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Abstract: Hidden markov models are a very useful tool in the modelling of time series and any
sequence of data. In particular, they have been successfully applied to the field of mathematical
linguistics. In this paper, we apply a hidden markov model to analyze the underlying structure of an
ancient and complex manuscript, known as Voynich’s manuscript, that remains still undeciphered.
By assuming a certain number of internal states representations for the symbols of the manuscript we
train the network by means of the α and β-pass algorithms to optimize the model. By this procedure,
we are able to obtain the so-called transition and observation matrices in order to compare with
known languages concerning the frequency of consonant and vowel sounds. From this analysis, we
conclude that transitions occur between the two states with similar frequencies to other languages.
Moreover, the identification of the vowel and consonant sounds matches some previous tentative
bottom-up approaches to decode the manuscript.
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1. Introduction

Hidden Markov models (HMMs) are a particular kind of a Bayesian network obtained by
combining a Hidden Markov layer and a second layer of outputs that depends probabilistically
on the hidden states of the first layer [1,2]. This model has proven a very versatile and useful tool in
many applications of artificial intelligence including: (i) modelling of biological sequences of proteins
and DNA [3] (ii) speech recognition systems [4] (iii) data compression and pattern recognition [5] (iv)
object tracking in video sequences [6] and other. Of particular interest to us are the early studies in
which HMMs were used to analyze a large body of text, in this case of English (the so-called “Brown
Corpus”), considered as a sequence of letters without any previous assumption on the linguistic
structure of the text or the meaning of the letters [1,4,7]. Depending on the number of hidden states,
thanks to this work light was shed on the linguistic structure of English depending on the number of
hidden states considered in the model. For example, for two hidden states the basic division among
vowels and consonants was recovered as the most natural basic structure of English language [7]. As
many more states were taken into account it was discovered a structure including the initial and final
letters of a word, vowel followers and preceders, etc. This elucidates the purely statistical nature of
a language and it shows that HMMs can be an insightful tool in mathematical and computational
linguistics.

Applications of HMMs to the emergent field of Natural Language Processing (NLP) has also
flourished in recent years as it has been shown its applicability to different layers of NLP such as speech
tagging and morphological analysis. By using this approach successful results for many languages
such as Arabic and Persian have been obtained [8,9]. For these reasons, it seems promising to extend
these analyses to other sources of text that cannot still be deciphered because they are written in an
unknown script and with a unique linguistic structure. Among the candidates to this challenge, it
stands out the medieval codex known as Voynich’s manuscript [10].
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Discovered by the Polish-Samotigian book dealer W. Voynich in 1912, it have remained an enigma
of historical cryptography since then. For a detailed introduction to the manuscript history and
attempts of decipherment until 1978 the interested reader can found more information in M. d’Imperio
monograph [11] and Zandbergen’s website [10]. It is common lore about history researchers that
this book could have belonged to emperor Rudolph II of Baviera until his death in 1612 as stated
in a letter addressed to the XVIIth century scholar Athanasius Kircher that was found by Voynich
himself in the manuscript. A reconstruction of the history of the ownership of the manuscript has been
elucidated throughout the years. It is also known that it was property of the Jesuits and it was kept at
the “Collegio Romano” since the last decade of the XVIIth century until the end of the XIXth century
when it was moved to Frascati where Voynich acquired it.

Modern physics and chemistry analyses have allowed establishing some rigorous facts. Firstly,
in 2009 some samples of ink and paint were taken from the manuscripts and analysed by X-ray
spectroscopy and X-ray diffraction techniques showing that these inks and pigments were totally
compatible with those used by scribes at the last epoch of the middle ages [12]. The same year a
radiocarbon dating of the parchment was carried out by researchers at the University of Arizona [13].
They found that with a 95% probability the parchment corresponds to the period between 1404 and
1438 placing the manuscript in the first half of the fifteen century. It is also clear that the text was added
after the drawing of the figures in the manuscript because it usually surrounds the figures very closely.

Figure 1. A sample of the first folio of the Voynich’s manuscript.

An image of the first line in the Voynich’s manuscript is shown in Fig. 1. The total set of individual
characters depends on some ambiguities in counting but it seems that there are 36 characters in the
set as recognized by the European Voynich Alphabet (EVA), some of them far more frequent than
other. Although the symbols seems strange, and not immediately associated with any known alphabet
ancient or modern, a closer inspection reveals a similarity with Latin, Arabic numerals and, specially,
some Latin abbreviations very common throughout the middle ages [14]. Anyway, these clues have
helped little in finding an accepted decipherment of the text.

