsibility for pain.



The FACTOR Procedure
Initial Factor Method: Maximum Likelihood

Prior Communality Estimates: SMC

pl p2 p3 p4 p5

0.46369858 0.37626982 0.54528471 0.51155233 0.39616724

pé p7 p8 p9

0.55718109 0.48259656 0.56935053 0.25371373

Preliminary Eigenvalues: Total = 8.2234784 Average = 0.91371982

Eigenvalue Difference  Proportion Cumulative
1 5.85376325 3.10928282 0.7118 0.7118
2 2.74448043 1.96962348 0.3337 1.0456
3 0.77485695 0.65957907 0.0942 1.1398
4 0.11527788 0.13455152 0.0140 1.1538
5 -.01927364 0.13309824 -0.0023 1.1515
6 -.15237189 0.07592411 -0.0185 1.1329
7 -.22829600 0.10648720 -0.0278 1.1052
8 -.33478320 0.19539217 -0.0407 1.0645
9 -.53017537 -0.0645 1.0000

3 factors will be retained by the NFACTOR criterion.

Iteration  Criterion Ridge Change Communalities

1 0.1604994 0.0000 0.2170 0.58801 0.43948 0.66717 0.54503 0.55113 0.77414 0.52219
0.75509 0.24867

2 0.1568974 0.0000 0.0395 0.59600 0.47441 0.66148 0.54755 0.51168 0.81079 0.51814
0.75399 0.25112

3 0.1566307 0.0000 0.0106 0.59203 0.47446 0.66187 0.54472 0.50931 0.82135 0.51377
0.76242 0.24803

4 0.1566095 0.0000 0.0029 0.59192 0.47705 0.66102 0.54547 0.50638 0.82420 0.51280
0.76228 0.24757

5 0.1566078 0.0000 0.0008 0.59151 0.47710 0.66101 0.54531 0.50612 0.82500 0.51242
0.76293 0.24736

Convergence criterion satisfied.




Significance Tests Based on 123 Observations

Pr >

Test DF Chi-Square ChiSq
HO: No common factors 36 400.8045 <.0001
HA: At least one common factor
HO: 3 Factors are sufficient 12 18.1926 0.1100
HA: More factors are needed

Chi-Square without Bartlett's Correction 19.106147

Akaike's Information Criterion -4.893853

Schwarz's Bayesian Criterion -38.640066

Tucker and Lewis's Reliability Coefficient 0.949075

The FACTOR Procedure
Initial Factor Method: Maximum Likelihood

Squared Canonical Correlations

Factorl Factor2 Factor3

0.90182207 0.83618918 0.60884385

Eigenvalues of the Weighted Reduced Correlation Matrix: Total = 15.8467138
Average = 1.76074598

Eigenvalue Difference  Proportion Cumulative
1 9.18558880 4.08098588 0.5797 0.5797
2 5.10460292 3.54807912 0.3221 0.9018
3 1.55652380 1.26852906 0.0982 1.0000
4 0.28799474 0.10938119 0.0182 1.0182
5 0.17861354 0.08976744 0.0113 1.0294
6 0.08884610 0.10414259 0.0056 1.0351
7 -.01529648 0.16841933 -0.0010 1.0341
8 -.18371581 0.17272798 -0.0116 1.0225
9 -.35644379 -0.0225 1.0000




Factor Pattern

Factorl Factor2 Factor3

pl 0.60516 0.29433 0.37238
p2 -0.45459 0.29155 0.43073
p3 0.61386 0.49738 0.19172
p4 0.62154 0.39877 -0.00365
p5 -0.40635 0.45042 0.37154
p6 -0.67089 0.59389 -0.14907
p7 -0.62525 0.34279 -0.06302
p8 0.68098 0.47418 -0.27269
p9 0.44944 0.16166 -0.13855

Variance Explained by Each Factor
Factor Weighted Unweighted
Factorl 9.18558880 3.00788644
Factor2 5.10460292 1.50211187

Factor3 1.55652380 0.61874873

Final Communality Estimates and Variable Weights
Total Communality: Weighted = 15.846716 Unweighted = 5.128747

Variable Communality Weight
pl 0.59151181 2.44807030
p2 0.47717797 1.91240023
p3 0.66097328 2.94991222
p4 0.54534606 2.19927836
p5 0.50603810 2.02479887
p6 0.82501333 5.71444465
p7 0.51242072 2.05095025
p8 0.76294154 4.21819901
p9 0.24732424  1.32865993

The FACTOR Procedure
Rotation Method: Varimax

Orthogonal Transformation Matrix

1 0.72941 -0.56183 -0.39027
2 0.68374 0.61659 0.39028
3 0.02137 -0.55151 0.83389




Rotated Factor Pattern

Factorl Factor2 Factor3

pl 0.65061 -0.36388 0.18922
p2 -0.12303 0.19762 0.65038
p3 0.79194 -0.14394 0.11442
p4 0.72594 -0.10131 -0.08998
p5 0.01951 0.30112 0.64419
p6 -0.08648 0.82532 0.36929
p7 -0.22303 0.59741 0.32525
p8 0.81511 0.06018 -0.30809
p9 0.43540 -0.07642 -0.22784

Variance Explained by Each Factor
Factor Weighted Unweighted
Factorl 7.27423715 2.50415379
Factor2 5.31355675 1.34062697

Factor3  3.25892162 1.28396628

Final Communality Estimates and Variable Weights
Total Communality: Weighted = 15.846716 Unweighted = 5.128747

Variable Communality Weight
pl 0.59151181 2.44807030
p2 0.47717797 1.91240023
p3 0.66097328 2.94991222
p4 0.54534606 2.19927836
p5 0.50603810 2.02479887
p6 0.82501333 5.71444465
p7 0.51242072 2.05095025
p8 0.76294154 4.21819901
p9 0.24732424  1.32865993

Display 13.11

Exercises

13.1 Repeat the principal components analysis of the Olympic decathlon
data without removing the athlete who finished last in the compe-
tition. How do the results compare with those reported in this
chapter (Display 13.5)?



13.2  Run a principal components analysis on the pain data and compare
the results with those from the maximum likelihood factor analysis.

13.3 Run principal factor analysis and maximum likelihood factor analysis
on the Olympic decathlon data. Investigate the use of other methods
of rotation than varimax.



Chapter 14

Cluster Analysis: Air
Pollution in the U.S.A.

14.1 Description of Data

The data to be analysed in this chapter relate to air pollution in 41 U.S.
cities. The data are given in Display 14.1 (they also appear in SDS as
Table 26). Seven variables are recorded for each of the cities:

1. SO, content of air, in micrograms per cubic metre

2. Average annual temperature, in °F

Number of manufacturing enterprises employing 20 or more
workers

Population size (1970 census), in thousands

Average annual wind speed, in miles per hour

Average annual precipitation, in inches

Average number of days per year with precipitation

N

N e

In this chapter we use variables 2 to 7 in a cluster analysis of the data
to investigate whether there is any evidence of distinct groups of cities.
The resulting clusters are then assessed in terms of their air pollution
levels as measured by SO, content.



1 2 3 4 5 6 7
Phoenix 10 703 213 582 6.0 7.05 36
Little Rock 13 61.0 91 132 8.2 48.52 100
San Francisco 12 56.7 453 716 8.7 20.66 67
Denver 17 519 454 515 9.0 1295 86
Hartford 56 49.1 412 158 9.0 43.37 127
Wilmington 36 54.0 80 80 9.0 40.25 114
Washington 29 573 434 757 93 3889 111
Jacksonville 14 684 136 529 8.8 5447 116
Miami 10 755 207 335 9.0 59.80 128
Atlanta 24 615 368 497 9.1 4834 115
Chicago 110 50.6 3344 3369 104 34.44 122
Indianapolis 28 523 361 746 9.7 3874 121
Des Moines 17 49.0 104 201 112 30.85 103
Wichita 8 56.6 125 277 12.7 3058 82
Louisville 30 55.6 291 593 8.3 4311 123
New Orleans 9 683 204 361 8.4 56.77 113
Baltimore 47 55.0 625 905 9.6 4131 111
Detroit 35 499 1064 1513 101 30.96 129
Minneapolis 29 435 699 744 10.6 2594 137
Kansas City 14 545 381 507 10.0 37.00 99
St. Louis 56 55.9 775 622 9.5 35.89 105
Omaha 14 515 181 347 109 30.18 98
Albuquerque 11 56.8 46 244 89 777 58
Albany 46 47.6 44 116 88 3336 135
Buffalo 11 471 391 463 124 36.11 166
Cincinnati 23 540 462 453 71 39.04 132
Cleveland 65 49.7 1007 751 109 3499 155
Columbus 26 515 266 540 8.6 37.01 134
Philadelphia 69 546 1692 1950 9.6 3993 115
Pittsburgh 61 504 347 520 94 36.22 147
Providence 94 50.0 343 179 10.6 42.75 125
Memphis 10 616 337 624 9.2 4910 105
Nashville 18 594 275 448 79 46.00 119
Dallas 9 66.2 641 844 109 35.94 78
Houston 10 689 721 1233 10.8 4819 103
Salt Lake City 28 51.0 137 176 8.7 15.17 89
Norfolk 31 593 9% 308 10.6 44.68 116
Richmond 26 57.8 197 299 76 4259 115




1 2 3 4 5 6 7
Seattle 29 511 379 531 9.4 38.79 164
Charleston 31 55.2 35 71 6.5 40.75 148
Milwaukee 16  45.7 569 717  11.8 29.07 123
Display 14.1

14.2 Cluster Analysis

Cluster analysis is a generic term for a large number of techniques that
have the common aim of determining whether a (usually) multivariate
data set contains distinct groups or clusters of observations and, if so,
find which of the observations belong in the same cluster. A detailed
account of what is now a very large area is given in Everitt, Landau, and
Leese (2001).

The most commonly used classes of clustering methods are those that
lead to a series of nested or hierarchical classifications of the observations,
beginning at the stage where each observation is regarded as forming a
single-member “cluster” and ending at the stage where all the observations
are in a single group. The complete hierarchy of solutions can be
displayed as a tree diagram known as a dendrogram. In practice, most
users are interested in choosing a particular partition of the data, that is,
a particular number of groups that is optimal in some sense. This entails
“cutting” the dendrogram at some particular level.

Most hierarchical methods operate not on the raw data, but on an
inter-individual distance matrix calculated from the raw data. The most
commonly used distance measure is Euclidean and is defined as:

(14.D

where x;, and x;, are the values of the kth variable for observations 7 and j.

The different members of the class of hierarchical clustering techniques
arise because of the variety of ways in which the distance between a
cluster containing several observations and a single observation, or
between two clusters, can be defined. The inter-cluster distances used
by three commonly applied hierarchical clustering techniques are



B Single linkage clustering: distance between their closest observa-
tions

B Complete linkage clustering: distance between the most remote
observations

B Average linkage clustering: average of distances between all pairs
of observations, where members of a pair are in different groups

Important issues that often need to be considered when using clustering
in practice include how to scale the variables before calculating the
distance matrix, which particular method of cluster analysis to use, and
how to decide on the appropriate number of groups in the data. These
and many other practical problems of clustering are discussed in Everitt
et al. (200D).

14.3 Analysis Using SAS

The data set for Table 26 in SDS does not contain the city names shown
in Display 14.1; thus, we have edited the data set so that they occupy
the first 16 columns. The resulting data set can be read in as follows:

data usair;

infile 'n:\handbook2\datasets\usair.dat' expandtabs;

input city $16. so2 temperature factories population wind-
speed rain rainydays;
run;

The names of the cities are read into the variable city with a $16.
format because several of them contain spaces and are longer than the
default length of eight characters. The numeric data are read in with list
input.

We begin by examining the distributions of the six variables to be
used in the cluster analysis.

proc univariate data=usair plots;
var temperature--rainydays;
id city;
run;
The univariate procedure was described in Chapter 2. Here, we use the

plots option, which has the effect of including stem and leaf plots, box
plots, and normal probability plots in the printed output. The id statement



has the effect of labeling the extreme observations by name rather than
simply by observation number.

The output for factories and population is shown in Display 14.2.
Chicago is clearly an outlier, both in terms of manufacturing enterprises
and population size. Although less extreme, Phoenix has the lowest value
on all three climate variables (relevant output not given to save space).
Both will therefore be excluded from the data set to be analysed.

data usair2;
set usair;
if city not in('Chicago’,'Phoenix’);
run;
The UNIVARIATE Procedure
Variable: factories
Moments
N 41 Sum Weights 41
Mean 463.097561 Sum Observations 8987
Std Deviation 563.473948 Variance 317502.89
Skewness 3.75488343  Kurtosis 17.403406
Uncorrected SS 21492949 Corrected SS 12700115.6
Coeff Variation 21.674998 Std Error Mean 87.9998462
Basic Statistical Measures
Location Variability
Mean 463.0976  Std Deviation 563.47395
Median 347.0000 Variance 317503
Mode . Range 3309
Interquartile Range  281.00000
Tests for Location: Mu0=0
Test -Statistic- ~ ----- P-value------
Student's t t 5.262481 Pr > |t| <.0001
Sign M 20.5 Pr >=|M| <.0001
Signed Rank S 430.5 Pr >= |S]| <.0001




Quantiles (Definition 5)

Quantile Estimate
100% Max 3344
99% 3344
95% 1064
90% 775
75% Q3 462
50% Median 347
25% Q1 181
10% 91
5% 46
1% 35
0% Min 35

Extreme Observations

-------------- Lowest------------ -------------Highest------------
Value city Obs Value city Obs
35 Charleston 40 775 St. Louis 21
44 Albany 24 1007 Cleveland 27
46  Albuquerque 23 1064 Detroit 18
80 Wilmington 6 1692 Philadelphia 29
91 Little Rock 2 3344 Chicago 11

The UNIVARIATE Procedure
Variable: factories
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The UNIVARIATE Procedure
Variable: population
Moments
N 41 Sum Weights 41
Mean 608.609756 Sum Observations 24953
Std Deviation 579.113023 Variance 335371.894
Skewness 3.16939401 Kurtosis 12.9301083
Uncorrected SS 28601515 Corrected SS 13414875.8
Coeff Variation 95.1534243 Std Error Mean 90.4422594
Basic Statistical Measures
Location Variability
Mean 608.6098 Std Deviation 579.11302
Median 515.0000 Variance 335372
Mode Range 3298

Interquartile Range  418.00000




Tests for Location: Mu0=0

Test -Statistic- ~ ----- P-value------
Student's t t 6.729263 Pr > |t| <.0001
Sign M 20.5 Pr >=|M| <.0001
Signed Rank S 430.5 Pr >=|S| <.0001

Quantiles (Definition 5)

Quantile Estimate

00% Max 3369

99% 3369

95% 1513

90% 905

75% Q3 717

50% Median 515

25% Q1 299

0% 158

5% 116

1% 71

0% Min 71

Extreme Observations

-------------- Lowest------=---=-=  ---e-e-------Highest--------
Value city Obs Value city

71 Charleston 40 905 Baltimore
80 Wilmington 6 1233 Houston
116 Albany 24 1513 Detroit
132 Little Rock 2 1950 Philadelphia
158 Hartford 5 3369 Chicago

Obs
17
35
18

11




The UNIVARIATE Procedure
Variable: population
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A single linkage cluster analysis and corresponding dendrogram can
be obtained as follows:

proc cluster data=usair2 method=single simple ccc std out-
tree=single;
var temperature--rainydays;
id city;
Copy S02;
proc tree horizontal,
run;

The method= option in the proc statement is self-explanatory. The simple
option provides information about the distribution of the variables used
in the clustering. The ccc option includes the cubic clustering criterion in
the output, which may be useful for indicating number of groups (Sarle,
1983). The std option standardizes the clustering variables to zero mean
and unit variance, and the outtree= option names the data set that contains
the information to be used in the dendrogram.

