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Abstract 
 
“Active” Direct Methanol Fuel Cells (DMFC) must rely on equipment to run whereas 
passive DMFCs can run in ambient conditions without any equipment, allowing for 
potential use in portable devices. In this report, a passive DMFC was designed and 
constructed with the potential of being equivalent to a battery then compared to an active 
DMFC and a battery. Passive DMFCs, while not as good performance-wise as active 
DMFCs, perform notably better than a battery as an energy source. 
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Introduction 

 Fuel cells are a unique energy source to the industry and population. Like a 

combustion engine, as long as a fuel supply is provided, fuel cells can provide an 

indefinite amount of energy. And like batteries, fuel cells rely on electrochemistry to 

produce energy, contain no external moving parts, and work silently. In addition, fuel 

cells produce nearly no particulate emissions and harmful products that may affect the 

environment (O’Hayre et al., 2006). 

While fuel cells are advantageous in several ways, there are several issues that 

must be overcome. Fuel cells are economically unattractive due to their high costs. In 

addition, while methanol fuel has a theoretical power density of 10 times more than 

lithium-ion batteries (Yang et al., 2006), fuel cells cannot produce nearly as much 

volumetric power density as combustion engines. Another issue in fuel cells is that the 

fuel may require reforming into hydrogen, which drops the performance of the fuel cell 

even further. Other concerns include the operational temperature of the fuel cell and any 

environmental hazards the fuel cell may cause (O’Hayre et al., 2006). 

 Several types of fuel cells are currently being developed in the industry, including 

Phosphoric Acid Fuel Cells (PAFC), Polymer Electrolyte Membrane Fuel Cells 

(PEMFC), Alkaline Fuel Cells (AFC), Molten Carbonate Fuel Cells (MCFC), Solid-

Oxide Fuel Cells (MOFC), and, the focus of this report, Direct Methanol Fuel Cells 

(DMFC).  

DMFCs have several advantages over the other types of fuel cells. One advantage 

is that they can work at temperatures below 100ºC, a suitable working temperature, as 
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opposed to PAFCs operating temperature of 200ºC or MCFCs operating temperature of 

650ºC (O’Hayre et al., 2006). Another advantage is the use of methanol in the fuel cell; 

because methanol is a liquid at room temperature, it is easy to store and refill as a fuel 

source as opposed to hydrogen. In addition, methanol has a high energy density 

compared to hydrogen, which can be a promising asset as a power source for portable 

devices and micropower sources (Lu et al., 2006). 

 Describing the DMFC 

 DMFCs consists of several parts: an anode and cathode bipolar plates, two 

gaskets, an anode and cathode gas diffusion layer (GDL), an anode and cathode catalyst 

layer, and a Proton Exchange Membrane (PEM) (Figure 1). The bipolar plates on the 

outside of the cell, usually constructed from metal or graphite, allow methanol to flow on 

the anode side and oxygen on the cathode side through a unique flow pattern. The 

methanol flowing through the anode bipolar plate makes contact with the anode GDL and 

disperses to the anode catalyst layer where it reacts, producing carbon dioxide, protons, 

and electrons, while the oxygen being supplied to the cathode GDL and thence to the 

cathode catalyst layer, reacts with protons and electrons arriving from the anode to form 

water. The gaskets, typically made from Teflon, must be about the same width of the 

catalyst layer and GDL combined in order to prevent the methanol and oxygen from 

leaking out of the fuel cell. The PEM, the catalyst layer, and the GDLs are prepared 

together, forming a Membrane Electrode Assembly (MEA).  
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Figure 1: Diagram of a DMFC (Hackquard, 2008) 

 
 The most common material used in a GDL can be either carbon fiber paper or 

woven carbon cloth. While the carbon fiber paper provides a high level of electron 

conductivity, the carbon cloth is more advantageous due to its improved water 

management, improving performance. The GDL is responsible for distributing the 

methanol/oxygen to the catalyst. Once the supplied fuel supply reacts with the catalyst, 

the GDL then conducts the electrons created from the reactions (Hoogers, 2003). The 

electrons in the GDL are redirected into the bipolar plates and through an external circuit; 

if an external load box is used, the current provided by the electrons can be measured. 

 The composition of the catalyst layers for the anode and cathode have slightly 

different compositions based on the task they were meant to perform. The preferred 

anode catalyst loading consists of platinum and ruthenium, carbon supported, while the 

preferred cathode catalyst loading only contains platinum, carbon supported. The support 

on carbon allows for more efficient particle dispersion (Arbizzani et al., 2007). In the first 
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step, the platinum allows for the oxidation of methanol into carbon monoxide, as shown 

in equation (1). 

 CH3OH  CO + 4H+ + 4e-         (1) 

Unfortunately, carbon monoxide poisons the anode catalyst and prevents the methanol to 

react further. To resolve this issue, the ruthenium in the anode oxidizes the water into a 

hydroxide radical at an appropriate over potential in the next step, which subsequently 

reacts with the carbon monoxide to produce carbon dioxide as shown in equations (2) and 

(3). 

H2O  OH• + H+ + e-        (2) 

CO + OH•  CO2 + H+ + e-       (3) 

The final result is an overall oxidation half-reaction at the anode catalyst layer, shown in 

equation (4). 

 CH3OH + H2O  CO2 + 6H+ + 6e-       (4) 

As mentioned before, the electrons are conducted by the anode GDL and transported to 

the cathode GDL via an external circuit. Meanwhile, the protons are conducted through 

the PEM from the anode to the cathode. 

The PEM used in a standard MEA is a preflourosulfonated ionomer membrane, 

commonly referred to as a Nafion membrane, a registered trademark of DuPont (Chen et 

al., 2007). The Nafion membrane is a good proton conductor, allowing dissociated 

protons from the reacting methanol to pass through the membrane. The protons are 

carried over to the cathode catalyst loading, where the reduction half-reaction occurs. 

At the cathode side of the DMFC, the electrons that were produced at the anode 

arrive at the cathode catalyst via the cathode GDL. Combining with the dissociated 
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protons carried over through the Nafion membrane and a supply of oxygen provided by 

the cathode bipolar plate, the oxygen goes through a reduction half-reaction and is 

converted into water, as shown in reaction (5). 

3/2O2 + 6H+ + 6e-  3H2O       (5) 

Combining the two half reactions, the overall fuel cell reaction consumes methanol and 

oxygen and produces carbon dioxide and water, as shown in equation (6). 

CH3OH + 3/2O2  CO2 + 2H2O      (6) 

Losses in Performance 

 Figure 2 represents a general performance curve of a DMFC. Its performance is 

measured in cell voltage versus the current density. Unfortunately, the performance curve 

is plagued by many types of losses in several areas. The optimal open circuit potential 

(OCP), the case when a fuel cell is operating with no current density, should be about 1.2 

V according to thermodynamics. However, an average DMFC OCP is usually 0.65 V 

(Schultz et al., 2001). This is beause of methanol crossover from the anode to the 

cathode, causing both half cell reactions to occur at the cathode, thus causing a cathode 

overpolarization, even at zero entered current. Region 1 in Figure 2 represents the 

activation polarization represented by Butler-Voluner equation. Losses in this region 

occur from the activation of the anode and cathode electrodes, which slow down the 

reaction rate. Region 2 corresponds to the Ohmic polarization. Ohm’s Law, as shown in 

equation (7), represents this drop in performance. 

V = IR          (7) 

Where V is the voltage, I is the current, and R is the resistance and slope of the 

performance curve only in region 2. This drop corresponds to the proton conductivity of 
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the PEM at higher current densities. Region 3 represents the concentration polarization. 

The drop in performance in this region occurs due to the mass transfer limitations, such 

as the slow reactant feed to the reactant sites, slow proton transport, or slow carbon 

dioxide and water byproduct removal.  

 

 
Figure 2: Polarization of a DMFC 

 

Passive Direct Methanol Fuel Cells 

Standard DMFC systems are generally overly complex, have parasitic power 

losses due to the auxiliary equipment’s detrimental effects on the net power density (Liu 

et al., 2005), require large volume, and have a high cost. Due to these issues, an 

alternative form of DMFC operation is being developed: a passive direct methanol fuel 

cell, or a DMFC that relies on breathing ambient air rather than oxygen flow and no 

pumping of methanol fuel. The reacting reduction in size and increased simplicity have 

given passive DMFCs more attention over standard DMFCs, as the reduced size would 

allow functionality in portable devices such as cell phones and PDAs (Shimizu, 2004). 
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Figure 3 shows a diagram of a passive DMFC. The passive DMFC, like a conventional 

DMFC, contains an MEA, gaskets, and two current collectors. The main difference is the 

storage of methanol and supply of oxygen. On the anode side, the methanol is held in a 

small reservoir as opposed to being continuously pumped. On the cathode side, an 

opening has been provided for air to flow in naturally versus oxygen being fed to the 

cathode.  

 

 
Figure 3: Passive DMFC Setup (Liu et al., 2005) 

 

Goals of this Project 

1. The properties of the fuel source determine how well a DMFC performs. A recent 

study in our laboratory determined the performance of a DMFC with varying liquid 

methanol concentrations, membrane thickness, and temperature (Field, 2008). 

Continuing from this research, a vapor feed of methanol was also tested. The vapor 

feed was tested between two different methanol molarities (3M, 5M) as well as two 

different Nafion membrane thicknesses (1035, 115). 
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2. Using the tools available, a passive DMFC was constructed. The contents of the 

passive home-made fuel cell consisted of the following: the fuel source (liquid 

methanol, methanol gel, or vapor fuel from a beaker containing methanol) contained 

within it, several gaskets, two current collectors, and a home-made MEA. The fuel 

source and MEA used were based on Field’s results as well as the results derived 

from the vapor feed testing. 

