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TURBULENT BOUNDARY LAYER OF AN AIRFOIL*
.

By K. Fediaevsky

1. All the work that has been published up to the
present on the turbulent boundary layer is based, as we
know, on the application of the velocity distributions
theoretically or semi-empirically derived either for the”
case of the motion of ,a”fluid in straight round pipes, i.e~,
for the case of linear distribution of the frictional
shear across the boundary laypr (exponential law, logarith-
mic law of von Kir.min), or for the case of the motion of a
fluid with constant shear across the boundary layer (loga-
rithmic law of Prandtl-iTikuradse ). It is evident that nei--’)
ther of the abo~-e she~.r ?.istributions corresponds to the j
case of flow about a curvilinear contour and that the ve- ~,,
locity profiles do not take into ,account, for example, the “
effect of the static pressure gradient which, in the solu-
tion of several very im~orte.nt problems, for example, that
of the separation of flow at the turbulent boundary layer
of a wing, is a factor of greater importance than surface
friction in its effect ‘on the boundary layer. In such
cases as these the correctness of employing the velocity
distributions that were theoretically obtatned for other :
shearing stress distributions may be questioned.

Experiment shows, in fact, that in a boundary layer
with positive or negative pressure gradient, the ve ocity

J
distribution differs considerably from that obtain3ag in a
straight round pipe.

On figures 1, 2, and 3 are shown velocity-distribu-
tion curves in boundary layers as obtained from the tests
of Gruschwitz (reference 5). The curves are given in non-
dimensional coordinates, the velocity U being expressed
in terms of the velocity U6 at the outer limit of the
boundary layer, and the distance y to the wall in terms
of the tiounda~y-le.yer thickness S. For comparison, the
curve of distribution ar,cordi,ng to the one-seventh power
law is also given. We see that for a positive static
pressure gradient in the boundary layer of a wi.n~ (fig. 1)
or in a plane diffuser (fig. 2) the velocities f~ll con-

‘,,———— _______________ ____-________—_—_———T_T_————--

*Report No. 282, of the Central Aero-Hydrodynamical Instit-
ute, Moscow, 19360

-— .



7. .

2 N.A. C.&.’ Technical Memorandum No. 822

sid.erably more rapidly as the wall is approached than is
indicated ,by the seventh power law. Conversely,, for a
negative sta,tic pressure gradient in the boundary layer
of a wing or plane converging passage (fig. ~) the veloc-

ities, as the wall is approached, fall less rapidly than
the seventh power law would indicate. It is seen, more-
over, that even for an approximately constant pressure
gradient the velocity profiles ere not at all similar to
one a;nother. A glance at figures 1, 2, and. 3 shows that
the farther along the flow the cross section under consid-
eration lies, the more do the velocity profiles deviate
from the seventh-power law.

The a,b.ove character of the velocity distribution is
also evidenced by diverging or converging passages with
plane walls beyond the ‘Ianlaufstrecke’f (the initial por-
tion), i.e., when the entire cross section of the diffus-
er is taken up by the boundary layer. This is confirmed
by the experimental results of Doench (reference 2) and
Nikura,dse (reference 7).

All that has been said above indicates the need for
a new determination of the velocity profiles in the bound-

1 ary layer.
I

Assuming that the character of the velocity
~ distribution depends to a large extent on the character of
! the shear distribution across the %oundary layer, we shall

I
consider the nature of the shear distribution for a bound-
ary layer with a pressure gradient.

20 The shear stress in the turbulent boundary layer,
in terms of the shear at “the wall, we shall present in the
form cf a power series.

~~
T =AP+Al (;;) ’Aa(:y +Uy +A. gy ‘*. * (1)o Xls

+ }\, ,.:, -f :,. .’. ,’
,->

the con tants of which are determined by the conditions
8

obtain%qg at the outer limit of the boundary layer, for
the values of T/To,- and its derivatives. For a number

of terms of the series up tO the fourth power term, there

are a sufficient number of such conditions for the deter-
mination of the consttints~ These conditions are as fol-
lows:

r -,

1.. At the wall} i..,e..,for y=o the ratio #To~= 10
,-

-’q=“~
ii. The differential equation of an element of a ttibe

of flow in the boundary layer of a two-dimensional flow

‘..,,>.
‘“-”\

Q
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may be I.vritten, if we neglect the term due to the curva-
ture,of the element? i: the ~o:m ,

pv’~=.:;+$:’ (2)

where p is the density of the fluid

d
V, the velocity ‘

s, length measured along a streamline

“p, static pressure

n, length. measured. along normal to streamline

Since near the surface of the body the normals to the
streamlines differ but little in direction from the normals
to the surface of t“he body we may, in equation (2), substi-
tute ~T/ay for a7/an where y is measured along the
normal to the surface. Equation (2) then assumes the fol-
lowing form:

Aty=o the left-hand member of. (21) becomes zero so

that aT/a>7 = ijp/&s aild therefore,

I

(II)

:, III. At the outer edge of the boundary layer, i.e., at
!.

Y=6
(::]= () ,

!j

(III)
To

q=$
L

i

4~by the very definition of b~un.dary layer.

—
—

IV*. . . .,,,, ,,,. ,..,. . Assuming that the derivative of the total hea”d

1

–’~ ‘“”k
!8
jr: (S%J ~fv’+!’

of the fluid” suffers no ~i=continuity at the outer edge of

i

.,.,
the boundary layer (as is confirmed >y experiments”) and!.

:,,,1
1!

b&—~ ...------- —
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noting that outside the boundary layer

we obtain from equation (2!), for y.Fj

and therefore,

(IV)

v. Differeiltiating equation (2!) with respect to y,
me have:

\’--- ( )1p al #?v-a–a . &Ivii
P (3)

Lay as ay as j ‘ayz:.—-——Q ‘/
\; since, according to the 5eCGnd of Prand.tlls boundary layer
!.,,, differential equations the pressure is constant transverse.>

~:>;,%. to the layer. At the W[.L1l, i.e., at y=o, the left-hand.J;/;:
member of equation (%) becomes zero so that

and therefore,

(v)

The above conditions c~.n also be obtained by considering
the differential equations of Prandtl.

The idea of representi~ig the shear stress in the
boundary layer in the form of a polynomial was first sug-
gested, as far as is known to the author, by Buri in 1931.

(See reference 1.) Buri, however, proposed the series

,,.,.,,. .,
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where 6 is the so-called ‘Imomentym loss ’length,ll i.:~.~
a linear magnitude proportional to the “loss of momentum
in the boundary layer, its value being defined by the for-
mula ,,

0
=;:; (’ -;;) ‘y = ;>j’’uua - ‘2) ‘y “

We thus see that 6 is, in fact, a magnitude proportional
to the difference between the momentum of the fluid mass
flowing through the boundary layer with the velocity of
the outer edge of the layer and the actual momentum with-
in the boundary layer.

“

The coefficients of the polynomial proposed ‘OY Buri~
however, cannot be determj.ned since the shear stress and
its derivatives can be evaluated only from the conditions
at the wall, i.”ee, for Y/o = 0., But of these conditions
of Buri, only numbers (I) and (II) were made use of.
Thus, the expression proposed by Buri does not enable the
shear stress distribution across the boundary layer to be
determined and could not therefore be employed by him.

We shall determine the coefficients of the polynomial
from our coilditions given above:

a) Using conditions (I), (II), (III), (Iv), and (V),
we have

6 ap
v

Ao=l; Al= ..- —— ; Aa=O
‘o as

.’-”

1

(4)

6 ap ~“ 6 ap
As =’- 4 - 3 ~–––; Ad = 3 + 2 ~––

o as o as

b) Using conditions (I): (II), (III), and(JV), we

have

A. = l.; -A1’ = $~,;,~~

1“

(5)

8 ap 6 ap
AZ = - 3 - 2 —––;. As = 2+ ——

‘?o as ?0 as
\

I

.,,,
.1

— I
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c) Using conditions (I), (II), and (III), we have

8 ap
A. = 1; Al = –– ––;

6 ap 1
AZ = - 1 - ~–––TO as ~ asi

(6)

It should first of all be noted t~at conditions (I),

(II), (III), (IV), and (V) apply eq.uaily we”ll to both the
laminar and turbulent boundary flow so that for the same