The var statement specifies which variables are to be used to cluster
the observations and the id statement specifies the variable to be used to
label the observations in the printed output and in the dendrogram.
Variable(s) mentioned in a copy statement are included in the outtree data
set. Those mentioned in the var and id statements are included by default.

proc tree produces the dendrogram using the outtree data set. The
horizontal (hor) option specifies the orientation, which is vertical by default.
The data set to be used by proc tree is left implicit and thus will be the
most recently created data set (i.e., single).

The printed results are shown in Display 14.3 and the dendrogram in
Display 14.4. We see that Atlanta and Memphis are joined first to form
a two-member group. Then a number of other two-member groups are
produced. The first three-member group involves Pittsburgh, Seattle, and
Columbus.

First, in Display 14.3 information is provided about the distribution of
each variable in the data set. Of particular interest in the clustering context
is the bimodality index, which is the following function of skewness and
kurtosis:

(m3+1)

L _3m=1)
(n-2)(n-3)

b = (14.2)

ny



where m; is skewness and m; is kurtosis. Values of b greater than 0.55
(the value for a uniform population) may indicate bimodal or multimodal
marginal distributions. Here, both factories and population have values
very close to 0.55, suggesting possible clustering in the data.

The FREQ column of the cluster history simply gives the number of
observations in each cluster at each stage of the process. The next two
columns, SPRSQ (semipartial R-squared) and RSQ (R-squared) multiple
correlation, are defined as:

Semipartial R = B,,/T (14.3)

R =1-P/T (14.9
where B, = W,, — W, — W, with m being the cluster formed from fusing
clusters k& and /, and W, is the sum of the distances from each observation
in the cluster to the cluster mean; that is:

wo= 3 bl 1435)
iCy,

Finally, P, = ZW,, where summation is over the number of clusters at the
gth level of hierarchy.

The single linkage dendrogram in Display 14.4 displays the “chaining”
effect typical of this method of clustering. This phenomenon, although
somewhat difficult to define formally, refers to the tendency of the
technique to incorporate observations into existing clusters, rather than
to initiate new ones.

The CLUSTER Procedure
Single Linkage Cluster Analysis

Variable Mean Std Dev  Skewness Kurtosis Bimodality
temperature  55.5231 6.9762 0.9101 0.7883 0.4525
factories 395.6 330.9 1.9288 5.2670 0.5541
population 538.5 384.0 1.7536 4.3781 0.5341
windspeed 9.5077 1.3447 0.3096 0.2600 0.3120
rain 37.5908 11.0356 -0.6498 1.0217 0.3328

rainydays 115.7 23.9760 -0.1314 0.3393 0.2832




Eigenvalues of the Correlation Matrix

Eigenvalue Difference Proportion Cumulative
1 2.09248727 0.45164599 0.3487 0.3487
2 1.64084127 0.36576347 0.2735 0.6222
3 1.27507780 0.48191759 0.2125 0.8347
4 0.79316021 0.67485359 0.1322 0.9669
5 0.11830662 0.03817979 0.0197 0.9866
6 0.08012683 0.0134 1.0000

The data have been standardized to mean 0 and variance 1
Root-Mean-Square Total-Sample Standard Deviation = 1
Mean Distance Between Observations

38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12

Cluster History

—————————— Clusters Joined---------- FREQ SPRSQ
Atlanta Memphis 2 0.0007
Jacksonville New Orleans 2 0.0008
Des Moines Omaha 2 0.0009
Nashville Richmond 2 0.0009
Pittsburgh Seattle 2 0.0013
Louisville CL35 3 0.0023
Washington Baltimore 2 0.0015
Columbus CL34 3 0.0037
CL32 Indianapolis 3 0.0024
CL33 CL31 6 0.0240
CL38 CL29 8 0.0189
CL30 St. Louis 4 0.0044
CcL27 Kansas City 5 0.0040
CL26 CL28 13 0.0258
Little Rock CL25 14 0.0178
Minneapolis Milwaukee 2 0.0032
Hartford Providence 2 0.0033
CL24 Cincinnati 15 0.0104
cL21 CL36 17 0.0459
CL37 Miami 3 0.0050
CL20 CL22 19 0.0152
Denver Salt Lake City 2 0.0040
CL18 CL19 22 0.0906
CL16 Wilmington 23 0.0077
San Francisco CL17 3 0.0083
CL15 Albany 24 0.0184
CL13 Norfolk 25 0.0084

= 3.21916

Norm T
Min i

RSQ ERSQ CCC Dist e
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0.1709
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0.236
0.2459
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0.2823
0.3005
0.3191

0.322
0.3348
0.3638
0.3651
0.3775
0.3791
0.3837
0.3874
0.4093
0.4178
0.4191

0.421
0.4257
0.4297
0.4438
0.4786
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CL12
CL14
CL23
CL11
Dallas
CL8
CL6
CL5
CL4

Wichita
Albuquerque
Cleveland
Charleston
Houston
CL9

Buffalo
CL10

CL7

The CLUSTER Procedure

26 0.0457
4 0.0097
3 0.0100

27 0.0314
2 0.0078

31 0.0433
35 0.1533
37 0.0774

Single Linkage Cluster Analysis

Cluster History

CL3 Detroit
CL2 Philadelphia

.625 .
.615 .
.605 .
.574 .
.566
30 0.1032 .
1419
.266
.189

731 -6.1
.692 -7.6
.644  -7.3
.580 -8.2
471 -6.6

0.523
0.5328
0.5329
0.5662
0.5861
0.6433
0.6655
0.6869
0.6967

Norm T
Min i

FREQ SPRSQ RSQ ERSQ CCC Dist e

38 0.0584 .130
39 0.1302 .000

.296 -4.0 0.7372
.000 0.00 0.7914

Little Rock
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Resubmitting the SAS code with method=complete, outree=complete,
and omitting the simple option yields the printed results in Display 14.5
and the dendrogram in Display 14.6. Then, substituting average for
complete and resubmitting gives the results shown in Display 14.7 with
the corresponding dendrogram in Display 14.8.

The CLUSTER Procedure
Complete Linkage Cluster Analysis

Eigenvalues of the Correlation Matrix

Eigenvalue Difference  Proportion Cumulative
1 2.09248727 0.45164599 0.3487 0.3487
2 1.64084127 0.36576347 0.2735 0.6222
3 1.27507780 0.48191759 0.2125 0.8347
4 0.79316021 0.67485359 0.1322 0.9669
5 0.11830662 0.03817979 0.0197 0.9866
6 0.08012683 0.0134 1.0000

The data have been standardized to mean 0 and variance 1
Root-Mean-Square Total-Sample Standard Deviation = 1
Mean Distance Between Observations = 3.21916

Cluster History

Norm T

Max i

NCL ---------- Clusters Joined---------- FREQ SPRSQ RSQ ERSQ CCC Dist e
38 Atlanta Memphis 2 0.0007 .999 . . 0.1709
37 Jacksonville New Orleans 2 0.0008 .998 . . 0.1919
36 Des Moines Omaha 2 0.0009 .998 . . 0.2023
35 Nashville Richmond 2 0.0009 .997 . . 0.2041
34 Pittsburgh Seattle 2 0.0013 .995 . . 0.236
33 Washington Baltimore 2 0.0015 .994 . . 0.2577
32 Louisville Columbus 2 0.0021 .992 . . 0.3005
31 CL33 Indianapolis 3 0.0024 .989 . . 0.3391
30 Minneapolis Milwaukee 2 0.0032 .986 . . 0.3775
29 Hartford Providence 2 0.0033 .983 . . 0.3791
28 Kansas City St. Louis 2 0.0039 .979 . . 0.412
27 Little Rock CL35 3 0.0043 .975 . . 0.4132
26 CL32 Cincinnati 3 0.0042 .970 . . 0.4186
25 Denver Salt Lake City 2 0.0040 .967 . . 0.4191
24 CL37 Miami 3 0.0050 .962 . . 0.4217
23 Wilmington Albany 2 0.0045 .957 . . 0.4438
22 CL31 CL28 5 0.0045 .953 . . 0.4882
21 CL38 Norfolk 3 0.0073 .945 . . 0.5171
20 CL36 Wichita 3 0.0086 .937 . . 0.5593
19 Dallas Houston 2 0.0078 .929 . . 0.5861
18 CL29 CL23 4 0.0077 .921 . . 0.5936
17 CL25 Albuquerque 3 0.0090 .912 . . 0.6291




16 CL30 Cleveland 3 0.0100 .902 . . 0.6667
15 San Francisco CL17 4 0.0089 .893 . . 0.6696
14 CL26 CL34 5 0.0130 .880 . . 0.6935
13 CL27 CL21 6 0.0132 .867 . . 0.7053
12 CL16 Buffalo 4 0.0142 .853 . . 0.7463
11 Detroit Philadelphia 2 0.0142 .839 . . 0.7914
10 CL18 CL14 9 0.0200 .819 . . 0.8754
9 CL13 CL22 11 0.0354 .783 . . 0.938
8 CL10 Charleston 10 0.0198 .763 . . 1.0649
7 CL15 CL20 7 0.0562 .707 .731 -1.1 1.134
6 CL9 CL8 21 0.0537 .653 .692 -1.6 1.2268
5 CL24 CL19 5 0.0574 .596 .644 -1.9 1.2532
4 CL6 CL12 25 0.1199 .476 .580 -3.2 1.5542
3 CL4 CL5 30 0.1296 .347 .471 -3.2 1.8471
2 CL3 CL7 37 0.1722 .174 .296 -3.0 1.9209
1 CL2 CL11 39 0.1744 .000 .000 0.00 2.3861

Display 14.5
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We see in Display 14.5 that complete linkage clustering begins with the
same initial “fusions” of pairs of cities as single linkage, but eventually



begins to join different sets of observations. The corresponding dendrogram
in Display 14.6 shows a little more structure, although the number of groups
is difficult to assess both from the dendrogram and using the CCC criterion.

The CLUSTER Procedure
Average Linkage Cluster Analysis

Eigenvalues of the Correlation Matrix

Eigenvalue Difference  Proportion  Cumulative
1 2.09248727 0.45164599 0.3487 0.3487
2 1.64084127 0.36576347 0.2735 0.6222
3 1.27507780 0.48191759 0.2125 0.8347
4 0.79316021 0.67485359 0.1322 0.9669
5 0.11830662 0.03817979 0.0197 0.9866
6 0.08012683 0.0134 1.0000

The data have been standardized to mean 0 and variance 1
Root-Mean-Square Total-Sample Standard Deviation = 1
Root-Mean-Square Distance Between Observations = 3.464102

Cluster History

Norm T

RMS i

NCL ---------- Clusters Joined---------- FREQ SPRSQ RSQ ERSQ CCC Dist e
38 Atlanta Memphis 2 0.0007 .999 . . 0.1588
37 Jacksonville New Orleans 2 0.0008 .998 . . 0.1783
36 Des Moines Omaha 2 0.0009 .998 . . 0.188
35 Nashville Richmond 2 0.0009 .997 . . 0.1897
34 Pittsburgh Seattle 2 0.0013 .995 . . 0.2193
33 Washington Baltimore 2 0.0015 .994 . . 0.2395
32 Louisville CL35 3 0.0023 .992 . . 0.2721
31 CL33 Indianapolis 3 0.0024 .989 . . 0.2899
30 Columbus CL34 3 0.0037 .985 . . 0.342
29 Minneapolis Milwaukee 2 0.0032 .982 . . 0.3508
28 Hartford Providence 2 0.0033 .979 . . 0.3523
27 CL31 Kansas City 4 0.0041 .975 . . 0.3607
26 CL27 St. Louis 5 0.0042 .971 . . 0.3733
25 CL32 Cincinnati 4 0.0050 .965 . . 0.3849
24 CL37 Miami 3 0.0050 .961 . . 0.3862
23 Denver Salt Lake City 2 0.0040 .957 . . 0.3894
22 Wilmington Albany 2 0.0045 .952 . . 0.4124
21 CL38 Norfolk 3 0.0073 .945 . . 0.463
20 CL28 CL22 4 0.0077 .937 . . 0.4682
19 CL36 Wichita 3 0.0086 .929 . . 0.5032
18 Little Rock CL21 4 0.0082 .920 . . 0.5075




17 San Francisco CL23 3 0.0083 .912 . . 0.5228
16 CL20 CL30 7 0.0166 .896 . . 0.5368
15 Dallas Houston 2 0.0078 .888 . . 0.5446
14 CL18 CL25 8 0.0200 .868 . . 0.5529
13 CL29 Cleveland 3 0.0100 .858 . . 0.5608
12 CL17 Albuquerque 4 0.0097 .848 . . 0.5675
11 CL14 CL26 13 0.0347 .813 . . 0.6055
10 CL11 CL16 20 0.0476 .766 . . 0.6578
9 CL13 Buffalo 4 0.0142 .752 . . 0.6666
8 Detroit Philadelphia 2 0.0142 .737 . . 0.7355
7 CL10 Charleston 21 0.0277 .710 .731 -.97 0.8482
6 CL12 CL19 7 0.0562 .653 .692 -1.6 0.8873
5 CL7 CL24 24 0.0848 .569 .644 -2.9 0.9135
4 CL5 CL6 31 0.1810 .388 .580 -5.5 1.0514
3 CL4 CL9 35 0.1359 .252 .471 -5.3 1.0973
2 CL3 CL15 37 0.0774 .174 .296 -3.0 1.1161
1 CL2 CL8 39 0.1744 .000 .000 0.00 1.5159
Display 14.7

The average linkage results in Display 14.7 are more similar to those
of complete linkage than single linkage; and again, the dendrogram
(Display 14.8) suggests more evidence of structure, without making the
optimal number of groups obvious.