 

3. Once the home-made fuel cell was functional, all four sides of the fuel cell were fitted 

with MEAs and tested. The MEAs were connected in series through the current 

collectors, providing a cumulative voltage but same current for the four MEAs. In 

addition, a device was powered by the home-made fuel cell. 
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Literature Review 

 The concept of making a home-made passive fuel cell is a unique idea; there are 

not that many articles on this type of technology. Faghri and Guo’s (2008) built passive 

fuel cell with several features: a planar fuel cell stack, a feed consisting of pure methanol, 

reliance on ambient air rather than a feed of oxygen, no pumps or external power sources, 

a passive water recirculation system, the ability to operate in any position, and cost 

efficacy. Figure 4 shows the mechanism that allowed the passive DMFC to function in 

any position rather than relying on gravity to carry the methanol vapor to the anode. 

Methanol is transferred from the hydrophobic medium to the water in the hydrophilic 

medium via a cotton wick. This concept was expanded to apply to the larger scale passive 

DMFC. The wick can also control the concentration of methanol entering the anode.  

  

 
Figure 4: Orientation-Dependent Mechanism (Faghri et al., 2008) 
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The end result of the passive fuel cell design is shown in Figure 5. No external equipment 

was required to run this fuel cell, an exceptional feature in the development of DMFCs. 

The fuel stack on the front of the fuel cell contains four cells stacked in series; the 

voltages will stack up to a cumulative sum while the currents will be equal among the 

four cells.  

 

 

Figure 5: Passive DMFC Prototype (Fagri et al., 2008) 

 
Figure 6 shows the testing of the constructed passive DMFC at 1M, 2M, 3M, and 5M. 

Because the cell stacks are connected in series, the voltage is about 4 times larger than a 

standard DMFC polarization curve at OCP. However, this increase does not affect the 

current density or power density. In the low current density region, 1M performs the best 

while 5M performs the worst. In the high current density region, 2M outperforms all of 

the other concentrations while 1M does not perform very well. 
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Figure 6: Polarization Curves of the Constructed Passive DMFC 

 

Kim et al. (2003, 2005) has explored the concept of a monopolar stack (Figure 7) 

operating in passive conditions. The monopolar stack consists of six MEA strips, or cells, 

with an active area of 4.5 cm2. With 4M methanol, the monopolar stack provided an 

output of 1000 mW, or 37 mW/cm2. The stack was later tested in several areas with 

respect to time. The monopolar stack OCP was maintained at its highest with 1M 

methanol, but provided the lowest stack temperature. Using 4M methanol, while it 

provided the worst stable OCP, it supplied the highest stack temperature. Because 

temperature is directly correlated to the performance of the fuel cell, the current density 

of the monopolar stack using 4M methanol will be the highest, despite its low OCP. In 

addition, the outermost cells suffered the most heat loss due to their position; the inner 

four cells had a higher cell temperature than the outer cells. 
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Figure 7: A Monopolar Stack With Six Single Cells (Kim et al., 2003) 

 

 Baglio et al. (2008) tested two different current collector cutouts using a 

monopolar stack with three single cells. The left of Figure 8 is a cell stack of three cells 

with individual holes cut into the current collectors while the right of Figure 8 is another 

cell stack with a hole cut out to the size of the GDL. Between the two cell stacks, both 

had advantages and disadvantages. The left fuel stack provided a higher stack voltage at 

OCP due to a lower methanol crossover, while the right fuel stack had a higher voltage at 

high current densities, demonstrating better mass transport capabilities. In addition, the 

right fuel stack discharge time was more than three times longer than the left fuel stack 

due to the improved mass transport characteristics and easier carbon dioxide removal. 
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Figure 8: Two Monopolar Stacks With Varying Current Collectors 

 

Active Versus Passive 
 
 The most notable difference between an active DMFC and passive DMFC is the 

amount of equipment used; because passive DMFCs run in completely ambient 

conditions, it has a simple and compact setup that requires no equipment. The setback to 

this convenience is the impact to its performance.  Eccarius et al. (2008) performed a 

series of experiments, varying the anode and cathode parameters between an active setup 

and passive setup.  

Table 1 and Figure 9 represent polarization curve comparisons between active setups 

and passive setups. Experiment 09 is a DMFC in completely active conditions and 

experiment 12 is a DMFC in completely passive conditions, while experiment 10 

operates in active mode on the anode and passive mode on the cathode and experiment 11 

operates in passive mode on the anode and active mode on the cathode. The major 

difference in OCP between experiment 09 and experiment 11 is due to an increase 
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amount of methanol crossover from a higher concentration of methanol being used. 

DMFCs with liquid fuel have excess water from diluted methanol, which keeps the anode 

well humidified and allows more than sufficient water to react with the methanol when 

compared to concentrated vapor fuel. The low vapor pressure in the anode-passive fuel 

cell experiments and dependence on the water gradient between the anode and cathode 

reduced the vapor DMFC performance further at higher current densities. This was 

countered with the cathode-active forced air flow, removing water from the cathode 

reaction and reducing the concentration gradient, as demonstrated with experiment 11. 

Otherwise, excess water accumulated in the GDL on the cathode blocks oxygen access to 

the cathode catalyst (Eccarius et al., 2008). 

 

 
Table 1: Experiment Labels for Figure 9 (Eccarius et al., 2008) 

 

 
Figure 9: Polarization Curves Between Active and Passive Conditions (Eccarius et al., 2008) 
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Vapor Fuel Source 

 While liquid methanol is used as the fuel source in passive and standard DMFCs, 

a major issue with liquid fuel in passive DMFCs is the carbon dioxide buildup. As the 

fuel cell runs, carbon dioxide production in the anode GDL prevents access of methanol 

to the catalyst (Eccarius et al., 2008). Normally, this is less of an issue with in-flowing 

methanol feed. To counter this, vapor methanol has been proposed as an alternative due 

to its high volatility. Rather than supplying a continuous feed of methanol to the fuel cell, 

the methanol can instead be stored and supplied without heat to the fuel cell. Some 

advantages of vapor methanol over its liquid state include shorter start up times due to its 

greater mass diffusivity and higher temperature operations, which can increase reaction 

rates. There have been several successful runs with vapor feed DMFCs. Kim et al. (2006) 

developed a semi-passive DMFC which supplied methanol to a porous sponge and used a 

membrane that helped prevent a high level of methanol crossover and GDLs that were 

constructed from hydrophilic nano-materials, which helped force the water from the 

cathode back to the anode through the PEM. Overall, his results showed that the fuel 

efficiency for vapor methanol was 70% more efficient and had an energy density 1.5 

times greater than that of liquid methanol. Shukla et al. (1997) was able to obtain a 

current density of 75 mA/cm2 at 0.55 V with a vapor feed of 1% methanol and an OCP of 

~0.9 V using a PEM electrolyte. Its performance improved with a vapor feed of 2M up to 

a current density of 100 mA/cm2 at the same voltage.  

While vapor feed DMFCs have potential, there are several issues that need to be 

researched more. According to Rice et al. (2007), in order to get promising results from 

vapor feed, the issue with water management must be resolved. While the DMFC is 
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running and water is being produced from the reactions, water condenses on the anode 

GDL, causing the methanol concentration to decrease. This causes the methanol driving 

force into the anode GDL to decrease due to the water’s inability to diffuse through the 

methanol fast enough. Rice also discovered that the water produced was greater than the 

water evaporated, being detrimental to the DMFC’s performance (Rice et al., 2007). In 

the experiments run by Kim et al., polarization curves (Figure 10) were obtained after 

applying 1000 mA of current were for one hour in both a liquid fed passive DMFC and a 

vapor fed passive DMFC in order to exclude the effects of methanol and water 

accumulation on the OCP. While the vapor feed performed better at lower current 

densities due to less methanol crossover, the liquid feed had a better performance at 

higher current densities because of higher catalytic activity and a higher generated 

temperature. In addition, the vapor feed passive DMFC shows signs of mass transfer 

resistance at below 0.25 V, indicating that there were issues in transferring the fuel to the 

fuel cell. 

 

 
Figure 10: Feed Composition Comparison (Kim et al., 2006) 
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Feed properties 

 One of the largest issues in both standard and passive DMFCs is methanol 

crossover. Methanol crossover occurs when unreacted methanol on the anode is carried 

over to the cathode, resulting in a short circuiting current and hence causing a decrease in 

the overall fuel cell voltage as well as fuel loss. While standard DMFCs obtain a high 

power density at lower methanol molarities (1M or 2M), passive DMFCs can reach high 

power densities at higher molarities. Figure 11 shows the polarization curves of a passive 

DMFC at different methanol concentrations. At low current densities, lower 

concentrations give a higher voltage and OCP. However, Figure 11 also indicates that the 

maximum power density is attainable with 4M methanol, decreasing onward. The 

reasoning for this phenomenon is due to the passive fuel cell’s reliance on diffusion of 

methanol, improving its mass transfer to the anode catalyst layer. A higher methanol 

concentration is also directly correlated to the operating temperature of a passive DMFC; 

a higher molarity leads to a higher permeation rate through the MEA, allowing more 

methanol to react with oxygen. Because the reaction on the cathode side is exothermic, 

the increase in reacting methanol will cause the operating temperature of the passive 

DMFC to increase. The increase in temperature, which speeds up the kinetics in the 

reacting methanol and oxygen, decreases the internal resistance, and therefore improves 

performance, in a similar fashion to standard DMFCs (Liu et al., 2005). It is important to 

note that there is no clear indication of the best methanol molarity due to the several 

variables that can affect the performance of a passive DMFC, including thickness, 

catalyst composition, and type of treatment (post-treatment versus pre-treatment). Bae et 

al., determined that the optimal power density was obtained at 5M (Bae et al., 2005). 
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Figure 11: Methanol Molarity Comparison (Liu et al., 2005) 

 

Temperature Variation 

A major difference between passive DMFCs and active DMFCs is the operating 

temperature of the fuel cell. Temperature has a large influence on the electro kinetics of 

the reaction; with an increase in temperature, the ohmic resistance and activation 

resistance decreases (Jung, 2005). In a standard DMFC, the operating temperature is 

usually between 50ºC and 90ºC, whereas a DMFC in completely passive conditions 

operates at room temperature. Figure 12 shows a correlation with increasing temperature 

and the effect on performance; as the temperature increases, overall performance of the 

DMFC increases due to an increase in the electrochemical kinetics (Casalegno et al., 

2007). While an increase in temperature usually improves performance, there are 

situations where a temperature increase is detrimental, depending on membrane thickness 

and molarity. Field’s research shows that a temperature increase to an E-TEK MEA with 
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5M methanol decreases in performance at higher current densities. The reasoning behind 

the loss in performance is an increase in methanol crossover due to the weakening of the 

PEM. Chen mentions that at higher temperatures, the rate of methanol diffusion across 

the PEM may be higher than the catalytic efficiency, causing a decrease in performance 

(Chen et al., 2008). 