8 ap
values of the magnitpde –— –– the nondimensional shear

To as
distribution may be considered to be the same for both the
laminar and turbulent flow with the same degree of accu-
racy with which the series (1) represents the actual shear
distribution. Unfortunately, we have no means at present ‘“~[
of estima-ting the degree of ~approximation of the interpo- ~
lation formula employed by us. For this reason, the choice
of one or tb.e other combination of conditions can for the
present be decided only on the basis of the best agreement.
between the values of the shear forces and velocities as

obtained from any one of the combinations of conditions
with the corresponding values as obtained. from experiment

j,)rb.)lfr:i:!.f.r:/:*$’~7;
The character of theyshear profiles obtained for a

positive presstire gradie~t is confirmed by the tests of
Gruschvitz. @n figure 5 are ~homn the shear profiles for
four sections of the boun~lary layer of a wing for an angle
of ~tt~ck of 120 as obtained by Gruschwitz. The absolute
vp~lues of the shear differ some~hat from those obtained by

our computations. We assume that this can be explained
only as due to the very great inaccuracy in the experimen-
tal determination of the shear (RS brought out by Grusch-
witz himself in his naper). In. the experimental determi-
nation of the shear, it is necessary to differentiate
graphically the total head of the fluid along a streamline.
On account of the small number of cross sections at which
the total head was measured in the tests of Gruschwitz
such differentiation niay, to a large extent, be arbitrary,

It is nececsary therefore that the choice of one or
the other of the comhin?.tions of conditions for the deter-
min,a,tion of the constants of the series be made for the
present only on the basis of the kest agreement letween the
values of the velocities as obtained from e.ny one of the
combination of conditions with the values obtained. by ex-
periment since the experimental determination of the veloc-
ities in the %oundary Iaycr is much more accurate than the
experimental determination of the shear stresses.
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Figure 4 gives the nondimensional shear profiles for

the-cases ~~> O and
~p=o

as
respec.tive?-y. The .pro-

53’”
files arc drawn on the ba,sis of the two combinations of
conditions (I), (II), (III); and (I), (II), (III), (IV),
(V), re.spect’ively. We see that even the combination of
the three conditions (I), (II), and (III) determines. in
general the character of the shear prof,il.e.

It is interesting to note that the profile for the
case of a flat pl<ate, i.e., for ~p/as = o does not dif-
fer from the straight line shear, profile of a straight
round pipe to the same extent as does the profile for the

case :: > O* It is thus understandable why, for a condi-

tion where ap
7s

is ne<ar or equal to zero (dirigible body,

flat plate) the use of the velocity prof5.les obtained for
straight ro”und. pipes yields comparatively good. results.

3. To obtain the velocity distribution it “is possible,
first of all, to integrate equation (2t) along a streamline,
For this purpose we shc,ll Write equation (2?) in the fol-
lowinz form:

(2”)

Integrating with respect to S, we arrive of’ course at
the equation of Bernoulli with the energy loss due to the
internal friction taken into account :

pv~–>– + p = pvo2 ‘aT
–“~–– + P. + of –– dsay (7)

,“

(

where the subscript denotes some initial ~oint on the
stre:~mline, “ V. and Po .being the veloclty and static

pressure, res~ectively, at this point.

The expression for the shear, bearing in mind the
value of the coefficient &j may be written in the follow-
ing form:

.:.



e N. A, C.A* Technical Memorandum No. 822
, “.

Differentiating T with respect to y, we have:

‘~T = Z+ 2aay + 3a33Y.-—
ay 13s

2+ ..* (9)

Substituting (9) in-(7) and integrating the first term in -
-.,>

the expression under the integral si~n, we obtain:

pv2 = pvoz
——— ____~ 2 + Js (2a2Y + “2+co. )dS~a3y (lo)

o

Forxula (10) enables the change in velocity along a
stree.mlirie to be comnuted if the change in the ordinate y

along a strep.mline a~d the velocity at the initial section
are given. For the latter, at which the velocity distri-
bution may ‘oe assumed to follow the exponential or loga-
rithmic lam, the cross section at some initial point at the
beginning of the turbulent boundary layer may be taken.
The nearer this section is taken to the starting point of
the turbulent l)ouildary layer the smaller will be the por-
tion of the profile where the inaccuracy of the initial
profile will show UP. The thickness of the boundary layer
and shear at the wall are d.etermiined by emplOYing the ex-

ponential or logarithmic law.