Among the possible solutions to this riddle there have been four main proposals:

1. It is a manuscript written in an extinct natural language with an exotic alphabet [15].
2. It is the encipherment of a known language (possibly Latin, German or other Indo-european

language but nobody is sure [11]).
3. It is a hoax consisting of asemic writing with the objective of making the book strange and

valuable to collectors of antiquities [16].
4. It is a modern fabrication (perhaps by his discoverer, W. Voynich) [10].

From all these hypotheses, the last one seems excluded by modern physicochemical analyses but the
other three may be considered still open. The paper is organized as follows: In Sec. 2 we discuss
the basics of Hidden Markov Models and its application to linguistic analysis. Sec. 3 is devoted to
the application of HMMs to the Voynich’s manuscript and the information we may deduce from this.
Finally, the paper ends with a discussion on the meaning of the findings of the paper and guidelines
for future work in Sec. 4.

2. Hidden Markov models

In this section we will provide a quick summary of the basic concepts and algorithms for HMMs.
In Fig. 2, we show the structure of a HMM. The Markov process (above) is characterized by a sequence
{X0 , X1 , X2 , . . . , XT−1} of internal states selected among a total of N. The transition among these
states is performed according to the probabilities in a transition matrix A in such a way that the element
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aij denotes the probability of performing a transition from the internal i state to the j state. We can also
denote the different internal states as qi, with i = 0 , 1 , 2 , . . . , qN−1.

The second layer we have plotted in Fig. 2 corresponds to the observations. The sequence of
observations is then denoted by {O0 ,O1 , . . . ,OT−1} and they can be chosen among a total of M
possible observation symbols. The relation between the Markov process’ layer and the observation
layer is also probabilistic because, given an internal state qj, the probability for observing the symbol k
is bj(k). These elements constitute a row stochastic matrix, B.
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Figure 2. A schematic view of a HMM. See the main text for details.

The problem we want to address is the following: Suppose we have a given sequence of
observations, O, consisting on a series of symbols from a total of M. If we assume that there are
N internal states in the model, the objective is to find the model (A, B, π) (where π is the distribution
of initial states) that provides the best fit of the observation data. The standard technique in HMMs to
evaluate this optimum model make use of a forward and a backward algorithm described as follows.

2.1. The forward algorithm

Firstly, we are interested in evaluating the following probability:

αt(i) = P(O0,O1, . . . ,Ot, xt = qi|λ) , (1)

i. e., the probability that the sequence of observations up to time t is given by O0, . . . ,Ot and the
internal state at time t is qi for a given model λ. Then, for t = 0 we have that:

α0(i) = πi bi(O0) , (2)

where i = 0, 1, . . ., N − 1. The reason is that πi is the probability that the initial internal state is qi, and
bi(O0) is the probability that, given that the internal state is qi, we have the observation O0. It is the
easy to check that the recursion expression for αt(i) is given by:

αt(i) =

[
N−1

∑
j=0

αt−1(j) aji

]
bi(Ot) . (3)

Here aji is the transition probability from the inner state j to the inner state i. This algorithm is also
called α-pass.

2.2. The backward algorithm

The backward algorithm or β-pass is proposed for the efficient evaluation of the following
probability:

βt(i) = P(Ot+1,Ot+2, . . . ,OT−1, xt = qi|λ) . (4)
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This means that we interested in finding the probability that the sequence of observations from time
t + 1 to the end is Ot+1, . . . ,OT−1 and the inner state at time t is qi. The algorithm is constructed as
follows:

• In the first place, we define βT−1(i) = 1 for i = 0, 1, . . ., N − 1.
• Then, for t = T − 2, T − 3, . . ., 0 we define the recursive relation:

βt(i) =
N−1

∑
j=0

aij bj(Ot+1) βt+1(j) . (5)

We will use these two algorithms, the forward and the backward, to find a new algorithm that can be
used to re-estimate the model and make it approach to its optimum.

2.3. Reestimating the model

Our objective now is to reevaluate the model in such a way that the optimum parameters that fit
the observations are found. These parameters are the elements of the matrices A, B and also those in
the vector corresponding to the initial distribution of internal states, π. We need now an algorithm to
reestimate the model in such a way that the probability of the observation sequence, O0, . . . ,OT−1,
given the model λ, P(O0, . . . ,OT−1|λ) is maximized.