It is often useful to display the solutions given by a clustering technique
by plotting the data in the space of the first two or three principal
components and labeling the points by the cluster to which they have
been assigned. The number of groups that we should use for these data
is not clear from the previous analyses; but to illustrate, we will show the
four-group solution obtained from complete linkage.

proc tree data=complete out=clusters n=4 noprint;
copy city so2 temperature--rainydays;
run;

As well as producing a dendrogram, proc tree can also be used to create
a data set containing a variable, cluster, that indicates to which of a
specified number of clusters each observation belongs. The number of
clusters is specified with the n= option. The copy statement transfers the
named variables to this data set.

The mean vectors of the four groups are also useful in interpretation.
These are obtained as follows and the output shown in Display 14.9.
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proc sort data=clusters;
by cluster;

proc means data=clusters;
var temperature--rainydays;

by cluster;
run;
----------------------------------------- CLUSTER=1 ~--mmmmmmm o]
The MEANS Procedure
Variable N Mean Std Dev Minimum Maximum

temperature 25 53.6040000
factories 25 370.6000000
population 25 470.4400000
windspeed 25 9.3240000
rain 25 39.6728000
rainydays 25 125.8800000

5.0301160 43.5000000 61.6000000
233.7716122 35.0000000
243.8555037 71.0000000 905.0000000

1.3690873 6.5000000 12.4000000

5.6775101 25.9400000 49.1000000

18.7401530 99.0000000 166.0000000

1007.00




Variable N Mean Std Dev Minimum Maximum
temperature 5 69.4600000 3.5317135 66.2000000 75.5000000
factories 5 381.8000000 276.0556103 136.0000000 721.0000000
population 5 660.4000000 378.9364063 335.0000000 1233.00
windspeed 5 9.5800000 1.1798305 8.4000000 10.9000000
rain 5 51.0340000 9.4534084 35.9400000 59.8000000
rainydays 5 107.6000000 18.7962762 78.0000000 128.0000000
------------------------------------------ CLUSTER=3 ----m oo
Variable N Mean Std Dev Minimum Maximum
temperature 7 53.3571429 3.2572264 49.0000000 56.8000000
factories 7 214.2857143 168.3168780 46.0000000 454.0000000
population 7 353.7142857 195.8466358 176.0000000 716.0000000
windspeed 7 10.0142857 1.5879007 8.7000000 12.7000000
rain 7 21.1657143 9.5465436 7.7700000 30.8500000
rainydays 7 83.2857143 16.0801564 58.0000000 103.0000000
----------------------------------------- CLUSTER=4 ~ooc e
Variable N Mean Std Dev Minimum Maximum
temperature 52.2500000 3.3234019 49.9000000 54.6000000

2
factories 2 1378.00 444.0630586 1064.00 1692.00
population 2 1731.50 309.0056634 1513.00 1950.00
windspeed 2 9.8500000 0.3535534 9.6000000 10.1000000
rain 2 35.4450000 6.3427478 30.9600000 39.9300000
rainydays 2 122.0000000 9.8994949 115.0000000 129.0000000

Display 14.9

A plot of the first two principal components showing cluster member-
ship can be produced as follows. The result is shown in Display 14.10.

proc princomp data=clusters n=2 out=pcout noprint;
var temperature--rainydays;



proc gplot data=pcout;
symboll v="1";
symbol2 v='2";
symbol3 v='3";
symbol4 v="4";
plot prinl*prin2=cluster;
run;

Print

O' 33

CLUSTER

We see that this solution contains three clusters containing only a few
observations each, and is perhaps not ideal.
to use it and look at differences between the derived clusters in terms of
differences in air pollution as measured by their average SO, values. Box
plots of SO, values for each of the four clusters can be found as follows:

Display 14.10

proc boxplot data=clusters;
plot so2*cluster;
run;

The plot is shown in Display 14.11.

Nevertheless, we continue
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Display 14.11

More formally, we might test for a cluster difference in SO, values
using a one-way analysis of variance. Here we shall use proc glm for the
analysis. The output is shown in Display 14.12.

proc glm data=clusters;
class cluster;
model so2=cluster,;
run;

The GLM Procedure

Class Level Information

Class Levels Values

CLUSTER 4 1234

Number of observations 39




Sum of
Source DF Squares
Model 3 4710.15502
Error 35 10441.58857

Corrected Total 38 15151.74359

R-Square Coeff Var

0.310866 60.57718

Source DF Type | SS

CLUSTER 3 4710.155018

Source DF Type Il SS

CLUSTER 3 4710.155018

The GLM Procedure

Dependent Variable: so2

Mean Square F Value
1570.05167 5.26
298.33110

Root MSE so2 Mean
17.27226 28.51282
Mean Square F Value
1570.051673 5.26
Mean Square F Value
1570.051673 5.26

Pr>F

0.0042

Pr>F

0.0042

Pr>F

0.0042

Display 14.12

The analysis suggests that there is a significant difference in SO, levels in

the four clusters.

This probable difference might be investigated in more detail using a

suitable multiple comparison procedure (see Exercise 14.4).

Exercises

14.1 Explore some of the other clustering procedures available in SAS;

for example, proc modeclus, on the air pollution data.

14.2 Repeat the cluster analysis described in this chapter, but now

including the data on Chicago and Phoenix.

14.3 In the cluster analysis described in the text, the data were standard-
ized prior to clustering to unit standard deviation for each variable.
Repeat the analysis when the data are standardized by the range

instead.




14.4 Use a multiple comparison procedure to investigate which particular
clusters in the complete linkage solution differ in air pollution level.



Chapter 15

Discriminant Function
Analysis: Classifying
Tibetan Skulls

15.1 Description of Data

In the 1920s, Colonel Waddell collected 32 skulls in the southwestern and
eastern districts of Tibet. The collection comprised skulls of two types:

B Type A: 17 skulls from graves in Sikkim and neighbouring areas
of Tibet

B Type B: 15 skulls picked up on a battlefield in the Lhausa district
and believed to be those of native soldiers from the eastern
province of Kharis

It was postulated that Tibetans from Kharis might be survivors of a
particular fundamental human type, unrelated to the Mongolian and Indian
types that surrounded them.

A number of measurements were made on each skull and Display 15.1
shows five of these for each of the 32 skulls collected by Colonel Waddell.
(The data are given in Table 144 of SDS.) Of interest here is whether the
two types of skull can be accurately classified from the five measurements



recorded, and which of these five measurements are most informative in
this classification exercise.

Type A Skulls
X1 X2 X3 X4 X5

190.5 152.5 145.0 73.5 136.5
172.5 132.0 125.5 63.0 121.0
167.0 130.0 125.5 69.5 119.5
169.5 150.5 133.5 64.5 128.0
175.0 138.5 126.0 775 135.5
177.5 142.5 142.5 715 131.0
179.5 142.5 127.5 70.5 1345
179.5 138.0 133.5 735 132.5
173.5 135.5 130.5 70.0 133.5
162.5 139.0 131.0 62.0 126.0
178.5 135.0 136.0 71.0 124.0
171.5 148.5 132.5 65.0 146.5
180.5 139.0 132.0 74.5 134.5
183.0 149.0 121.5 76.5 142.0
169.5 130.0 131.0 68.0 119.0
172.0 140.0 136.0 70.5 133.5
170.0 126.5 134.5 66.0 118.5

Type B Skulls
X1 X2 X3 X4 X5

182.5 136.0 138.5 76.0 134.0
179.5 135.0 128.5 74.0 132.0
191.0 140.5 140.5 72.5 131.5
184.5 141.5 134.5 76.5 141.5
181.0 142.0 132.5 79.0 136.5
173.5 136.5 126.0 715 136.5
188.5 130.0 143.0 79.5 136.0
175.0 153.0 130.0 76.5 142.0
196.0 142.5 123.5 76.0 134.0
200.0 139.5 143.5 82.5 146.0
185.0 134.5 140.0 81.5 137.0




Type B Skulls (Continued)
X1 X2 X3 X4 X5

174.5 143.5 132.5 74.0 136.5
195.5 144.0 138.5 78.5 144.0
197.0 1315 135.0 80.5 139.0
182.5 131.0 135.0 68.5 136.0

Note: X1 = greatest length of skull; X2 =
greatest horizontal breadth of skull;
X3 = height of skull; X4 = upper face
height; and X5 = face breadth,
between outermost points of cheek
bones.

Display 15.1

15.2 Discriminant Function Analysis

Discriminant analysis is concerned with deriving helpful rules for allocating
observations to one or another of a set of a priori defined classes in some
optimal way, using the information provided by a series of measurements
made of each sample member. The technique is used in situations in
which the investigator has one set of observations, the training sample,
for which group membership is known with certainty a priori, and a
second set, the test sample, consisting of the observations for which group
membership is unknown and which we require to allocate to one of the
known groups with as few misclassifications as possible.

An initial question that might be asked is: since the members of the
training sample can be classified with certainty, why not apply the pro-
cedure used in their classification to the test sample? Reasons are not
difficult to find. In medicine, for example, it might be possible to diagnose
a particular condition with certainty only as a result of a post-mortem
examination. Clearly, for patients still alive and in need of treatment, a
different diagnostic procedure would be useful!

Several methods for discriminant analysis are available, but here we
concentrate on the one proposed by Fisher (1936) as a method for
classifying an observation into one of two possible groups using mea-
surements X, X,, -+, X, Fisher’s approach to the problem was to seek a
linear function z of the variables:



z=a,x tax,+t - +ax

such that the ratio of the between-groups variance of z to its within-group
variance is maximized. This implies that the coefficients a' = [a;, -, a,]
have to be chosen so that V, given by:

V= === (15.2)

is maximized. In Eq. (15.2), § is the pooled within-groups covariance
matrix; that is

(n,=1)8,+(n,-1)S,

S =
n,+n,—2

(15.3)

where 8, and 8, are the covariance matrices of the two groups, and 7,
and n, the group sample sizes. The matrix B in Eq. (15.2) is the covariance
matrix of the group means.

The vector a that maximizes V is given by the solution of the equation:

(B-AS) a=0 (15.4)

In the two-group situation, the single solution can be shown to be:

a=8"(x1—x2) (15.5)

where x, and x, are the mean vectors of the measurements for the
observations in each group.
The assumptions under which Fisher’s method is optimal are

B The data in both groups have a multivariate normal distribution.
B The covariance matrices of each group are the same.

If the covariance matrices are not the same, but the data are multivariate
normal, a quadratic discriminant function may be required. If the data are
not multivariate normal, an alternative such as logistic discrimination (Everitt
and Dunn [2001]D) may be more useful, although Fisher’s method is known
to be relatively robust against departures from normality (Hand [1981)]).

Assuming z; > z,, where z; and z, are the discriminant function score
means in each group, the classification rule for an observation with
discriminant score z; is:



Assign to group 1 if z, — z, < 0,
Assign to group 2 if z;, — z. 2 0,

where

_ z1+ 2>
== (15.6)

Cc
(This rule assumes that the prior probabilities of belonging to each group
are the same.) Subsets of variables most useful for discrimination can be
identified using procedures similar to the stepwise methods described in
Chapter 4.

A question of some importance about a discriminant function is: how
well does it perform? One possible method of evaluating performance
would be to apply the derived classification rule to the training set data
and calculate the misclassification rate; this is known as the resubstitution
estimate. However, estimating misclassifications rates in this way, although
simple, is known in general to be optimistic (in some cases wildly so).
Better estimates of misclassification rates in discriminant analysis can be
defined in a variety of ways (see Hand [1997]). One method that is
commonly used is the so-called leaving one out method, in which the
discriminant function is first derived from only #—1 sample members, and
then used to classify the observation not included. The procedure is
repeated n times, each time omitting a different observation.

15.3 Analysis Using SAS

The data from Display 15.1 can be read in as follows:

data skulls;
infile 'n:\handbook2\datasets\tibetan.dat' expandtabs;
input length width height faceheight facewidth;
if _n_ < 18 then type="A";
else type='B’;
run;

A parametric discriminant analysis can be specified as follows:

proc discrim data=skulls pool=test simple manova wcov cross
validate;

class type;
var length--facewidth;
run;



The option pool=test provides a test of the equality of the within-group
covariance matrices. If the test is significant beyond a level specified by
slpool, then a quadratic rather than a linear discriminant function is derived.
The default value of slpool is 0.1,

The manova option provides a test of the equality of the mean vectors
of the two groups. Clearly, if there is no difference, a discriminant analysis
is mostly a waste of time.

The simple option provides useful summary statistics, both overall and
within groups; wcov gives the within-group covariance matrices, the cross-
validate option is discussed later in the chapter; the class statement names
the variable that defines the groups; and the var statement names the
variables to be used to form the discriminant function.

The output is shown in Display 15.2. The results for the test of the
equality of the within-group covariance matrices are shown in Display 15.2.
The chi-squared test of the equality of the two covariance matrices is not
significant at the 0.1 level and thus a linear discriminant function will be
derived. The results of the multivariate analysis of variance are also shown
in Display 15.2. Because there are only two groups here, all four test criteria
lead to the same F-value, which is significant well beyond the 5% level.

