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Abstract—We discuss a novel approach for constructing deter-
ministic reactive systems that evolves around a temporal model
which incorporates a multiplicity of timelines. This model is cen-
tral to LINGUA FRANCA (LF), a polyglot coordination language
and compiler toolchain we are developing for the definition and
composition of concurrent components called Reactors, which
are objects that react to and emit discrete events. What sets LF
apart from other languages that treat time as a first-class citizen
is that it confronts the issue that in any reactive system there
are at least two distinct timelines involved; a logical one and a
physical one—and possibly multiple of each kind. LF provides a
mechanism for relating events across timelines, and guarantees
deterministic program behavior under quantifiable assumptions.

Index Terms—concurrency control, distributed computing, pro-
gramming, software testing

I. INTRODUCTION

Common software engineering approaches for expressing
concurrent programs, such as threads [1], actors [2], [3],
reactive programming [4], publish-subscribe systems [5], and
even single-threaded event loops [6], make it difficult to achieve
one important property of non-concurrent computing systems:
determinism. Without a deterministic execution semantics,
it quickly becomes intractable to rigorously test or verify
the correctness of concurrent software. With the growing
pervasiveness of networked computing and a trend towards
integrating computationally demanding artificial intelligence
components into real-time cyber-physical systems (think of
robotics, autonomous vehicles, etc.) there is a need to achieve
reliable and reproducible behavior in concurrent systems.

It has been shown that even for applications that do not pose
real-time requirements, a semantic notion of time and the use of
measurements of the passing of physical time can be powerful
tools for achieving a measure of consistency in concurrent and
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distributed software [7], [8], [9]. Google’s Cloud Spanner [10],
for example, uses timestamps derived from physical clocks to
define the behavior of a distributed database system; Spanner
provides an existence proof that this technique works at scale.
Moreover, logical time, as used in synchronous languages [11],
for example, can provide a foundation for a deterministic
semantics in concurrent programs.

Contributions: We propose a coordination model that
involves a multiplicity of distinct logical and physical timelines
that are used to determine in which order events are observed
and whether or not they are handled before a specified deadline.
We expose this model in LINGUA FRANCA (LF), a polyglot
coordination language that we designed to augment mainstream
programming languages with a coordination layer based on a
discrete event semantics. Our language incorporates verbatim
target-language code, allowing LF programs to benefit from
the vast number of libraries and advanced compilers and
interpreters of established programming languages.

Outline: Sec. II gives a motivating example showing
how existing coordination paradigms fall short of delivering
repeatable and testable concurrent behavior. Sec. III discusses
the fundamental challenges and opportunities of using time
for specifying concurrent behavior. Sec. IV introduces LF
and explains how it allows a programmer to relate events
across distinct timelines. Sec. V shows how the discrete
event semantics of LF can be preserved across distributed
components. Finally, Sec. VI discusses related work, and
Sec. VII concludes.

II. MOTIVATION

Consider the following simple but challenging problem.
Suppose that a commercial aircraft manufacturer wishes to
automate the opening of an aircraft door. Consider a networked
software component residing in the door that provides two
services, open and disarm. The disarm service disables
deployment of emergency escape slides if the door is armed,
and the open service opens the door. If the door is opened
when it is armed, then the slides will deploy. The challenge
problem is to decide what the software should do when it
receives an open command from the network.978-1-7281-8928-4/20/$31.00 © 2020 IEEE



1 actor Door {
2 closed = true;
3 armed = true;
4 handler disarm(){
5 ... actuate ...
6 armed = false;
7 }
8 handler open(arg){
9 ... actuate ...

10 closed = false;
11 }
12 }

13 actor Cockpit {
14 handler main {
15 d = new Door();
16 d.disarm();
17 d.open();
18 }
19 }

Fig. 1. Pseudo code for an actor network that is deterministic under reasonable
assumptions about message passing.

Of course, the software could simply open the door, but this is
dangerous without additional guarantees from the environment.
Network delays or nondeterminism may result in out-of-order
message arrival, potentially causing a disarm message that
was sent prior to the open command to be received after the
open command. In that case, simply opening the door would
lead to an unintended emergency slide deployment.