 

 
Figure 12: Polarization Curve With Varying Temperature (Casalegno et al., 2007) 

 

Proton Exchange Membrane 

 Another parameter affecting the methanol crossover in both a standard and 

passive DMFC is the thickness of the PEM. Methanol crossover occurs from a 

combination of molecular diffusion and electro-osmotic drag. Molecular diffusion occurs 

at low current densities while electro-osmotic drag occurs at high current densities. Both 

thin and thick PEMs have advantages and disadvantages. A thicker PEM prevents 

methanol crossover better than a thinner PEM, providing better performance. However, a 



 25 

thinner PEM has a smaller internal resistance and allows the passive DMFC to operate at 

a higher temperature, which leads to better performance. Figure 13 shows the results of 

different polarization curves with varying thicknesses. At low current densities, the 

Nafion 117 performs the best, while the Nafion 112 performs the worst. Meanwhile, at 

higher current densities, the Nafion 112 performs better than the Nafion 117. This 

indicates that while Nafion 112 has a smaller internal resistance, improving performance 

at higher current densities, it also suffers from a larger amount of methanol crossover, 

which hinders its performance at low current densities. In the high current density region, 

the Nafion 112 membrane’s smaller internal resistance becomes predominant in its 

performance. In addition, the methanol crossover rate becomes less of a factor at higher 

current densities, improving the Nafion 112 performance further.  

 

 
Figure 13: PEM Thickness Comparison (Liu et al., 2006) 

 

Cathode GDL 

The cathode GDL is responsible for supplying the oxygen to the cathode catalyst 

layer for reacting oxygen with the incoming electrons provided from the anode or the 
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methanol directly, and produces water and heat. In passive DMFCs, because oxygen is 

replaced with ambient air, its performance is affected significantly by the lack of oxygen 

provided and water flooding in the cathode GDL. These issues prevent mass transport 

and increase the mass transfer resistance (Chen et al., 2006). This ultimately effects the 

efficiency of the fuel cell; a DMFC relying on ambient air has half the total efficiency of 

a DMFC with forced air flow (about 6% versus about 11%) (Eccarius et al., 2008). To 

resolve this issue, Chen proposed a new MEA with the cathode GDL removed; with the 

removal of the cathode GDL, the new MEA will allow a higher oxygen transfer rate, 

providing better performance. Although early indications of the cathode GDL removal 

showed an increased resistance, this was primarily due to the increased gap between the 

cathode catalyst layer and the current collector. When testing 4M methanol, tests showed 

(Figure 14) that the new MEA performed slightly better than a conventional MEA at zero 

voltage and low voltage. This increase was due to the increased oxygen transfer rate at 

high current densities, which improved the kinetics of oxygen reduction. The difference 

in performance is more apparent at higher voltages. With the higher requirement of 

oxygen at a higher molarity due to the increased methanol crossover, oxygen could be 

consumed more readily. As a result, the mass transfer resistance decreased dramatically. 

The IR correction indicates more accurate results. Long-term performance, on a transient 

discharging voltage with a constant current density between the two MEAs, was also 

performed. A conventional MEA was shown to have a bigger and more rapid decrease in 

OCP than a new MEA due to the increase oxygen transfer rate and decreased flooding. 
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Figure 14: New MEA Versus Conventional MEA Performance  (Chen et al., 2006) 

 

Current Collectors 

Several modifications to the current collectors have been proposed to increase the 

performance of passive DMFCs. A proposed method was the use of a porous current 

collector on the cathode as opposed to a perforated current collector. The porous 

construct facilitates the flow of oxygen and water transport. In addition, because the heat 

generated from the cathode GDL is lost within the cathode current collector, diminishing 

the performance of the fuel cell, a current collector with a low thermal conductivity is 

also important. Other important features in a current collector include high electrical 

conductivity, good mechanical strength, and a uniform transport area. Chen’s results 

showed that porous current collectors have a better performance at higher current 

densities while perforated current collectors have a better performance at lower current 

densities. In addition, the porous current collectors provided a higher cell temperature, 

allowing for easier proton transport, supporting the experimental evidence of improved 
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performance. In addition, a smaller particle size in the porous current collector decreases 

the cell resistance, improving performance further (Chen et al., 2007). During Shimizu’s 

testing of micro passive DMFCs, a test was run on two different current collector 

materials: a stainless steel mesh and a gold-plated stainless steel mesh. According to 

Figure 15, Shimizu’s results indicate that the gold plated stainless steel mesh performed 

better than the stainless steel mesh due to the gold’s higher conductivity (Shimizu et al., 

2004). While there is no indication whether the thickness of the current collector has an 

effect on passive DMFC performance, thicker metals will last longer than thinner metals 

due to a metal’s corrosion rate. Stainless Steel 316 (SS316) in direct contact with 

methanol has a corrosion rate (rate at which corrosion penetrates the metal) of 0.002” per 

year independent of amount of water and temperature while a brass alloy has a corrosion 

rate of 0.020” per year (De Renzo, 1985). However, SS316 has a relatively low electrical 

conductivity (Oberg et al., 2000). 

 

 
Figure 15: Varying Current Collector Performance (Shimizu et al., 2004) 
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Methodology 

 The purpose of this project was to design and construct a passive DMFC with the 

capability to power a portable electronic device, such as an iPod. Developing the passive 

DMFC required several different aspects, including assembly of the fuel cell, preparation 

and fabrication of the MEA, and testing of the fuel cell as well as several MEA 

variations. In addition, a toy car supplied with methanol as a fuel was also tested to 

observe the performance of a passive DMFC under several different conditions. 

Preparation and Fabrication of Membrane Electrode Assembly 

 The PEM used was a Nafion membrane obtained from ElectroChem, Inc. More 

specifically, the Nafion membrane, manufactured by DuPont, is a transparent non-

reinforced film based on Nafion PFSA polymer, a perfluorosulfonic acid/PTFE 

copolymer in acid form. The thickness of the Nafion membrane used was one of the 

following:  

• Nafion membrane N1035, (1000EW, 3.5 mil thick) 

• The EC-NM-115 N115 membrane (1100 EW, 5 mil thick) 

• Nafion membrane N117 (1100 EW, 7 mil thick) 

• Nafion membrane N1110, (1100EW, 10 mil thick) 

The Nafion membrane was cut into 5 cm by 5 cm squares with scissors. Using tweezers, 

1-2 Nafion membranes were inserted into a Pyrex® beaker with deionized water at a low 

boil for about an hour. The Nafion membranes were then transferred to a beaker with 3 

wt% hydrogen peroxide for 1.5 hours at a low boil. The hydrogen peroxide oxidized the 

organic purities within the Nafion membranes. Following the hydrogen peroxide 

treatment was another hour of deionized water at a low boil, then 1.5 hours in 0.5 M 
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sulfuric acid at a low boil. The sulfuric acid protonates the sulfonic acid sites in the 

Nafion, allowing proton transport to occur. Afterwards, the Nafion membranes were once 

again submerged in deionized water at a low boil for another hour. It was critical to 

maintain a low boil throughout the entire process; rapid boiling causes damage to the 

membrane surface. 

 After preparing the Nafion membranes, they were pressed with Kim Wipes in the 

Carver hot press (Figure 16) without heat or excess force for five minutes. This was done 

to flatten out the Nafion membranes and ease the process of the electrode addition. After 

the Nafion membranes were pressed, the Carver hot press was heated up to 275ºF. While 

the hot press heated up, the anode and cathode electrodes were cut into 2 cm by 2 cm 

strips and carefully aligned on the back and front of the Nafion membranes with one of 

the sides clearly labeled in a corner of the membrane with a Sharpie. The Nafion 

membranes, along with the anode and cathode electrodes, were sandwiched by two 

Teflon sheets and then placed in the hot press for two minutes with an applied force of 

two tons. After that time, the newly created MEAs were allowed to cool for 10 minutes 

before being properly stored for future use. When higher voltage was required to test the 

home-made fuel cell, the electrodes were cut into two or three 2 cm by 1 cm strips instead 

about 3/8’’ from each other. 
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Figure 16: Carver Hot Press 

 

Ordered Components of the Fuel Cell MEA 

In order to test the optimal performance of the DMFC, toy car, and home-made 

fuel cell, an E-Tek, Inc (a subsidiary of BASF Fuel Cell, Inc.) commercial MEA was 

purchased. The MEA, model ES12D-W-5L, is a five layer assembly, two electrodes, two 

catalyst layers, and a PEM, using woven web as the material in the GDLs and advanced 

ELAT® carbon cloth flow fields. While the exact composition of the catalyst is not 

known, it has been constructed with Selectra® high performance catalysts. It is important 

to note that despite heavy use and deformation, this MEA still performs very well. 

In addition, several commercial MEAs were also purchased from Clean Fuel Cell 

Energy (Figure 17). The MEA is a custom model with an electrode size of 5 cm2. The 

catalyst on the anode has a loading of 4 mg PtRu/cm2 and the cathode loading is 4 mg 
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Pt/cm2. The PEM is a 117 Nafion membrane about 5 cm x 5 cm. The properties of the 

GDL are unknown. 