To determine the vari~.tion of the coordinate y along
a streaml.in.e, it is necessary to define a liile of flow at
least to 2, first a~?proxima,tion. For this purnose, me shall
assu?ne some kilown velocity distribution (the exponential
law is best on account of its simplicity) and define liiles
of flow as those at which

J
Y

Udy = const [11)

~vhere TJ is the tangential comzonent of the velocity-

SettinR un the velocity distribution in this manner
to a first ~ppi’oximatiofl, more accurate lines of flow may
be determined to a secoild degree of .,ayvroxirnation by using
condition (11) for the obtained velocity distribution.
Using the lines of flow o: tile second approximation, a.
more accurate velocity distribution to a secoild apnroxim,a-
tion me:y be computed, etc. O?I account of the extr~m’e cum-
bersomeness of the above r.ethod., however, it can only be
apm>lied,!~ith difficulty, Moreover, hy the above method we
may compute the velocity pro”files for. various sections of
the lloundary layer but cannot establish the law of varia-
tion of the velocity across the boundary layer,

,,
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40 In order to establish the law of variation of the
velocity across the boundary layer, it is necessary to as-
sume “some for-m of dependence between the Shea-r “and the
velocity. In the case of the turbulent boundary layer,
this is equivalent to the a~sumption of some model for the
turbulence.

We shall express the shear with the aid of the Prandtl
l!L!ischungslVegll formula:

(12)

where Z denotes the so-called llMischungsweg!r or mixing
length ~.nd represents a magnitude that is analogous to the
mean free path of a molecule in the kinetic theory of
gases. In turbulent flolv the mixing length is a magnitude
proportional to the displacements of a~gregate volumes of
the fluid transverse to the general flow direction. In
formula (12) one of the factors du/ dy is taken in the
absolute sense so as to preserve the correspondence between
the sign of the velocity gradient and that of the shear.

I?ith regard to the question as to what are the varia-
bles of which the mixing length is a function, there are
various views held. von K6rm&n assumes that the mixing
length is determined by ratio Of the first derivative of
the velocity with respect to y to the second derivative,
i.e., that the tur ulence is locally defined.

P
Prandtl,

for the case where the shear ?.cross the boundary layer is
constant, considers the nixing length to be determined by
the distance from the wall and assumes, as a first approx-
imation, that the mixing length is simply proportional to
the distance from the wall;

In view of the essential difference in the opinions
as to the nature of the mixing length, we shall turn to a
consideration of lVhat experiment has to offer with regard
to this m4.tter.

The outstanding experimental work of Nikuradse (ref-
el-ence 8) established the fact that in smooth round pipes
at p.eynolds Numbers above 100,@OO the. nondimensional mixing
length, that is, the mixing length divided by the pipe ra-
dius r appears to be a function only of the nondimen-
sional distance y/r from the wall and. does not depend on
the Reynolds Number. FiRure 6 shows that the nondimen-
sional, m,ix,ing length varies with the nondimensional distance

— — .- —
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from the wall for various Reynolds Numbers according to
the tests of Nikuradse. The Reynolds Number .Re is here
computed from the pipe diameter and mean velocities. The
form of dependence shown on figure 6 may be well expressed
by the following interpolation formula of prandtl:

7/
= 0.14 - 0.08

r (’ - J -oDo6(l-;j4 ~
(13)

It turns out that the above distribution of the non-
dimensional mixiri:g length holds not only for round pipes
but also for channels with parallel walls. This is shown
%y the tests of Nikuradse and Fritsch (references 4 and 7).
J?igure 7 shows the results of these tests. For the value
of r half the channel -width is taken. This distribution
holds moreover for rough round pipes (reference 9) (fig.
19).

A consideration of the work of Doench (reference 2)
and Itikuro.dse (reference 7) shows that foi- the case of
diffuser with pl,ane vans the same type of dependence for
the mixing length is ob$ained and, what is of particular ,
importance, me have the same v~lue cf the nondimensional
mixing Iengt’h .a,tthe axis (outer edge of the boundary
layer). Figures B and 9 show the distribution of the non-
dimensional “mixing length in plane-wall fi.iffusers as ob- .
tained. fi-o~ the tests of I)oench (fiS. 8) and Nikuradse
(fig. 9) for various angles of divergence. For plane con-
vergifig passages , however, a different type of mixing
length distribution is obtained.