A number of reasonably disciplined techniques have evolved
to coordinate distributed programs, including publish-and-
subscribe, actors, service-oriented architectures, and distributed
shared memory. None of these, however, provides enough con-
trol over ordering to resolve this simple problem satisfactorily.

Consider actors [2], [3], as realized in Erlang [12], Akka [13],
and Ray [14]. The pseudo-code example given in Fig. 1 illus-
trates an actor-based solution. The actor Cockpit sends two
messages, disarm and open, to the actor Door. Although
many actor languages make the sending of messages appear
like remote procedure calls, their semantics is “send and forget,”
a feature that enables parallel and distributed execution but
poses challenges to coordination. Without further assumptions
or explicit synchronization, there is no guarantee that the Door
actor processes disarm before open.

Under mild assumptions about the network (i.e., reliable in-
order message delivery, which TCP can provide) the program
in Fig. 1, subject to the constraint that handlers are mutually
exclusive, is deterministic [15]. However, this property breaks
with even the slightest change to the actor network. Consider
the minor elaboration shown in Fig. 2. This program has a third
actor, Relay that simply passes the disarm message from
Cockpit on to Door.1 This innocent change has troubling
consequences. The execution is no longer deterministic under
any reasonable assumptions about the network, which could
cause an unintended deployment of the emergency slides. This
type of nondeterminism is endemic to the Hewitt actor model.
Moreover, it is difficult to change the program in Fig. 2 to
consistently behave correctly [15].

In robotic systems, such as in ROS [16], or in the Internet of
Things, such as in MQTT [17], publish-and-subscribe protocols
are widely used to coordinate software components. Since such
communication fabrics provide no assurances about the order

1In a real application, instead of just relaying the message, the actor could
interrogate sensors to determine that a passenger boarding ramp has been
placed outside the door before relaying the disarm message.

1 actor Cockpit {
2 handler main {
3 d = new Door();
4 r = new Relay();
5 r.rly(d);
6 d.open();
7 }
8 }

11 actor Relay {
12 handler rly (x){
13 x.disarm();
14 }
15 }

Fig. 2. Modification of the code in Fig. 1 yielding a nondeterministic program.
The actor Door remains the same.

of message delivery nor the order of message handling, they are
prone to the same problem of nondeterministic behavior. ROS 2
uses DDS (Data Distribution Service) [18], which supports
priorities on messages. This might seem like a solution to the
problem, but priorities are not a semantic property. They are a
quality-of-service property rather than a correctness criterion.
Hence, they could even mask a semantic problem in a design,
making it less likely to show up in testing. This will also make
it less likely to show up in the field, but even the rare occurrence
of a dangerous and life-threatening action is problematic.

Another approach could rely on a distributed shared memory
architecture, often realized using the tuple space concept of
Linda [19]. However, a shared memory model provides even
less support to prevent the sorts of problems we highlight here.

Service-oriented architectures, widely used for Web appli-
cations (e.g., Apache Thrift [20]), are increasingly applied
in cyber-physical systems (e.g., AUTOSAR Adaptive Plat-
form [21]). But they, too, admit nondeterminism. Recent work
shows that this nondeterminism can have fatal consequences in
safety-critical applications [22] and presents a solution based
on the same underlying principles that this paper builds upon.

The approach we advocate in this paper will prove extremely
simple, as it should be for such a simple problem. We add
timestamps to every sent message, and, upon receiving a
timestamped message, the Door waits until its physical clock
hits a precomputed threshold before processing the message.
The threshold ensures, under clearly stated assumptions, that
all messages are handled in timestamp order. The question
remains: how long should the Door have to wait?

III. REASONING ABOUT TIME

It is impossible, from first principles in physics, to determine
the order in which two geographically separated events occur.
There is no such thing in physics as the “true” order in which
separated events occur. There is only the order seen by an
observer, and two observers may see different orders. Hence,
it would be an unrealistic goal to require that if a disarm
message is “truly” sent before an open message, then the door
will be disarmed before it is opened. To use such a requirement,
we would have to identify the observer that determines the
outcome of the predicate “before.”

