

When image experience matters.

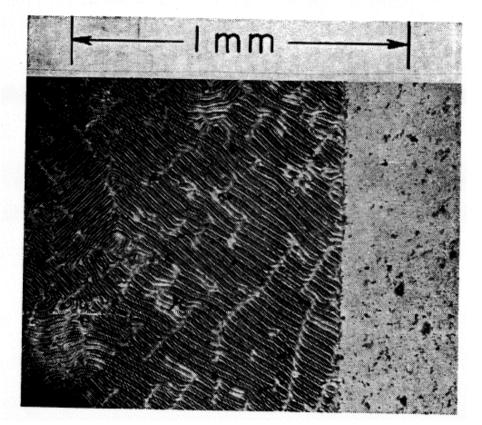
A History of Flat Panel Displays

Christopher N. King Founder (Retired) Planar Systems, Inc. May 2009

2009 Planar Systems, Inc.

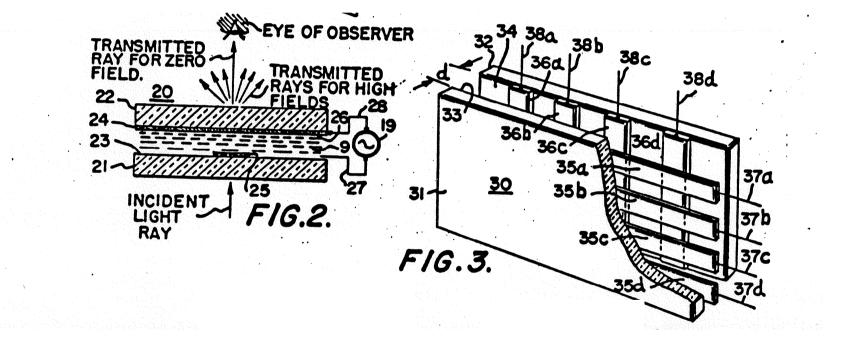
Laying the Scientific Foundations 1960 - 1980

- Liquid Crystal Displays
- Plasma Displays
- Thin Film Electroluminescent Displays

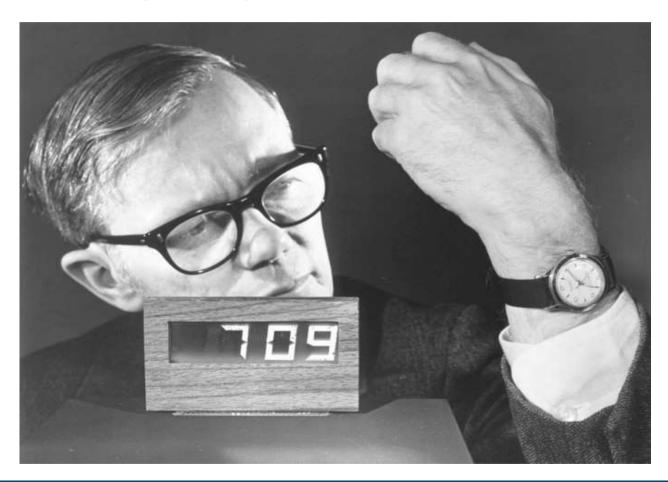


The Birth of LCDs at the RCA Sarnoff Laboratories

- 1962 R. Williams discovers the phenomenon of "Williams Domains" in nematic liquid crystals.
- 1968 G. Heilmeir and his group develop first liquid crystal displays based on dynamic scattering effects


Williams Domains

Domains in liquid crystals with an applied voltage of 2,500 V/cm observed by Richard Williams in 1962.

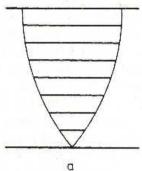


R. Williams U.S. Patent 3,332,485(1967) applied for November 9, 1962

RCA demonstrating Dynamic Scattering LCD Clock (1968)

First Digital LCD Watch Optel (1970)

First LCD Calculator Rockwell (1972)



VOLTAGE-DEPENDENT OPTICAL ACTIVITY OF A TWISTED NEMATIC LIQUID CRYSTAL

M. Schadt and W. Helfrich

Physics Department, F. Hoffmann-La Roche & Co. AG., Basel, Switzerland (Received 8 December 1970)

A new electro-optical effect in twisted nematic liquid crystals is described which allows variations of the rotation of linearly polarized light continuously from 0° to 90°. It requires lower voltage than other electro-optic effects.

