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Abstract— This paper presents a novel 3D indoor Laser-aided
Inertial Navigation System (L-INS) for the visually impair ed.
An Extended Kalman Filter (EKF) fuses information from an
Inertial Measurement Unit (IMU) and a 2D laser scanner, to
concurrently estimate the six degree-of-freedom (d.o.fposition
and orientation (pose) of the person and a 3D map of the
environment. The IMU measurements are integrated to obtain
pose estimates, which are subsequently corrected using difto-
plane correspondences between linear segments in the laser
scan data and orthogonal structural planes of the building.
Exploiting the orthogonal building planes ensures fast and
efficient initialization and estimation of the map featureswhile
providing human-interpretable layout of the environment. The
L-INS is experimentally validated by a person traversing a

multistory building, and the results demonstrate the reliability . . ) _

. B Fig. 1. As the person walks with the sensing package, the &kémates
and accuracy of the proposed method for indoor localization their 3D trajectory as well as a 3D representation of the renment
and mapping. comprised of planar features. A side-view of the estimafé@ 12 trajectory
is shown, which covers two floors of the building. The estigdatvalls on
the first and second floors are depicted, but the estimatéidgceind floor
planes have been omitted for clarity of presentation.

|. INTRODUCTION

For humans, safe and efficient navigation requires knowl-
edge of the environmental layout, path planning, obstacle

avoidance, and determining one’s position and orientatiqquire intensive processing resources which are notajipic
(pose) with respect to the world. F_or \asugl!y-|mpa|red available on portable computing devices.
person, these tasks can be exceedingly difficult to accom-15 4qdress these issues, we aim to design a personal

plish, and there are high risks associated with failure 1 annqq0r navigation system that fuffills the following require-
of them. To address some of these issues, guide dogs gpdnis:

white canes are widely used for the purposes of wayfinding
and environment sensing. The former, however, has costly®
training requirements, while the latter can only providesu
about one’s immediate surroundings. On the other hand,
commercially available electronic navigation systems de- °
signed for the visually impaired (e.g., Humanware Trekker)
rely on GPS signals and cannot be utilized indoors, under
tree cover, or next to tall buildings where reception is poor

In the academic community, numerous indoor and outdoor
electronic navigation systems have been proposed. However®
the majority of the existing algorithms are designed for
mobile robots that are limited to move on planar surfaces [1]
[2] or require heavy sensors, such as a 3D laser scanner [3],°
[4], that cannot be carried by a human. Other algorithms
have relied on visual information [5], [6] and as such,
they are not robust under variable lighting conditions and

The system must accurately track tkex degree-of-
freedom (d.o.f.) posef the person, allowing them to
safely navigate irBD space(see Fig. 1).

The navigation aid should enable the visually impaired
person to walk through previousiynknown buildings
without getting lost. This requires the system to build
a map of the previously unexplored area and localize
with respect to it inreal-time

The sensor package should d@mpact, unobtrusiveo

the person, anlightweightenough to be carried without
fatigue.

The selected sensing modalities should rbbust to
environmental changes, such as lighting conditions,
reliable in the presence of clutter and moving objects,
and work within thecomputational and memory limits
of a portable computing device.

This work was supported by the University of Minnesota (DT&)d To meet these objectives, we build upon our previous work
the National Science Foundation (11S-0643680, 11S-085]945-0835637). [7], [8], and present an indoor Laser-aided Inertial Natiaya
J. A. Hesch was supported by the NIH Neuro-physical-contjmutal . . .
Sciences Fellowship. F. M. Mirzaei was supported by the UMbttDral System (L'INS) using ainertial Measurement Unit (IMU)
Dissertation Fellowship. and a2D laser scannerEmploying this sensor pair ensures