One choice of observer, of course, is the receiver of
the messages, the microprocessor in the door that performs
the disarm and open services. This is the choice made
in an actor model, (as well as publish-and-subscribe and
service-oriented models), but as we have shown, it leads to
clearly undesirable outcomes. Even if the disarm and open
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Fig. 3. Different observers may see events in a different order. An additional
logical timeline allows to establish a global ordering. After a certain safe-to-
process (STP) threshold, Door received all relevant messages and can use the
logical timeline to determine that disarm should be processed before open.

messages originate from the same source, they may arrive
out of order. The originator sees a different order from the
recipient, as shown in Fig. 3.

Only if, instead of relying on a physical notion of time, we
define a logical or semantic notion of time, does it become
possible to ensure that every observer sees events in the same
order. This will require a careful definition of “time” as a
semantic property of programs. We will also have to stop
pretending that our logical notion of time is physical time, and
instead accept a multiplicity of observers and understand the
relationships between their timelines.

One way to provide a semantic notion of time is to use
numerical timestamps [23]. If messages carry timestamps, then
our requirement can be that every actor processes messages
in timestamp order. If we further require that messages with
identical timestamps be processed in a predefined deterministic
order, then our semantics will ensure that any two actors with
access to the same messages will agree on their order. We know
from experience with distributed discrete-event simulators,
however, that it is challenging in a distributed system to
preserve timestamp order [24]. Moreover, here, we are not
interested in simulation. We are interested in cyber-physical
execution, where physical time and (imperfect) measurements
of physical time play an important role. The methods used for
distributed simulation will have to be adapted, as we do here.

The use of timestamps superimposes on our distributed
system a logical timeline that must coexist with a multiplicity
of timelines, measurements of physical time, and with actual
physical time. We will show how physical clocks can be used
to create logical timestamps and how the relationship between
timestamps and physical clocks can lend a rigorous meaning
to deadlines. Moreover, we give a mechanism that, once the
timestamps of messages have been determined, is deterministic,
under clearly stated assumptions. When the assumptions are
met, the system behavior is repeatable, in that, given the same
timestamped inputs, the response will always be the same.
This determinism also makes systems more testable. A set of
timestamped inputs forms a test vector, and the system defines
the one and only correct response to this test vector. Moreover,
violations of the assumptions are detectable at runtime. When
any component sees messages out of timestamp order, one of
the assumptions has been violated. This detectability enables
the design of fault-tolerant systems.

In the aircraft door example, when the Door component
receives a timestamped open message, it waits until its local

physical clock hits a precomputed threshold before acting
on that message (cf. Fig. 3). This guarantees that the open
message will be handled in timestamp order relative to other
messages, including any disarm messages that may originate
anywhere in the system. The assumptions will include a bound
E on the clock synchronization error, a bound L on the network
latency, and a bound X on the execution time of certain pieces
of code. What bounds are acceptable is application dependent.
Existing technologies allow to tighten bounds on E [25], L [26],
and X [27], [28].

In reality, any reasonable handling of an open message has
to make these same assumptions. If there really is no bound
on network latency, how can we possibly reason about the
order in which messages are handled? If clocks differ wildly
across a distributed system, how can we expect any coherent
notion of “before”? To address this reality, we created the
coordination language LF, in which these assumptions are
explicit, quantified, and their violation detectable.

IV. LINGUA FRANCA

The focus of LF is on network-integrated reactive and
cyber-physical systems [29]. Many computing activities can be
viewed through that lens. They all have in common that they
benefit from repeatability and testability, meaning that their
behavior in response to some specified external stimulus is well
defined and consistent across operating conditions. Many such
systems are also time-sensitive and safety-critical. Our model
of time furnishes a well-defined semantics of the interaction
between reactive software components and physical processes,
and allows timing constraints to be specified in the software.

The LF programming paradigm is based on the Reactor
model [30]. Reactors are components that maintain state and
can contain other reactors. Reactors carry functionality inside of
reactions. Reactions bear some resemblance to object-oriented
methods, but rather than being invoked directly, they are
triggered by the occurrence of an event on a port or action.
While ports relay events between reactors via connections,
actions relay events internal to the reactor. Events have a
timestamp called a tag [31], and can carry a value of some
datatype. Like signals in Esterel [32], events are present or
absent at a given tag. Reactions are logically instantaneous,
meaning that logical time does not advance during their
execution. Setting the value of a port yields an event with
a tag equal to the current logical time. Scheduling an action,
on the other hand, yields an event with a tag strictly greater than
the current logical time. Consequently, ports are a mechanism
to synchronously communicate across reactors, while actions
are a mechanism to advance logical time.