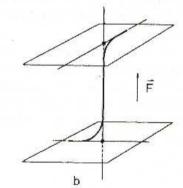
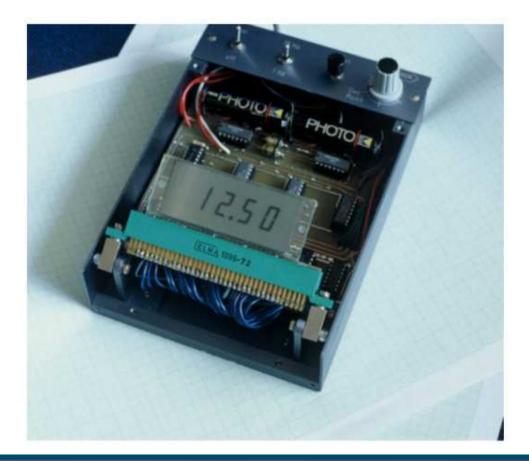
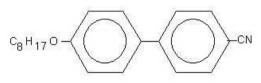
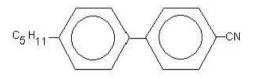
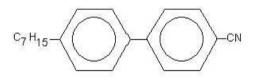



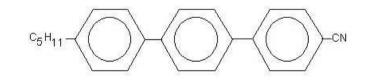
FIG. 1. (a) 90° twist in a nematic liquid crystal; (b) splay and bend instead of twist in a strong electric field \tilde{F} .


Twisted Nematic Liquid Crystal Display (TN-LCD)

Schadt and Helfrich; J. Appl. Phys. Lett. 18, 127, (1971); Swiss Patent Nr. 532261, 4th Dec. (1970)