 

 

Figure 17: Clean Fuel Cell Energy MEA 

 

Due to the unsuccessful attempts at preparing home-made catalysts, electrodes 

were also purchased from ElectroChem, Inc. The anode electrode was an EC-Electrode-

C1, an EC-40-60-PtRu-C electrode with a catalytic layer containing 40wt % Pt/C and 20 

wt% Ru/C and a loading of 4 mg PtRu/cm2. The GDL used in the anode electrode is a 

carbon cloth with a Nafion coating. The cathode electrode was an EC-Electrode-C2, an 

EC-40-40 Pt-C electrode with a catalyst layer of 40 wt% Pt/C and a loading of 4 mg 

Pt/cm2. The cathode GDL used is the same material as the anode GDL. 

Passive DMFC Toy Car 

 To test an already working passive DMFC, the hydro-Genius Desk Top Model 

Car was utilized (Figure 18). The toy car comes with an already assembled fuel cell 
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setup, including a compartment to hold liquid methanol in contact with the anode 

electrode, two perforated stainless steel current collectors, and an MEA provided by the 

company. Two rubber plugs are used to prevent methanol vapor from escaping the 

methanol compartment. The back of the fuel cell allows ambient air to diffuse to the 

cathode electrode. While the composition of the catalysts, anode GDL, and membrane are 

unknown, the toy car’s cathode GDL is replaced by a piece of carbon paper. Using the 

supplied 2% methanol solution, the toy car can power its motor attached to the wheel, 

which is controlled by a power switch on the cathode current collector. According to the 

manual provided by the company, the toy car MEA needs to be in contact with the 

methanol for about 10 minutes before the motor can run successfully. The toy car was 

modified with the addition of alligator clips in order to provide a more stable connection 

to the fuel cell station. For voltage testing, a Wavetek voltage reader was used. 

 

 

Figure 18: Hydro-Genius Desk Top Model Car 
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Fabrication of the Home-made Fuel Cell 

 The fuel cell box-structure was machined from a block of acrylic. Figure 19 

shows a basic schematic of how the fuel cell was constructed. The dimensions of the fuel 

cell were cut into about a 3” x 3” x 3” cube with its core cut out for the methanol storage, 

a screw-in top plate to prevent methanol vapors from escaping as well as air vapors from 

entering, its four sides with a 2 cm by 3 cm opening cut out to allow the methanol to be in 

contact with the anode-side MEA placed over the opening, and screw-in sides to firmly 

seal and retain the current collectors, MEA, and gaskets. The OCP, voltage versus current 

density, and voltage and power density of the home-made fuel cell was tested with 

different MEA thicknesses, methanol molarities, current collectors, and gaskets. For 

comparison, Field’s (2008) results of testing the different properties, including MEA 

thickness and methanol molarity, were used as a reference.  

 
Figure 19: Schematic of the Fuel Cell Design 

 
 The current collector Materials Of Construction (MOC) tested in the home-made 

fuel cell was perforated SS 316 with a thickness of 0.018”. All current collectors were cut 
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to about 2” by 1 5/8” with a small tab to allow wiring between current collectors and a 

proper connection to the electronic load box. The center of the current collector was cut 

into 1/8” holes expanding a square area of 3/4” by 3/4”. The current collectors were 

supplied by OnlineMetals. The MOC for the gaskets included: silicone, and Teflon. All 

gaskets were cut to the dimensions of the fuel cell with a hole the same size as the 

opening in the fuel cell. The Teflon was placed between the current collector and MEA 

and the silicone was placed between the fuel cell and anode current collector. 

Figure 20 represents a circuit diagram of the home-made fuel cell setup with four 

single cells (MEAs) connected in series. Because four MEAs will be connected in series, 

the voltage obtained will be cumulative. In theory, if all four MEAs can supply at least 

0.375 V, the passive fuel cell will have similar properties to one battery, which typically 

supplies 1.5 V. Once the passive fuel cell had the capability of a battery, it went through 

long term testing to calculate the capacity and efficiency by measuring power and current 

with respect to time.  

 

 
Figure 20: Circuit Diagram of the Home-Made Passive DMFC 
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Figure 21 and Figure 22 show an active conventional single-cell DMFC labeled 

with the path flows of methanol and the constructed passive DMFC. The active DMFC 

requires multiple pieces of equipment to run, including a methanol pump, an oxygen 

tank, and additional tubes to direct the flow of methanol and oxygen into and out of the 

cell. Meanwhile, the passive DMFC does not require any additional equipment. In 

addition, as long as there is methanol in its reservoir, the passive DMFC will run. 

Because of this, there is an immediate conclusion that a passive DMFC will be much 

more convenient in portable devices over an active DMFC, and without the parasitic 

losses of ancillary equipment, albeit the performance is expected to be larger. 

 

 
Figure 21: Active DMFC, Flow Paths Labeled 
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Figure 22: Home-made Passive DMFC 

 

Testing the MEA 

 All three types of fuel cells, a DMFC with the home-made MEA, the toy car, and 

the home-made fuel cell, were all tested in a fuel cell testing station, which included a 

setup for supplying methanol and oxygen to the DMFC as well as a Hewlett Packard 

electronic load box model 6060B (Figure 23). 
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Figure 23: Fuel Cell Testing Station 

 

 To test the MEA, it needed to be assembled between two bipolar plates. The MEA 

was first placed on a cell bipolar plate, with a gasket above and below the MEA. 

Carefully, the second bipolar plate was placed on top and screwed in. The bipolar plates 

were then bolted in, first with 60 in-lbf of torque and again with 65 in-lbf of torque. It is 

crucial to prevent the bipolar plates from moving to avoid the MEA from shifting its 

position. Once the DMFC is set up, it was then hooked up to the fuel cell testing station. 

Tubes from the methanol pump and oxygen tank were screwed into the inlets while waste 

tubes were connected to the outlets. Heating elements were placed inside the fuel cell to 

heat it up to the desired temperatures. The anode electrical wiring (black wire) and 

cathode electrical wiring (red wire), were connected to the fuel cell current collectors on 

the anode side and cathode side respectively. The aqueous methanol flow in the anode 
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bipolar plate was set to 1 mL/min white the oxygen flow to the cathode bipolar plate was 

maintained at 70 mL/min. In the case that methanol vapor was used as the feed, methanol 

was poured into a flask and plugged up by a rubber stopper containing a tube connecting 

to the DMFC. The temperature of the fuel cell was set to 70ºC and the humidifier 

temperature for oxygen was set to 35ºC. Once the load box was switched on, the fuel cell 

ran between 10-30 minutes before the OCP stabilized. Afterwards, the load box was set 

to 0.2 V and allowed to stabilize for 4-6 hours, or until the displayed current had not 

changed for an hour (indicating stability). Once the fuel cell stabilized, the current was 

recorded at different voltages varying between 0.2-0.6 V. Because the load box was not 

designed to test at such low voltages, 0.1 V readings were not recorded. 

 Due to the hard to access current collectors in the toy car, extra wiring was 

required to set up the toy car to the fuel cell testing station. When a home-made MEA 

was to be tested, the toy car was disassembled and the toy car MEA was replaced with 

the home-made MEA. The procedure in which the data was recorded is the same as that 

for the DMFC. 

 The home-made fuel cell was connected to the fuel cell testing station by the 

current collectors. The methanol supply was stored and sealed in the inside reservoir. In 

the case that only one side of the home-made fuel cell was tested, the other three sides 

were replaced with a layer of silicone to prevent the methanol liquid/vapor from 

escaping. When all four sides of the home-made fuel cell were tested, the current 

collectors were connected with a stainless steel wire, leaving an anode current collector 

and a cathode current collector exposed. The process in which the data was recorded is 

the same procedure as the active DMFC. The fuel source used in the home-made fuel cell 
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varied between liquid methanol, methanol stored in a beaker inside the compartment 

relying on the ambient vapors, and methanol chafing gel (Figure 24). The methanol gel is 

similar to Sterno that is commonly used to heat prepared foods in chafing dishes for up to 

two hours. The methanol gel was obtained from WPI’s Goat’s Head Pub and was 

manufactured by Candle Lamp Company (See Appendix IV for MSDS details). Its 

composition is shown in Table 1; while not listed, it is assumed that the methanol gel 

contains about 25 wt% water. 

 

 
Figure 24: Methanol Chafing Gel 

 

 
Table 2: Composition of Methanol Chafing Gel 

 

 The concept of using methanol gel is a fresh idea and has only been mentioned in 

a few patents. According to Patent No. 5773706, a gelled organic liquid has a slower rate 

of evaporation, thereby increasing its effectiveness. Also mentioned is nitrocellulose as a 

gelling agent for fuels such as methanol. However, the gel can separate from the 
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methanol, creating an undesirable product. Other better alternatives include using 

“carboxyl vinyl polymers neutralized with a weak amine base” and Carbopol 934 

(Wesley et al., 1998). 

 

Mass Academy High School Student Assistant 

This work was done in collaboration with Ashley Millette, a student from Mass 

Academy High School. Mass Academy High School, a WPI-affiliated school specializing 

in teaching advanced mathematics and science through “teach yourself” methods, is a 

high school for 11th and 12th graders with a class of about 50 students per grade. The 11th 

graders are required to complete a project, which can span up to six months, and show 

their work at their science fair. Of the class of 46 (as of 2009), only 12 students are 

selected to present their work at the regional science fair and possibly the state fair. 

The student I worked set a goal to construct a passive DMFC that had enough 

power to run a 3rd generation iPod nano made by Apple. The 3rd generation iPod nano 

battery requires 3.7 V and 630 mAh to run (Apple, 2009). For eight hours of battery life, 

the passive DMFC with an active area of 5 cm2 must produce about 16 mA/cm2 of 

current density. Further, to achieve the stated voltage, one would need roughly 10 cells in 

series, or appropriate electronics to manage their power. 