Strictly speaking, for vlane-wall diffusers figure 9
shows a certain deoend.ence of the mixing length on the an-
gle of divergence “of the diffuser and therefore on the
nressure gradient. Bearin~ in mind, however, that for an
an .:,:1e. of divergence u = 0° the pressure gradient is al-
ready negative, it follows” that the effect of the pres-
sure ~~radient on the mixing length distribution at posi-
tive or small negative gradients is compar?.tively small
and in any case less than the effect of tile pressure gra-
dient on the velocity distribution.]”

———-.———————..——————.————_..——.- ______-.———...————--—..——————..——————
1

————_

Tamamoto exgressed the relation between the mixing length
and the distance from the v:all for smooth round pipes ‘by
the formula (reference 6)

3.= r
0.14 11 - (1~\2 ~ ()]X2

r L ‘~~J@r’
which gives results differing very little from those ol-
tained ‘oy the Prandtl formu].a.
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,!.
Thus , the nondimensional mixing length may be looked

upon as a more geileral and more fundamental magnitude as
compared with the velocity profile and may be considered
as approximately the same for a larger class of boundary
layer~. On the other hand, we must admit that the effect
.of the pressure gradient o“n the shear profile is quite
large. In fact, the shear profile shown on” figure 4 for

the case ap’;;>0 corresponding to the conditions at the

upper surf~~e of a wing at an angle of attack of 12° is
very different from the shear profile for the case i3~/as =
o for the same shear at the wall.

On the basis of the above data, it may be stated that
for positive or small negative pressure gradients the mix- .’,’

)::$,
i~g length. distribution may be considered as depending only.. .
on the nondimensional distance from the wall and the di..f- {“ ‘;
ference in the velocity profiles as due only to the differ-
ence in the shear stresses. With the above assumption we
can at once explain the difference in the characteristic
app earance of the velocity distribution for a small posi-
tive pressure gradient anfl a negc.tive pressure gradient,
res~ectiveSy. For the “same distribution of the nondi?aen-
sional nixing length’ the derivative of the velocity with
respect to y according to formula (12) will in fact in-
crease with increasing shear stress T. The latter, how-
ever, for the same nondimensional distance from the wall
is larGer the la.r~er the pressure gradient (fig. 10).
Hence it follows that for l~ositive pressure gradients the
velocity distribution mill-be different from that for zero
pressure gradient.

Applying the Prandtl formula of the mixing length
distribution to the external nroblem, we” easily obtain the
laws of variation of the velo-city transverse to the ‘oound-
ary layer. The formula is reyi-itten in the follotving
form

.7/

F = 0.1’4
- 0=08@ - ;s-‘so’ (1- %1 (131)

5. Employing formula (12), we obtain the following
differential equation:

(14)

. . .

., ... ..——.-—. —-
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.

Integrating, we have:

f

–1
()u= J;~d:/+c

[7
i/

The arbitrary” constant”of integration is determined by the

condition that for JI=l; T=o, u=u/j so that c=u~
6

a.rid.

The above expression may also be written in the form

Substit
tions (

uting in (15) the values of T and t/8
1) and (13), we v,hall have:

,—

1

y/ 6
To “A, (3=(T)=”J.—Jr -.————..-———.-———————
P1

.2

@.14-o.@3 (1-n - 0.06 @)4
6/

(15)

(15’)

from equa-

()
d “ (16)

F

sinc,e A. is ai~,~ays eclu.al to 1. Using for T the combi~

naticn of conditior.s (1), (Ii), (III), (IV), and (V) or the
ccimbination (I), (II), (III), an?. (IV) tlhe integral on the
right of e~u~+tion (15) is reduced to an elliptic integral.
of the cecond kind. Iii particular, using conditions (I),
(II), (III), (IV), aild (V) expression (16) assumes the fol-
lowing form:

----

TJ=TJ6+. p

P

y/: ~~ l+Al (~’)+ A. f~:? + A. @4

{ – ..-_ 8H’ ___.->fi-L––--___l–––––

0.14-0.08 (lM$S
(

Y)4
-0.06 l-–

\ 6)

d (17)

Using for T the conditions (I), (II), and (III) the in-

tegral at the right of eauation (16) assumes the following
finite form:

fi; ~ ~“i~
f;-;, ~s’) +~-(x”

d
[+/)

IJ.IJ8+
J

()–––-.–––--–––—––––––––~~~–––—y- d ~ (18)
;– 1 6/

0,14-0,08 (&;)2 - 0.06 ~1-~)
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Figures 11, 12, and 13 give the velocity distribution for
three sections of the boundary” layer at the upper surface