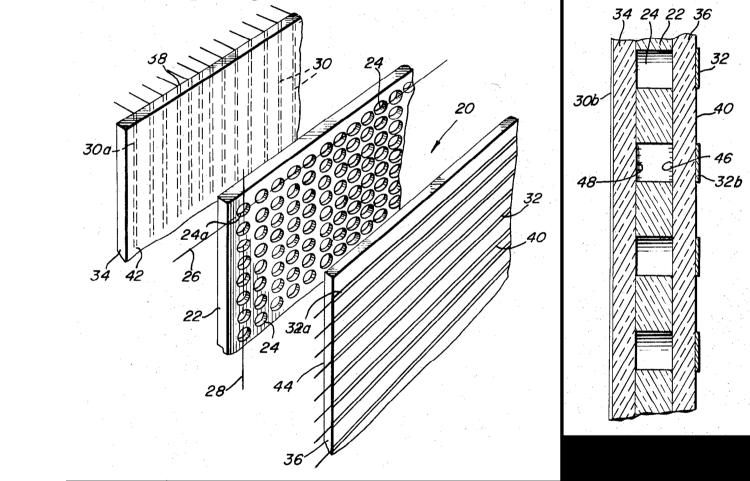

Cyanobiphenyls (1972) G. Gray, J. Nash and K. Harrison


A - Nematic Range: 54 - 80 degrees C

B - Nematic Range: 22 - 35 degrees C

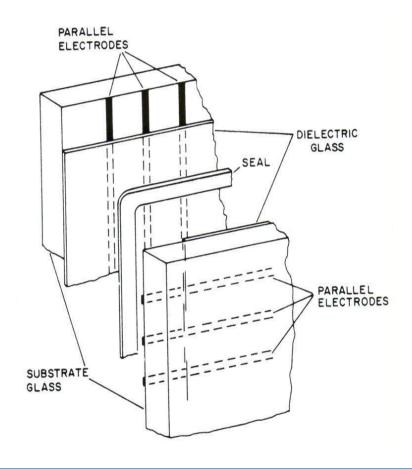
C - Nematic Range: 28 - 42 degrees C

D - Nematic Range: 130 - 239 degrees C



Invention of ac Plasma Display at the University of Illinois

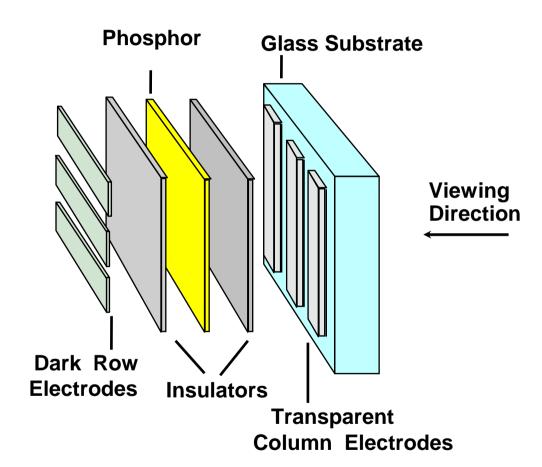
- 1964 D. Bitzer, G. Slottow, & D. Wilson
- 1968 Owens-Illinois develops open cell structure
- 1971 12" diag. 512 x 512 Graphic Display product



Original University of Illinois Plasma Display Patent

Open Cell Structure Developed by Owens Illinois(1968)

First ac Plasma Product Owens Illinois (1971)


PLANAR

Thin Film EL Breakthrough by Sharp Laboratories

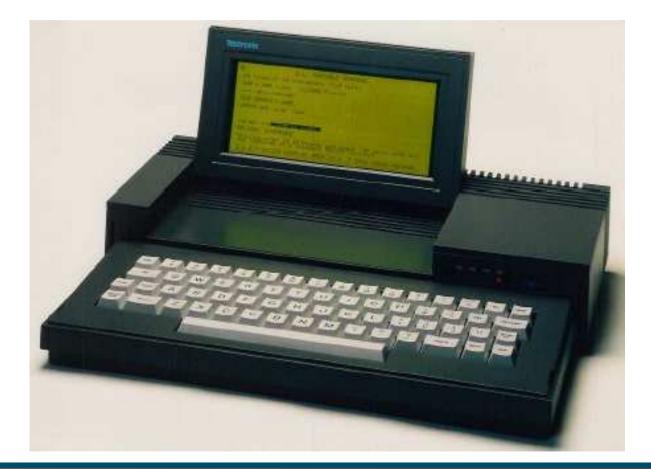
- 1974 T. Inoguchi and his group report a stable and high brightness TFEL Display
- 1975 Sharp demonstrates a 320x240 QVGA display
- 1983 Sharp introduces first commercial TFEL display product

Thin Film Electroluminescent (TFEL) Display Technology

- Advantages
 - High contrast
 - Wide operating
 temperature range
 - Emissive excellent viewing angle
 - Fast response time

Disadvantages

• High voltage drivers


1980s :

The Quest for High Information Content

- The birth of the personal computer created a desire for a portable computer with a flat panel screen
- This market opportunity led to fierce competition between emissive and nonemissive display technologies

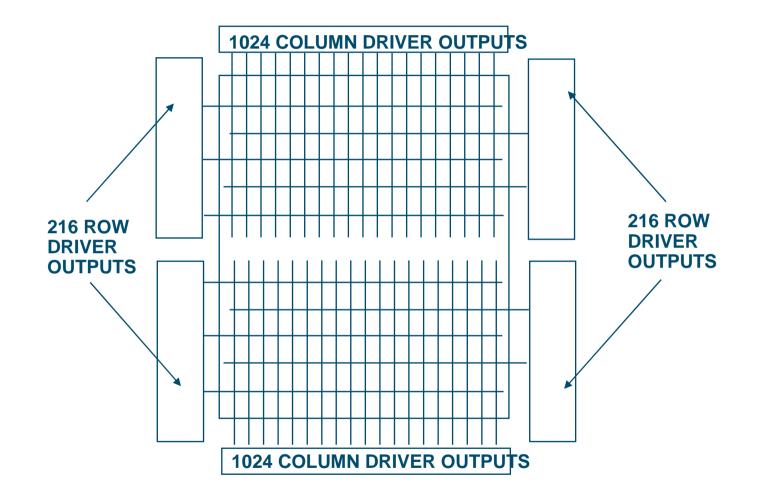
TFEL Prototype built at Tektronix

CALCULATED POWER CONSUMPTION FOR A TFEL 10.4" VGA WITH NO POWER REDUCTION CIRCUITRY

Power Component	Typical Power	Maximum Power
Watts	m = 0.1 M	m = 0.5M
P Light	0.125	0.625
P Row Charge	2.59	2.59
P Column Charge	4.93	12.32
P Total	7.645	15.54