In addition to constructing the passive DMFC, it was also important to ensure that 

the Mass Academy student had a full understanding of the concepts behind fuel cell 

technology. This included the fabrication of the MEA, optimal builds for the fuel cell, 

discussion of successful reports from journals previous reports completed from WPI, and 

review of the results obtained from the home-made passive DMFC and toy car testing. 
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Results and Discussion 

 Several different experiments were conducted to determine performance 

characteristics of the different DMFCs under different conditions and with different 

feeds. First, different fuels, liquid methanol and vapor methanol, were tested and 

compared in an active DMFC. The toy car MEA was then analyzed in both an active and 

passive DMFC. Afterwards, the Clean Fuel Cell Energy MEA was tested with liquid 

methanol, first in the active DMFC setup, then in the home-made passive fuel cell setup 

(one side only). Vapor fuel was then tested in the home-made passive fuel cell setup (one 

side only), in addition to methanol chafing gel, and compared to the performance of 

liquid fuel. Working off an innovative idea, methanol gel was used as a primary fuel 

source to power a clock and a toy motor. Long term testing was also included to 

determine the capacity and efficiency of the passive fuel cell. The performance of a 

battery was also determined for comparison. All solid lines in the all graphs indicate the 

left axis and all dashed lines indicate the right axis. 

Liquid Versus Vapor Feed 

  To test the efficacy of the fuel source used in the passive fuel cell, in addition to 

the information gathered from Field’s results, the effect of the state of the methanol feed 

was tested. The methanol was either fed as liquid methanol through a pump or as vapor 

methanol through a tube. Figure 25-28 show the results of the liquid and vapor feeds with 

different parameters. The molarities used were 3M and 5M and the membranes of variant 

thicknesses used were Nafion 1035 and 115. All tests were performed at 70ºC. When the 

concentration of methanol was increased for Nafion 1035, the performance of the vapor 
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feed decreased both at high current densities while the performance of the liquid feed 

increased overall. With the Nafion 115, the increasing methanol concentration hindered 

the performance of both the liquid and vapor feed at high current densities. However, the 

vapor feed was affected more than the liquid feed. In addition, at lower current densities, 

the vapor feed performed better. When testing vapor fuel with high vapor concentrations, 

although performance was expected to be better, no current was obtained. 

 Normally, DMFC MEAs can provide a current density up to 100 mA/cm2 at lower 

voltages. However, the electrodes ordered from ElectroChem, Inc. could not perform as 

well as anticipated. Because of this, the ElectroChem electrodes were not used in the 

construction of the home-made fuel cell. 

 

 
Figure 25: Feed Composition Comparison Test 1; Electrochem Inc. Electrodes 
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Figure 26: Feed Composition Comparison Test 2; ElectroChem Inc. Electrodes 

 

 
Figure 27: Feed Composition Comparison Test 3; ElectroChem Inc. Electrodes 
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Figure 28: Feed Composition Comparison Test 4; ElectroChem Inc. Electrodes 

 

Toy Car Testing 

 Figure 29 represents the polarization curve of the toy car’s MEA in an active 

DMFC at 70ºC with three different molarities (1M to 5M). At low current densities, the 

1M methanol had the highest voltage while the 5M had the lowest voltage. At high 

current densities, 1M and 3M methanol performed similarly while the 5M methanol had 

the worst performance. Because the toy car was packaged with 3% methanol (just under 

1M methanol), it is likely that the toy car MEA performs best with lower concentrations 

of methanol. Although the overall performance was better than the ElectroChem 

electrodes, it is still not up to par with standard MEAs. One reason for its poor 

performance could be the use of carbon paper on the cathode side. While that is a 

preferable attribute in passive fuel cells, it only diminished the overall performance. 
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OCPs with different parameters (see Appendix V), it either produced zero current or very 

little current (0.01 A at nearly zero voltage). Because of this, testing in the toy car was 

abandoned. For future testing, the toy car will make a suitable control experiment for 

liquid fuel. 

 

  
Figure 29: Toy Car MEA Polarization Curve 
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performance. As current density increases, the 1M is overtaken by the 3M, which 

performed the best out of all four concentrations, while the 7M performed the worst both 

at low and high current densities. The power density, obtained by multiplying the voltage 

and current density, is also plotted. Similar to the voltage-current density curve, the 3M 

methanol provided the highest power density (36 mW/cm2) while the 1M and 5M 

methanol both give about the same power density, about 25 mW/cm2. 

 

 
Figure 30: Polarization Curves in Active DMFC, Liquid Fuel 
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performs nowhere near as well as an active DMFC, both at high current densities and low 

current densities, the performance roughly being only a fifth of that in the active mode 

In Figure 31, the lower concentrations of methanol perform slightly better than 

the higher concentrations at low current density and OCP conditions. At higher current 

densities, the 5M methanol outperforms the other concentrations while the 1M performs 

the worst. The 5M methanol also provides the highest power density by a decent margin, 

about 4 mW/cm2.  

In Figure 32, because vapor fuel was used, only 50% concentrated methanol and 

pure methanol were tested, in addition to methanol gel. Compared to the liquid fuel 

source in the passive fuel cell, overall performance diminishes primarily in the low 

current density region while the high current density region was not affect very much.  

This is likely due to the increase in methanol crossover from the use of a higher 

concentration of methanol. The 50% methanol solution performed nowhere near as well 

as the pure methanol fuel and methanol gel fuel, both at low and high current density 

regions. This shows that if enough water vapor is produced, the performance of the fuel 

cell may be reduced. Although pure methanol performed better at high current densities 

and provides a higher power density, the methanol gel produced a higher OCP and still 

provided a decent amount of power, about 3 mW/cm2 at about 22 mA/cm2.  
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Figure 31: Polarization Curves in Passive DMFC, Liquid Fuel 

 

 
Figure 32: Polarization Curves in Passive DMFC, Vapor Fuel 
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Fully Assembled Home-made Fuel Cell 

 Once the passive fuel cell testing was completed, the three inactive sides were 

replaced with an MEA each and a series connection was made between all four MEAs. 

Figure 33 represents the polarization curve of the passive home-made DMFC with four 

MEAs electrically connected in series with methanol gel used as the fuel source. As 

anticipated, the voltage between the four MEAs did stack. However, the obtained OCP 

was higher than expected, reaching just over 1.6 V. Because current stays constant 

between the four MEAs, current density remained nearly unchanged. The overall increase 

in voltage still had an effect on the power density, increasing to about 13 mW/cm2 at 

about 21 mA/cm2. 

 

 
Figure 33: Polarization Curve for Fully Assembled Passive DMFC, Methanol Gel 
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reader and a Radio Shack Travel Alarm Clock, using methanol gel as the fuel source 

(bird’s eye view of the fuel cell). The smooth operation of to the clock proves that the 

home-made fuel cell does have the capability of replacing one 1.5 V battery. Long term 

testing was not performed with the clock due to the low current density requirements of 

the clock; fuel is exhausted more quickly when a higher current is required to power a 

device, such as a motor. Based on the voltage reading in Figure 34, the clock required 

less than 2 mA/cm2 of current density. An interesting observation is the decomposition of 

the methanol gel; as the fuel source is being consumed by the MEAs, the methanol gel is 

reduced in mass. The maximum percentage of depletion should only be 75 wt%, the 

amount of methanol in the methanol gel. 

 

 
Figure 34:  Passive DMFC Powered Clock With Top View 
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The concept of powering a device was expanded to a small motor propeller 

connected to an amp meter, which was calibrated with a series resistance of 390 ohms. 

The fuel cell was connected to the motor to observe voltage and current with respect to 

time. However, after about 3 hours, the motor broke down (data available in Appendix 

V). To replicate a motor running, a resistance with an equivalence of 8 ohms was 

connected to the home-made fuel cell. 

Figure 35 represents the current and power trends obtained with respect to time. 

The fuel cell successfully ran on 20 g of chafing gel for 137 hours before providing zero 

current. The slight increase in power and current at 5 hours is likely due to the excess air 

in the methanol reservoir being depleted, allowing a more “pure” environment for the 

methanol to react. After 5 hours, the power steadily decreases with the voltage. The 

current doesn’t show signs of dropping until after about 20 hours of running. 

Occasionally, the current and power would start to drop at a steady rate then stabilize for 

several hours. This is likely due to a chance in the ambient temperature; most of the drops 

in performance occur at night, when the temperature decreased slightly. Although there is 

no easy way to observe what is occurring in the methanol compartment, a number of 

hypotheses can be made. As water and is being formed inside the methanol compartment, 

the water mostly likely absorbed back into the gel and increased the humidity. This may 

be a unique feature to resolve the issue of water buildup. As the fuel cell continued to 

run, carbon dioxide was also produced. However, because there was no direct route for 

the carbon dioxide to exit from, it either permeated through the MEA or seeped through 

any possible gaps throughout the fuel cell and was forced out. The carbon dioxide also 

has a high vapor pressure at room temperature, about 50,000 mm Hg. Compared to the 
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vapor pressure of water and methanol, about 24 mm Hg and 150 mm Hg respectively, it 

is possible that the high vapor pressure of carbon dioxide is forcing the methanol to the 

anode sites, improving the reaction rate. From the current-time plot, the capacity was be 

calculated by equation (8). 

I = dq/dt         (8) 

Where I is the current, dq is the change in charge, and dt is the change in time. Based on 

the current recorded from the home-made fuel cell and an integral calculation with the 

use of Polymath, after 137 total hours of operation, the capacity of the fuel cell was about 

8200 mAh. From the power-time plot, the efficiency was calculated by differential 

equation (9) and equation (10). 

