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A Hartree-Fock Calculation of the Water Molecule 
 
Introduction 
An example Hartree-Fock calculation of the water molecule will be presented.  In this case, the water molecule will 
have its geometry fixed at the experimental values of bond lengths (R(O-H)=0.95 Å) and bond angle (∠H-O-H= 
104.5°).  Thus, the electronic energy and wavefunction will be computed for fixed nuclear positions; this is known 
as a single-point energy calculation.  A minimal basis set of atomic orbital functions will be employed. 
 
Molecular structure and coordinates 
For the purposes of the example calculation, software packages such as Gaussian 09 position the water molecule 
such that the atoms lie in the yz-plane with the center of mass at the origin; this is known as the "standard 
orientation".  In the case of water with the specified bond lengths and angles, the cartesian coordinates of the atoms 
are shown in Table 1.  Notice that the y- and z-coordinate values of the hydrogen atoms are symmetric or 
antisymmetric about the oxygen atom position, which allows for easy inclusion of the C2v symmetry aspects of the 
water molecule in the Hartree-Fock calculations. 
 

Table 1.  Atomic coordinates (in Å) of the water molecule in its standard orientation (from 
Gaussian 09 log file). 

 --------------------------------------------------------------------- 

   Center     Atomic      Atomic           Coordinates (Angstroms) 

   Number     Number       Type           X           Y           Z 

 --------------------------------------------------------------------- 

      1          1           0        0.000000    0.751155   -0.465285 

      2          8           0        0.000000    0.000000    0.116321 

      3          1           0        0.000000   -0.751155   -0.465285 

 --------------------------------------------------------------------- 

 
Atomic orbital basis functions 
The water molecule has a total of 10 electrons, eight from the oxygen atom and one each from the hydrogen atoms.  
Therefore, for a closed shell molecular system like water in its ground state with 10 total electrons, the wavefunction 
in the form of a Slater Determinant is 
 

                                
ΨH2O   = 1

10!
  φ1φ1  φ2φ2 φ3φ3  φ4φ4  φ5φ5 .

   
                        (1) 

 
The functions 

€ 

φi  for water are molecular orbitals defined using the LCAO-MO approximation,  
 

                                  

€ 

φi 1( )  =  cµi fµ 1( )
µ=1

K

∑ .
                                 

(2)
 

 
Here, the terms 

€ 

cµi  correspond to linear coefficients, the functions 

€ 

fµ  are the atomic orbital basis functions, and K 
is the total number of atomic orbital basis functions used to represent the molecular orbitals.  In this example 
calculation, a minimal basis set will be used which consists of 1s basis functions for each H atom, and the 1s, 2s, and 
set of 2p (2px, 2py, 2pz) basis functions for O atom.  In Gaussian 09, a typical basis set of this type is called STO-3G, 
and for water consists of 7 basis functions.  The numbering of the basis functions for the rest of this example is 
given in Table 2.  
 



 
2 

 
Table 2.  Basis functions for the HF/STO-3G calculation of the water molecule. 

 
Basis function # Basis function type 

1 1s O 

2 2s O 

3 2px O 

4 2py O 

5 2pz O 

6 1s Ha 

7 1s Hb 
 
Hartree-Fock-Roothan equations 
Minimizing the expectation value for the energy of the Slater Determinant with the LCAO-MO approximation for 
the molecular orbitals yields the Hartree-Fock-Roothan (H-F-R) equations.  For water with K=7 basis functions, the 
H-F-R equations are  
 

                            Fµν − εi Sµν( )
ν=1

7

∑ cνi = 0 ,         µ =1, 2,  …7.                            (3) 

 
Here, Fµν  are Fock integrals, Sµν  are overlap integrals, εi  are the orbital energies, and the cνi  are the linear 
coefficients.   
 
Overlap integrals 
Defining the terms in the H-F-R equations, the overlap integrals Sµν  are integrals over pairs of the atomic orbital 
basis functions, 
 

       

€ 

Sµν  =  fµ (1) fν (1) .                              (4) 
 
For water, there are 7×7 = 49 overlap integrals.  However, because the order of the product of functions in the 
integrand does not matter, we have that Sµν  = Sνµ , and therefore there are fewer unique values (28 total).  The 
values of the overlap integrals Sµν  can be displayed in matrix form where the first index of the element ( µ  in this 
case) corresponds to the row and the second index (ν  in this case) corresponds to the column in the matrix.  
 