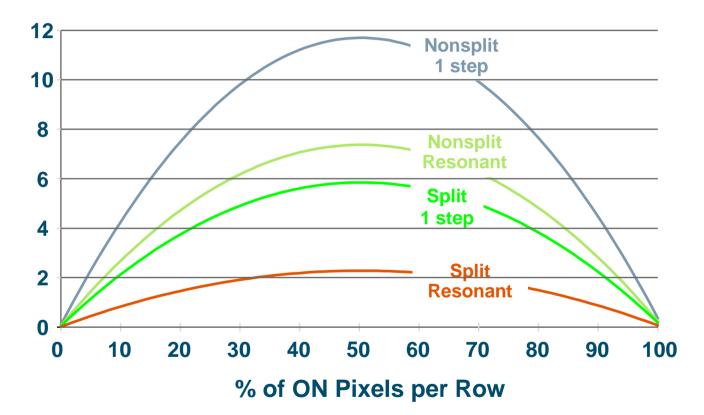
CAPACITOR CHARGING POWER CONSUMPTION

$$W_{C} = W_{R} = \frac{1}{2} CV^{2}$$


$$-\sqrt{V}$$

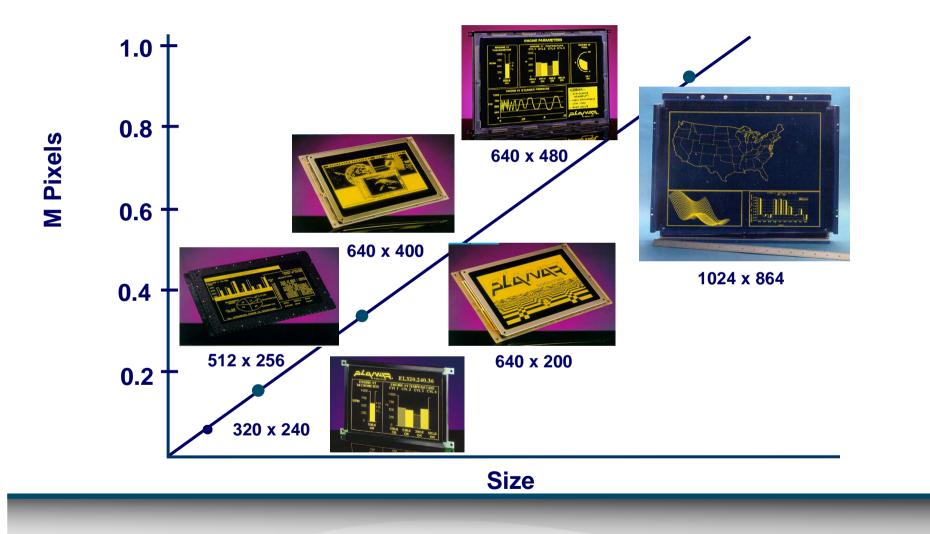
$$P = f * C * V^{2}$$

С


SPLIT COLUMN ELECTRODE STRUCTURE

POWER REQUIRED TO DRIVE THE COLUMNS 10" Diagonal, VGA TFEL Panel

Power (Watts)