 P = dW/dt         (9) 

 ε = W/m*∆HMeOH        (10) 

Where W is the electric work, m is the mass of methanol, ∆HMeOH is the enthalpy 

combustion of methanol, and ε is the efficiency of the fuel cell. From the power values 

recorded from the home-made fuel cell and an integral calculation with the use of 

Polymath, the work of the fuel cell is about 4600 mWh and the efficiency was calculated 

at about 5%. Although the efficiency is low, future models of the home-made fuel cell 

have the potential to provide a notably higher capacity and power. 
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Figure 35: Home-made Fuel Cell Current/Power-Time Plots 

 
Current-time and power-time plots were also obtained from an Energizer AA 

rechargeable battery (Ni-Mh) as a comparison to the home-made fuel cell (Figure 36). The 
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calculated at about 1500 mAh. Although Energizer claims 2450 mAh, the lower 

calculated capacity was likely due to a low resistance load. In addition, because 

rechargeable batteries last longer when they are not fully charged, it is possible that the 

Energizer batteries are restricted to no more than 90% of their full power. Regardless, the 
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Ovonics claims that Ni-Mh batteries have a specific energy of about 400,000 J/kg 

(Fetcenko, 2008). Based on the amount of methanol gel consumed in the home-made fuel 

cell, about 16 g, the specific energy is about 1,030,000 J/kg, just over 2.5 times more than 

the battery. 

 
Figure 36: Battery Current/Power-Time Plots 
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Conclusions & Recommendations 

 While both “Active” Direct Methanol Fuel Cells and Passive Direct Methanol 

Fuel Cells have a promising future for providing energy, both have their pros and cons. 

Active DMFCs are more efficient in providing energy due to access to equipment that 

allows optimal settings, such as a monitored oxygen flow and a high operating 

temperature, thereby increasing the reaction rate and improving performance. Passive 

DMFCs abandon the equipment in exchange for portability, simplicity, and convenience. 

Despite its performance being hindered to a notable extent, passive DMFCs still show 

potential for use in portable devices such as audio players and cell phones.  

The home-made passive fuel cell I built was originally intended to power a 3rd 

generation iPod. While the 4-cell fuel cell can meet the current density requirement 

easily, the voltage requirement cannot be met without several additional MEAs. 

Therefore, the home-made fuel cell may be more suited for a device with a lower voltage 

requirement, around 1.5 V. 

 A variety of options are available as a fuel source in passive DMFCs. Dilute (< 

5M) liquid fuel produces a higher voltage at low current densities, which makes 

accumulating higher voltages easier. However, there is virtually no difference in the 

current density provided by dilute liquid and pure methanol vapor fuel. An alternative 

source of fuel to be considered for passive DMFC research is methanol chafing gel. 

Although the methanol gel vapor fuel does not provide as much power density as pure 

methanol vapor fuel, it shows potential as a highly convenient fuel source due to its 

amorphous solid state as well as the omission of preliminary preparation, such as mixing 
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the methanol with water to produce lower concentrations. It is also inexpensive and 

readily available. 

 When compared to an Energizer AA rechargeable battery, it outperforms both in 

how much current and power the home-made fuel can provide. The capacity and specific 

energy of the home-made fuel cell is about 8,200 mAh and 1,030,000 J/kg, respectively.  

Compared to the capacity and specific energy of the battery, about 1,500 mAh and 

400,000 J/kg respectively, the home-made fuel cell outperforms the battery both in 

capacity and in energy provided per mass of fuel. If the home-made fuel cell were to be 

further developed, it has the potential to be several times better than its current model. 

Due to time constraints, there were several objectives that were not attained. The 

research in the home-made passive DMFC has great potential and should be tested 

further. The following recommendations have been suggested for future research: 

 

• Create a Standard Operations Procedure (SOP) to ensure all equipment and products 

work properly. Precious time was lost due to the assumption that everything used was 

working properly. 

• Use the original MEA fabrication method as provided by Gleason et al (Gleason et 

al., 2008). Although the process remains unchanged between that recipe for the 

home-made catalysts and Field’s home-made catalysts (Field, 2008), Gleason had 

much more success, made apparent by their results. 

• Avoid buying the ElectroChem electrodes. Although they have had some success in 

the past, the most recent studies with these electrodes have shown a very low current 

density and power output compared to a standard MEA. 
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• Determine a way to produce a higher temperature naturally, such as a different 

material of construction for the cell. 

• Continue to vary and test different parameters with the home-made passive DMFC, 

such as membrane thickness. 

• Analyze how the methanol gel reacts and what occurs inside the methanol 

compartment through process modeling. 

• Apply other concepts provided in the literature review to enhance performance, such 

as different current collector composition and the removal of the cathode GDL. 

• Determine if a forced flow of air provided by a fan improves performance, and how 

much it improves performance. 

• If feasible, expand the concept of the home-made fuel cell to allow for enough MEAs 

to power an iPod. 
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Appendix I: Treatment Procedure of Home-Made Catalyst Ink 

8:30 1 hour Cut a 2.0 inch X 2.0 inch sheet of Nafion 117 and boil (setting: 
3.5) in 300 mL DI water.  

9:00 15 min Prepare anode side catalyst. Zero small beaker on the scale. 
Add 24 mg PtRu with scalpel 
Add DI water with dropper. Rinse the sides of the beaker if Pt 
is stuck to it. 1-2 drops 
Add 35 mg of 10% Nafion with the dropper.  
Stir in 5 mL methanol with the scalpel. 
Cover with parafilm and note on there what it is and when it 
was prepared. 
Put in sonicater for 3 hours. Turn knob to “hold” and turn heat 
off. Make sure the beaker is sealed well and the parafilm stays 
above the water. Don’t leave it longer, because ink will 
evaporate. 
Keep water cold with ice cubes or refresh every 30-45 min. 

9:30 1.5 hours Low boil in 150 ml 3% H2O2  
10:40 20 min Prepare cathode side catalyst (Pt). Put in sonicator for 3 hours. 
11:00 1 hour Low boil in 300 mL DI water.  
12:00 10 min Press membrane if not flat without any heat or pressure 
12:10 1h30min Spray anode side.  
1:40 1h30min Spray cathode side. 
3:10 1h30 min Put membrane in watch glass and cover with Kim wipe. Heat 

in oven upstairs at 70C 
4:50 5 min Remove membrane from oven with gloves. 
4:55 1h30min Low boil in 200 mL of 0.5M H2SO4.  
6:30 1h Low boil in 200 mL DI water 
7:30 5 min If not flat, press for 5 min without heat.  
7:35 15 min Turn on hotpress at 275F. 

Cut small squares out of the carbon cloth. The square is size of 
metal bar. (The smooth side of the carbon cloth faces the 
catalyst). Put the smooth side down and place the metal bar on 
the rough side. With a scalpel cut around bar. 
Tape SMOOTH white Teflon paper onto the metal book on 
both sides.  
Put carbon cloth rough side down. 
Then the catalyst on the membrane. 
Then carbon cloth smooth side down. 
THE TRICK IS TO ALLIGN EVERYTHING. 
(2 metric ton for 2 min.) 

7:55 10 min Remove plates from hotpress after 2 min and allow to cool. 
8:05  Place hotpressed membrane in fresh zip lock bag and mark 

with date, type of membrane and treatment. 
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Appendix II: Preparation of Solutions 

1000mL of 3 wt % H2O2: 
Measure 85.7 mL of 35 wt % H2O2 
Add 914 mL water 
 
1000 mL of 0.5M H2SO4: 
Measure 27 mL of 98 wt % H2 SO4 
Add 973 mL water 
 
Molar concentration of methanol: 
1000 mL 1M methanol  32.0 g methanol 
1500 mL 1M methanol  48.1 g methanol 
 
1000 mL 3M methanol  96.1 g methanol 
1500 mL 3M methanol  144.2 g methanol 
 
1000 mL 5M methanol  160.2 g methanol 
1500 mL 5M methanol  240.3 g methanol 
 
1000 mL 7M methanol  226.8 g methanol 
1500 mL 7M methanol  340.2 g methanol 
 
1000 mL 10M methanol  320.4 g methanol 
1500 mL 10M methanol  480.6 g methanol 
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Appendix III: Calibration of Wavetek Voltage Device 

Actual Voltage is the voltage read from the 6060B Electronic Load Box. 
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Appendix IV: MSDS for Methanol Chafing Gel 

MATERIAL SAFETY DATA SHEET   
This form may be used to comply with OSHA’s Hazard Communication Standard, 29 CFR 
1910.1200.  To be valid all information required by 1910.1200(g) of the Standard must appear on  
this form.  Consult the Standard for specific requirements.  Note: Blank spaces are not permitted.  
If any item is not applicable, or no information is available, the space must be marked to indicate 
that. Quick Name Identifier/Common Name: Chafing Dish Fuel  
Methanol Gel  UPC/SKU: PH0001, PH0007, PH0020, PH0024, PH0040, PH0080  
   
SECTION 1 – CHEMICAL PRODUCT AND COMPANY IDENTIFICATION  
Manufacturer’s Name:  
Candle Lamp Company  
1799 Rustin Avenue  
Riverside, CA 92507  
For Ben E Keith  
24 Hour Emergency Telephone Number:  
1-800-255-3924 or 1-813-977-3668 (Collect Calls Accepted)  
Information Telephone Number:  1-951-682-9600  
Date Prepared:    07/27/07                              
General or Generic Name:  SOLIDIFIED METHANOL / GELLED METHANOL  
  
SECTION 2 – COMPOSITION / INFORMATION ON INGREDIENTS  
Ingredients CAS No. % By Weight  
Methanol 67-56-1 75.0  
Denatonium Benzoate (Bitrex) 3734-33-6 Trace  
Mono-Ethylene Glycol 107-21-1 Trace  
  
SECTION 3 – HAZARDS IDENTIFICATION  
Potential Health Effects: Methanol (CAS 67-56-1) is the only ingredient expected to have any 
potential health effects in this product.  Methanol is toxic if ingested. Eye/Ocular: Exposure may 
cause eye irritation.  Symptoms may include stinging, tearing, and redness. Skin/Dermal 
Exposure may cause mild skin irritation.  Prolonged, repeated exposure may dry the skin.  
Symptoms may include redness, burning, drying and cracking, and skin burns.  Skin absorption  
can occur, symptoms may occur similar to inhalation. Swallowing/Ingestion Swallowing is toxic.  
Usual fatal human dose between 3 oz and 4 oz. Symptoms possible are alcoholic breath, central 
nervous system depression, convulsions, and coma. Inhalation Exposure to vapor is possible.  
Short-term inhalation toxicity is low.  Breathing small amounts during normal handling is not likely 
to cause harmful effects; breathing large amounts may be harmful.  Symptoms are more likely to 
be observed at concentrations exceeding recommended exposure limits, and may include 
headache, drowsiness, nausea, vomiting, blurred vision, blindness, and coma.  
  
