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CONTENTS

...Hungerford’s exposition is clear enough that an average graduate
student can read the text on his own and understand most of it. ...
and almost every section is followed by a long list of exercises of
varying degrees of difficulty. ...

—American Mathematical Monthly.

Anyone who has endured a 600 level Algebra course using Hungerford’s
Algebra is no doubt familiar with ability of one Hungerford problem to remain
unsolved for most of the term only to one day surprise you with an elegant and
obvious solution. While such episodes have their glorious endings, the process
of waiting for “an answer from the sky” can be tedious and hinder exploration of
new material. A student who dares lookup a reference to the problem is often
surprised to find very few solutions to Hungerford exercises are available — at
least they are not listed as solutions to these exercises and so are hard to find.
The following material seeks to solve this problem.

This is largely the product of work done through out the terms of a 600
level Algebra course at Portland State University taught by Associate Profes-
sor FR. Beyl. The style of the proofs and examples reflect his philosophy for
exercises: while many of the exercises are bombastic and tangential to the
main material, they are the types of proofs everyone does once in their lives as
a reference for themselves since they will never be called out explicitly in the
literature. To quote Professor Beyl “...I can’t make you go back to Adam and
Eve, but you should know how to do this when you have to...” To this end the
proofs attempt to make use only of the material introduced by Hungerford, ex-
cept with noted exceptions, and only the material presented to that point in the
book — although many proofs are inspired by latter discovers that simplify the
understanding. Some effort has been placed at referencing the theorems and
previous exercises used in various proofs but many remain implicitly inferred.

The structural design of the exercises begins with the statement of the exer-
cise, as found in Hungerford, enumerated identically. For the purpose of cross
referencing and ease of use, a short descriptive title is added to each exercise.
This title can be found in both the index and table of contents. Next a short
paragraph lists some hints about the proofs employed by the authors. The
problems are rated for difficulty on a scale of 1 to 5, with 1 the easiest and 5
the hardest. This scale is somewhat arbitrary but attempts to rate problems
relative the the section material.

There are 825 exercises in Hungerford’'s Algebra; so there are mistaken
solutions, and even the rare misprint and incorrect statements of the problem.
If you find a mistake in the solutions or know of a better, appropriate, solution,
please contact us with the relevant sources. Finally while many of the solutions
reflect our own creativity, it is inevitable that many solutions borrow extensively
from other authors. Where ever this is known we have cited the sources. For
those we have missed, we here recognise their work and offer our apologies
for miss appropriating it.
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7.1 Lattice.

Let (A, <) be a partially ordered set and B a nonempty subset. A lower bound
of B is an element d € A such that d < b for every b € B. A greatest lower
bound (g.l.b.) of B is a lower bound d, of B such that d < dy for every other
lower bound d of B. A least upper bound (l.u.b.) of B is an upper bound ¢,
of B such that ¢, < ¢ for every other upper bound ¢ of B. (A, <) is a lattice if
for all a,]b € A the set {a, b} has both a greatest lower bound and a least upper
bound.

(@) If S # o, then the power set P(S) ordered by set-theoretic inclusion is a
lattice, which has a unique maximal element.

(b) Give an example of a partially ordered set which is not a lattice.

(c) Give an example of a lattice with no maximal element and an example of a
partially ordered set with two maximal elements.

(a) Proof: Consider the power set of a nonempty set S. Since S is nonempty
so is its power set. Therefore let A, B be subset of S (that is, elements of
P(S)). There intersection A N B contains only elements of S and so it is
included in P(S). By construction, AN B C Aand AN B C B. Moreover

LGiven two greatest lower bounds, dy and df), by their definitions dy < djj and df, < do
forcing do = dj). In the same way least upper bounds are unique.

11

Hint(2/5): (a) Use intersec-
tions and unions to define the
greatest lower bound and least
upper bound. (b) Construct a
lattice with no unique candi-
date for greatest lower bound
or least upper bound. (Refer
to Appendix 7?7 for an expla-
nation of a graphic approach
to defining partial orderings.)
(c) The integers are a simple
example. Use pictures to illus-
trate two maximal elements.
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Hint(5/5): Consider a chain

a < f(a) < f(fa) < -+

A, for some a € A.

in

given any subset C of S such that C C A and C C B, it follows by the
definition of the intersection that C' is contained in the intersection. Thus
AN B is the greatest lower bound of A and B and is contained in P(S).