For the STO-3G basis set with the basis functions specified in the order given in Table 2, the overlap matrix S is 
shown in Figure 1.  Note that only the lower portion is shown because the upper portion is related by symmetry 
since Sµν  = Sνµ . 
 

S  =  

1.000
0.237 1.000
0.000 0.000 1.000
0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 1.000
0.055 0.479 0.000 0.313 −0.242  1.000
0.055 0.479 0.000 −0.313   −0.242  0.256 1.000
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Figure 1.  Overlap matrix S for HF/STO-3G calculation of water. 
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In the overlap matrix, note that all the diagonal elements Sµµ  equal 1 because of normalization of the basis 
functions.  In addition, each 2p-type basis function on the oxygen atom is orthogonal ( Sµν = 0 ) to the other 2p-type 
basis functions and to the 1s and 2s basis functions on the oxygen atom.  Note however, that the 1s and 2s basis 
functions on oxygen are not orthogonal; their overlap corresponds to element S21 , which equals 0.237.  This lack of 
orthogonality is a result of the choice of a gaussian form for these basis functions instead of using the eigenfunctions 
of a one-electron Hamiltonian operator (which would be orthogonal).  This is common practice for s-type basis 
functions on the same nuclear center, as well as when multiple sets of p-type or higher angular momentum basis 
functions are employed.  Finally, it should also be noted that basis functions on different nuclear centers are not in 
general orthogonal; thus, most of the oxygen atom basis functions overlap with those on the hydrogen atoms.  The 
exception is the oxygen 2px basis function, which gives zero overlap with the hydrogen basis functions due to 
cancellation (equal but opposite overlap above and below the plane of the molecule). 
 
Fock integrals 
The Fock integrals Fµν  in Equation (3) are defined as  
 

         

€ 

Fµν  =  Hµν
o  +  Pλσ µν | λσ( )  −  1

2 µλ |νσ( )[ ]
σ =1

K

∑
λ=1

K

∑ .
                            (5) 

 
The terms Hµν

o  correspond to the one-electron Hamiltonian integrals,   
 

          

€ 

Hµν
o  =  fµ 1( ) −

1
2

 ˆ ∇ 1
2   −   

α=1

M

∑ Zα
rα1

fν 1( ) .
                                       (6) 

 

Here, the term − 1
2
∇̂1
2  corresponds to the kinetic energy operator for electron 1, while the term −  

α=1

M

∑ Zα
rα1

 

corresponds to the potential energy operator for the electron-nuclear attractions, where Zα  is the atomic number of 
nucleus α  and rα1  is the distance between nucleus α  and electron 1.   The one-electron intergrals are usually 
evaluated in two parts, the kinetic energy integrals Tµν  and the potential energy integrals Vµν .   
 
Kinetic energy integrals 
As might be expected, the kinetic energy integrals Tµν  are defined as 
 

           
Tµν   =     fµ 1( ) −

1
2
∇̂1
2 fν 1( )  .     

                                    (7) 

 
For a calculation of water with the STO-3G basis set as specified in Table 2, the kinetic energy matrix T is shown in 
Figure 2.  Again, only the lower portion is shown because the upper portion is related by symmetry since Tµν  = Tνµ . 
 

T  =  

29.003 
−0.168  0.808
0.000 0.000 2.529
0.000 0.000 0.000 2.529
0.000 0.000 0.000 0.000 2.529
−0.002  0.132 0.000 0.229 −0.177  0.760
−0.002  0.132 0.000 −0.229   −0.177  0.009 0.760
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Figure 2.  Kinetic energy matrix T for HF/STO-3G calculation of water. 
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For the kinetic energy elements Tµν , note that the diagonal elements are in general much larger in magnitude than 
the off-diagonal elements, and the diagonal elements are always positive.  The off-diagonal elements are generally 
small in magnitude and may be either positive or negative. 
 
Potential energy integrals 
The potential energy integrals Vµν  are defined as 
 

           
Vµν   =     fµ 1( )  −  

α=1

M

∑ Zα
rα1

fν 1( )  .                                   (8) 

 
For our water calculation at the HF/STO-3G level, the kinetic energy matrix T is shown in Figure 3.  Again, only the 
lower portion is shown because the upper portion is related by symmetry since Vµν  = Vνµ . 
 