The results defining the discriminant function are given in Display 15.2.
The two sets of coefficients given need to be subtracted to give the
discriminant function in the form described in the previous chapter section.
This leads to:

a = [-0.0893, 0.1158, 0.0052, —0.1772, —0.1774] (15.7)

The group means on the discriminant function are z, = -28.713, z, =
—32.214, leading to a value of z, = —30.463.

Thus, for example, a skull having a vector of measurements x' = [185,
142, 130, 72, 133] has a discriminant score of —30.07, and z, — 2z, in this
case is therefore 0.39 and the skull should be assigned to group 1.

The DISCRIM Procedure

Observations 32 DF Total 31
Variables 5 DF Within Classes 30
Classes 2 DF Between Classes 1

Class Level Information

Variable Prior
type Name Frequency Weight Proportion Probability
A A 17 17.0000 0.531250 0.500000

B B 15 15.0000 0.468750 0.500000




The DISCRIM Procedure
Within-Class Covariance Matrices

type = A,

width

25.22242647
57.80514706
11.87500000

7.51930147
48.05514706

DF = 16

height

12.39062500
11.87500000
36.09375000
-0.31250000

1.40625000

faceheight

facewidth

22.15441176 27.97242647

7.51930147 48.05514706
-0.31250000
20.93566176 16.76930147
16.76930147 66.21139706

1.40625000

type = B,

width

-9.52261905
37.35238095
-11.26309524
0.70476190
9.46428571

height

22.73690476
-11.26309524
36.31666667
10.72380952
7.19642857

faceheight

facewidth

17.79404762 11.12500000
0.70476190
10.72380952
15.30238095
8.66071429 17.96428571

9.46428571
7.19642857
8.66071429

Variable length
length 45.52941176
width 25.22242647
height 12.39062500
faceheight 22.15441176
facewidth 27.97242647
Variable length
length 74.42380952
width -9.52261905
height 22.73690476
faceheight 17.79404762
facewidth 11.12500000
Variable N
length 32
width 32
height 32
faceheight 32
facewidth 32

The DISCRIM Procedure
Simple Statistics

Total-Sample

Sum Mean Variance
5758 179.93750 87.70565
4450 139.06250 46.80242
4266 133.29688 36.99773
2334 72.93750 29.06048
4279 133.70313 55.41709

Standard
Deviation

9.3651
6.8412
6.0826
5.3908
7.4443




type = A

Standard
Variable N Sum Mean Variance Deviation
length 17 2972 174.82353 45.52941 6.7475
width 17 2369 139.35294 57.80515 7.6030
height 17 2244 132.00000 36.09375 6.0078
faceheight 17 1187 69.82353 20.93566 4.5756
facewidth 17 2216 130.35294 66.21140 8.1370

type = B

Standard
Variable N Sum Mean Variance Deviation
length 15 2786 185.73333 74.42381 8.6269
width 15 2081 138.73333 37.35238 6.1117
height 15 2022 134.76667 36.31667 6.0263
faceheight 15 1147 76.46667 15.30238 3.9118
facewidth 15 2063 137.50000 17.96429 4.2384

Within Covariance Matrix Information

Natural Log of the

Covariance Determinant of the
type Matrix Rank Covariance Matrix
A 5 16.16370
B 5 15.77333
Pooled 5 16.72724

The DISCRIM Procedure
Test of Homogeneity of Within Covariance Matrices

Notation: K = Number of Groups
P = Number of Variables
N = Total Number of Observations - Number of Groups

N(i) = Number of Observations in the i'th Group - 1




. N(i)/2
| | |within SS Matrix (i)|

V U
N/2
|Pooled SS Matrix|
2
[ 1 1 | 2P +3P -1
RHO = 1.0-| SUM ----- - --- | e
| N() N | 6 (P+1) (K-1)
DF = .5(K-1)P(P+1)
[T PN/2 1
| N v I
Under the null hypothesis: -2 RHO In | ------mmmmmmmmmeee- |
| . PN(i)/2 |
L 1 N@ _
is distributed approximately as Chi-Square(DF).
Chi-Square DF Pr > ChiSq
18.370512 15 0.2437

Since the Chi-Square value is not significant at the 0.1 level, a pooled
covariance matrix will be used in the discriminant function.

Reference: Morrison, D.F. (1976) Multivariate Statistical

Methods p252.

The DISCRIM Procedure
Pairwise Generalized Squared Distances Between Groups
2 -1
D (il]j) = (X - X)' COV (X - X)
i i i i

Generalized Squared Distance to type

From

type A B
A 0 3.50144
B 3.50144 0




The DISCRIM Procedure

Multivariate Statistics and Exact F Statistics

Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.51811582 4.84 5 26 0.0029
Pillai's Trace 0.48188418 4.84 5 26 0.0029
Hotelling-Lawley Trace 0.93007040 4.84 5 26 0.0029
Roy's Greatest Root 0.93007040 4.84 5 26 0.0029
Linear Discriminant Function
-1 -1

Constant = -.5 X' COV X Coefficient Vector = COV X
j j j

Linear Discriminant Function for type

Variable A B
Constant -514.26257 -544.72605
length 1.46831 1.55762
width 2.36106 2.20528
height 2.75219 2.74696
faceheight 0.77530 0.95250
facewidth 0.19475 0.37216

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.SKULLS
Resubstitution Summary using Linear Discriminant Function

Generalized Squared Distance Function
2 -1
D (X) =(X-X ) COV (X-X)
i j j
Posterior Probability of Membership in Each type
2 2

Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))
i k k




Number of Observations and Percent Classified into type

From

type A B Total

A 14 3 17
82.35 17.65 100.00

B 3 12 15
20.00 80.00 100.00

Total 17 15 32
53.13 46.88 100.00

Priors 0.5 0.5

Error Count Estimates for type

A B Total

Rate 0.1765 0.2000 0.1882
Priors  0.5000 0.5000

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.SKULLS
Cross-validation Summary using Linear Discriminant Function

Generalized Squared Distance Function

2 -1
D (X) = (X-X ) COV (X-X )
j (X)i Xy (X)j

Posterior Probability of Membership in Each type
2 2

Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))
j K k




Number of Observations and Percent Classified into type

From

type A B Total

A 12 5 17
70.59 29.41 100.00

B 6 9 15
40.00 60.00 100.00

Total 8 14 32
56.25 43.75 100.00

Priors 0.5 0.5

Error Count Estimates for type
A B Total

Rate 0.2941 0.4000 0.3471
Priors  0.5000 0.5000

Display 15.2

The resubstitution approach to estimating the misclassification rate of
the derived allocation rule is seen from Display 15.2 to be 18.82%. But
the leaving-out-one (cross-validation) approach increases this to a more
realistic 34.71%.

To identify the most important variables for discrimination, proc step-
disc can be used as follows. The output is shown in Display 15.3.

proc stepdisc data=skulls sle=.05 sls=.05;
class type;
var length--facewidth;

run;

The significance levels required for variables to enter and be retained
are set with the sle (slentry) and sls (slstay) options, respectively. The
default value for both is p=.15. By default, a “stepwise” procedure is used
(other options can be specified using a method= statement). Variables are
chosen to enter or leave the discriminant function according to one of
two criteria:



B The significance level of an F-test from an analysis of covariance,
where the variables already chosen act as covariates and the
variable under consideration is the dependent variable.

B The squared multiple correlation for predicting the variable under
consideration from the class variable controlling for the effects of
the variables already chosen.

The significance level and the squared partial correlation criteria select
variables in the same order, although they may select different numbers
of variables. Increasing the sample size tends to increase the number of
variables selected when using significance levels, but has little effect on
the number selected when using squared partial correlations.

At step 1 in Display 15.3, the variable faceheight has the highest K2
value and is the first variable selected. At Step 2, none of the partial R?
values of the other variables meet the criterion for inclusion and the
process therefore ends. The tolerance shown for each variable is one
minus the squared multiple correlation of the variable with the other
variables already selected. A variable can only be entered if its tolerance
is above a value specified in the singular statement. The value set by
default is 1.0E-8.

The STEPDISC Procedure

The Method for Selecting Variables is STEPWISE

Observations 32 Variable(s) in the Analysis 5
Class Levels 2 Variable(s) will be Included 0
Significance Level to Enter 0.05
Significance Level to Stay 0.05

Class Level Information

Variable
Type Name Frequency Weight Proportion
A A 17 17.0000 0.531250

B B 15 15.0000 0.468750




The STEPDISC Procedure
Stepwise Selection: Step 1

Statistics for Entry, DF = 1, 30

Variable R-Square F Value Pr >F Tolerance
length 0.3488 16.07 0.0004 1.0000
width 0.0021 0.06 0.8029 1.0000
height 0.0532 1.69 0.2041 1.0000
faceheight 0.3904 19.21 0.0001 1.0000
facewidth 0.2369 9.32 0.0047 1.0000

Variable faceheight will be entered.
Variable(s) that have been Entered
faceheight

Multivariate Statistics

Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.609634 19.21 1 30 0.0001
Pillai's Trace 0.390366 9.21 1 30 0.0001

Average Squared Canonical Correlation 0.390366

The STEPDISC Procedure
Stepwise Selection: Step 2

Statistics for Removal, DF = 1, 30
Variable R-Square F Value Pr>F
faceheight 0.3904 19.21 0.0001

No variables can be removed.

Statistics for Entry, DF = 1, 29

Partial
Variable R-Square F Value Pr > F Tolerance
length 0.0541 1.66 0.2081 0.4304
width 0.0162 0.48 0.4945 0.9927
height 0.0047 0.14 0.7135 0.9177

facewidth 0.0271 0.81 0.3763 0.6190




No variables can be entered.
No further steps are possible.
The STEPDISC Procedure

Stepwise Selection Summary

Averaged

Squared
Number Partial F Pr > Wilks' Pr < Canonical Pr >
Step In Entered Removed R-Square Value F Lambda Lambda Correlation ASCC
1 1 faceheight 0.3904 19.21 0.0001 0.60963388 0.0001 0.39036612 0.0001

Display 15.3

Details of the “discriminant function” using only faceheight are found
as follows:

proc discrim data=skulls crossvalidate;
class type;
var faceheight;

run;

The output is shown in Display 15.4. Here, the coefficients of faceheight
in each class are simply the mean of the class on faceheight divided by
the pooled within-group variance of the variable. The resubstitution and
leaving one out methods of estimating the misclassification rate give the
same value of 24.71%.

The DISCRIM Procedure

Observations 32 DF Total 31
Variables 1 DF Within Classes 30
Classes 2 DF Between Classes 1

Class Level Information

Variable Prior
type Name Frequency Weight Proportion Probability
A A 17 17.0000 0.531250 0.500000

B B 15 5.0000 0.468750 0.500000




Pooled Covariance Matrix Information

Natural Log of the

Covariance Determinant of the

Matrix Rank Covariance Matrix

1 2.90727

The DISCRIM Procedure
Pairwise Generalized Squared Distances Between Groups
2 -1
D (il]j) = (X - X)' COV (X - X)
i j i j

Generalized Squared Distance to type

From

type A B
A 0 2.41065
B 2.41065 0

Linear Discriminant Function

-1 -1
Constant = -.5 X' COV X Coefficient Vector = COV X
j j j

Linear Discriminant Function for type

Variable A B
Constant -133.15615 -159.69891
faceheight 3.81408 4.17695

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.SKULLS
Resubstitution Summary using Linear Discriminant Function

Generalized Squared Distance Function
2 -1

D (X) = (X-X )' COV (X-X )
j j j




Posterior Probability of Membership in Each type
2 2
Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))
i k k

Number of Observations and Percent Classified into type

From

type A B Total

A 12 5 17
70.59 29.41 100.00

B 3 12 15
20.00 80.00 100.00

Total 15 17 32
46.88 53.13 100.00

Priors 0.5 0.5

Error Count Estimates for type
A B Total

Rate 0.2941 0.2000 0.2471
Priors  0.5000 0.5000

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.SKULLS
Cross-validation Summary using Linear Discriminant Function

Generalized Squared Distance Function

2 -1
D (X) = (X-X ) COV (X-X )
i (X)i Xy (X)j

Posterior Probability of Membership in Each type
2 2

Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))
i k k




Number of Observations and Percent Classified into type

From

type A B Total

A 12 5 17
70.59 29.41 100.00

B 3 12 15
20.00 80.00 100.00

Total 15 17 32
46.88 53.13 100.00

Priors 0.5 0.5

Error Count Estimates for type
A B Total

Rate 0.2941 0.2000 0.2471
Priors  0.5000 0.5000

Display 15.4

Exercises

15.1 Use the posterr options in proc discrim to estimate error rates for
the discriminant functions derived for the skull data. Compare these
with those given in Displays 15.2 and 15.4.

15.2 Investigate the use of the nonparametric discriminant methods avail-
able in proc discrim for the skull data. Compare the results with
those for the simple linear discriminant function given in the text.



Chapter 16

Correspondence
Analysis: Smoking and
Motherhood, Sex and the
Single Girl, and European
Stereotypes

16.1 Description of Data

Three sets of data are considered in this chapter, all of which arise in the
form of two-dimensional contingency tables as met previously in Chapter
3. The three data sets are given in Displays 16.1, 16.2, and 16.3; details
are as follows.

B Display 16.1: These data involve the association between a girl’s
age and her relationship with her boyfriend.

B Display 16.2: These data show the distribution of birth outcomes
by age of mother, length of gestation, and whether or not the
mother smoked during the prenatal period. We consider the data
as a two-dimensional contingency table with four row categories
and four column categories.



B Display 16.3: These data were obtained by asking a large number
of people in the UK. which of 13 characteristics they would
associate with the nationals of the U.K.’s partner countries in the
European Community. Entries in the table give the percentages
of respondents agreeing that the nationals of a particular country
possess the particular characteristic.