TFEL Computer Displays in the 1980's

Progression of EL Display Information

TWO STEP ENERGY SAVINGS

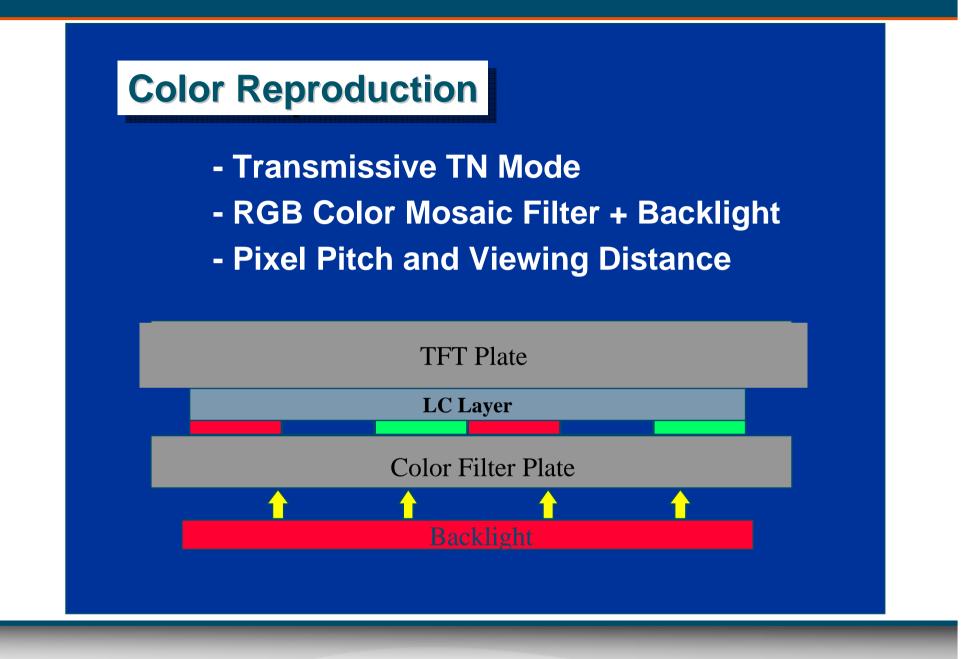
 $W_{2STEP} = \frac{1}{2} C (V/2)^2 + \frac{1}{2} C (V/2)^2 = \frac{1}{4} C V^2$

IBM Plasma Display

The Development of the STN LCD

- 1983 T. Scheffer and J
 ürgen Nehring at Brown Broveri Co. discover the Super Twisted-Nematic effect
- 1985 Brown Broveri Co. demonstrates a 10.7 inch diag. 540 x 270 STN panel
- By the end of the 1980s the STN-LCD becomes the dominant flat panel display technology for portable computers

The 1990s: The Quest for Color


- All of the three major flat panel technologies needed to make significant changes to their device structures and materials to achieve color in the 1990s.
- Successful color development positioned flat panels to compete directly with the CRT.

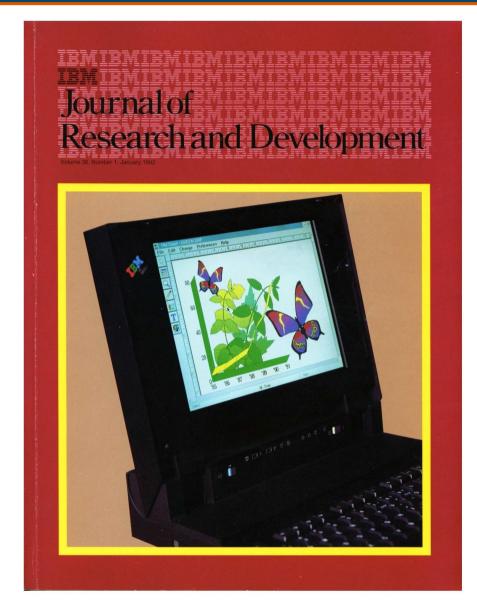
Active Matrix LCDs

- Although passive matrix addressed LCDs dominated the market for low power displays, emissive displays had superior performance in terms of brightness, contrast, viewing angle and response time.
- Active matrix addressed LCD with a-Si TFTs solved the basic materials limitations of liquid crystals and the addition of a mosaic color filter enabled color.