V  =  

−61.733   
−7.447  −10.151   
0.000 0.000 −9.926 
0.000 0.000 0.000 −10.152   
0.019 0.226 0.000 0.000 −10.088   
−1.778  −3.920  0.000 −0.228  0.184 −5.867 
−1.778  −3.920  0.000 0.228 0.184 −1.652  −5.867 

"

#

$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'

 

 
Figure 3.  Potential energy matrix V for HF/STO-3G calculation of water. 

 
Here we see that the potential energy diagonal elements Vµµ  are in general much larger in magnitude than the off-
diagonal elements.  The diagonal elements are always negative; this is because the electron-nuclear interaction for 
electrons in the same orbital is always attractive (i.e., negative).  The off-diagonal elements are again small in 
magnitude and may be either positive or negative. 
 
One-electron Hamiltonian integrals 
The one-electron kinetic energy and potential energy integrals may be combined to form the one-electron 
Hamiltonian integrals, Hµν

o , using the relation  
 

            
Hµν

o    =   Tµν   +  Vµν ,                                          (9) 

 
or Ho   =  T  +  V  in matrix form.  The one-electron integrals Hµν

o  are shown in matrix format in Figure 4.  

 

Ho   =  

−32.730   
−7.615   −9.343 
0.000 0.000 −7.397 
0.000 0.000 0.000 −7.623 
0.019 0.226 0.000 0.000 −7.559 
−1.780  −3.788  0.000 0.001 0.007 −5.107 
−1.780  −3.788  0.000 −0.001   0.007 −1.643  −5.107 
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Figure 4.  One-electron Hamiltonian matrix Ho  for HF/STO-3G calculation of water. 
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Two-electron integrals 
The next step is to compute the two-electron integrals from Equation (5).  The terms µν | λσ( )  and µλ |νσ( )  
represent two-electron repulsion integrals from the Coulomb and Exchange terms in the Fock operator,   
 

           

€ 

µν | λσ( )  =  fµ 1( ) fλ 2( ) 1
r12

fν 1( ) fσ 2( )

µλ |νσ( )  =  fµ 1( ) fν 2( ) 1
r12

fλ 1( ) fσ 2( ) .                                     

(10)

 

 
The number of two-electron integrals that must be computed is K4, where K is the number of basis functions.  For 
the HF/STO-3G calculation of water, K=7, so the number of two-electron integrals to be computed is 2401.  
Because of the symmetry of the water molecule, this number is reduced to a mere 406 integrals.  Even that many 
would take a lot of space to list on a page, so their numerical values will not be included here.    
 
Density matrix elements and initial guess 
Finally, the terms Pλσ  in the H-F-R equations are density matrix elements, 
 

          
Pλσ    =    2   cλi

*  cσ i
i=1

n

∑ ,                                       (11) 

 
where the c's are the linear coefficients of the LCAO-MO expansion.  Because of the dependence of the density 
matrix elements on the linear coefficients of the LCAO-MO expansion, we have to make a guess at these values in 
order to construct the Fock integrals and begin the calculation.  Gaussian 09 uses as its default for most systems a 
guess for the coefficients from a fairly simple model known as extended Hückel theory.    
 
Only the coefficients for the occupied MOs are required to form the density matrix; note that the sum in Equation 
(11) goes up to n rather than K.  Thus, for the five occupied MOs of water, the initial guess for the coefficients from 
extended Hückel theory is given in Table 3.  
 

Table 3.  Coefficients 

€ 

cµi  of the initial guess for the occupied molecular orbitals of water. 
-------------------------------------------------------------------------------- 

 
               MO:      1          2          3          4          5 
    
   1  O  1S          0.99431   -0.23246    0.00000   -0.10725    0.00000 
   2  O  2S          0.02551    0.83359    0.00000    0.55664    0.00000 
   3  O  2PX         0.00000    0.00000    0.00000    0.00000    1.00000 
   4  O  2PY         0.00000    0.00000    0.60718    0.00000    0.00000 
   5  O  2PZ        -0.00291   -0.14086    0.00000    0.76655    0.00000 
   6  Ha 1S         -0.00515    0.15562    0.44418   -0.28592    0.00000 
   7  Hb 1S         -0.00515    0.15562   -0.44418   -0.28592    0.00000 
 
-------------------------------------------------------------------------------- 

 
To begin the first cycle of solving the H-F-R equations, the coefficients of the initial guess are used to form the 
density matrix elements, Pλσ , using Equation (11).  For water, the initial density matrix P is given in Figure 5. 
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P  =  

2.108
−0.456  2.010
0.000 0.000 2.000
0.000 0.000 0.000 0.737
−0.104  0.618 0.000 0.000 1.215
−0.022  −0.059  0.000 0.539 −0.482  0.606
−0.022  −0.059  0.000 −0.539   −0.482  −0.183   0.606 
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Figure 5.  Initial density matrix P for HF/STO-3G calculation of water based on extended Hückel guess. 