Age Group
Under 16 16-17 17-18 18-19 19-20
No boyfriend 21 21 14 13 8
Boyfriend/No sexual intercourse 8 9 6 8 2
Boyfriend/Sexual intercourse 2 3 4 10 10
Display 16.1
Premature Full-Term

Died in  Alive at Died in  Alive at
Ist year year 1 Ist year year 1

Young mothers

Non-smokers 50 315 24 4012

Smokers 9 40 6 459
Old mothers

Non-smokers 41 147 14 1594

Smokers 4 11 1 124

Display 16.2



Characteristic

France 37 29 21

Spain 7 14 8
Italy 30 12 19
UK. 9 14 4
Ireland 1 7 1
Holland 5 4 2
Germany 4 48 1

Country 1 2 3 4 5 6 7 8 9 10

19 10 10 8 8 6 6
927 7 3 7 323
10 20 712 6 5 13

6 27 12 2 13 26 16
16 30 3 10 9 5 11
215 2 013 24 1
123 9 211 41 1

11

5
12
10
29
22
28
38

RN =N

13

N W =

25
27

)}

Note: Characteristics: (1) stylish; (2) arrogant; (3) sexy; (4)
devious; (5) easy-going; (6) greedy; (7) cowardly; (8)
boring; (9) efficient; (10) lazy; (11) hard working; (12)
clever; (13) courageous.

16.2 Displaying Contingency Table Data Graphically

Display 16.3

Using Correspondence Analysis

Correspondence analysis is a technique for displaying the associations
among a set of categorical variables in a type of scatterplot or map, thus
allowing a visual examination of the structure or pattern of these associ-
ations. A correspondence analysis should ideally be seen as an extremely
useful supplement to, rather than a replacement for, the more formal
inferential procedures generally used with categorical data (see Chapters
3 and 8). The aim when using correspondence analysis is nicely sum-

marized in the following quotation from Greenacre (1992):

An important aspect of correspondence analysis which distin-
guishes it from more conventional statistical methods is that it
is not a confirmatory technique, trying to prove a hypothesis,
but rather an exploratory technique, trying to reveal the data
content. One can say that it serves as a window onto the data,
allowing researchers easier access to their numerical results and
facilitating discussion of the data and possibly generating

hypothesis which can be formally tested at a later stage.




Mathematically, correspondence analysis can be regarded as either:

B A method for decomposing the chi-squared statistic for a contin-
gency table into components corresponding to different dimensions
of the heterogeneity between its rows and columns, or

B A method for simultaneously assigning a scale to rows and a separate
scale to columns so as to maximize the correlation between the
resulting pair of variables.

Quintessentially, however, correspondence analysis is a technique for
displaying multivariate categorical data graphically, by deriving coordinate
values to represent the categories of the variables involved, which can
then be plotted to provide a “picture” of the data.

In the case of two categorical variables forming a two-dimensional
contingency table, the required coordinates are obtained from the singular
value decomposition (Everitt and Dunn [2001]) of a matrix E with elements
e; given by:

e. = Dy = DLy (16.1)

" Jbeps

where p; = n,;/n with n; being the number of observations in the ijth
cell of the contingency table and 7 the total number of observations. The
total number of observations in row i is represented by 7, and the

. P . nl‘+ n+‘
corresponding value for column j is 7, Finally p,, == and p,; =—;l-’. The
elements of E can be written in terms of the familiar “observed” (O) and

“expected” (E) nomenclature used for contingency tables as:

1 O-E
e

R

Written in this way, it is clear that the terms are a form of residual
from fitting the independence model to the data.

The singular value decomposition of E consists of finding matrices U,
V, and A (diagonal) such that:

(16.2)

E = UAV' (16.3)

where U contains the eigenvectors of EE' and V the eigenvectors of E'E.
The diagonal matrix A contains the ranked singular values §, so that &7
are the eigenvalues (in decreasing) order of either EE' or E’E.



The coordinate of the ith row category on the kth coordinate axis is
given by 8,1,/ /p,., and the coordinate of the jth column category on
the same axis is given by &,v;,/ A/p_ﬂ, where uy, i =1 - rand v, j =1

- ¢ are, respectively, the elements of the kth column of U and the kth
column of V.

To represent the table fully requires at most R = min(7, ¢) — 1
dimensions, where 7 and ¢ are the number of rows and columns of the
table. R is the rank of the matrix E. The eigenvalues, 7, are such that:

R r c 2
Trace (EE') = z 5 = Z Zefj =X (16.4)

k=1 i=1j=1 "
where X? is the usual chi-squared test statistic for independence. In the
context of correspondence analysis, X*/# is known as inertia. Correspon-
dence analysis produces a graphical display of the contingency table from
the columns of U and V, in most cases from the first two columns, u,,
u,, v,, v,, of each, since these give the “best” two-dimensional represen-
tation. It can be shown that the first two coordinates give the following

approximation to the e;:

€y = Uplp + Uplp (16.5)

so that a large positive residual corresponds to u, and v, for & = 1 or
2, being large and of the same sign. A large negative residual corre-
sponds to u, and vy, being large and of opposite sign for each value
of k. When u, and v, are small and their signs are not consistent for
each k, the corresponding residual term will be small. The adequacy
of the representation produced by the first two coordinates can be
informally assessed by calculating the percentages of the inertia they
account for; that is

8+,
Percentage mmertia = ——

R
35
k=1

(16.6)

Values of 60% and above usually mean that the two-dimensional solution
gives a reasonable account of the structure in the table.



16.3 Analysis Using SAS
16.3.1 Boyfriends

Assuming that the 15 cell counts shown in Display 16.1 are in an ASCII
file, tab separated, a suitable data set can be created as follows:

data boyfriends;
infile 'n:\handbook2\datasets\boyfriends.dat' expandtabs;
input cl1-c5;
if _n_=1 then rowid="NoBoy’;
if _n_=2 then rowid="NoSex’;
if _n_=3 then rowid='Both’;
label cl='under 16' ¢2='16-17' ¢3="17-18"' c4="18-19'
c5="19-20";
run;

The data are already in the form of a contingency table and can be
simply read into a set of variables representing the columns of the table.
The label statement is used to assign informative labels to these variables.
More informative variable names could also have been used, but labels
are more flexible in that they may begin with numbers and include spaces.
It is also useful to label the rows, and here the SAS automatic variable
_n_is used to set the values of a character variable rowid.

A correspondence analysis of this table can be performed as follows:

proc corresp data=boyfriends out=coor;
var cl-c5;
id rowid;

run;

The out= option names the data set that will contain the coordinates of
the solution. By default, two dimensions are used and the dimens= option
is used to specify an alternative.

The var statement specifies the variables that represent the columns
of the contingency table, and the id statement specifies a variable to
be used to label the rows. The latter is optional, but without it the
rows will simply be labelled row1, row2, etc. The output appears in
Display 16.4.



Singular
Value

0.37596
0.08297

Total

Principal
Inertia

0.14135
0.00688

0.14823

The CORRESP Procedure

Inertia and Chi-Square Decomposition

95

T S S S

Chi- Cumulative
Square Percent Percent 19 38 57 76
19.6473 95.36 95.36 *rEr*
0.9569 4.64 100.00 *

20.6042 100.00

Degrees of Freedom = 8

Partial Contributions to Inertia for the Row Points

Row Coordinates
Diml Dim2
NoBoy -0.1933 -0.0610
NoSex -0.1924 0.1425
Both 0.7322 -0.0002

Summary Statistics for the Row Points

Quality Mass Inertia

NoBoy 1.0000 0.5540 0.1536
NoSex 1.0000 0.2374 0.0918
Both 1.0000 0.2086 0.7546

Diml Dim2

NoBoy 0.1465 0.2996
NoSex 0.0622 0.7004
Both 0.7914 0.0000

Indices of the Coordinates that Contribute Most to Inertia for the Row Points

Dim1l Dim2 Best

NoBoy 2 2 2
NoSex
Both 1 0 1

o
N
N




Squared Cosines for the Row Points

Dim1 Dim2

NoBoy 0.9094 0.0906
NoSex 0.6456 0.3544
Both 1.0000 0.0000

Column Coordinates

Dim1 Dim2

under 16 -0.3547 -0.0550

16-17 -0.2897 0.0003
17-18 -0.1033 0.0001
18-19 0.2806 0.1342
19-20 0.7169 -0.1234

The CORRESP Procedure

Summary Statistics for the Column Points

Quality Mass Inertia

under 16 1.0000 0.2230 0.1939

16-17 1.0000 0.2374 0.1344
17-18 1.0000 0.1727 0.0124
18-19 1.0000 0.2230 0.1455
19-20 1.0000 0.1439 0.5137

Partial Contributions to Inertia for the Column Points

Diml Dim2

under 16 0.1985 0.0981

16-17 0.1410 0.0000
17-18 0.0130 0.0000
18-19 0.1242 0.5837

19-20 0.5232 0.3183




Indices of the Coordinates that Contribute Most to Inertia for the
Column Points

Diml Dim2 Best

under 16 1 0 1
16-17 1 0 1
17-18 0 0 1
18-19 0 2 2
19-20 1 1 1

Squared Cosines for the Column Points

Diml Dim2

under 16 0.9765 0.0235

16-17 1.0000 0.0000
17-18 1.0000 0.0000
18-19 0.8137 0.1863
19-20 0.9712 0.0288
Display 16.4

To produce a plot of the results, a built-in SAS macro, plotit, can be used:
%plotit(data=coor,datatype=corresp,color=black,colors=black);

The resulting plot is shown in Display 16.5. Displaying the categories of
a contingency table in a scatterplot in this way involves the concept of
distance between the percentage profiles of row or column categories.
The distance measure used in a correspondence analysis is known as the
chi-squared distance. The calculation of this distance can be illustrated
using the proportions of girls in age groups 1 and 2 for each relationship
type in Display 16.1.

Chi-squared distance =

(0.68-0.64)° | (0.26-0.27) , (0.06=0.09)*_
0.55 0.24 0.21

0.09 (16.7)

This is similar to ordinary “straight line” or Pythagorean distance, but
differs by dividing each term by the corresponding average proportion.



In this way, the procedure effectively compensates for the different levels
of occurrence of the categories. (More formally, the chance of the chi-
squared distance for measuring relationships between profiles can be
justified as a way of standardizing variables under a multinomial or Poisson
distributional assumption; see Greenacre [1992].)

The complete set of chi-squared distances for all pairs of the five age
groups, calculated as shown above, can be arranged in a matrix as follows:

1 2 3 4 5

0 0
1 50.00 5
2 00.09 0.00 0

0 0
3 [§0.06 0.19 0.00 0
4 50.66 0.59 0.41 0.00 E
5 01.07 1.01 0.83 0.51 0.00 O

The points representing the age groups in Display 16.5 give the two-
dimensional representation of these distances, the Euclidean distance,
between two points representing the chi-square distance between the
corresponding age groups. (Similarly for the point representing type of
relationship.) For a contingency table with » rows and ¢ columns, it can
be shown that the chi-squared distances can be represented exactly in
min{r — 1, ¢ — 1} dimensions; here, since » = 3 and ¢ = 5, this means that
the coordinates in Display 16.5 will lead to Euclidean distances that are
identical to the chi-squared distances given above. For example, the
correspondence analysis coordinates for age groups 1 and 2 taken from
Display 16.4 are

Age Group X y
1 -0.355 -0.055
2 -0.290 0.000

The corresponding Euclidean distance is calculated as:

J(=0.355 +0.290)* + (= 0.055 — 0.000)°

that is, a value of 0.09 — agreeing with the chi-squared distance between
the two age groups given previously (Eq. (16.7).

Of most interest in correspondence analysis solutions such as that
graphed in Display 16.5 is the joint interpretation of the points representing



the row and column categories. It can be shown that row and column
coordinates that are large and of the same sign correspond to a large
positive residual term in the contingency table. Row and column coor-
dinates that are large but of opposite signs imply a cell in the table with
a large megative residual. Finally, small coordinate values close to the
origin correspond to small residuals. In Display 16.5, for example, age
group 5 and boyfriend/sexual intercourse both have large positive coor-
dinate values on the first dimension. Consequently, the corresponding cell
in the table will have a large positive residual. Again, age group 5 and
boyfriend/no sexual intercourse have coordinate values with opposite
signs on both dimensions, implying a negative residual for the correspond-
ing cell in the table.

T T T T T T

e 025 T

S

2 * NoSex * 18—19

N 16—17

S 0.00 tunder 16 * * 17—-18 Both * -

@ * * NoBoy

5 19-20

s

—0.25+ +
I I I I I I
—0.50 —-0.25 0.00 0.25 0.50 0.75

Dimension 1 (95.36%)

Display 16.5

16.3.2 Smoking and Motherhood

Assuming the cell counts of Display 16.2 are in an ASCII file births.dat
and tab separated, they may be read in as follows:

data births;
infile 'n:\handbook2\datasets\births.dat' expandtabs;
input cl-c4;
length rowid $12.;
select(_n_);
when(1) rowid="Young NS';
when(2) rowid="Young Smoker’;



when(3) rowid="0Old NS';
when(4) rowid="'0Old Smoker";
end;
label c1="Prem Died' c2="Prem Alive' ¢3='FT Died'
c4="FT Alive';
run;

As with the previous example, the data are read into a set of variables
corresponding to the columns of the contingency table, and labels assigned
to them. The character variable rowid is assigned appropriate values,
using the automatic SAS variable _n_ to label the rows. This is explicitly
declared as a 12-character variable with the length statement. Where a
character variable is assigned values as part of the data step, rather than
reading them from a data file, the default length is determined from its
first occurrence. In this example, that would have been from rowid="Young
NS'; and its length would have been 8 with longer values truncated. This
example also shows the use of the select group as an alternative to
multiple if-then statements. The expression in parentheses in the select
statement is compared to those in the when statements and the rowid
variable set accordingly. The end statement terminates the select group.