Reactions can access (and be triggered by) ports of their own
reactor, and also ports of reactors that are directly contained
within that reactor. Importantly, scoping rules require each
port that a reaction references to be declared explicitly in the
signature of the reaction. The interfaces of reactions, therefore,
along with the explicit connections between ports, contain all
information necessary to devise a concurrent execution policy
that observes all data dependencies in a reactor program—
without the need for any static analysis of the reaction code,



which is written in a target language. This feature is the key
enabler of the polyglot nature of LF.

A. Hello World

A minimal LF program printing “Hello World” can be given
as follows:

1 target C;
2 main reactor HelloWorld {
3 reaction(startup) {=
4 printf("Hello World!\n");
5 =}
6 }

Each LF program starts with a target declaration that specifies
the target language and may optionally contain further con-
figuration. Currently, LF supports C, C++, and TypeScript
as target languages. Each LF program further defines a
main reactor. Analogous to the main function in C/C++, this
serves as the entry point to the program’s execution. The
HelloWorld reactor in the example above defines a single
reaction. This reaction reacts to the built-in startup action
which is triggered once when the program begins executing.
In a federated LF program (see Sec. V), all components start
executing at the same logical time, and hence, all startup
triggers across the system are logically simultaneous. The
reaction’s functionality, printing the string “Hello World”, is
given within the {= . . . =} delimiters in target code (C in this
case). This quotation mechanism allows embedding arbitrary
target code in LF programs. The LF compiler does not analyze
nor parse the target code and instead relies on the target
language compiler to perform language-specific checks.

B. Expressing Timed Behavior

To express timed behavior, reactions can also be scheduled
to occur at some particular future time instant. These can be
one-shot reactions, periodic reactions, reactions that are offset
by an arbitrary logical delay, or reactions in response to an
external stimulus such as an interrupt or asynchronous callback.

1) Timers: Timers in LF are used to specify one-shot or
periodic triggers. A periodic timer can be given as follows:

1 target C;
2 main reactor Clock {
3 timer t(50 msec, 100 msec);
4 output y:int;
5 reaction(t) -> y {=
6 set(y, 42);
7 =}
8 }

The timer is named t, and its first triggering is 50 msec after the
(logical) start of execution of the program. Subsequent triggers
occur every 100 msec. If the second argument on line 3 is
omitted, then the trigger occurs only once. If both arguments
are omitted, then the timer is equivalent to startup. If any
other timer anywhere in the program triggers events at the
same logical time as this timer, then those events are logically
simultaneous. Note that these times are logical times that
will be aligned on a best-effort basis with physical time, and
the accuracy of such alignment will depend on the real-time
capabilities of the execution platform. But the order in which

events are seen will not depend on these real-time capabilities.
The order is defined by the numerical relationships between
logical time values (tags).

In the above LF program, a reaction is defined that is
periodically triggered by the timer t. The signature for this
reaction, line 5, further indicates that the reaction (possibly)
produces an output on the port named y. The reaction code
uses the library function set to set the value of the output
port at the logical time at which the reaction triggers. Hence,
the above reactor will produce the output value 42 at logical
times 50 msec, 150 msec, 250 msec, etc. after the logical start
time of the program.

2) Actions: Like a timer, an action triggers reactions, but
instead of occurring at fixed, predefined times, actions can
be less regular. An action is scheduled when the target code
calls the schedule function, which takes two arguments, an
action and a time offset. Consider the following reactor:
1 target C;
2 main reactor SlowingClock {
3 logical action a(100 msec);
4 state interval:time(100 msec);
5 reaction(startup) -> a {=
6 schedule(a, 0);
7 =}
8 reaction(a) -> a {=
9 printf("Logical time since start: \%lld

nsec.\n", get_elapsed_logical_time());
10 schedule(a, self->interval);
11 self->interval += MSEC(100);
12 =}
13 }

This reactor produces its first output 100 msec after startup
and then produces outputs with intervals that increase by 100
msec each time. The resulting output is this:
Logical time since start: 100000000 nsec.
Logical time since start: 300000000 nsec.
Logical time since start: 600000000 nsec.
Logical time since start: 1000000000 nsec.
...