2009 Planar Systems, Inc.

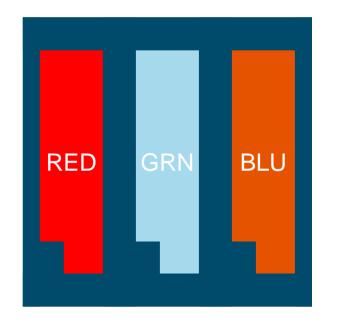
Early TFT Development

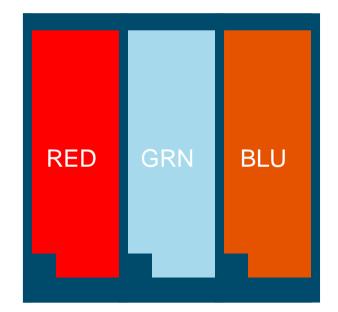
- 1968 P. Brody's group at Westinghouse builds TFT addressed EL display
- 1974 P. Brody builds first AMLCD using CdSe TFTs.
- 1979 P. Le Comber and W. Spear at the Univ. of Dundee demonstrate a-Si TFT
- 1983 S. Morozumi and his colleagues at Seiko Epson build first commercial hand held color LCD TV


Seiko Epson Hand Held TV

Cost Competitive AMLCD

- The manufacture of small AMLCDs for the hand held TV market allowed Japanese companies to go down the manufacturing cost learning curve.
- In 1991 IBM and Toshiba formed a joint venture to manufacture color AMLCDs for portable computers.
- The IBM Think Pad portable PC was introduced in 1992.



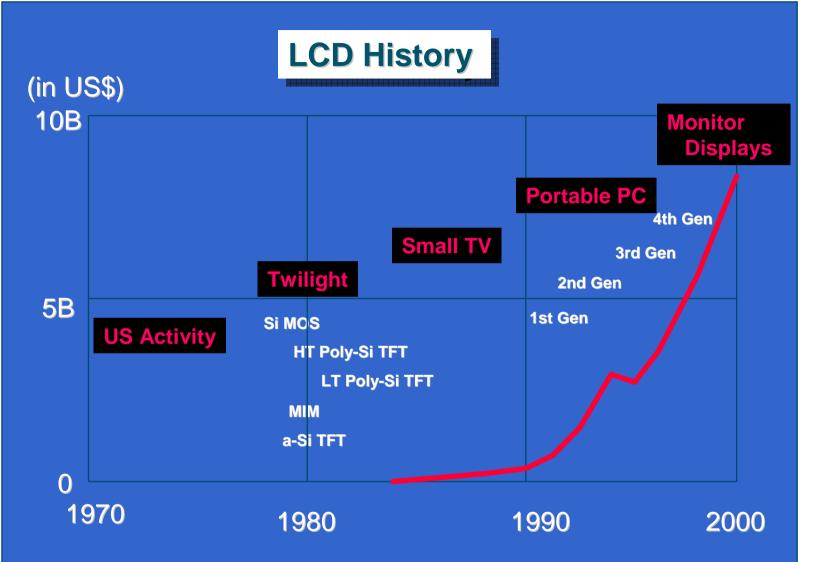

TFT Color LCD Power Consumption

- Initial 10.4" VGA consumed > 10W
- Power Reduction Actions
 - Improve Back Light and power supply efficiencies
 - Match Back Light spectrum to color filter transmission curves
 - Brightness Enhancement Films
 - Increase the TFT aperture ratio

APERTURE RATIO ENHANCEMENT

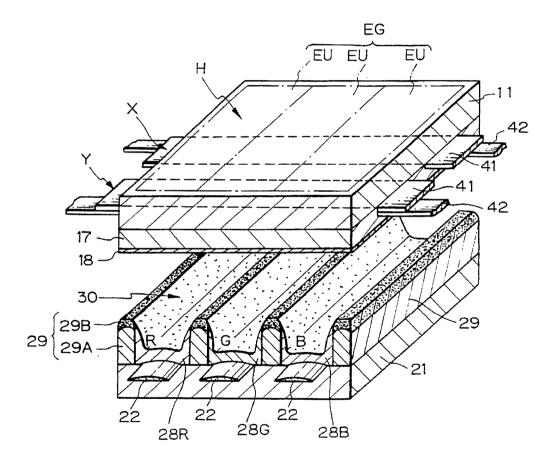
Conventional ~ 55 %

2009 Planar Systems, Inc. | Slide 37


Super High Aperture up to 80 %

Power Reduction for 10.4" VGA by IBM

Date	Product	Display Power (W)
12/1991	PS/55	15
10/1992	ThinkPad 700C	8.5
9/1993	ThinkPad 750C	5.6
11/1994	ThinkPad 755CE	3.6