The correspondence analysis and plot are produced in the same way
as for the first example. The output is shown in Display 16.6 and the
plot in Display 16.7.

proc corresp data=hirths out=coor;
var cl-c4,
id rowid;

run;

%plotit(data=coor,datatype=corresp,color=black,colors=black);
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Inertia and Chi-Square Decomposition

Singular Principal Chi- Cumulative
Value Inertia Square Percent Percent 18 36 54 72 90
B i Th T R S S
0.05032 0.00253 17.3467 90.78 90.78
0.01562 0.00024 1.6708 8.74 99.52 **
0.00365 0.00001 0.0914 0.48 100.00

Total 0.00279 19.1090 100.00

Degrees of Freedom = 9




Row Coordinates

Dim1l Dim2
Young NS -0.0370 -0.0019
Young Smoker 0.0427 0.0523
Old NS 0.0703 -0.0079
Old Smoker 0.1042 -0.0316

Summary Statistics for the Row Points

Quality Mass Inertia
Young NS 1.0000 0.6424 0.3158
Young Smoker 0.9988 0.0750 0.1226
Old NS 0.9984 0.2622 0.4708
Old Smoker 0.9574 0.0204 0.0908

Partial Contributions to Inertia for the Row Points

Dim1l Dim2

Young NS 0.3470 0.0094
Young Smoker  0.0540 0.8402
Old NS 0.5114 0.0665
Old Smoker 0.0877 0.0839

Indices of the Coordinates that Contribute Most to Inertia for the Row Points

Dim1 Dim2 Best

Young NS 1 0 1
Young Smoker 0 2 2
Old NS 1 0 1
Old Smoker 0 0 1

Squared Cosines for the Row Points

Dim1 Dim2

Young NS 0.9974 0.0026
Young Smoker 0.3998 0.5990
Old NS 0.9860 0.0123

Old Smoker 0.8766 0.0808
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Column Coordinates

Dim1l Dim2

Prem Died 0.3504 -0.0450
Prem Alive 0.0595 -0.0010
FT Died 0.2017 0.1800
FT Alive -0.0123 -0.0005

Summary Statistics for the Column Points

Quality Mass Inertia

Prem Died 0.9991 0.0152 0.6796
Prem Alive  0.9604 0.0749 0.0990
FT Died 0.9996 0.0066 0.1722
FT Alive 0.9959 0.9034 0.0492

Partial Contributions to Inertia for the Column Points

Diml Dim2

Prem Died 0.7359 0.1258
Prem Alive 0.1047 0.0003
FT Died 0.1055 0.8730
FT Alive 0.0539 0.0008

Indices of the Coordinates that Contribute Most to Inertia for the
Column Points

Dim1 Dim2 Best

Prem Died 1 0 1
Prem Alive 0 0 1
FT Died 2 2 2
FT Alive 0 0 1

Squared Cosines for the Column Points

Dim1 Dim2

Prem Died 0.9829 0.0162
Prem Alive 0.9601 0.0003
FT Died 0.5563 0.4433
FT Alive 0.9945 0.0014

Display 16.6




The chi-squared statistic for these data is 19.1090, which with nine
degrees of freedom has an associated P-value of 0.024. Thus, it appears
that “type” of mother is related to what happens to the newborn baby.
The correspondence analysis of the data shows that the first two eigen-
values account for 99.5% of the inertia. Clearly, a two-dimensional solution
provides an extremely good representation of the relationship between
the two variables. The two-dimensional solution plotted in Display 16.7
suggests that young mothers who smoke tend to produce more full-term
babies who then die in the first year, and older mothers who smoke have
rather more than expected premature babies who die in the first year. It
does appear that smoking is a risk factor for death in the first year of the
baby’s life and that age is associated with length of gestation, with older
mothers delivering more premature babies.

| Il | |

T T T T I I
0.2 + €
* FT Died
X
s
< 01—+ T+
N
s s Young Smoker
= FT Alive Prem Alive
e 00— * * K4 Old NS T
a Young NS *
Old Smoker Prem Died x
—01 + -+
t t t } t t
—01 0.0 01 0.2 0.3 0.4

Dimension 1 (90.78%)
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16.3.3  Are the Germans Really Arrogant?

The data on perceived characteristics of European nationals can be read
in as follows.

data europeans;
infile 'n:\handbook2\datasets\europeans.dat' expandtabs;
input country $ c1-cl13;
label cl1='stylish'



c2='arrogant’
c3="'sexy'
c4='devious’
c5='easy-going’
c6='greedy'
c7="'cowardly'
c8='boring’
c9="efficient
cl0='lazy'
cll='hard working'
cl2='clever’
cl3='courageous’;
run;

In this case, we assume that the name of the country is included in
the data file so that it can be read in with the cell counts and used to
label the rows of the table. The correspondence analysis and plot are
produced in the same way and the results are shown in Displays 16.8
and 10.9.

proc corresp data=europeans out=coor;
var cl-c13;
id country;

run;

%plotit(data=coor,datatype=corresp,color=black,colors=black);

The CORRESP Procedure

Inertia and Chi-Square Decomposition

Singular Principal Chi- Cumulative
Value Inertia Square Percent Percent 10 20 30 40 50
o SRR
0.49161 0.24168 255.697 49.73 49.73
0.38474 0.14803 156.612 30.46 80.19 *x¥kxkkrikakknk
0.20156 0.04063 42.985 8.36 88.55 *¥*x
0.19476 0.03793 40.133 7.81 96.36 ****
0.11217 0.01258 13.313 2.59 98.95 *
0.07154 0.00512 5.415 1.05 100.00 *

Total 0.48597 514.153 100.00

Degrees of Freedom = 72




Row Coordinates

Dim1 Dim2
France 0.6925 -0.3593
Spain 0.2468 0.3503
Italy 0.6651 0.0062
U.K. -0.3036 0.1967
Ireland -0.1963 0.6202
Holland -0.5703 -0.0921

Germany -0.5079 -0.5530

Summary Statistics for the Row Points

Quality Mass Inertia
France 0.9514 0.1531 0.2016
Spain 0.4492 0.1172 0.0986
Italy 0.9023 0.1389 0.1402
U.K. 0.7108 0.1786 0.0677
Ireland 0.7704 0.1361 0.1538
Holland 0.5840 0.1002 0.1178
Germany 0.9255 0.1758 0.2204

Partial Contributions to Inertia for the Row Points

Diml Dim2

France 0.3039 0.1335
Spain 0.0295 0.0971
Italy 0.2543 0.0000
U.K. 0.0681 0.0467
Ireland 0.0217 0.3537

Holland 0.1348 0.0057
Germany 0.1876 0.3632

Indices of the Coordinates that Contribute Most to Inertia for the Row Points

Dim1 Dim2 Best

France 1 1 1
Spain 0 0 2
Italy 1 0 1
U.K. 0 0 1
Ireland 0 2 2
Holland 1 0 1
Germany 2 2 2
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Squared Cosines for the Row Points

France
Spain
Italy
U.K.
Ireland
Holland

Germany

Dim1

0.7496
0.1490
0.9023
0.5007
0.0701
0.5692
0.4235

Dim2

0.2018
0.3002
0.0001
0.2101
0.7002
0.0148
0.5021

Column Coordinates

Dim1 Dim2
stylish 0.8638 -0.3057
arrogant -0.0121 -0.5129
sexy 0.9479 -0.1836
devious 0.2703 0.0236
easy-going 0.0420 0.5290
greedy 0.1369 -0.1059
cowardly 0.5869 0.2627
boring -0.2263 0.0184
efficient -0.6503 -0.4192
lazy 0.2974 0.5603
hard working -0.4989 -0.0320
clever -0.5307 -0.2961
courageous -0.4976 0.6278

Summary Statistics

stylish
arrogant
sexy
devious
easy-going
greedy
cowardly
boring
efficient
lazy

hard working
clever
courageous

Quality

0.9090
0.6594
0.9645
0.3267
0.9225
0.2524
0.6009
0.4431
0.9442
0.6219
0.9125
0.9647
0.7382

Mass

0.0879
0.1210
0.0529
0.0699
0.1248
0.0473
0.0350
0.0633
0.1040
0.0671
0.1361
0.0227
0.0681

for the Column Points

Inertia

0.1671
0.0994
0.1053
0.0324
0.0784
0.0115
0.0495
0.0152
0.1356
0.0894
0.0767
0.0179
0.1217




Partial Contributions to Inertia for the Column Points

Dim1 Dim2

stylish 0.2714 0.0555
arrogant 0.0001 0.2150
sexy 0.1968 0.0121
devious 0.0211 0.0003
easy-going 0.0009 0.2358
greedy 0.0037 0.0036
cowardly 0.0499 0.0163
boring 0.0134 0.0001
efficient 0.1819 0.1234
lazy 0.0246 0.1423
hard working  0.1401 0.0009
clever 0.0264 0.0134

courageous 0.0697 0.1812
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Indices of the Coordinates that Contribute Most to Inertia for the
Column Points

Dim1 Dim2 Best

stylish 1 0 1
arrogant 0 2 2
sexy 1 0 1
devious 0 0 1
easy-going 0 2 2
greedy 0 0 1
cowardly 0 0 1
boring 0 0 1
efficient 1 1 1
lazy 0 2 2
hard working 1 0 1
clever 0 0 1
courageous 2 2 2




Squared Cosines for the Column Points

Dim1 Dim2

stylish 0.8078 0.1012
arrogant 0.0004 0.6591
sexy 0.9296 0.0349
devious 0.3242 0.0025
easy-going 0.0058 0.9167
greedy 0.1579 0.0946
cowardly 0.5006 0.1003
boring 0.4402 0.0029
efficient 0.6670 0.2772
lazy 0.1367 0.4851
hard working  0.9088 0.0038
clever 0.7357 0.2290

courageous 0.2848 0.4534

Dimension 2 (30.46%)

Display 16.8
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Here, a two-dimensional representation accounts for approximately
80% of the inertia. The two-dimensional solution plotted in Display 16.9
is left to the reader for detailed interpretation, noting only that it largely
fits the author’s own prejudices about perceived national stereotypes.

Exercises

16.1 Construct a scatterplot matrix of the first four correspondence anal-
ysis coordinates of the European stereotypes data.

16.2 Calculate the chi-squared distances for both the row and column
profiles of the smoking and motherhood data, and then compare
them with the corresponding Euclidean distances in Display 16.7.



Appendix A

SAS Macro to Produce
Scatterplot Matrices

This macro is based on one supplied with the SAS system but has been
adapted and simplified. It uses proc iml and therefore requires that SAS/IML
be licensed.

The macro has two arguments: the first is the name of the data set
that contains the data to be plotted; the second is a list of numeric variables
to be plotted. Both arguments are required.

%macro scattmat(data,vars);
/* expand variable list and separate with commas */

data _null_;

set &data (keep=&vars);

length varlist $500. name $32.;

array xxx {*} _numeric_;

do i=1 to dim(xxx);
call vname(xxx{i},name);
varlist=compress(varlist||name);
if i<dim(xxx) then varlist=compress(varlist||',");

end;

call symput('varlist',varlist);



stop;

run;

proc iml;
[*-- Load graphics --*/
call gstart;

[*-- Module : individual scatter plot --*/
start gscatter(tl, t2);
/* pairwise elimination of missing values */
t3=t1;
t4=t2;
t5=t1+t2;
dim=nrow(tl);
j=0;
do i=1 to dim;
if t5[i]=. then ;
else do;
j=i+1;
t3[j]=t1[i];
ta[j]=t2[il;
end;
end;
t1=t3[1:j];
t2=t4[1:j];
/* ________________ */
window=(min(t1)||min(t2))//
(max(tl)[|max(t2));
call gwindow(window);
call gpoint(t1,t2);
finish gscatter,;

/*-- Module : do scatter plot matrix --*/
start gscatmat(data, vname);
call gopen('scatter’);
nv=ncol(vhname);
if (nv=1) then nv=nrow(vname);
cellwid=int(90/nv);
dist=0.1*cellwid;



width=cellwid-2*dist;
xstart=int((90 -cellwid * nv)/2) + 5;
xgrid=((0:nv-1)#cellwid + xstart)’;

/*-- Delineate cells --*/

celll=xgrid;
celll=celll]||(celll[nv]//celll[nv-(0:nv-2)]);
cell2=j(nv, 1, xstart);

cell2=celll[,1]||cell2;

call gdrawl(celll, cell2);

call gdrawl(celll[,{2 1}], cell2[,{2 1}]D);

xstart = xstart + dist; ystart = xgrid[nv] + dist;

/*-- Label variables ---*/

call gset("height", 3);

call gset("font","swiss");

call gstrlen(len, vname);
where=xgrid[1:nv] + (cellwid-len)/2;

call gscript(where, 0, vname) ;
len=len[nv-(0:nv-1)];

where=xgrid[1:nv] + (cellwid-len)/2;

call gscript(0,where, vname[nv - (0:nv-1)]);

[*-- First viewport --*/

/*
/*
/*
/*

vp=(xstart || ystart)//((xstart || ystart) + width) ;

Since the characters are scaled to the viewport
(which is inversely porportional to the

number of variables),

enlarge it proportional to the number of variables

ht=2*nv;
call gset("height", ht);
do i=1 to nv;
do j=1 to i;
call gportstk(vp);
if (i=j) then ;
else run gscatter(datal,j], datal,i]);

/*-- onto the next viewport --*/

*/
*/
*/
*/



vp[,1] = vp[,1] + cellwid;
call gportpop;
end;
vp=(xstart // xstart + width) || (vp[,2] - cellwid);
end;
call gshow;
finish gscatmat;

/*-- Placement of text is based on the character
height. */
/* The IML modules defined here assume percent as the
unit of */
/* character height for device independent
control. */
goptions gunit=pct;

use &data;
vhname={&varlist};

read all var vname into xyz;
run gscatmat(xyz, vname);
quit;

goptions gunit=cell; /*-- reset back to default --*/
%mend;



Appendix B

Answers to Selected
Chapter Exercises

The answers given here assume that the data have been read in as
described in the relevant chapter.