To accomplish this, the reactor defines on line 3 an action
named a with a minimum delay of 100 msec. At startup, on
line 6, the first reaction calls schedule, passing it the action
a, and an additional delay of zero.

The second reaction (lines 8 to 12) is triggered by the
action a and prints the elapsed logical time since execution
start. It then calls schedule again, this time using the state
variable named interval to specify an additional delay. It
then increments the interval by 100 msec.

3) Logical vs. Physical Actions: The action a in the previous
example is a logical action, which means that when a reaction
calls schedule, the tag assigned to the resulting event
depends on the current logical time t. The new tag assigned
to a is calculated as t+ d1 + d2, where d1 is the extra delay
passed to schedule and d2 is the minimum delay given
in the action declaration.2 Since logical time does not elapse
during reaction execution, the printed outputs are deterministic.

2The reason for a minimal delay specified separately from the extra delay
passed to the schedule function is that there is useful static analysis that
can depend on this number, for example to determine schedulability (beyond
the scope of this paper). The minimum delay is visible without parsing and
analyzing target code.



A logical action can only be scheduled in a reaction, and
therefore can only create future events in immediate response
to earlier events. Suppose that we wish instead to create an
event in response to something external, such as an interrupt
occurring or callback function being called. Examples of such
an event would be user input, an interrupt-driven sensor, or
network messages coming from outside the (distributed) LF
program. For this purpose, LF provides physical actions.

A physical action is declared as follows:
physical action a:type;

The schedule function is invoked outside of a reaction,
asynchronously, during or between executions of reactions. To
ensure that the tag assigned to the scheduled event is strictly
larger than that of any event that the reactor has reacted to
(or is reacting to), LF ensures that this reactor’s logical time
never gets ahead of physical time as reported by the physical
clock on the execution platform. Once such external events are
assigned a tag, the order of further processing is determined
exclusively by these tags.

C. Deadlines
LF includes a notion of a deadline, which is a relation

between logical time and physical time. Specifically, a program
may specify that the invocation of the reactions to some event
must occur within some physical-time interval measured from
the logical time of the event. If a deadline is violated, then
instead of allowing the tardy event to trigger the reaction, the
code in the body of the attached deadline miss handler is
executed. For example:
1 reactor Controller {
2 physical action sensor:int;
3 output y:int;
4 // ...
5 reaction(sensor) -> y {=
6 int control = calculate(sensor_value);
7 set(y, control);
8 =}
9 }

10 reactor Actuator {
11 input x:int;
12 reaction(x) {=
13 // Time-sensitive code
14 =} deadline(100 msec) {=
15 printf("*** Deadline miss detected.\n");
16 =}
17 }
18 main reactor Composite {
19 c = new Controller();
20 a = new Actuator();
21 c.y -> a.x;
22 }

The above program illustrates how the end-to-end latency
between a sensor and an actuator can be bounded by a
deadline. The program instantiates two reactors c and a,
instances of Controller and Actuator respectively. The
physical action sensor on line 2 will be triggered by an
asynchronous call to the schedule function, for example,
within an interrupt service routine (ISR) handling the sensor
(that code is not shown). The action will be assigned a tag
based on what the physical clock indicates when the ISR is
invoked. That tag, therefore, is a measure of the physical time

at which the sensor triggered. The reaction to sensor, on line
6, performs some calculation and sends a control messages to
its output port. Line 21 connects that output to the input x of
the actuator.

The actuator’s reaction to the input x declares a deadline of
100 msec on line 14 followed by a deadline violation handler.
If this reaction is not invoked within 100 msec of the tag of the
input, as measured by the local physical clock, then rather than
executing the time-sensitive code in the reaction, the deadline
violation is handled. The deadline, therefore, is expressing a
requirement that the calculation on line 6 (plus any overhead)
not take more than 100 msec (in physical time). This relation
across timelines is illustrated in Fig. 4.