Following suit, the set A U B contains only elements of S and so it is a
subset of S and even an element of P(S). Again AU B is an upper bound
of A and B because it contains both sets by its definition. Once a subset
C of S is an upper bound of both A and B it must contain all elements of
Aand Bandso AU B C C. Therefore AU B is the least upper bound of
A and B and is contained in P(S). Therefore P(S) is a lattice under set
inclusion.

The set S is a subset of S and so included in P(S). Given any subset A,
AUS = S, soin fact S is a maximal element of P(S). Furthermore any
subset, M, that is maximal still has the property that M US = S. Therefore
either S'is greater than M contradicting the maximality of M, or M is simply
S itself. Therefore P(.S) has a unique maximal element. By the analogous
argument & is the minimal element of P(S). O

(b) Example: Define a relation on {—1,0,1} as 0 < —1 and 0 < 1. Typically
this example is drawn as follows:

-1 1

0

Certainly a < a. Whenever a # b either a < b or b < a exclusively; thus,
the relation is antisymmetric by the contrapositive. Finally a < band b < ¢
implies either a = b or b = ¢ hence a < c¢ thus verifying the relation is a
partial ordering.

However the ordering does not produce a lattice since {—1, 1} has no up-
per bounds and thus no least upper bound. [J

(c) Example: The elements of N ordered in the traditional way form a lat-
tice. This can be seen because given any two elements m,n € N, either
m < n or n < m (which means min and max functions on pairs are well-
defined) so the greatest lower bound is min{m,n} and least upper bound
is max{m,n}.
Suppose N has a maximal element M. By the Peano Axioms M + 1 € N
and furthermore M + 1 # M. Yet the ordering states M < M + 1 so we
contradict the maximality of M. Therefore N has no maximal element.

Return the ordering in part (b). The size of the example makes it visible
that —1 and 1 are maximal elements in the ordering, and they are certainly
distinct. [

.7.2 Complete.

A lattice (A, <) (see Exercises.7) is said to be complete if every nonempty
subset of A has both a least upper bound and a greatest lower bound. A map
of partially ordered sets f : A — B is said to preserve order if a < o’ in A
implies f(a) < f(a’) in B. Prove that an order-preserving map f of a complete
lattice A onto itself has at least one fixed element (that is, an a € A such that

f(a) = a).
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Proof: Given the entire set A as a subset we see A must have a greatest lower
bound and least upper bound — that is unique top and bottom elements. The
bottom element b has the property that b < f(b). Thus we may construct a

chain
< f(B) < F(FB) < < fB) < -o-

This chains is a nonempty subset of A so it has a least upper bound f°°(b).
Clearly f™(b) < f>(b) for all n € N; therefore, f*+1(b) < f(f°°(b)) foralln € N
(by applying the order preserving map f) — which is way of stating f(f>°(b))
is an upper bound of the chain as well. Since f°°(b) was picked as the least
upper bound it follows f>°(b) < f(f°°(b)).

We are now able establish the existence of a chain of chains:

b < "'an(b)ﬁ“'
< ) < S f) <
< FR(fRb) S S (D) <

This chain must stop since A has a top element. Once the chain stops we have
the result that the top element « in the chain has the property that f(a) = a. O

.7.3 Well-ordering.

Exhibit a well-ordering of the set Q of rational numbers.

Example: To avoid confusion let < be the traditional order of Z and define a

. . a [ a c 4 = <
new ordering C as follows: § C g if 545 < o or when 55 = ©and

@ S o Since the greatest common divisor is unique given any two in-

tegers a,b or ¢, d; the elements %, ﬁ 4y and ((%'ld) are defined, and by
the properties of G.C.D. they are integers ordered according to the traditional

ordering of Z. Furthermore we now see § = ﬁ/(Tbb) which is the fraction ex-

pressed in lowest terms — notice also since b # 0 neither does (a, b) so division
is defined. Therefore C is equivalent to testing the unique reduced fractions of
the equivalence classes 7 and 4. Thus the order is nothing more than the lexi-
cographic ordering of the reduced fractions. We will now show a lexicographic
extension of a well-ordering is well-ordered.
Suppose S is a partially ordered set.
(a,b) < (¢,d)ifa<corwhena=c¢ b<c.

b~ _d

Extend the ordering to S x S by

e a=aandb<binSso(a,b) < (a,b).

e Suppose (a,b) < (¢,d) and (¢,d) < (a,b). Then: a < ¢ and ¢ < a, which
is a contradiction; or a = cand a < ¢, again a contradiction; or lastly a = ¢
and ¢ = a. Now that a = cand ¢ = a it follows: b < d and d < b, so by the
antisymmetry of <in S, b = d. Therefore (a,b) = (¢, d).

e Consider (a,b) < (¢,d) and (c¢,d) < (e, f). Thus one of the following are

true:
a<c c<e a<e (a,b) < (e, f)
a<c c=e a<e (a,b) < (e, f)
a=c c<e a<e (a,b) < (e, f)
a=c c=e¢ b<d d<e|a=eb<e|(a,b)<(ef)

Therefore < is transitive.