The idea of the algorithm begins with the definition of the following probability for a given model
and a given observation sequence:

γt(i, j) = P(xt = qi, xt+1 = qj|O, λ) . (6)

This is the probability of finding the internal states qi, qj at times t, t + 1 for the observation sequence
O and the model λ. Using now the standard relations for conditional probabilities and the definitions
of the α and β probabilities in Eqs. (1), (4) we have:

γt(i, j) =
αt(i) aij bj(Ot+1) βt+1(j)

P(O|λ) , (7)

for time t = 0, 1, . . ., T − 2. We also define the sum over the index j, i. e., the probability of finding the
inner state qi at time t for a given model and observation sequence:

γt(i) =
N−1

∑
j=0

γt(i, j) . (8)

With these definitions and expressions we can now propose the evolution algorithm for the reestimation
of the parameters:

• We initialize the model λ = (A, B, π). It is a common practice to choose the elements according
to the uniform distribution: πi ≈ 1/N, aij ≈ 1/N, and bj(k) ≈ 1/M but these values must be
randomized to avoid that the algorithm becomes stuck at a local maximum.

• We calculate the parameters αt(i), βt(i), γt(i, j) and γt(i) by applying the corresponding
expressions in Eqs. (3), (5), (7) and (8).

• For i = 0, 1, . . ., N− 1 and j = 0, 1, . . ., N− 1 we reestimate the elements of the transition matrix,
A, as follows:

aij =

T−2

∑
t=0

γt(i, j)

T−2

∑
t=0

γt(i)

, (9)
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• For i = 0, 1, . . ., N − 1 and j = 0, 1, . . ., N − 1 we compute the new values for the elements of the
observation probability matrix as follows:

bj(k) =

∑
t∈{0,1,...,T−1} ,Ot=k

γt(j)

∑T−1
t=0 γt(j)

. (10)

Here the sum in the numerator is restricted to those instants of time in which the observation
symbol is the k-th.

• Finally, we compute the probability of the given observation sequence, i.e., P(O|λ) (obtained as
the sum of αT−1(i) for all the inner state values, i). If this probability increases, with respect to
the previous value, the model updating is performed again. However, in practice the algorithm
is run for a given number of steps or until the probability does not increases more than a selected
tolerance.

Another issue with this algorithm is that the α-pass and β-pass evaluations may easily lead to underflow.
To avoid this problem, a normalization by the sum over j of αt(j) is performed. For further details on
HMMs the interested reader may check the references [1].

3. Results

In this section we will discuss the application of the algorithm discussed in the previous section
to several cases. First, we will consider the case of a text in English and we will implement the
model optimization algorithm to classify the letters of the alphabet (after removing all the punctuation
signs) into two classes corresponding to the inner states of the HMM. It will be shown that these
classes are clearly associated with the vowels and the consonants in English and this provides the
basic phonemic structure of the language. Testing the algorithm with a known language gives us the
necessary confidence to apply it to the Voynich’s manuscript. This way we will show that both vowel
and consonant sounds are identified in the manuscript with a small subset of ambiguous symbols that
may function as both a vowel or a consonant. This may be explained by implicit vowelling of some
consonants, as it is commonly found in Abjad and Abugidas scripts.

3.1. Application to The Quixote:

In this section we will apply the model evolution algorithm for HMM with N = 2 and M = 27.
Therefore, we consider a total of 26 letters and the space as output symbols. The text of the Quixote
in plain ASCII can be freely downloaded from the Gutenberg’s project website [? ]. As a data
pre-processing stage we transform all the upper-case letters to lower-case and remove the punctuation
signs with the exception of the spaces among subsequent words. This way we obtain a sequence of
5, 693, 310 characters but, to our purpose, we can restrict ourselves to the first 100, 000 characters.

As initial transition matrix we have chosen:

A =

(
0.46 0.54

0.52 0.48

)
, (11)

and the distribution of initial hidden states is given at the start of the algorithm by

π =

(
0.52

0.48

)
, (12)

The observation probability matrix is obtained by randomizing the equal probability assumption:
bj(O) = 1/M for every j. For example, we can multiply 1/M by a random number in the interval
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(0.8, 1.2). Anyway, we must verify the condition that the total probability for a given inner state j and
all the possible observation outcomes is normalized to one:

∑
all O

bj(O) = 1 , (13)

and this is accomplished by imposing this condition to define the last value bj(O) for the M-th state,
O.

The algorithm was then implemented in Mathematica using lists and the model evolution
was run for 200 steps with 100, 000 characters from the book, pre-processed to retain only the
letters and removing all the punctuation signs. Results were also checked using other independent
implementations of the code in C++ [18].

In the first place, we notice that the algorithm converges very fast as deduced from the evolution
of the logarithm of the observation sequence probability for the given model P(O|λ). As shown in Fig.
3
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Figure 3. The evolution of the logarithm of the observation sequence’s probability as a function of the
iteration. Notice the fast convergence to an asymptotic “plateau”.