The presence of such deadlines in the LF code enables the
code generator to synthesize earliest-deadline-first scheduling
policies. The fact that dependencies between reactions are
also known to the code generator enables inheritance of the
resulting priorities by all upstream reactions that may directly
or indirectly trigger the reaction with a deadline.

Note that the deadline construct in LF admits nondetermin-
ism. The program will be deterministic only if the deadlines are
not violated. Whether the deadline is violated or not depends
on factors outside the semantics of LF. Deadline reactions
in LF, therefore, should be thought of as fault handlers, and
deadline specifications as requirements. When a requirement
is violated, a fault handler is invoked.

logical time

physical time

sensor

ISR Controller c Actuator a

deadline
(max. 100 msec)

Fig. 4. A deadline defines the maximum delay between the logical time of
an event and the physical time of the start of a reaction that it triggers.

D. Logical Time Delays

A logical time delay between two reactions can be imple-
mented using a logical action. As a convenience, LF allows
for connections to be annotated with an after-clause that
specifies a time delay. Such delay effectively shifts a produced
output along the logical time line. As such, this mechanism
can be used to reduce the amount by which logical time lags
physical time, and account for the execution time of reactions.
By choosing the delay between two reactions connected to
one another via ports—a producer and a consumer—such that
the delay exceeds the worst-case execution time (WCET) of
the producer, the tags of the events are always greater than
the physical time at which they are produced. This effectively
assigns a logical execution time (LET) [33] to the producer,
allowing the execution of the consumer to be timed more
precisely with respect to physical time.

V. FEDERATED REACTORS

LF programs can also be federated. An ordinary LF program
can be turned into a federated one simply by replacing the
main modifier of the top-level reactor with the federated
keyword. In a federated reactor, each reactor contained in it (a



Fig. 5. A federated LF program implementing the aircraft door example.
Each reactor may run on a different host machine.

“federate”) can be mapped to a distinct host, giving rise to a
distributed system. The communication within a federation can
either be centralized, meaning that all exchanged messages flow
through a central coordinator, or it can be distributed, meaning
that all messages are exchanged directly between federates. In
a distributed execution, the only role of the coordinator is to
coordinate the start (and end) of execution, and possibly the
process of new reactors joining the federations. The latter will
require the use of runtime mutations (described in [30]), which
are distinguished reactions that have the ability to modify the
reactor’s connection topology at runtime.

A. Federated Aircraft Door

A federated reactor that implements the aircraft door example
is depicted in Fig. 5. The image is rendered automatically
from LF code using the KIELER3 Lightweight Diagrams
framework [34]. In the diagram, reactors are denoted by boxes
with rounded corners and reactions are denoted by chevron
shapes. If a reactor has multiple reactions, the reactions are
labeled with numbers that indicate the order in which logically
simultaneous reactions will be executed.

Let us look at the Cockpit implementation first. Reaction 1
of the Cockpit reactor is triggered by the startup action
(denoted by a circle). It carries out initialization, involving
setting up callbacks or interrupt service routines that will be
called in response to a signal coming from physical buttons.
The pressing of a button will result in the scheduling of a
physical action (denoted by a triangle labeled “P”) that triggers
either of the other two reactions, each of which sets the value
of their respective output ports.

The Relay reactor performs further checks in order to
determine whether it is safe to disarm the emergency escape
slides. It interrogates sensors to verify that a passenger boarding
ramp has been placed outside the door. Only if that is the case,
it forwards the disarm message to Door.

The Door reactor simply responds to events on its disarm
and open ports, as one would expect, by actuating the door.
Note that our ordering of reactions within the Door reactor
ensures that if the cockpit sends an open and disarm
message at the same logical time (i.e., bearing the same tag),
we guarantee that the door will be disarmed before it is opened.