 
Fock matrix elements from initial guess 
Finally, the Fock matrix elements Fµν  may be formed from the one-electron Hamiltonian integrals Hµν

o , the density 
matrix elements Pλσ , and the two-electron integrals.  Combining these yields the initial Fock matrix, F, given in 
Figure 6. 
 

F  =  

−20.236   
−5.163  −2.453  
0.000 0.000 −0.395 
0.000 0.000 0.000 −0.327  
0.029 0.130 0.000 0.000 −0.353  
−1.216  −1.037  0.000 −0.398  0.372 −0.588 
−1.216  −1.037  0.000 0.398 0.372 −0.403  −0.588 
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Figure 6.  Initial Fock matrix F for HF/STO-3G calculation of water. 

 
Solving the secular determinant 
At this point, the secular determinant, which is K×K in size, may be set equal to zero and solved, 
 

            
det  F − ε  S    =  0,                                         (12) 

 
where each element of the determinant corresponds to the factor Fµν − ε Sµν .  Solution of the secular determinant 

yields K molecular orbital energies, εi,  i = 1, 2, … K .  The first n of these MO energies correspond to occupied 
MOs, while the remaining higher MO energies correspond to the virtual MOs.   For water, as stated previously, the 
first five MOs are occupied and the remaining two are virtual. 
 
Obtaining the new coefficients 
To obtain the coefficients 

€ 

cµi  for each MO, the molecular orbital energies εi  are substituted one-at-a-time into the 
H-F-R equations, Equation (3), and a system of K linear equations is solved.  When this is carried out using the Fock 
matrix constructed from the initial guess, new coefficients are obtained; these are referred to as the coefficients for 
cycle 2, since cycle 1 refers to the initial coefficients.  The coefficients of the occupied MOs for cycle 2 are given in 
Table 4; note that coefficients for the virtual orbitals also may be obtained but are not shown here. 
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Table 4.  Coefficients 

€ 

cµi  for the occupied molecular orbitals of water at cycle 2 of the 
iterative solution of the H-F-R equations. 
-------------------------------------------------------------------------------- 

 
               MO:      1          2          3          4          5 
    
   1  O  1S          0.99412   -0.23304    0.00000   -0.10353    0.00000 
   2  O  2S          0.02667    0.83417    0.00000    0.54133    0.00000 
   3  O  2PX         0.00000    0.00000    0.00000    0.00000    1.00000 
   4  O  2PY         0.00000    0.00000    0.60840    0.00000    0.00000 
   5  O  2PZ        -0.00440   -0.13111    0.00000    0.77477    0.00000 
   6  Ha 1S         -0.00604    0.15685    0.44314   -0.27966    0.00000 
   7  Hb 1S         -0.00604    0.15685   -0.44314   -0.27966    0.00000 
 
-------------------------------------------------------------------------------- 

 
When comparing the coefficients from cycle 1 to those from cycle 2, it can be seen that there are numerous 
quantitative changes to the coefficients, but qualitatively there is not much difference.  This suggests that the initial 
guess was pretty good. 
 
Hartree-Fock energy 
The iterative solution process for the H-F-R equation continues for several more cycles.  The solution is considered 
to be converged when the changes in the coefficients, density matrix, MO energies, and total energy (or some 
combination thereof) from one cycle to the next drop below specified numerical threshholds. 
 
The Hartree-Fock energy (i.e., the expectation value E  of the Slater determinant wavefunction) may be calculated 
using the following equation, 
 

                  

€ 

E  =  2εi  −  2Jij − Kij( )
j=1

n

∑
% 

& 
' 

( ' 

) 

* 
' 

+ ' i=1

n

∑ .           (13) 

 
Alternately, using the definition of the orbital energy εi  as the expectation value of the Fock operator, we have 
 

             

εi   =    φi F̂ φi  

=   φi −
1
2
∇̂1

2 −
α=1

M

∑ Zα
rα1

φi    + φi 2 Ĵ j − K̂ j φi
j=1

n

∑

εi   =   Hii
o    +    2Jij −Kij( )

j=1

n

∑  .