;. of a“wing according to the tests of Gruschmitz for an angle

FL of a,ttack of 12°. These three sections are near the point
Y-
1

I

of separation and the velocity profiles are therefore ‘of

~~
particular interest. The velocity profiles for the same
sections computed. from formulas (17) and (1-8) give a suf-

!*I ficiently gOOd agreement with the expe,rimen~al profiles.j.:i

:[1 For comparisons there are also given the velocity pro-
, files based on the von K~rm&n formula for straight round

tubes: .,

where K is a constant approximately equal to 0.4.

The velocity profiles based on formula (17) agree bet-
ter with experiment th~,n those based on formula (18) - a
fact that may be explained by the more close approximation
of the shear given by (17) as compared with (18). The less
favorable ngreement of the theoretical With the experimen-
tal velocity profiles at the section x = 27.05 cm is evi-
dently ex~plained by the fact that the section is not en-
tirely in the turbulent boundary :region. As a matter of
f:,ct, this section still lies in the region where the
shear at the mall increases in the direction from leading
to trailing edge, i.e., in the region of transition. Com-
binations of conditions (I), (II), (111), and (IV) or (I),
(II), (III), and (V) give a less good agreement between
the theoretical and experimental distributions than condi-
tions (1), (II), (III); (IV), and (V) or even conditions
(I), (II), and (III).

Figures 14, 15, 16, 17, and 18 give the velocity pro-
J files at five sections of the boundary layer of a symmet-

“rical Joukowsky airfoil at an angle of attack a = - 0.18°
according to the tests of Fage and Falkner (reference 3).
The velocities computed from formulas (17) and (18) and
~.lso from the von K&rm~n formule+ are likewise given on “the
figures for the same sections. The agreement of the test
curves with those com~uted from (17) ~,nd (18) may be con-
sidered. as satisfactory.

*
.Notwithstanding the fact that the static pressure

gradient is small, the difference between the curves com-
puted from (17) and (18) end the curve of von K&rm& is

— —
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rather considerable, It is therefore expedient to take
into account the conditions of the external problem in ob-
taining the velocity profiles even at small static ~res-
sure gradients,

The good agreement with experi!!lent of the velocitY
profiles in the turbulent boundary layer of a wing makes
it pcssible, in the first place, to proceed to the solu-
tion. of the very important problem of the separation cf
the turbulent boundary layer, and in the second place to
compute correctly the resistance of the surface roughness
in the boundary layer.

6. Let us introduce, analogous to the “friction ve-
locityll of Prandtl

(20)

the corresponding ma~nitude for the pressure acting 6n a
cross section cf the boundary layer and denote this mag-
nitude by p*. We shall then have:

(21)

The above expression may he denoted as the “pressure ve-
locity.’f Usiilg (20) and (21), the integral of equation
(19) may be written as follows:

...:,,,
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where the coefficients Ll, M2, D. X, F, G! H! P are non-

dimensional magnitudes de~ending only on V*2 and p*2*

Since in deriving (22) the laminar sublayer was not taken
into account,

! this formula, which is similar to the von
K&rm&n formula:i/~

1 “[’n(’-fi%w=] ‘l’).U=uG+y

t%, ,.,,
~ .\

and the Pra,ndtl,-Nikurads e formula:\

J

(23)

,~”.“ . .,
-.I

I .,. -----...—— .——-
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does not, of course, satisfy the condition at the wall,

since for 3Z=Q, we have U = - -.
6

7. In the special case of a flat plate, i.e., for

dp
o, the coefficients of series (1) assume the follow-

Zi =
ing values:.

a) Using the combination of conditions (I), (II),
(III), (IV), and (V):

A. = 1; Al = o; Aa = O; As = - 4; A4= 3 (41)

-0) Using combination of conditions (I), (II), and
(III):

A. = 1; Al = O; A2=-1 (61)

Thus for this particular case, expressions (17) and
(18) assume the following form:

—— .—

y/6 r. 4 (1)3+, (1’)4
J

u=u~+v* f _____._–—––-..-_!———->ii—————–—_ ‘~‘

1
2

0.14-0.08 (1 - ;
) -Q*Q’ (1 - ;)’ ‘(o) ““)

___. ——

A-$) 2

y/6 .

u=u~+v* j ‘ d(’;j_—————.———————_——_———_—————————— (18’)
1

0.14-0,08 [1 - ;) -Q. Q6 (1 - ;)

Figure 19 gives the plot of equations (17*) -and

(18 1) using as coordinates
u~-u

z.————— and The same
v* 6

figure shows for comparison the curves corresponding to
the von K~rm& and Prandtl-l?ikuradse formulas.