B. Coordinating Federated Execution

In the LF compiler, regular reactors are turned into federates
by substituting their ports with reactors that are capable of
sending and receiving messages over the network. By default,
LF ensures that tags are preserved across the network using

3https://rtsys.informatik.uni-kiel.de/kieler

techniques that we will describe in the following. For some
applications, however, there is no need to preserve tags on
networked messages. For such applications, a connection be-
tween reactors can be designated to be a “physical connection,”
using the ∼> operator instead of ->. On a physical connection,
the logical time of any event at the receiver will be set to
the physical time at which the event is received. This allows
reactors to express the nondeterministic behavior of actors
where this is applicable.

To ensure determinism in a federated program, however, it is
essential to preserve tags across networked communication. For
this, it is, necessary to transmit tags along with the messages. A
more subtle issue is that a federate must avoid advancing logical
time ahead of the tags of messages it has not yet seen. This
problem has many possible solutions, many of them realized in
simulation tools [24]. However, LF is not a simulation but an
implementation language, which introduces unique problems.

One approach that we support uses a centralized controller
called an RTI (Run Time Infrastructure). This is similar to
several tools that implement the HLA standard (High Level
Architecture) [35]. In this approach, each federate has two key
responsibilities. It must consult with the RTI before advancing
logical time and it must inform the RTI of the earliest logical
time at which it may send a message over the network. This
centralized approach, however, has three key disadvantages.
First, the RTI can become a bottleneck for performance since
all messages must flow through it. Second, the RTI is a single
point of failure. Third, if a physical action can trigger an
outgoing network message, then the earliest next event time
is never larger than the time of the physical clock. This can
lead to slow advancement of logical time with many messages
exchanged with the RTI.

Another approach we support is the decentralized technique
called PTIDES [8], which has none of these disadvantages.
PTIDES, however, requires that the physical clocks on all
federates be synchronized with some bounded error, using
for example NTP or IEEE 1588 [36]. PTIDES also requires
being able to bound network latencies and (certain) execution
times. These three bounds (clock synchronization error, network
latencies, and certain execution times) have to be made explicit.
The technique used by PTIDES has been shown to scale to
very large systems; it is used in Google Spanner, a global
database system that coordinates thousands of servers [10].

C. PTIDES and the Aircraft Door
We can now explain intuitively how PTIDES works using the

federated aircraft door example in Fig. 5. Suppose that the two
buttons for disarm and open are pressed simultaneously, such
that the two physical actions observe the same physical time T
when assigning a new tag t = T to the two scheduled events.
In consequence, reactions 2 and 3 are logical simultaneous,
but reactions in LF are mutually exclusive and they execute
in order, 2 before 3. Let the bound on execution time of these
two reactions be X2 and X3, respectively. Since reactions
are logically instantaneous, the outgoing disarm and open
events have the same tag t = T . The two messages are launched
into the network no later than physical times T + X2 and

https://rtsys.informatik.uni-kiel.de/kieler


T+X2+X3, respectively. The dependence on X2 in reaction 3
is a consequence of the fact that reaction 2 must execute before
reaction 3 at any logical time.

Consider the lower message path. Suppose the network
latency bound is L. The message arrives at the Door federate
no later than time T +X2+X3+L, according to the physical
clock at the Cockpit federate. Assume the bound on the
clock synchronization error is E. Then the message arrives at
Door no later than time T +X2 +X3 +L+E, according to
the physical clock at the Door federate. On the logical timeline,
this message still has tag t = T . Upon receiving the message,
the Door federate has to decide if the event is safe to process.
But for this, we also have to examine the upper message path.

On the upper message path, there are two network hops
and a reaction in the Relay federate that must be accounted
for. Suppose that the Relay’s reaction execution time is no
larger than XR. Then a similar analysis reveals that the upper
message arrives at the Door federate no later than physical
time T +X2 + 2L+XR + E (note that Relay can process
incoming messages immediately because it has only one input
path). This message also has tag t = T .

With this analysis, we can determine that any arriving
message at either input port of the Door federate with tag t is
safe to process when the physical clock at the Door federate
reaches S = t+max{X2+X3+L+E,X2+2L+XR+E}.
All the Door federate needs to do, when receiving messages,
is watch its local physical clock until that clock hits this
precomputed threshold. If all the assumptions have been
satisfied, the federate can be sure that it will not later see
a message with an earlier tag. For the situation where both
disarm and open were sent with the same tag t, Door can be
sure that both messages have arrived by physical time S. Since
the order of logical simultaneous reactions is deterministic,
reaction 1 will execute before reaction 2, thus ensuring that
the door is disarmed before it is opened.