Hint(1/5): Take care in
showing the ordering is well-
defined; remember that frac-
tions are equivalence classes.
Consider a lexicographic or-
dering on reduced fractions.
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Hint(3/5):  Consider the
product of all nonempty sub-
sets of S. An element of this
product is a choice function by
Introduction, Definition-5.1.

Hint(2/5): Use the linear or-
dering properties of the real
line.

So <gxg is a partial ordering whenever <in S is a partial ordering.

Suppose S is linearly ordered. Given any two elements (a,b) and (¢, d) in
S x S, itfollows a < ¢, a = ¢, or ¢ < a by the linear ordering in S. Therefore
(a,b) < (c,d) in case one and (¢, d) < (a,b) in case three. In case two, again
we know b < d, b = d, or d < b. Thus either (a,b) < (¢, d), (a,b) = (c,d), or
(¢,d) < (a,b). Therefore S x S is linearly ordered.

Finally suppose S is well-ordered. Take any nonempty subset A of S x S.
Index the elements of A = {(a;,b;) | i € I}. The set {a; | i € I} is a subset of
S so it has a least element «, as does the set {b; | i € I}, call it b; therefore,
(a,b) € A; furthermore, a < a; foralli € I and b < b;, so (a,b) < (a;,b;) for
all i € 1. So every nonempty subset of S x S has a least element; so S x S is
well-ordered.

Returning to Q, we now see the well-ordering of Z makes C a well-ordering
of Q. O

.7.4 Choice Function.

Let S be a set. A choice function for S is a function f from the set of all
nonempty subsets of S to S such that f(A) € Aforall A # @, A C S. Show
that the Axiom of Choice is equivalent to the statement that every set S has a
choice function.

Proof: (=) Suppose the Axiom of Choice is true.

When S = o, the choice function has no definition since there are no
nonempty subsets of S. Therefore the function exists vacuously. Suppose
instead S # @.

The set of all nonempty subsets of S is nonempty since S is honempty.
Index these sets by I = P(S) — {&} as follows: {4, =i |i € I}. So we have a
family of nonempty sets indexed by a nonempty set so we may take its product
to apply the Axiom of Choice: [],.; A; # @. We may now assume there is an
element, f : I — J,c; As, in the product. Notice S = |J,.; A;. We know by
Introduction, Definition-5.1, that f(i) € A; for all i € I. Now recall I is the set
of all nonempty subsets of S, so in fact, given any nonempty subset A of §,
f(A) € A. Thus f is a choice function of S.

(«=) Suppose every set has a choice function. Given any family of nonempty
sets F' = {A; | i € I} indexed by a nonempty set, define S = | J,.; A;. Since S
is a set it has a choice function f : P(S) — {&} — S such that f(A) € A for all
A C S, A+# @. Now define the mapping g : I — S by g(i) = f(A4;). Since every
A; is uniquely indexed and f is well-defined, we know ¢ to be well-defined. Fol-
lowing Introduction, Definition-5.1, g is an element of the product J,.; A;; so
the product is nonempty. Therefore every product of nonempty sets, indexed
by a nonempty set, is none empty; the Axiom of Choice is true. O

.7.5 Semi-Lexicographic Order.

Let S be the set of all points (x, y) in the plane with y < 0. Define an ordering by
(z1,11) < (22,y2) < 1 = 22 @nd y; < yo. Show that this is a partial ordering
of S, and that S has infinitely many maximal elements.

Proof: Given any order pairs (a,b), (¢,d) and (e, f) the ordering (a,b) < (¢, d) is
well-defined since both the relations a = ¢ and b < d are well-defined. Notably
a=aandb < bso (a,b) < (a,b) so the new relation is reflexive. Assuming
(a,b) < (¢,d) and also (¢, d) < (a,b), then by the first we know a = cand b < d,
and by the second also d < b so the antisymmetry of < in R shows b = d. Thus
(a,b) = (¢, d) so the new relation is antisymmetric. Finally when (a,b) < (¢, d)
and (¢,d) < (e, f) the transitivity of equivalence shows a = ¢, ¢ = d implies
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a = d. Likewise the transitivity of < in R allows the assumed relations b < d
and d < eto imply b < e. Therefore (a,b) < (e, f) and so < in S is transitive; so
furthermore it is a partial ordering. O

Example: The elements (n,0) are comparable only to elements of the form
(n,y), where y < 0 and n € Z. However S allows (a,b) only if b < 0 thus ev-
ery comparable element of (n,0) is bounded above by (n,0). Since (n,0) € S
it follows (n,0) is a maximal element in S. As already presented, (n,0) is
comparable with (m,0) only if n = m. Since the integers have infinitely many
elements, there are correspondingly infinitely many maximal elements of the
form (n,0). Therefore S has infinitely many maximal elements. OJ

.7.6 Projections.