Color Plasma Displays

- 1990 T. Shinoda of Fujitsu invents the three-electrode panel with RGB phosphors excited by Xenon gas discharge
- 1992 Fujitsu 21 inch dia. Color PDP
- 1996 Fujitsu 42 inch dia. Color PDP
- By the end of the decade color PDP is the premium large flat panel TV screen

Color Plasma Display Structure

21" Diagonal Color Plasma Display

(1992)

Item	Performance
Display Area	422 x 316 mm
Aspect Ratio	4:3
Number of Pixels	640(R,G,B) X 480
Pixel Pitch	0.66mm X 0.66mm
Number of Colors	260,000
Luminance	180 cd / m2
Viewing Angle	> 160 degrees
Power Consumption	100 W max
Weight	4.8Kg

42" Diagonal Color Plasma Display

The Long Quest for Color Inorganic EL

- 1987 S. Tanaka & H. Kobayashi of Tottori University propose color by white structure
- 1993 Planar introduces Red-Yellow-Green TFEL product
- Planar demonstrates several RGB prototypes using SrS:Ce, SrS:Cu, or SrGa₂S₄:Ce for the blue phosphor

Red-Yellow-Green TFEL Products

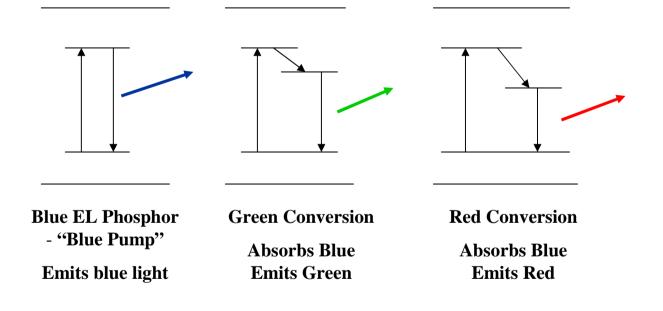
Multi Color VGA

Multi Color QVGA

Color Prototypes

Color QVGA TFEL

Color VGA AMEL


Blue EL Phosphor Breakthrough

- 1999 N. Miura of Meiji University discovered efficient blue EL in BaAl₂S₄:Eu
- 2004 X. Wu of iFire reports on Color by Blue structure using BaAl₂S₄:Eu
- 2007 iFire demonstrates a 34 inch dia. Color EL TV panel

Achieving Full Color (Color By Blue)

Based on the Physics of Photoluminescence

iFire 34" Diagonal Color EL

Organic EL Technology Milestones

- 1987 C. Tang and S. Van Slyke of Kodak report the development of an efficient OLED device.
- 1995 C. Hosokawa of Idemitsu Kosan develops an efficient blue emitter material.
- 1999 S. Forrest and M. Thompson develop efficient red & green electrophosphorescent materials.

PHOSPHORESCENT OLED PERFORMANCE 2009 UNIVERSAL DISPLAY CORP.

PHOLEDs	CIE Color Coord.	Luminous Efficiency (cd/A)	Luminous Efficiency (Lum/Watt)	Lifetime to 50% Lo (hrs)	Voltage (V)
Deep Red	(0.67,0.33)	21	15.3	80,000	4.3
Deep Red	(0.66,0.34)	22	19.6	200,000	2.8
Red	(0.64,0.36)	28	31.4	500,000	2.8
Green	(0.36,0.60)	58	65	100,000	2.8
Green	(0.36,0.60)	67	45	250,000	45

Organic EL Product Milestones

- 1996 Pioneer introduces first commercial monochrome OLED display
- 2003 Kodak and Sanyo introduce first color AMOLED product
- 2008 Sony introduces first color AMOLED TV

OLED Products and Prototypes

Pioneer Monochrome OLED display 256x64 pixels (FM radio sold only in Japan)

Pioneer Multicolor OLED display in a AM/FM CD changer sold worldwide

Pioneer Multicolor OLED display in a Cell phone product

Sanyo Color AMOLED display - 852x222 pixels (prototype, 2.5" diag.) A 5-inch QVGA has also been shown

OLED Products - Kodak Digital Camera

KODAK EasyShare LS63 Zoom digital camera...