The author expresses his deep gratitude to Professor
Loytsansky for a number of important suggestions in con-
nection with the above work. All the computations were
carefully carried. out by the engineers, P. E. Kuryatnikoff

and S. S. Jacobson, to whom the author expresses his grate-
ful acknowledgment.

Translation by S. Reiss,
Nation:’.l Advisory Committee for Aeronautics.

. . . ..



N.A.C.A. Technical Memorandum No. 822 17

REFERENCES

.—

1. Buri, A.’: Eine Berechnungsgrundlage fuer die turbu-
lence Grenzschicht bei heschleunigter und verzo”e-
gerter Grundstroemung. Promotion arleit. Buch-
druckerai A. G. Jean Frey. Zurich, 1931.

2..

3.

4.

5.

6.

7.

8.

9.

.–

Doench, E.: Divergence und konvergente tur’oulente
Stroemungen mit kleinen Oeffnungswinkeln. Forsch-
ungsarbeiten auf dem Gebiete des Ingenieurwesens ,
Heft 282, Berlin, 1926.

Fage, A., and Falkner, V. M.: An Experimental Deter-
mination of the Intensity of Friction on the Sur-
face of an Aerofoilo P.. & 1,~,No. 1315, British

A.R.C., 1931.

Fritsch, Walter: Der Einfluss der W.andrauhigkeit auf
die ,turbulente Geschmindigkeitsvert eilung in Rinnen.
Z.f.a.M.M. , Band 8, Heft 3, 1928, p. 2“15.

Gruschwitz , ‘n : Die Turbulence Reibungsschicht in
e~ener Stromung bei i)ruckabfall und Druckanstieg.
Gottingen Dissertation, Ingenieur-Archiv, 11 Band,
3 Heft, 1931.

Yamz.moto , Tsunayuki : Study of Turbulent Flow in Smooth
Pipes. Jour. of the Society of Mechanical Engi-
neers, Japan, vol.. 37, no. 212, December 1934.

Nikuradse, J.: Untersuchungen ~ber die Str~mungen des
??assers in konvergenten und divergenten Kanaelen.

‘orfic~’ungen aus dem Kaiser Wilhelm-Institut fuer
Stromungsforschung, no. 289, Berlin, 1921.

Nikura#se, J.: Gesetzmaessigkeiten der turbulenten
Stromung in glatten Rohren. Forschungsheft no. 356,
Berlin, 1932.

Nikuradse, J.: Str~mungsgesetz in rauhen Rohren.
Forschungsheft no. 361, Berlin, 1933.

l _ ”--------



.-..Lg.< -

“1’
,/

=3
G

x Distance of a sscti:m from the leading edge x’ Distance from entrance.
.
c1

measured along the contour of the upper surface.
.. &

t--i%-”” ‘

/
-i- ‘i.:

,; +--l-J---l
.5 Ll_ ‘~ I ‘$

j-~—... — ~,=( +)1 7
0. LI
X =23.55 CDI 1;

—— —

G

x=27.20 cm !
_-_-—x =31.25 cm
-—- --- —x =34.90 cm

g___— x .39.2 cm

I ‘ t-+j
.—..

I

o .5 1.0+

Figure l.- Wing with Gottingen 397 profile.
(a =6°, chord t =40 cm.).

-i-G ;
1.0

5..

XT

03
NJ
N

.-
0 .5 1.0+

Figure 2.- Bounda~~ layer of diffuser,of profile z
section 3. ~

.
w

“w

““-’’”==a



—

N.A.C.A. Techxiidai Memorandum NO. 822 Figs.3,5

‘Y ,—.,

“.U/j ,.

1.0

9 .5 1.0+

Zigure 3.- Boundary layer of diffuser of profile
section 5.

.008

.006

~
q .004

.002
,.

0246 8 140 142
y mm

Figure 5.

x in cm
a =34.9
b =31.25
c =27.05
d =23.5



p“ “
.