Prove that if all the sets in the family {4; | ¢ € T # &} are nonempty, then each
of the projections 7y, : [[,.; A: — Ay is surjective.

Proof: By Introduction, Definition-5.1, the product ], ; A; is the collection of
all functions of the form f : I — J,.; A; with the property that f(i) € A; for
all i € 1. By the Axiom of Choice — available since each A; is nonempty and
the product is indexed by a nonempty set 7— it follows the product is nonempty.
Therefore choose an element f : I — |J,c; Ai in [[,c; Ai. Givenany a € Ay,
we can define a new mapping as follows:

1) = { FG) i#k,

a 1=k

This function is well-defined as each image is still unique to the given domain
element. Therefore f, is in the product. The projection map 7 now takes f, to
fa(k) = a; thus, the image of 7 is A;, so each projection is surjective. O

7.7 Successors.

Let (A, <) be a linearly ordered set. The immediate successor of a € A (if it
exists) is the least element in the set {x € A | a < z}. Prove that if A is well-
ordered by <, then at most one element of A has no immediate successor.
Give an example of a linearly ordered set in which precisely two elements have
no immediate successor.

Proof: Suppose A is well-ordered by <. Given any element z € A, the set
A, = {z € A|a < z} is nonempty if even one element in A is greater than
x; that is, z is not a maximal element. So z is not maximal so that A, is a
nonempty set. Since it is a subset of a well-ordered set it has a least element
2T which lies in A. This least element is unique since well-ordered sets are
linearly ordered.  Therefore 27 is a well-defined immediate successor of z.

Now consider M to be a maximal element in A. The element M~ is no
longer defined since A,; is empty. Thus if A has a maximal element, then
this element has no immediate successor. In the other direction, if x € A has
no immediate successor, then A, has no least element. But since A is well-
ordered this occurs only when A, is empty; thus z is maximal in A.

Ais a linearly ordered set; so given any two maximal elements M and N,
either M < N, M = N, or N < M. Either of the extreme cases violates the
maximality of M or N; thus we conclude M = N. Therefore at most one ele-
ment in A has no immediate successor. [

2Given min{a, b} always exists, then either a < b or b < a.

Hint(1/5): Using the axiom
of choice, choose a function
f in the product to define a
new product element f,, for
each a € Ag, with the prop-

erty fo(k) = a.

Hint(2/5): Use the proper-
ties of linear ordering to show
uniqueness of a maximal ele-
ment; such an element has no
immediate successor.
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Example: Consider the set A = {0,...,1/n,...,1/2,1} with the standard or-
dering of R. If a 0" existed it would be the least element of (0,1] N A, and so
a lower bound of (1/n),cz+. However this sequence is bounded below only by
0, since it converges to 0. Thus (0,1] N A does not have a least element; so 0
has no immediate successor.

The element 1 is maximal, so by the above argument is has no immediate
successor.

Givenanyz € A,z # 0,1, thenz = 1/n for some n > 1. Therefore 1/(n—1)
is defined and also included in A. The ordering of fractions makes it evident
that 1/n < 1/(n — 1) and in our set this is the immediate successor. Therefore
A has exactly two elements with no immediate successor. [J
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.8.1 Pigeon-Hole Principle.

Let Iy # o andforeachn € ZT let I, = {1,2,3,...,n}.

() I, is not equipollent to any of its proper subsets [Hint: induction.]
(b) I,, and I,, are equipollent if and only if m = n.

(c) I, is equipollent to a subset of I,, but I,, is not equipollent to any subset of
I, if and only if m < n.

Proof:

(&) There are no proper subsets of I, so vacuously it is not equipollent to any
proper subsets.