The PTIDES technique implements the intuitively appealing
solution that we suggested earlier: wait a while before opening
the door. But PTIDES forces us to make explicit assumptions
when we determine how long to wait. Since the connection
topology of LF programs is known, the amount of time to
wait can be precomputed based on that information. Moreover,
messages do not need to flow through a centralized RTI nor
does it need to be consulted to advance time. As a consequence,
there is no bottleneck and no single point of failure.

There are various techniques that can be used to improve on
the above analysis. For example, the amount of time a federate
has to wait can be reduced by designating a logical time delay
on a connection between federates as shown in Sec. IV-D. Any
logical delay on the connection will simply be subtracted from
the thresholds computed above. In addition, the dependence on
the execution times of reactions in the path of a message can
be reduced or eliminated by a deadline at the sender to ensure
that messages are never launched into the network later than
expected. Also, dynamically changing networks of reactors can
be supported as long as the mutations occur at a well-defined
logical time. The safe-to-process thresholds will need to be

recomputed when such mutations occur. These optimizations,
however, are beyond the scope of this paper.

VI. RELATED WORK

Like LF, a few other formalisms embrace a multiplicity of
time lines in parallel and distributed systems. The MARTE
profile of UML, and its Time Model and CCSL (Clock
Constraint Specification Language) [37] specify constraints
among instants in a multiplicity of clocks. TimeSquare analyzes
systems of constraints in CCSL [38]. CCSL can be used for
embedded systems with distinct clocking mechanisms [39].
TESL (Tagged Events Specification Language), like LF, uses
explicit tags and ensures determinism [40]. Neither TESL nor
CCSL is a programming language, but rather a language for
modeling timing relationships. They could prove useful for
analyzing LF programs.

Synchronous languages, especially SIGNAL and Multiclock
Esterel [41], explicitly support a multiplicity of abstract
timelines. SIGNAL supports asynchronous actions and non-
deterministic merging of signals. Some care is required when
comparing our work to these efforts, however. We use the term
“clock” in a more classical way as something that measures the
passage of physical time. In the synchronous language use of
the term “clock,” a sequence of events sent from one reactor
to another has an associated “clock,” which is the sequence of
tags associated with those events. Since these clocks can all
be different, LF supports at least the multiplicity of timelines
like those in Multiclock Esterel. A federated execution of LF
also has the capability of decoupling logical time advance,
so despite our tags coming from a totally ordered set, LF
achieves properties similar to the polychrony of SIGNAL. LF
can even accomplish the nondeterminism of SIGNAL by using
physical connections. Like LF, SIGNAL can be used effectively
to design distributed systems [42]. A major difference, however,
is that LF is a coordination language, with the program logic
expressed in a target language (C, C++, or TypeScript), whereas
SIGNAL is a complete standalone programming language.

Like LF, Timed C [43] has a logical time that does not
elapse during the execution of a function (except at explicit
“timing points”). Moreover, like LF, priorities are inferred from
timing information in the program. The deadlines of LF are
all “soft deadlines” in the terminology of Timed C, meaning
that the tasks are run to completion even if they will lead to a
deadline violation. It would be useful further work to realize
the “firm deadlines” of Timed C, but these require the use
of low-level C primitives setjmp and longjmp, and it is
not clear that it is possible to provide these in our polyglot
approach.

VII. CONCLUSION

We have shown that popular coordination approaches such
as actors, publish-subscribe systems, and distributed shared
memory are inadequate for delivering deterministic concur-
rency. While these asynchronous, nondeterministic coordination
models may be favored for their ability to scale well, the
coordination model we discuss in this paper holds promise
to guarantee determinism and scale well. We have shown



that understanding the relationships between logical time and
physical time across different observers in the system is key to
achieving this. As such, we argue that this relationship ought
to be accessible in the programming model as a means to
specify program behavior—not merely as an emergent property
of its realization. The goal of our coordination language LF
is to strengthen mainstream programming languages with this
capability and provide the tools for building robust, reliable,
and testable concurrent systems.
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