.

Technical Memorandum

.

—. . _ ._. _.

— . —...

——.. ____

,,

~p=(),-T-=l+~l(~)+A3(:)3+~4(~)4
dS ‘o

1.0

5. ..

o 1.0 2“.Q 1..b
.;O

Figure 4.



““’!
-

ii,,
I

0.16-

0.14 ‘
~,/ +

am“ j
O.* -— –

%!’ I
0.06 0~ p 1(WA

● “ s 2$16.U+

O.iu ● m = lllo,@_
● n ‘a1959.ld

0.02 *.sJ~.@_.

o 01 0.2 0.2 0.4 0.6 0.6 0.7 0.8 0.9 1.0

Figure 6

(mr ,
J :

0.12[

a?o
F

,
floe/ A

ao6

0,04
● F<ifsch (cOnduifs)
o Nfkurodae (fan verging

all?-
ona’ dr veqwng chorine is-

o Ufkurudse (pipe of rec -
fanqular Sec t;or7)
I 1 ! I ! / [

G w 0.2 OY 0.4 aS a6 a7 aa M LO
Y—.
r

Figure ‘1

OJ6, , , r , , , , ,

0.14

1
0.12

r 0.10

I

O.m

m

L 1-l
yfi-%+’+++--{

I
0.02 I

:4
m
“a

,
I

Figure 8 Figure 9



,.

AT.A.C~A. Technical Memorandum No. 822 Fig.10

Y
--i-
1.0

,.

.8

i6

.4

.2

0

{.

.5 - 1:0
0‘r
~-o

d~.
7G-
dp~———— .- =
ds

l.O

.8

.6

.’!

.2

0 .5 1.0 .14

Y ●
i-

—

1!0

.8

.6

.4

.2

0 .5 1.0

+H

0

-H

~= +H

_—— — . *= 0
ds

dp _H—.— —=
ds

Figure 10.

/



30

.20
c1
al
m
2

D

10

0

#

~~

“5+
!“”’j--”’- . ___

.‘—.-!

Lo
‘J-–LA

of Gruschwitz.

J’--]1
.-y

-—
6

——— —— ———..—

-rO ‘i J+q;)+%gy+A4&4— ...— J’nTJ.U5+ ~– —-___ —__ —______ —_ ——__——_—-_—

“ 1
3.14-O.03@-;~-O.06@-~~

2><,:~-;1,.‘ ? ------ ----”-——
~<.

I’iare 11.- Wing with Gottingen 397 profile (t = 40 cm. U.=,lao )x = 27”05 cm.
8 = 0.0075 m. -rO= 0.3278 kg/m2; dp/ds = 2~5 lqym3.)

z

m
NJ
ru



N.A.C..A.i,,TechnicalMemorandum No. 822
iiUI
-a
D

30’

20

10

Figs .12,13

01234”56 ~E!9 1.0 ymm
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$ig-ms 14. - Symrnetrical Joukcwski airfoil “with maximum
thickness 15% of chord (x= 0.508 m. (x/t =0.504),

& = 0.00905 m., To= 0.198 kg/m2 , dp/3s = ‘7.26kg/m3.)

— —-Experiment of Fage and lal.cner.

IFor conventional signs——— .—
Isee fig. 11
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?igurs 15.- Symmetrical Joukowski airfoil with maximum

thickness 15% of chord (t = 1.009 m., a = Oo
x = 0.610 m., (x/t = 0.605), 6 = 0.01145 m.; To = 6.1741 kg/m2,
dp/ds = 18,6 kg/&)
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thickness 15% of chord (x = 0.7119 m., x
= 0.0136 m.,

~/
To= 0.1559 kg/m2, dp/ds = 19.34 kg/m .)

t=o.706),

— +-- —Experiment df Fage and Falkner

“!For conventional signs—. .:—
see fig. 11
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Figure 17.- Symmetrical Joukowski airfoil with maximum

thickness 15% of chord (x = 0.8135 m., (x/t
5 = 0.0166 m., To= 0.1154 kg/m2, dp/ds = 19.3 kg/m3.)

=0.80’7)
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lS% of chord (x = 0.964 m., (x/t = 0.956),8=0.0202m.
2 dp/ds = 23.25 kg/m3.)7.= 0.09445 kg/m ,

— —-Experiment of Fage and Falkner
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