         (14) 

 
Note that the one-electron Hamiltonian integral Hii

o  is the same as the one-electron eigenvalue εi
o  defined in class.  

Substituting Equation (14) into Equation (13) for one factor of εi  yields an alternate form for the expectation value 
of the energy, 
 

            
E   =      εi  + Hii

o( )
i=1

n

∑  .                          (15) 
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The result given in Equation (15) for E  does not include the nuclear-nuclear repulsion energy, VNN , which 
equals  
 

            
VNN    =     

ZαZβ
rαβα=1

M

∑   ,                          (16) 

 
where M corresponds to the number of nuclei, Zα  and Zβ  are the atomic numbers of nuclei α  and β , respectively, 
and rαβ  is the distance between the two nuclei.  Since the nuclei are fixed in place, this term just contributes a 
constant amount to the total energy.  Including the nuclear-nuclear repulsion, the total Hartree-Fock energy (referred 
to as Eel  in the projects and other handouts) is 
 

  
                   

Eel   =   E    +  VNN    =      εi  + Hii
o( )

i=1

n

∑     +  VNN  .                     (17) 

 
Using Gaussian 09, the HF/STO-3G calculation of the water molecule takes 7 cycles to reach convergence.  The 
total Hartree-Fock energy of water at each cycle is shown in Table 5.   
 

Table 5. Hartree-Fock energy (in hartrees) at each cycle of the HF/STO-3G 
calculation of water. 

 
Cycle Eel  (hartrees) 

1 –74.893 002 803 
2 –74.961 289 145 
3 –74.961 707 247 
4 –74.961 751 946 
5 –74.961 753 962 
6 –74.961 754 063 
7 –74.961 754 063 

 
From these results, we see that the initial guess was off compared to the converged result by 0.069 hartrees, or about 
43 kcal/mol.  After 7 cycles, the Hartree-Fock energy is converged to 1×10–9 hartrees, or about 6×10–7 kcal/mol.  
Since this energy was obtained using an approximate wavefunction, the Variation Principle tells us it is too high 
relative to the exact energy.  Use of a larger basis set and incorporation of electron correlation effects will lower the 
energy and bring it closer to the exact result. 
 
Converged MO coefficients 
The final MO coefficients 

€ 

cµi  and eigenvalues εi  for all the occupied and virtual orbitals of water are presented in 
Table 6. 
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Table 6.  Converged MO eigenvalues εi  and coefficients 

€ 

cµi  for the occupied (1-5) and 
virtual (6, 7) molecular orbitals of water at the HF/STO-3G level of theory. 
 
--------------------------------------------------------------------------------------------------- 
 MO:                    1          2          3          4          5 
 
  Eigenvalues:     -20.24094   -1.27218   -0.62173   -0.45392   -0.39176 
     (a.u.) 
   1  O  1S          0.99411   -0.23251    0.00000   -0.10356    0.00000 
   2  O  2S          0.02672    0.83085    0.00000    0.53920    0.00000 
   3  O  2PX         0.00000    0.00000    0.00000    0.00000    1.00000 
   4  O  2PY         0.00000    0.00000    0.60677    0.00000    0.00000 
   5  O  2PZ        -0.00442   -0.13216    0.00000    0.77828    0.00000 
   6  Ha 1S         -0.00605    0.15919    0.44453   -0.27494    0.00000 
   7  Hb 1S         -0.00605    0.15919   -0.44478   -0.27494    0.00000 
 
 

     MO:                    6          7 
 
  Eigenvalues:       0.61293    0.75095 
     (a.u.) 
   1  O  1S         -0.13340    0.00000 
   2  O  2S          0.89746    0.00000 
   3  O  2PX         0.00000    0.00000 
   4  O  2PY         0.00000    0.99474 
   5  O  2PZ        -0.74288    0.00000 
   6  Ha 1S         -0.80246   -0.84542 
   7  Hb 1S         -0.80246    0.84542 
---------------------------------------------------------------------------------------------------- 

 
 
 
 