From this figure we conclude that convergence is achieved after only 60 steps and that further
iterations only improve the results very slightly. The final transition matrix we find is given as follows:

A =

(
0.369 0.631

0.869 0.131

)
, (14)

with an initial distribution of initial states given by:

π =

(
0

1

)
. (15)

This is also found using other texts such as the “Brown Corpus”. The form of the transition matrix
in Eq. (14) is already pointing towards the existence of two categories of letters (the inner state of the
HMM). These categories are, obviously, the vowels and the consonants and this statement is reinforced

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 November 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 November 2018                   doi:10.20944/preprints201811.0594.v1

http://dx.doi.org/10.20944/preprints201811.0594.v1


7 of 12

by the values of the observation probability matrix, B. In our case, the inner state 2 has been identified
as the vowels as it is clearly shown in Fig. 4 where a peak of probability is found for every vowel.

0 3 6 9 12 15 18 21 24 27
0.00

0.05

0.10

0.15

0.20

0.25
Space

y
u

oi

e

 

 

b 2
(k
)

k (letter index)

a

Figure 4. The probability of observation of a given letter for the hidden state 2. Notice the peaks for
the vowels as well as “y” and the space.

From Fig. 4 we can also derive some interesting conclusions:

1. The most frequent vowel in the English language is “e”.
2. The space among words has the structural function of a vowel although it has no associated

sound.
3. The letter “y” is mostly a vowel in the English language. Indeed, the Oxford Dictionary classifies

it as a vowel in some cases (“myth”), a semivowel in others (“yes”) or as a part of a diphthong
(as in “my”) [19].

Similar conclusions can be also deduced for the consonants. It is also remarkable that the results in
Fig. 4 cannot be deduced from simple frequency analysis. The histogram of the letters obtained from
the Quixote’s text is shown in Fig. 5. We see that the vowel “e” is still the most frequent letter in the
English language (not only the most frequent vowel) but the second most frequent letter is “t”. So,
there is no clear pattern in the histogram to separate vowels from consonants. This ability of HMM
make them a very powerful tool in computational linguistics.

3.2. Application to the Voynich’s manuscript

After the successful implementation of the HMM technique for the Quixote we now turn again
to our problem of analyzing the Voynich’s manuscript. Several transcriptions of this manuscript are
available but the most popular is the one based upon the so-called European Voynich Alphabet (EVA)
as developed by R. Zandbergen and G. Landini. Although there is an extended version which includes
the less common symbols in the Voynich’s manuscript, the basic version uses 26 letters of the English
alphabet (excluding “w”) to make a correspondence with the most abundant symbols in Voynichese.
The correspondence among the EVA code and the Voynich’s symbol is given in the table of Fig. 6.
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Figure 5. The histogram for the frequency of the totality of letters (and the space) in the English version
of The Quixote.

Figure 6. The correspondence among Voynich’s symbols and the associated letter in the EVA
transcription systems. Notice that this is merely an arbitrary codification without any relation to
the actual phonemes that the Voynich’s characters might represent.

This way a transcription of the whole Voynich’s manuscript has been performed in such a way
that it can be used in computational analysis. These transcriptions are available in several sites and they
are discussed by Zandbergen [10]. In particular, we will use the Takahashi’s transcription developed
in 1999. Of course, some pre-processing is required before applying the HMM algorithm because this
file includes some information about each line, including the folium number (recto or verso) and the
number of the line within each page of the manuscript. After removing this information, we are left
with a set of EVA characters separated by dots. These dots correspond to the spaces between words in
the original manuscript. The total of characters (including spaces) is 228, 836 that we can use for the
simulation. Convergence of the algorithm was also very fast, as in the case of the English text analyzed
in Sec. 3.1, and if we use more than 50, 000 characters the results are stable and show no dependence
on the total length of the sequence, T. This is a convincing argument in favour of the consistency of
the results.

We started with the same initial conditions as those given in Eqs. (11) and (12) for the transition
matrix and the distribution of the state t = 0. The probability matrix for the observation states (the
Voynich characters) was randomized in the usual way explained in Sec. 3.1. In this particular example
we used the first 100, 000 characters in the Voynich’s manuscript and 200 iteration steps. The final
transition matrix shows the same pattern as those of natural languages:

A =

(
0.169 0.831

0.840 0.160

)
, (16)
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and the distribution of initial states is given by:

π =

(
0

1

)
. (17)

We will see that this indicates that the first character of the manuscript is associated with a consonant
sound. The most interesting results are, however, those obtained with the observation probability
matrix, which clearly separate two kinds of characters to be associated with vowel and consonant
phonemes as it occurs with the case of The Quixote. In Fig. 7, we show the probability of obtaining
each character when the hidden state is 1.
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Figure 7. The probability of observation of a given character in the Voynich’s manuscript for the hidden
state 1. The peaks corresponds to the symbols: “a”, “c”, “e”, “i”, “o” and “y” of the EVA alphabet.
There is also a peak for the space among words.
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Figure 8. The same as figure 7 but for the hidden state 2.