Chapter 2

proc univariate data=water normal plot; [* 2.1 */
var mortal hardness;
run;

proc sort data=water; [* 2.2 */
by location;

run;

proc boxplot data=water;
plot (mortal hardness)*location;

run;

proc univariate data=water normal; /* 2.3 */
var hardness;

histogram hardness / lognormal(theta=est) exponential
(theta=est);



probplot hardness / lognormal(theta=est sigma=est
Zeta=est);

probplot hardness / exponential (theta=est sigma=est);
run;

proc univariate data=water; [* 2.4 *|
var mortal hardness;
histogram mortal hardness /kernel ;

run;

proc sort data=water,; [* 2.5 */
by location;

run;

proc kde data=water out=bivest;
var mortal hardness;
by location;

run;

proc g3d data=bivest;
plot hardness*mortal=density;

by location;
run;
proc gplot data=water; [* 2.6 */

plot mortal*hardness=location;
symboll v=dot i=r I=1;
symbol2 v=circle i=r I=2;

run;

Chapter 3

data pill2; /* 3.1 *
set the_pill;
use=caseuse,
case="Y";
output;
use=contruse;
case='N";
output;
run;



proc freq data=pill2;
tables case*use /riskdiff;
weight n;

run;

The short data step restructures the data into separate observations for
cases and controls rather than case-control pairs enumerated in Display 3.4.

proc freq data=pistons order=data; [* 3.2 */
tables machine*site / out=tabout outexpect outpct;
weight n;
run;
data resids;
set tabout;
r=(count-expected)/sqrt(expected);
radj=r/sqrt((1-percent/pct_row)*(1l-percent/pct_col));
run;
proc tabulate data=resids;
class machine site;
var r radj;
table machine,
site*r;
table machine,
site*radj;
run;

data lesions2; /* 3.3 */
set lesions;
region2=region;
if region ne 'Gujarat' then region2='Others’;
run;
proc freq data=lesions2 order=data;
tables site*region2 /exact;
weight n;
run;

Chapter 4

proc reg data=uscrime; [* 4.1 */



model R= Age--Ed Ex1--X / selection=cp;
run;

proc reg data=uscrime; [* 4.2 *|
model R= Age Ed Ex1 U2 X / selection=cp start=1 stop=5;
plot cp.*np. / cmallows=black;

run;

When selection=cp is used, the start and stop options determine the
smallest and largest number of explanatory variables to be included in
the model.

data uscrime; [* 4.5 */
set uscrime;
age_s=age*s;

run;

proc reg data=uscrime;
model R=age s age_s;
output out=regout p=rhat;
run;

proc gplot data=regout;
plot rhat*age=s / vaxis=axisl;
plot2 r*age=s /vaxis=axisl;
symboll i=join v=none I=1;
symbol2 i=join v=none |=2;
symbol3 v=dot;
symbol4 v=circle;
axisl order=20 to 200 by 10;
run;

Because proc reg has no facility for specifying interactions in the model
statement, the short data step computes a new variable age_s to be used
as an interaction term.

The plot2 statement is used as a “trick” to overlay two y*x=z type plots.
To ensure that the vertical axes are kept in alignment the plot and plot2
statements, both use the same vertical axis definition.



Chapter 5

proc anova data=hyper;
class diet drug biofeed;

model logbp=diet drug biofeed,;

means drug / bon duncan;
run;

proc sort data=hyper;
by diet;

proc boxplot data=hyper;
plot logbp*diet;

run;

proc sort data=hyper;
by drug;

proc boxplot data=hyper;
plot logbp*drug;

run;
proc sort data=hyper;
by biofeed;

proc boxplot data=hyper;
plot logbp*biofeed;
run;

Chapter 6

6.1

/* 5.1 %

/* 5.2 *

Try using @ to restrict the expansion of the bar operator; for example,

or

model days=type|sex|origin|grade@ 3;

model days=type|sex]|origin|grade@?2;

and then specifying additional terms.



data ozkids; /* 6.2 */
set ozkids;
logdays=log(days+0.5);

run;

Add 0.5 to allow for zeros.

proc tabulate data=ozkids f=6.2; /* 6.3 */
class type sex origin grade;
var days;
table sex*grade,
origin*type*days*(mean std);
run;

proc glm data=ozkids noprint; /* 6.4 */
class origin sex grade type;
model days=origin sex grade type;
output out=glmout r=res;

run;

proc univariate data=glmout noprint;
var res;
probplot;

run;

Chapter 7

For exercises 7.1 and 7.2, the data need to be restructured so that each
measurement is an observation.

data vision2;

set vision;

array xall {8} x1-x8;

do i=1 to 8;
if i > 4 then eye='R";

else eye="L";
select(i);
when(1,5) strength=1;



when(2,6) strength=3;
when(3,7) strength=6;
when(4,8) strength=10;
end;

response=xall{i};

output;

end;

drop i x1-x8;

run;

proc gplot data=vision2; [* 7.1 *
plot response*strength=eye;
symboll i=std1mj I=1;
symbol2 i=std1lmj 1=2;
run;

proc sort data=vision2; [* 7.2 *I
by eye strength;
run;

proc boxplot data=vision2;
plot response*strength;
by eye;

run;

proc corr data=vision; [* 7.3 */
var x1-x8;
run;

Chapter 8

proc logistic data=ghgq; /* 8.1 */
class sex;
model cases/total=ghq sex ghqg*sex;

run;

proc logistic data=plasma desc; [* 8.2 */
model esr=fibrinogen|fibrinogen gammalgamma,;
run;



Chapter 9

proc genmod data=ozkids; /* 9.1 */
class origin sex grade type;
model days=sex origin type grade grade*origin / dist=p
link=log typel type3 scale=3.1892;
run;

data ozkids; [* 9.2 */
set ozkids;
absent=days>13;

run;

proc genmod data=ozkids desc;
class origin sex grade type;
model absent=sex origin type grade grade*origin / dist=b
link=logit typel type3;
run;

proc genmod data=ozkids desc;
class origin sex grade type;
model absent=sex origin type grade grade*origin / dist=b
link=probit typel type3;
run;

Chapter 10

data pndep2; /*10.1 */
set pndep2;
depz=dep;

run;

proc sort data=pndep2;
by idno time;
run;

proc stdize data=pndep2 out=pndep2;
var depz;
by idno;

run;



First, a new variable is created to hold the standardized depression
scores. Then the standardization is done separately for each subject.

goptions reset=symbol;
symboll i=join v=none |=1 r=27;
symbol2 i=join v=none =2 r=34;
proc gplot data=pndep2;
plot depz*time=idno /nolegend skipmiss;
run;

data pndep2; /*10.2 */
set pndep2;
if time=1 then time=2;

run;

The two baseline measures are treated as if they were made at the
same time.

proc sort data=pndep2;
by idno;
run;

proc reg data=pndep2 outest=regout(keep=idno time)
noprint;
model dep=time;
by idno;
run;

A separate regression is run for each subject and the slope estimate
saved. This is renamed as it is merged into the pndep data set so that
the variable time is not overwritten.

data pndep;
merge pndep regout (rename=(time=slope));
by idno;

run;

proc ttest data=pndep;
class group;
var slope;

run;



proc glm data=pndep;

class group;

model slope=mnbase group /solution;
run;

Chapter 11

proc mixed data=alzheim method=ml covtest; /*11.1 */
class group idno;
model score=group visit group*visit /s ;
random int /subject=idno type=un;

run;

proc mixed data=alzheim method=ml covtest;
class group idno;
model score=group visit group*visit /s ;
random int visit /subject=idno type=un;

run;

proc sort data=alzheim; [*11.2 */
by idno;

run;

proc reg data=alzheim outest=regout(keep=idno intercept
visit) noprint ;
model score=visit;
by idno;
run;

data regout;
merge regout(rename=(visit=slope)) alzheim;
by idno;
if first.idno;

run;

proc gplot data=regout;
plot intercept*slope=group;
symboll v="L";
symbol2 v="P’;

run;



data pndep(keep=idno group x1-x8)
pndep2(keep=idno group time dep mnbase); /* 11.3 */
infile 'n:\handbook2\datasets\channi.dat';
input group x1-x8;
idno=_n_;
mnbase=mean(x1,x2);
if x1=-9 or x2=-9 then mnbase=max(x1,x2);
array xarr {8} x1-x8;

do i=1 to 8;
if xarr{i}=-9 then xarr{i}=.;
time=i;
dep=xarr{i};
output pndep2;
end;
output pndep;
run;

The data step is rerun to include the mean of the baseline measures
in pndep2, the data set with one observation per measurement. A where
statement is then used with the proc step to exclude the baseline obser-
vations from the analysis.

proc mixed data=pndep2 method=ml covtest;
class group idno;
model dep=mnbase time group /s;
random int /sub=idno;
where time>2;

run;

proc mixed data=pndep2 method=ml covtest;
class group idno;
model dep=mnbase time group /s;
random int time /sub=idno type=un;
where time>2;

run;

data alzheim; /*11.4 */
set alzheim;
mnscore=mean(of scorel-scoreb);
maxscore=max(of scorel-scoreb);



run;

proc ttest data=alzheim;
class group;
var mnscore maxscore;
where visit=1;
run;

Chapter 12

Like proc reg, proc phreg has no facility for specifying categorical predictors
or interaction terms on the model statement. Additional variables must
be created to represent these terms. The following steps censor times

over 450 days and create suitable variables for the exercises.

data heroin3;
set heroin;

if time > 450 then do; /* censor times over 450 */

time=450;
status=0;
end;

clinic=clinic-1; /* recode clinic to 0,1 */
dosegrp=1; /* recode dose to 3 groups */

if dose >= 60 then dosegrp=2;
if dose >=80 then dosegrp=3;

dosel=dosegrp eq 1; /* dummies for dose group */

dose2=dosegrp eq 2;

clindosel=clinic*dosel; /* dummies for interaction */

clindose2=clinic*dose?;

run;

proc stdize data=heroin3 out=heroin3;
var dose;

run;

data heroin3;
set heroin3;

clindose=clinic*dose; /* interaction term */

run;

proc phreg data=heroing3;
model time*status(0)=prison dose clinic / rl;

/*12.1 */



run;

data covvals; [*12.2 */
retain prison clinic O;
input dosel doseZ2;

cards;

10

01

00

proc phreg data=heroin3;
model time*status(0)=prison clinic dosel dose2 / rl;

baseline covariates=covvals out=baseout survival=bs /
method=ch nomean;

run;
data baseout;
set baseout;
dosegrp=3-dosel*2-dose2;
run;
proc gplot data=baseout;
plot bs*time=dosegrp;
symboll v=none i=stepjs I=1;
symbol2 v=none i=stepjs |=3;
symbol3 v=none i=stepjs 1=33 w=20;
run;

By default, the baseline statement produces survival function estimates
at the mean values of the covariates. To obtain estimates at specific
values of the covariates, a data set is created where the covariates have
these values, and it is named in the covariates= option of the baseline
statement. The covariate values data set must have a corresponding
variable for each predictor in the phreg model.

The survival estimates are plotted as step functions using the step
interpolation in the symbol statements. The j suffix specifies that the steps
are to be joined and the s suffix sorts the data by the x-axis variable.

proc phreg data=heroin3; /*12.3 */
model time*status(0)=prison clinic dosel dose?2 clindosel
clindose?2/ rl;
test clindosel1=0, clindose2=0;
run;



proc phreg data=heroin3;
model time*status(0)=prison clinic dose clindose / rl;
run;

proc phreg data=heroin3; [*12.4 */
model time*status(0)=prison clinic dose / rl;
output out=phout xbeta=Ip resmart=resm resdev=resd,;
run;

goptions reset=symbol;

proc gplot data=phout;
plot (resm resd)*Ip / vref=-2,2 Ivref=2;
symboll v=circle;

run;

Chapter 13

data decathlon; /*13.1 */
infile 'n:handbook2\datasets\olympic.dat' expandtabs;

input run100 Ljump shot Hjump run400 hurdle discus
polevlt javelin run1500 score;

run100=runl100*-1;

run400=run400*-1;

hurdle=hurdle*-1;

runl500=runl1500*-1;
run;

/* and re-run analysis as before */

proc princomp data=pain; [*13.2 */
var pl-p9;
run;

proc factor data=decathlon method=principal priors=smc
mineigen=1 rotate=oblimin; /*13.3 */
var runl100--run1500;
where score>6000;
run;



proc factor data=decathlon method=ml| min=1 rotate=obvari
max;
var runl100--runl500;
where score>6000;

run;
Chapter 14
proc modeclus data=usair2 out=modeout method=1 std
r=1 to 3 by .25 test; /*14.1 */
var temperature--rainydays;
id city;
run;

proc print data=modeout;
where _R_=2;
run;

The proc statement specifies a range of values for the kernel radius
based on the value suggested as a “reasonable first guess” in the docu-
mentation. The test option is included for illustration, although it should
not be relied on with the small numbers in this example.

proc stdize data=usair2 method=range out=usair3; /* 14.3 */
var temperature--rainydays;
run;

/* then repeat the analyses without the std option */

proc glm data=clusters; [*14.4 */
class cluster;
model so2=cluster,;
means cluster / scheffe;

run;

Chapter 15

15.2  The first example uses a nearest neighbour method with k = 4 and
the second a kernel method with a value of the smoothing parameter
derived from a formula due to Epanechnikov (Epanechnikov [1969)).



proc discrim data=skulls method=npar k=4 crossvalidate;
[*15.2 */
class type;
var length--facewidth;
run;

proc discrim data=skulls method=npar kernel=normal r=.7
crossvalidate;

class type;
var length--facewidth;
run;

Chapter 16

16.1 Use the scatterplot matrix macro introduced in Chapter 4.

proc corresp data=europeans out=coor dim=4; /*16.1 */
var cl-cl13;
id country;

run;

%include 'scattmat.sas’;
%scattmat(coor,diml-dim4);

16.2 The cp and rp options (row profile and column profile), together
with the row and column masses, provide the proportions used in
the calculations.

proc corresp data=births out=coor cp rp; /*16.2 */
var cl-c4,
id rowid;

run;



References

Agresti, A. (1996) Introduction to Categorical Data Analysis, Wiley, New York.

Aitkin, M. (1978) The analysis of unbalanced cross-classifications. journal of the
Royal Statistical Society A, 141, 195-223.

Akaike, H. (1974) A new look at the statistical model identification. MEE Trans-
actions in Automatic Control, 19, 716-723.

Berk, K.N. (1977) Tolerance and condition in regression computations. Journal
of the American Statistical Association, 72, 863-866.

Box, G.E.P. and Cox, D.R. (1964) An analysis of transformations (with discussion).
Journal of the Royal Statistical Society A, 143, 383—430.

Caplehorn, J. and Bell, J. (1991) Methadone dosage and the retention of patients
in maintenance treatment. The Medical Journal of Australia, 154, 195-199.

Chatterjee, S. and Prize, B. (1991) Regression Analysis by Example (2nd edition),
Wiley, New York.

Clayton, D. and Hills, M. (1993) Statistical Models in Epidemiology, Oxford
University Press, Oxford.

Collett, D. (1994) Modelling Survival Data in Medical Research, CRC/Chapman &
Hall, London.