SECTION 4 – FIRST AID MEASURES  
Eyes: Move individual away from exposure.  Flush eyes with plenty of water for at least 15 
minutes while holding eyelids open.  Seek medical attention immediately. Skin: Remove 
contaminated clothing.  Wash exposed area with warm water for at least 15 minutes.  Get medical 
attention.  Wash clothing and shoes before reuse. Swallowing: If swallowed, seek medical 
attention immediately.  If individual is drowsy or unconscious, do not give anything by mouth.  If 
individual is conscious and alert, INDUCE VOMITING.  If possible, do not leave person 
unattended. Inhalation: Move individual away from exposure and into fresh air.  If not breathing, 
give artificial respiration. If breathing is difficult, administer oxygen.  Keep person warm and quiet; 
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seek medical attention immediately.  
  
SECTION 5 – FIRE FIGHTING MEASURES  
Flash Point (Method) 54oF (12.2oC) (TAG Closed Cup)  
Auto-ignition No data  
Explosive Limit Lower Limit: 6.0%      Upper Limit 36%  
Extinguishing Media CO2, Foam, Dry Chemical (Water may be ineffective)  
Fire and Explosion Hazard Vapors form from this product and may travel along the ground/floor or  
moved by ventilation.  Can be ignited by pilot light, flames, sparks, heaters, electric motors or 
other ignition sources.  Do not use heat or flame around closed containers, containers may 
explode and scatter burning gel. Fire Fighting Instructions Water may be ineffective to extinguish 
flame.  Water may be used to cool fire-exposed containers until fire is extinguished.  Wear self-
contained breathing apparatus and full protective clothing.  
NFPA Rating:      0-Least, 1-Slight, 2-Moderate,  
3-High, 4-Extreme  Acute Health – 1; Flammability – 3; Reactivity – 0  
  
SECTION 6 – ACCIDENTAL RELEASE MEASURES  
Spill: Make sure there is adequate ventilation.  Remove all ignition sources.  Absorb spill on 
vermiculite paper.  Clean area with water until all material is absorbed and removed.  
Large Spill: Immediately eliminate all ignition sources (open flames, smoking materials, pilot 
lights, electrical sparks).  Remove persons not in appropriate protective gear from area.  Stop spill 
at source.  Prevent material from entering drains, sewers and waterways.  Prevent spill from 
spreading.  Spread absorbent material on spill.  Remove to containers for disposal per local, 
state, and federal ordinances.  
  
SECTION 7 – HANDLING AND STORAGE  
Handling Keep away from heat, flame, and sparks.  Avoid breathing vapors.  Avoid contact with 
skin, wash thoroughly after handling.  Keep away from children.  Place can in chafer before 
lighting, and keep away from combustibles (e.g., paper plates, napkins, paper tablecloths, etc.).  
Use in a well-ventilated area.  DO NOT TAKE INTERNALLY. Storage Containers should be 
stored away from flame, heat or other ignition sources.  Store in a cool dry place (40-120°F,  
4-49°C).  Provide adequate ventilation.  Keep container closed when not in use.  
  
SECTION 8 – EXPOSURE CONTROLS / PERSONAL PROTECTION  
Precautionary Labeling WARNING:  Keep away from children.  Flammable mixture.  Do not use 
near fire or heat.  Vapor harmful.  May be fatal or cause blindness if swallowed.  Cannot be made 
non-poisonous. Eye Protection Avoid eye contact with material. Skin Protection Avoid contact 
with skin.  Do not remove gel from container. Protective Clothing Recommend the use of rubber 
or Neoprene gloves and safety goggles. Respiratory Protection Not required unless exposed to 
high concentrations above approved guidelines. 
Exposure Guidelines Methanol 75% OSHA PEL =200 ppm (TWA); ACGIH TLV = 200 ppm (TWA)   
  
SECTION 9 – PHYSICAL DATA AND CHEMICAL PROPERTIES  
Appearance and Odor Blue thick gel with alcohol odor  
pH ~7 (neutral)  
Freeze Range -130 F (-90 C)  
Boiling Range 170.6-176 F (77-80 C)  
Evaporation Rate 3.5 (Butyl Acetate = 1)  
Vapor Pressure 97.68 mmHG @ 68 F (20C)  
Vapor Density 1.11 (Air = 1)  
Solubility in water Miscible  
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10. STABILITY AND REACTIVITY  
Hazardous Polymerization Will not occur  
Hazardous Decomposition Burning may cause carbon dioxide and/or carbon monoxide if  
inadequate oxygen  
Chemical Stability Stable  
Incompatibility Heat, open flames and strong oxidizers.  
  
11. TOXICOLOGICAL INFORMATION – NA  

  
12. ECOLOGICAL INFORMATION – NA  
  
13. DISPOSAL INFORMATION  
Disposal: Dispose of in accordance with all applicable Federal, State, and local regulations.  
Purchaser is responsible for proper waste disposal of any partial to full containers.  Do not dump 
into sewers, any bodies of water or onto ground.  
  
14. TRANSPORTATION  
Domestic: Consumer Commodity ORM-D   
International: Flammable Solid, Organic, n.o.s., (contains methanol), 4.1, UN 1325,  
PGII  
  
15. REGULATORY INFORMATION  
OSHA This product hazardous under the OSHA Hazard Communication  
Standard (29 CFR 1910.1200)  
CERCLA The Reportable Quantity for Methanol is 5000 lbs.  Releases equal to  
or greater must be reported to the National Response Center (NRC) at  
800-424-8802.  
RCRA The hazardous waste number for Methanol is U154.  
SARA 302 Components: None  
SARA 313 Components: Methanol (CAS # 67-56-1)   
Canada: DSL.  The intentional ingredients of this product are listed. International Regulations  
EEC: EINECS.  The intentional ingredients of this product are listed.  
State and Local Regulations  
California Proposition 65: None  
Pennsylvania: This product is considered unlawful in the state of Pennsylvania (18  
P.S. Section 7302(a) )  
New Jersey Right To Know:: Methyl Alcohol (67-56-1)  
  
16. OTHER INFORMATION  
The above data is based on tests and experience, which Candle Lamp Company believes reliable 
and is supplied for informational purposes only.  The Candle Lamp Company’s products are 
intended for sale to industrial and commercial customers.  Candle Lamp Company requests that 
customers inspect and test our products before use and satisfy themselves as to contents and  
suitability. Some information presented and conclusions drawn herein may be from sources other 
than direct test data on the substance itself.  Candle Lamp Company disclaims any liability for 
damage or injury which results from the use of the above data, and nothing contained therein 
shall constitute a guarantee, warranty (including warranty or merchantability) representation  
(including freedom from patent liability) by the Candle Lamp Company with respect to data, the 
product described, or their use for any specific purpose, even if that purpose is known to Candle 
Lamp Company.  
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Appendix V: Data And Results 

CFCE MEA: Clean Fuel Cell Energy Membrane Electrode Assembly 
RT: Room Temperature 
 
CFCE MEA, 1M, 70ºC, active   
Voltage (V) Current (A) Current Density (mA/cm2) Power (mW/cm2) 

0.53 0 0 0 
0.5 0.01 2 1 
0.4 0.11 22 8.8 
0.3 0.39 78 23.4 
0.2 0.58 116 23.2 

 
CFCE MEA, 3M, 70ºC, active   
Voltage (V) Current (A) Current Density (mA/cm2) Power (mW/cm2) 

0.5 0 0 0 
0.4 0.1 20 8 
0.3 0.46 92 27.6 
0.2 0.91 182 36.4 

 
CFCE MEA, 5M, 70ºC, active   
Voltage (V) Current (A) Current Density (mA/cm2) Power (mW/cm2) 

0.49 0 0 0 
0.4 0.05 10 4 
0.3 0.25 50 15 
0.2 0.6 120 24 

 
CFCE MEA, 7M, 70ºC, active   
Voltage (V) Current (A) Current Density (mA/cm2) Power (mW/cm2) 

0.47 0 0 0 
0.4 0.02 4 1.6 
0.3 0.15 30 9 
0.2 0.43 86 17.2 

 
CFCE MEA, 50% MeOH, vapor   
Voltage (V) Current (A) Current Density (mA/cm2) Power (mW/cm2) 

0.27 0 0 0 
0.15 0.01 2 0.3 

0.1 0.02 4 0.4 
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CFCE MEA, 100% MeOH, vapor   
Voltage (V) Current (A) Current Density (mA/cm2) Power (mW/cm2) 

0.32 0 0 0 
0.3 0.01 2 0.6 

0.25 0.05 10 2.5 
0.2 0.08 16 3.2 

0.15 0.12 24 3.6 
0.1 0.16 32 3.2 

 
CFCE MEA, chafing gel, vapor   
Voltage (V) Current (A) Current Density (mA/cm2) Power (mW/cm2) 

0.34 0 0 0 
0.3 0.02 4 1.2 

0.25 0.05 10 2.5 
0.2 0.08 16 3.2 

0.15 0.11 22 3.3 
0.1 0.15 30 3 

 
CFCE MEA, 1M liquid, RT, passive   
Voltage (V) Current (A) Current Density (mA/cm2) Power (mW/cm2) 

0.47 0 0 0 
0.3 0.03 6 1.8 
0.2 0.05 10 2 
0.1 0.08 16 1.6 

 
CFCE MEA, 3M liquid, RT, passive   
Voltage (V) Current (A) Current Density (mA/cm2) Power (mW/cm2) 

0.47 0 0 0 
0.4 0.01 2 0.8 
0.3 0.04 8 2.4 
0.2 0.07 14 2.8 
0.1 0.13 26 2.6 

 
CFCE MEA, 5M liquid, RT, passive   
Voltage (V) Current (A) Current Density (mA/cm2) Power (mW/cm2) 