Now suppose every proper subset of I,, is not equipollent to I,, for some
positive integer n. Given any subset J of 1,11, the map ¢ : J — I,41
defined by z — z is well-defined and injective. Therefore J < I,,1 by In-
troduction, Definition-8.4, and in particular I,, < I,11. Consider now that
J is a proper subset of I,,.; (that is, J # I,+1) and that furthermore it is
equipollent to I,,+;. Then there exists a bijection f : I,,.1 — J; f|I, re-
mains injective; therefore, I,, < J by Introduction, Definition-8.4. Introduc-
tion, Theorem-8.7, describes how cardinal numbers are linearly ordered,;
therefore, I,, < J < I,.1. Butrecall J # I,,; son < J < n+ 1. Since
elements of a set are counted as wholes it follows |.J| = n. Therefore we
need only consider if I,, is equipollent to 7, ;.

Suppose g : I,.1 — I, is a bijection; again g|I,, remains injective. Fur-
thermore, g|I,, is surjective onto I,, — {g(n + 1)}. Since g is assumed to be
well-defined g(n + 1) exists; therefore I,, — {g(n + 1)} # I, and is in fact a
proper subgroup. What we now have constructed is a bijection from I, to a
proper subset, which requires I,, be equipollent to a proper subset. How-
ever our induction hypothesis makes this impossible; therefore, g cannot
exist so I, is not equipollent to I,,,1.

Therefore by induction, I,, is not equipollent to a proper subset for any
n € N.

(b) («) Given m = n, the definitions of I,, and I,, are identical so I,, = I,;
therefore I,, and I,, are equipollent.

Hint(5/5): Make sure not to
assume what is to be proved.
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Hint(2/5): Use Introduction,
Theorem-8.8 for part (a). Part
(b) follows from part (a) and
Exercise-.8

(=) Suppose I,,, and I,, are equipollent form some m and n in N. By the
well-ordering of the natural numbers we know m and n to be comparable
so without loss of generality let m < n. This allows us to assert I,,, C I,,.
By part (a) we know I, is not equipollent to any proper subset thus leaving
only the case that I,,, = I,,. However the definition of both is clear m is the
greatest element of I,,, and n that of I,,, so m = n since the sets are no the
same.

(c) (<) Suppose m < n and consider the sets I,,, and I,,. By construction
I, C I, and by part (b) it is a subset not equal to I,,. Therefore I,, is
equipollent to a subset of I,, as it is a proper subset. However if I, is
equipollent to a subset of I,,,, then it is equipollent to a proper subset of
itself which violates the result of part (a). Therefore I,, is not equipollent to
any subset of I,,,.

(=) Now suppose I, is equipollent to a subset of I,, but I,, is not equipol-
lent to any subset of I,,,. Since I,,, is a subset of itself, I,, is not equipollent
to I,,, which by part (b) ensures m # n—thatism <norm >n. Ifm >n
then I,, C I,, and so I, is equipollent to a subset of a proper subset —
something that cannot occur by part (a); therefore, m < n.

.8.2 Cardinality.
(a) Every infinite set is equipollent to one of its proper subsets.

(b) A setis finite if and only if it is not equipollent to one of its proper subsets
[see Exercise-.8].

Proof:

(a) By Introduction, Theorem-8.8 we know every infinite set A has a denumer-
able subset D. A denumerable subset by its definition is equipollent to N.
The proper subset Z* is equipollent to N by the map n — n + 1 which is
invertible through the inverse map n — n — 1. Putting the pieces together
we now have: a bijection f : D — N and another g : N — Z7; a natural
inclusion ¢ : Z* — N of a proper subset; and therefore a proper subset
D' = f~1(u(Z")) of D together with a bijection f~'gf : D — D’. Defining
A’ = An (D — D’) we may construct a final function . : A — A’ as follows:

o= { s e

The map is well-defined since it is composed of well-defined maps. Clearly
h(D)=D’"and h(A— D)= A — D so h(A) = A’ forcing h to be surjective.
Also if z,y € D then f~lgf(z) = h(xz) = h(y) = f~1gf(y) SO z = y; when
x,y € A— Dthenz = h(z) = h(y) = y; and finally when z € A — D and
y € D, then h(xz) € D’ and h(y) = A’ — D’ so h(z) # h(y). In conclusion,
h is injective, and so even bijective; therefore, A is equipollent to A’ where
A’ is a proper subset of A.

(b) («) This direction is simply the contrapositive of part (a).
(=) A set A is finite only if it is equipollent (say by f) to the set I, of
Exercise-.8| for some n € N, by definition. In Exercise{.8 we settled that
I, could not be equipollent to a proper subset. If A is equipollent by g to
a proper subset B, then the map fgf~! is a bijection from I,, to a proper
subset of I,, — this cannot