Collett, D. (1991) Modelling Binary Data, CRC/Chapman & Hall, London.

Cook, R.D. (1977) Detection of influential observations in linear regression.
Technometrics, 19, 15-18.

Cook, R.D. (1979) Influential observations in linear regression. jJournal of the
American Statistical Association, 74, 169-174.

Cook, R.D. and Weisberg, S. (1982) Residuals and Influence in Regression,
CRC/Chapman & Hall, London.

Cox, D.R. (1972) Regression models and life tables. journal of the Royal Statistical
Society B, 34, 187-220.

Crowder, M J. and Hand, D.J. (1990) Analysis of Repeated Measures, CRC/Chapman
& Hall, London.



Davidson, M.L. (1972) Univariate versus multivariate tests in repeated measure-
ments experiments. Psychological Bulletin, 77, 446—452.

Diggle, P.L., Liang, K., and Zeger, S.L. (1994) Analysis of Longitudinal Data, Oxford
University Press, Oxford.

Dixon, W.J. and Massey, F.J. (1983) Introduction to Statistical Analysis, McGraw-
Hill, New York.

Dizney, H. and Groman, L. (1967) Predictive validity and differential achievement
in three MLA comparative foreign language tests. Educational and Psycho-
logical Measurement, 27, 1127-1130.

Epanechnikov, V.A. (1969) Nonparametric estimation of a multivariate probability
density. Theory of Probability and its Applications, 14, 153-158.

Everitt, B.S. (1987) An Introduction to Optimization Methods and their Application
in Statistics, CRC/Chapman & Hall, London.

Everitt, B.S. (1992) The Analysis of Contingency Tables (2nd edition), CRC/
Chapman & Hall, London.

Everitt, B.S. (1998) The Cambridge Dictionary of Statistics, Cambridge University
Press, Cambridge.

Everitt, B.S. (2001) Statistics in Psychology: An Intermediate Course. Laurence
Erlbaum, Mahwah, New Jersey.

Everitt, B.S. and Pickles, A. (2000) Statistical Aspects of the Design and Analysis
of Clinical Trials, ICP, London.

Everitt, B.S. and Dunn, G. (2001 Applied Multivariate Data Analysis (2nd edition),
Edward Arnold, London.

Everitt, B.S., Landau, S., and Leese, M. (2001) Cluster Analysis (4th edition), Edward
Arnold, London.

Fisher, R.A. (1936) The use of multiple measurement in taxonomic problems.
Annals of Eugenics, 7, 179-184.

Fisher, L.D. and van Belle, G. (1993) Biostatistics: A Methodology for the Health
Sciences, Wiley, New York.

Goldberg, D. (1972) The Detection of Psychiatric Illness by Questionnaire, Oxford
University Press, Oxford.

Greenacre, M. (1984) Theory and Applications of Correspondence Analysis,
Academic Press, Florida.

Greenacre, M. (1992) Correspondence analysis in medical research. Statistical
Methods in Medical Research, 1, 97-117.

Greenhouse, S.W. and Geisser, S. (1959) On methods in the analysis of profile
data. Psychometrika, 24, 95-112.

Gregoire, A.J.P., Kumar, R., Everitt, B.S., Henderson, A.F., and Studd, J.W.W. (1996)
Transdermal oestrogen for the treatment of severe post-natal depression.
The Lancet, 347, 930-934.

Hand, D.J. (1981) Discrimination and Classification, Wiley, Chichester.

Hand, DJ. (1986) Recent advances in error rate estimation. Pattern Recognition
Letters, 4, 335-346.

Hand, D.J. (1997) Construction and Assessment of Classification Rules, Wiley,
Chichester.

Hand, DJ., Daly, F., Lunn, A.D., McConway, KJ., and Ostrowski, E. (1994)
A Handbook of Small Data Sets, CRC/Chapman & Hall, London.



Hosmer, D.W. and Lemeshow, S. (1999) Applied Survival Analysis, Wiley, New
York.

Hotelling, H. (1933) Analysis of a complex of statistical variables into principal
components. Journal of Educational Psychology, 24, 417-441.

Howell, D.C. (1992) Statistical Methods for Psychologists, Duxbury Press, Belmont,
California.

Huynh, H. and Feldt, L.S. (1976) Estimates of the Box correction for degrees of
freedom for sample data in randomised block and split plot designs.
Journal of Educational Statistics, 1, 69-82.

Kalbfleisch, J.D. and Prentice, J.L. (1980) The Statistical Analysis of Failure Time
Data, Wiley, New York.

Krzanowski, W.J. and Marriott, FH.C. (1995) Multivariate Analysis, Part 2, Edward
Arnold, London.

Lawless, J.F. (1982) Statistical Models and Methods for Lifetime Data, Wiley, New
York.

Levene, H. (1960) Robust tests for the equality of variance. Contribution to
Probability and Statistics (O. Olkin, Ed.), Stanford University Press,
California.

McCullagh, P. and Nelder, J.A. (1989) Generalized Linear Models, CRC/Chapman
& Hall, London.

McKay, R.J. and Campbell, N.A. (1982a) Variable selection techniques in discrim-
inant analysis. 1. Description. British Journal of Mathematical and Statistical
Psychology, 35, 1-29.

McKay, R.J. and Campbell, N.A. (1982b) Variable selection techniques in discrim-
inant analysis. II. Allocation. British Journal of Mathematical and Statistical
Psychology, 35, 30—41.

Mallows, C.L. (1973) Some comments on Cp. Technometrics, 15, 661-675.

Matthews, J.N.S., Altman, D.G., Campbell, M.J., and Royston, P. (1990) Analysis
of serial measurements in medical research. British Medical Journal, 300,
230-235.

Matthews, J.N.S. (1993) A refinement to the analysis of serial data using summary
measures. Statistics in Medicine, 12, 27-37.

Maxwell, S.E. and Delaney, H.D. (1990) Designing Experiments and Analysing
Data, Wadsworth, Belmont, California.

Milligan, G.W. and Cooper, M.C. (1988) A study of standardization of variables in
cluster analysis. Journal of Classification, 5, 181-204.

Nelder, J.A. (1977) A reformulation of linear models. Journal of the Royal Statistical
Society A, 140, 48-63.

Pearson, K. (1901) On lines and planes of closest fit to systems of points in space.
Philosophical Magazine, 2, 559-572.

Pinheiro, J.C. and Bates, D.M (2000) Mixed-Effects Models in S and S-PLUS, Springer,
New York.

Quine, S. (1975) Achievement Orientation of Aboriginal and White Adolescents.
Doctoral dissertation, Australian National University, Canberra.

Rouanet, H. and Lepine, D. (1970) Comparison between treatments in a repeated
measures design: ANOVA and multivariate methods. British Journal of
Mathematical and Statistical Psychology, 23, 147-163.



Sarle, W.S. (1983) SAS Technical Report A-108 Cubic Clustering Criterion, SAS
Institute Inc., Cary, NC.

Sartwell, P.E., Mazi, A.'T. Aertles, F.G., Greene, G.R., and Smith, M.E. (1969)
Thromboembolism and oral contraceptives: an epidemiological case-con-
trol study. American Journal of Epidemiology, 90, 365-375.

Satterthwaite, F.W. (1946) An approximate distribution of estimates of variance
components. Biometrics Bulletin, 2, 110-114.

Scheffé, H. (1959) The Analysis of Variance, Wiley, New York.

Senn, S. (1997) Statistical Issues in Drug Development, Wiley, Chichester.

Shapiro, S.S. and Wilk, M.B. (1965) An analysis of variance test for normality.
Biometrika, 52, 591-611.

Silverman, B.W. (1986) Density Estimation in Statistics and Data Analysis,
CRC/Chapman & Hall, London.

Skevington, S.M. (1990) A standardised scale to measure beliefs about controlling
pain (B.P.C.Q.); a preliminary study. Psychological Health, 4, 221-232.

Somes, G.W. and O’Brien, K.F. (1985) Mantel-Haenszel statistic. Encyclopedia of
Statistical Sources, Vol. 5 (S. Kotz, N.L. Johnson, and C.B. Read, Eds.),
Wiley, New York.

Vandaele, W. (1978) Participation in illegitimate activities: Erlich revisited. Deter-
rence and Incapacitation (Blumstein, A., Cohen, J., and Nagin, D., Eds.),
Natural Academy of Sciences, Washington, D.C.



	Cover
	Preface
	Contents
	A Brief Introduction to SAS
	1.1 Introduction
	1.2 The Microsoft Windows User Interface
	1.2.1 The Editor Window
	1.2.2 The Log and Output Windows
	1.2.3 Other Menus

	1.3 The SAS Language
	1.3.1 All SAS Statements Must End with a Semicolon
	1.3.2 Program Steps
	1.3.3 Variable Names and Data Set Names
	1.3.4 Variable Lists

	1.4 The Data Step
	1.4.1 Creating SAS Data Sets from Raw Data*
	1.4.2 The Data Statement
	1.4.3 The Infile Statement
	1.4.4 The Input Statement
	1.4.5 Reading Data from an Existing SAS Data Set
	1.4.6 Storing SAS Data Sets on Disk

	1.5 Modifying SAS Data
	1.5.1 Creating and Modifying Variables
	1.5.2 Deleting Variables
	1.5.3 Deleting Observations
	1.5.4 Subsetting Data Sets
	1.5.5 Concatenating and Merging Data Sets
	1.5.6 Merging Data Sets: Adding Variables
	1.5.7 The Operation of the Data Step

	1.6 The
	Step
	1.6.1 The
	Statement
	1.6.2 The
	Statement
	1.6.3 The
	Statement
	1.6.4 The
	Statement
	1.6.5 The
	Statement

	1.7 Global Statements
	1.8 ODS: The Output Delivery System
	1.9 SAS Graphics
	1.9.1 Proc gplot
	1.9.2 Overlaid Graphs
	1.9.3 Viewing and Printing Graphics

	1.10 Some Tips for Preventing and Correcting Errors

	Data Description and Simple Inference: Mortality and Water Hardness in the U.K.
	2.1 Description of Data
	2.2 Methods of Analysis
	2.3 Analysis Using SAS
	Exercises

	Simple Inference for Categorical Data: From Sandflies to Organic Particulates in the Air
	3.1 Description of Data
	3.2 Methods of Analysis
	3.3 Analysis Using SAS
	3.3.1 Cross-Classifying Raw Data
	3.3.2 Sandflies
	3.3.3 Acacia Ants
	3.3.4 Piston Rings
	3.3.5 Oral Contraceptives
	3.3.6 Oral Cancers
	3.3.7 Particulates and Bronchitis

	Exercises

	Multiple Regression: Determinants of Crime Rate in the United States
	4.1 Description of Data
	4.2 The Multiple Regression Model
	4.3 Analysis Using SAS
	Exercises

	Analysis of Variance I: Treating Hypertension
	5.1 Description of Data
	5.2 Analysis of Variance Model
	5.3 Analysis Using SAS
	Exercises

	Analysis of Variance II: School Attendance Amongst Australian Children
	6.1 Description of Data
	6.2 Analysis of Variance Model
	6.2.1 Type I Sums of Squares
	6.2.2 Type III Sums of Squares

	6.3 Analysis Using SAS
	Exercises

	Analysis of Variance of Repeated Measures: Visual Acuity
	7.1 Description of Data
	7.2 Repeated Measures Data
	7.3 Analysis of Variance for Repeated Measures Designs
	7.4 Analysis Using SAS
	Exercises

	Logistic Regression: Psychiatric Screening, Plasma Proteins, and Danish Do-It-Yourself
	8.1 Description of Data
	8.2 The Logistic Regression Model
	8.3 Analysis Using SAS
	8.3.1 GHQ Data
	8.3.2 ESR and Plasma Levels
	8.3.3 Danish Do-It-Yourself

	Exercises

	Generalised Linear Models: School Attendance Amongst Australian School Children
	9.1 Description of Data
	9.2 Generalised Linear Models
	9.2.1 Model Selection and Measure of Fit

	9.3 Analysis Using SAS
	Exercises

	Longitudinal Data I: The Treatment of Postnatal Depression
	10.1 Description of Data
	10.2 The Analyses of Longitudinal Data
	10.3 Analysis Using SAS
	10.3.1 Graphical Displays
	10.3.2 Response Feature Analysis

	Exercises

	Longitudinal Data II: The Treatment of Alzheimer’s Disease
	11.1 Description of Data
	11.2 Random Effects Models
	11.3 Analysis Using SAS
	Exercises

	Survival Analysis: Gastric Cancer and Methadone Treatment of Heroin Addicts
	12.1 Description of Data
	12.2 Describing Survival and Cox’s Regression Model
	12.2.1 Survival Function
	12.2.2 Hazard Function
	12.2.3 Cox’s Regression

	12.3 Analysis Using SAS
	12.3.1 Gastric Cancer
	12.3.2 Methadone Treatment of Heroin Addicts

	Exercises

	Principal Components Analysis and Factor Analysis: The Olympic Decathlon and Statements about Pain
	13.1 Description of Data
	13.2 Principal Components and Factor Analyses
	13.2.1 Principal Components Analysis
	13.2.2 Factor Analysis
	13.2.3 Factor Analysis and Principal Components Compared

	13.3 Analysis Using SAS
	13.3.1 Olympic Decathlon
	13.3.2 Statements about Pain

	Exercises

	Cluster Analysis: Air Pollution in the U.S.A.
	14.1 Description of Data
	14.2 Cluster Analysis
	14.3 Analysis Using SAS
	Exercises

	Discriminant Function Analysis: Classifying Tibetan Skulls
	15.1 Description of Data
	15.2 Discriminant Function Analysis
	15.3 Analysis Using SAS
	Exercises

	Correspondence Analysis: Smoking and Motherhood, Sex and the Single Girl, and European Stereotypes
	16.1 Description of Data
	16.2 Displaying Contingency Table Data Graphically Using Correspondence Analysis
	16.3 Analysis Using SAS
	16.3.1 Boyfriends
	16.3.2 Smoking and Motherhood
	16.3.3 Are the Germans Really Arrogant?

	Exercises

	SAS Macro to Produce Scatterplot Matrices
	Answers to Selected Chapter Exercises
	References