0.46 0 0 0 
0.4 0.01 2 0.8 
0.3 0.05 10 3 
0.2 0.1 20 4 
0.1 0.16 32 3.2 
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CFCE MEA, 7M liquid, RT, passive   
Voltage (V) Current (A) Current Density (mA/cm2) Power (mW/cm2) 

0.45 0 0 0 
0.4 0.01 2 0.8 
0.3 0.04 8 2.4 
0.2 0.08 16 3.2 
0.1 0.15 30 3 

 
Fully assembled cell with 4 CFCE MEAs, chafing gel, RT 
Voltage (V) Current (A) Current Density (mA/cm2) Power (mW/cm2) 

1.63 0 0 0 
1.4 0.01 2 2.8 
1.2 0.03 6 7.2 

1 0.06 12 12 
0.8 0.08 16 12.8 
0.6 0.11 22 13.2 
0.4 0.15 30 12 
0.2 0.18 36 7.2 

 
Motor Data     

Time (hr) Voltage (V) Current (mA) Power (mW) 
0 0.92 100 92.00 

0.5 0.82 80 65.60 
1 0.75 75 56.25 

1.5 0.75 75 56.25 
2 0.75 75 56.25 

2.5 0.73 74 54.02 
3.5 1 105 105.00 

Inconsistent data; experiment ceased 
 
3M 1035 liquid active 
Voltage (V) I (current) I (current density) P (power density) 

0.2 0.05 10 2 
0.3 0.02 4 1.2 
0.4 0.01 2 0.8 

0.45 0 0 0 
 
3M 1035 vapor active 
Voltage (V) I (current) I (current density) P (power density) 

0.2 0.05 10 2 
0.3 0.03 6 1.8 
0.4 0.01 2 0.8 

0.47 0 0 0 
 
 
 
 



 72 

3M 115 liquid active 
Voltage (V) I (current) I (current density) P (power density) 

0.2 0.16 32 6.4 
0.3 0.03 6 1.8 
0.4 0.01 2 0.8 

0.49 0 0 0 
 
3M 115 vapor active 
Voltage (V) I (current) I (current density) P (power density) 

0.2 0.16 32 6.4 
0.3 0.06 12 3.6 
0.4 0.01 2 0.8 

0.41 0 0 0 
 
5M 1035 liquid active 
Voltage (V) I (current) I (current density) P (power density) 

0.2 0.07 14 2.8 
0.3 0.03 6 1.8 
0.4 0.01 2 0.8 

0.49 0 0 0 
 
5M 1035 vapor active 
Voltage (V) I (current) I (current density) P (power density) 

0.2 0.03 6 1.2 
0.3 0.01 2 0.6 
0.4 0.01 2 0.8 

0.49 0 0 0 
 
5M 115 liquid active 
Voltage (V) I (current) I (current density) P (power density) 

0.2 0.11 22 4.4 
0.3 0.05 10 3 
0.4 0.01 2 0.8 

0.49 0 0 0 
 
5M 115 vapor active 
Voltage (V) I (current) I (current density) P (power density) 

0.2 0.05 10 2 
0.3 0.02 4 1.2 
0.4 0.01 2 0.8 

0.52 0 0 0 
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Toy Car MEA, active, 70ºC, 1M 
Voltage 
(V) Current Density (A) Current Density (mA/cm^2) Power Density (mW/cm^2) 

0.2 0.38 76 15.2 
0.3 0.17 34 10.2 
0.4 0.05 10 4 

0.52 0 0 0 
        

 
Toy Car MEA, active, 70ºC, 3M 

Voltage 
(V) Current Density (A) Current Density (mA/cm^2) Power Density (mW/cm^2) 

0.2 0.38 76 15.2 
0.3 0.15 30 9 

0.39 0 0 0 
        

 
Toy Car MEA, active, 70ºC, 5M 

Voltage 
(V) Current Density (A) Current Density (mA/cm^2) Power Density (mW/cm^2) 

0.2 0.31 62 12.4 
0.3 0.11 22 6.6 
0.4 0 0 0 

 
Fully Assembled Cell, Time Depent Graphs 
Time (hr) Voltage (V) Current (mA) Power (mW) 

0 0.787 98.375 77.42 
0.5 0.787 98.375 77.42 

1 0.794 99.25 78.80 
1.5 0.792 99 78.41 

2 0.791 98.875 78.21 
2.5 0.803 100.375 80.60 

3 0.808 101 81.61 
3.5 0.813 101.625 82.62 

4 0.818 102.25 83.64 
4.5 0.819 102.375 83.85 

5 0.817 102.125 83.44 
5.5 0.809 101.125 81.81 

6 0.809 101.125 81.81 
6.5 0.806 100.75 81.20 

7 0.805 100.625 81.00 
7.5 0.804 100.5 80.80 

8 0.802 100.25 80.40 
19.5 0.736 92 67.71 

20 0.736 92 67.71 
20.5 0.732 91.5 66.98 
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21.5 0.729 91.125 66.43 
22 0.713 89.125 63.55 
24 0.712 89 63.37 
25 0.722 90.25 65.16 

27.5 0.709 88.625 62.84 
28 0.712 89 63.37 
30 0.713 89.125 63.55 

31.5 0.682 85.25 58.14 
32.5 0.672 84 56.45 
33.5 0.66 82.5 54.45 

34 0.655 81.875 53.63 
35 0.642 80.25 51.52 
36 0.632 79 49.93 
37 0.617 77.125 47.59 
38 0.599 74.875 44.85 
39 0.58 72.5 42.05 
40 0.562 70.25 39.48 
41 0.559 69.875 39.06 

44.5 0.607 75.875 46.06 
45.5 0.602 75.25 45.30 

46 0.598 74.75 44.70 
46.5 0.596 74.5 44.40 

47 0.599 74.875 44.85 
48.5 0.584 73 42.63 

49 0.578 72.25 41.76 
49.5 0.571 71.375 40.76 

50 0.568 71 40.33 
51 0.562 70.25 39.48 
52 0.562 70.25 39.48 

52.5 0.562 70.25 39.48 
53.5 0.552 69 38.09 

54 0.547 68.375 37.40 
54.5 0.543 67.875 36.86 

55 0.541 67.625 36.59 
55.5 0.537 67.125 36.05 

57 0.528 66 34.85 
61 0.456 57 25.99 

68.5 0.336 42 14.11 
70 0.382 47.75 18.24 
71 0.414 51.75 21.42 
72 0.426 53.25 22.68 

72.5 0.436 54.5 23.76 
73 0.431 53.875 23.22 

73.5 0.433 54.125 23.44 
74 0.432 54 23.33 
75 0.434 54.25 23.54 
76 0.437 54.625 23.87 
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77 0.441 55.125 24.31 
78 0.447 55.875 24.98 
79 0.447 55.875 24.98 
80 0.439 54.875 24.09 
81 0.437 54.625 23.87 
83 0.431 53.875 23.22 
94 0.418 52.25 21.84 
95 0.422 52.75 22.26 
96 0.437 54.625 23.87 

98.5 0.451 56.375 25.43 
99 0.452 56.5 25.54 

102 0.439 54.875 24.09 
103.5 0.424 53 22.47 
104.5 0.406 50.75 20.60 

105 0.397 49.625 19.70 
108.5 0.331 41.375 13.70 
115.5 0.167 20.875 3.49 
117.5 0.19 23.75 4.51 
118.5 0.183 22.875 4.19 

119 0.17 21.25 3.61 
119.5 0.167 20.875 3.49 

120 0.168 21 3.53 
121 0.173 21.625 3.74 

121.5 0.175 21.875 3.83 
122.5 0.179 22.375 4.01 
123.5 0.192 24 4.61 

124 0.198 24.75 4.90 
125 0.201 25.125 5.05 
126 0.201 25.125 5.05 
128 0.186 23.25 4.32 

129.5 0.161 20.125 3.24 
130.5 0.146 18.25 2.66 
131.5 0.135 16.875 2.28 
132.5 0.128 16 2.05 

133 0.125 15.625 1.95 
134 0.116 14.5 1.68 
135 0.108 13.5 1.46 
136 0.106 13.25 1.40 

137.5 0.086 10.75 0.92 
 

Time Dependent Graphs (battery)     
Time (min) Voltage (V) Current (mA) Power (mW) 

0 1.04 520 1040 
0.5 0.976 488 976 

1 0.942 471 942 
1.5 0.902 451 902 

2 0.806 403 806 
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2.5 0.8 400 800 
3.5 0.35 175 350 

4 0.066 33 66 
 
Capacity (mAh) Work (mWh) Energy Density (J/kg) Efficiency 

8200 4600 1028571 0.0460 
        
mass of gel (g) mass after fuel cell run (g) MW of MeOH (g/mol) moles of MeOH (mol) 

20 3.9 32 0.503 
        
∆H, comb. (kJ/mol) Q (J) Q (mWh)   

715 359734 99926   
 
Ashley Millette’s data: 
 

    Open Circuit Potential (Volts) 
    Fan Settings 
    Off Low High 

Trial # Molarity 10 min. 20 min. 10 min. 20 min. 10 min. 20 min. 
1 1 0.420 0.388 0.375 0.368 0.361 0.353 
2 1 0.329 0.321 - - - - 
3 3 0.401 0.387 0.380 0.376 0.369 0.361 
4 3 0.352 0.342 - - -   
5 5 0.330 0.287 0.308 0.290 0.290 0.278 
6 5 0.301 0.294 - - - - 
7 7 0.435 0.401 0.377 0.372 0.363 0.399 
8 7 0.347 0.336 - - - - 

 
 

 Open Circuit Potential (Volts) 
Membrane # 10 min. 20 min. 

115 0.457 0.445 
1035 0.448 0.433 
117 0.573 0.550 
1110 0.609 0.608 

 

  OCP (Volts) 
Trial # Molarity 30 min. 2 hr. 

1 3 1.61 1.43 
2 Pure 1.01 0.97 

 