The probabilities for hidden state 2 are given in Fig. 8. We see that a set of very conspicuous peaks
are obtained in both cases but there are fewer in Fig. 7, this could mean that the symbols corresponding
to those peaks are associated with vowel’s phonemes. On the other hand, this correspondence is
not as strong as in the case of the English text of Sec. 3.1 because there are symbols with noticeable
probability, that appear in both figures (in particular, the EVA symbols “i”, “s” and “y”). The fact that
the separation among vowels and consonants is not as clear as in the case of European languages may
imply that we are dealing with some implicit vowelling in the language underlying the manuscript
as it is common in Abjads’ alphabets such as that of Arabic. Nevertheless, the appeareance of high
peaks in Fig. 7 also suggests the existence of vowel symbols in the manuscript so this Abjad would be
impure. Bax also suggested in 2014 [15] that this is the case after proposing some provisional decoding
of some words in the manuscripts associated with plants and a constellation. In the next section, we
will discuss this intriguing possibility.

4. Discussion

Research into the Voynich’s manuscript has been dominated by completely erred perspectives
since its rediscovery in the early XXth century [11]. Most of these approaches have been unscientific
and very subjective and they have hindered the establishment of a serious research project leading to
the understanding of this unique book. The recent proof of the old age of the “vellum” by carbon-dating
places this manuscript in the first half of the XVth century and the rest of tests are very compatible
with an origin in the middle ages [12,13]. Anyway, the situation is still so confusing that some authors
still support the idea that this object was fabricated with a pecuniary intention by making it similar in
appearance to a real, but enciphered, text [16]. On the other hand, statistical measurements carried out
by Amancio et al. in 2013 [20] show that the Voynich’s manuscript is incompatible with shuffled texts
and, moreover, that certain keywords appear throughout the manuscript. These keywords organize in
patterns of semantic networks as shown by Montemurro et al. [21].

Other authors, as most researchers in the past, think that the text is enciphered in some way.
Hauer and Kondrak assumed that the manuscript is written in some Abjad’s alphabet using some
transposition of letters or anagramming [22]. These assumptions are very strong and their conclusions
of a relation to Hebrew have been widely dismissed.
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In this paper, we use the conservative approach of applying the standard technique of HMM for
the linguistic analysis of the manuscript. We have shown that a division among vowels and consonant
phonemes is very clear in the resulting observation probability matrix but that some characters (such
as the EVA symbols “i”, “s” and “y”) could participate of the vowel and consonant nature, either
because they are semivowels or because there is an implicit vowelling in them as in impure Abjad’s
alphabets. A positional dependence of the vowelling as in Abugida’s alphabets cannot be excluded. In
any case, we found some characters in the script that very possibly represent vowel’s phonemes: these
are “a”, “c”, “e” and “o” in the EVA notation (See Fig. 6). There are also some exclusively consonant
phonemes such as “d”, “h”, “k”, “l” or “t” in the EVA’s notation.

It seems interesting that Prof. Bax in 2014 [15] identified some names of plants and the constellation
Taurus in the manuscript and that his associations with phonemes are similar to the one discussed
in this paper. In Fig. 9 we show some of these associations for the words “Taurus”, “Coriander” and
“Juniper” (in arabic).

Figure 9. Some words in the Voynich’s manuscript and the phonetics transcriptions proposed by S.
Bax [15].

Although these associations are considered very preliminary, even by its author, the similarity
with our identification of vowels and consonants is striking. So, we can gain some confidence that
a serious scholarship effort could enhance these identifications and provide a sure path for further
research. Although the rest of possibilities might still be open, we have increasing support to the view
that the text in the manuscript is not hoax nor an intentional cipher but a genuine language written
in an unknown script. Notwithstanding this progress, we are still far from identifying the language
because it could even be a dead tongue, for which the script was devised. HMM analysis, however,
supports the idea that the language in the Voynich’s manuscript has the characteristics of an impure
Abjad pointing towards an eastern origin and not merely a cryptic form of an European language as
it has been considered by many authors [11]. We hope that this work stimulates further research by
expert linguists that could shed additional light into this ancient enigma.
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