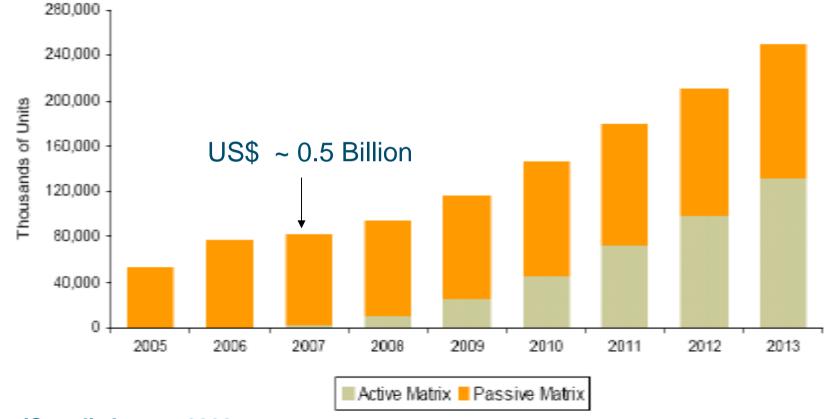
- Screen and camera made by Kodak
- Launched February 2003

Sony AMOLED-TV – Model XEL1

- 11" and 3mm thick
- Contrast ratio: 10⁶to 1
- View angle: 180 degree
- Resolution: 960 x 450

 \mathbf{O}

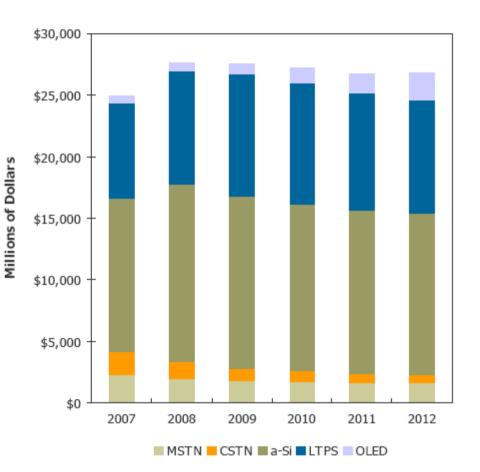
n


a

S

• Power consumption: 45W

AMOLED PMOLED Market Trend


Source: iSuppli, August 2008

iSuppli

Coexistence of display technologies

- Market value will peak in 2008 and gradually decline due to continuous price drop
- Coexistence of display technologies, but AMLCDs lead, while PMLCDs used in low value applications
- OLED market will grow but will have a fairly small piece
 - OLEDs struggling with manufacturing to expand volume
- Low-end character and segmented MSTN displays continue in white goods:
 - Microwaves, coffee machines etc

Flat Panel Success Requirements

Components for Success	LCD	OLED	
 High Volume Entry Market 	Watches, Calculators	Cell Phones	
- Key Features	- Low Power Monochrome	Low Power Color	
2. High Information Content Capability			
- Market	Computer Display	TV Screen ?	
- Display Type	AMLCD	AMOLED	
- Key Technology	a-Si TFT	? TFT	
 Full Color Capability 			
- Market	TV Screen	TV Screen?	
- Initial Competitors	CRT, Plasma	AMLCD	
- Technical Issues			
- Viewing Angel	MVA & IPS	Excellent	
- Response Time	Materials, addressing, backlights	Addressing Circuitry	
- Color Gamut	Backlights	Color Filters	
- Power Consumption	Dynamic Backlights	Very Efficient Materials	
4. Costs			
- Panel Process	Low	Medium	
- TFTs	Low	High	
- Color Filter	High	High	
- Back Light	High	None	
- Driver ICS	Low	Low	

Acknowledgements

LCD History

Hirohisa Kawamato, "The history of liquid crystal displays," *Proc. IEEE* **90** (4), 460–500 (2002).

Joseph Castellano, "Liquid Gold," World Scientific Publishing, Singapore (2005).

Plasma History

Larry Weber, "History of the Plasma Display Panel," *IEEE Transactions on Plasma Science,"*

34 (2), 268–278 (2006).

EL History

Yoshimasa Ono, "Electroluminescent Displays," World Scientific Publishing, Singapore(1995).

Sony First OLED Color TV

XEL-1