feasibility of manufacturing a light-weight and compact 1. RELATED WORK
sensor package that can be carried by a person, since a wide .
variety of small IMUs (e.g., Memsense nIMU) and compact- Most relev_ant.efforts_ have primarily addre.ssgd GPS-pased
size 2D laser scanners (e.g., Hokuyo URG) are commerciafjftdoor navigationwhich cannot be used inside a build-
available. Additionally, using a laser scanner instead of %9 [10], [11]. Indoor navigationis more challenging, since
camera provides greater reliability and robustness unaier p POS€ information can only be inferred from ego-motion and
lighting conditions. enwronmenta_ll cues. In what fo_IIOV\_/s, we provide a discussio
The proposed algorithm tracks the six d.o.f. pose of th@ Several existing indoor navigation systems.
person by integrating the IMU measurements (linear accel- 1) Navigating using ego-motiorDead-reckoning systems
eration and rotational velocity) using an Extended KalmaHack & person’s posaithout any external reference€om-
Filter (EKF). However, without corrections, the IMU mea-Mon approaches are based on foot-mounted accelerome-
surement noise and bias drift would cause the pose estimati#"s [12]. As a person walks, their position is computed
errors to grow unbounded over time. To mitigate this issudy double integration of the acceleration measurements.
we utilize the straight-line features extracted from the 2pynfortunately, the integration of accelerometer bias avigen
laser scans to update the pose estimates. In particular, @4!Ses theposition errorto grow unbounded. Even if the
the person moves, the laser scanner’s attitude changek whigt® Of position-error increase can be reduced with static-
allows its scanning plane to intersect a variety of struatur Period drift corrections [13], [14], dead-reckoning sysge
planes of the building (i.e., the walls, floor, and ceiling)Still remain unreliable over long time intervals.
If the structural planes were knowan priori as in [7], [8], 2) Navigating with a known mapunlike dead-reckoning
then the straight-line features could be directly matchétl w approaches that do not employ external references, map-
the known map. Unfortunately, in many cases in practicdased systems infer position and orientation information
a building map is not available in advance. To overcom&om known landmarks in the environment. In our previous
this challenge, we perforrSimultaneous Localization and Work [8], we presented a map-based indoor localization aid
Mapping (SLAMYo estimate the layout of the building while for the visually impaired using an IMU and a 2D laser
concurrently tracking the person’s pose. In order to achie\scanner. Despite the novelty of our previous approach, it
this goal efficiently, we exploit the fact that most indoorsuffers from the same limitations of all map-based local-
structural planes arerthogonal to each othefThus, we fix ization methods which include: (me and costssociated
each plane’s orientation the first time it is observed, arlg onWwith acquiring the map, (ii) the systemisability to adapt
estimate its distance to the origin of the reference frame. t0 spatial layout changes, and (iii) thestriction of use to
Constructing the map based on orthogonal planar strupteviously mapped areas.
tures has the advantage of keeping the person’s orientation3) Navigating without a pre-existing mag:he most flex-
error bounded [9] in addition to providing inherent robustible navigation aids are those that can exploit environment
ness to clutter and moving objects. Furthermore, the essiensing to perform SLAM. The majority of the proposed
mated map directly provides lauman-interpretable layout systems for SLAM consider either 2D map and sensor
of the building that can simplify the task of wayfindingmotion [15], [16], or restrict the sensor motion to planar
towards a destination. Moreover, due to the limited numbeurfaces and create a 3D map of the surroundings [1], [2],
of structural planes in each building, the computationatllo [9]. However, these algorithms are not suitable for use on a
of the algorithm remains bounded. This, together with thpersonal navigation system since the motion of a human is
low computational complexity of line-segment extractiomot limited to a planar surface (e.g., when climbing stairs)
from the 2D laser scans, ensures the real-time executionThere exist several approaches for estimating a 3D map
of the algorithm on a hand-held computer with limitedand the six d.o.f. pose of a robot (3D SLAM) that employ 3D
computational and memory resources. point cloud matching techniques [e.g., Iterative CloseshP
We demonstrate the validity and reliability of the proposedCP)] [3], [4], [17], [18], [19]. However, the computatiah
approach with a real-world experiment covering multipleequirements for matching 3D point clouds are typically
levels of an indoor environment. The 270 m trajectoryrohibitive for real-time implementation. More importnt
traverses several staircases and a disability access rartife 3D laser scanners needed for acquiring the point clouds
In addition, the test environment includes significanttelut are too large and heavy for a person to carry, thus making
(e.g., trashcans, storage boxes, and furniture), as wedl aghese systems inappropriate for use as a personal navigatio
normal flow of pedestrian traffic. Despite these challengeajd. Alternative methods for performing 3D SLAM employ
our algorithm accurately tracks the person’s path, and cocameras to map the environment based on visual land-
rectly estimates a map of the building layout. marks [5], [6]. The main drawback of camera-based systems
The remainder of the paper is organized as followss sensitivity to variable lighting conditions, which rasts
In Section 1l, we begin with an overview of the relatedtheir use as navigation aids for the visually impaired where
literature. Section Il presents the EKF-based pose estima reliability is paramount. Additionally, processing image
The proposed method is validated with experimental resuled extracting visual features are typically computatigna
in Section 1V, and we conclude the paper and present futunetensive tasks that are impractical to carry out on hand-
research directions in Section V. held computing devices. Furthermore, the visual landmarks



(e.g., SIFT features [20]) often used in these approaches 11,
may not be geometrically meaningful or interpretable for
humans. Finally, extracting and matching visual landmarks
in indoor environments can be challenging and unreliable

LG
due to insufficient texture. di®m;
To address these limitations, we propose an L-INS based Gy~
on a 2D laser scanner and an IMU. Our system tracks the o> G-
. (“pr,7ar)
six d.o.f. pose of the person and maps the 3D structure o
of the environment, while avoiding the high computational (P, 2)
burden associated with processing 3D laser scan data. This
sensor pair is ideal since new lightweight models that are {I]j .,
-

robust in various environmental conditions are now com-
mercially available. Furthermore, we use structural pdaofe
the buildings as the map features, which exist in almost all
buildings, ensuring applicability of the method in praetic

The _estlmated Strucwr?" .planes directly repr_esgnt the gel9|g. 2. As the IMU-laser sensor platform moves, the lasen guane
metric layout of the building that_ca_-n be easily interpreteghtersects a structural planar surfag®,, described byl; and  ;, which
by humans. Moreover, due to the limited number of structurake the Hessian normal form components of the plane withectdp the
; i ; ; bal frame of reference{G'}. The shortest vector in the laser scan plane
planes in each b_wldmg, the Computatlonal requweme_nts rtj)m the origin of the laser framg,L}, to IT; has lengthp and direction
th_e SLAM algorithm do not grow unbounded over time.cg with respect to{Z}. The line of intersection has directiofi ™, with
Finally, we use an EKF to fuse the IMU and laser scanneespect to{L} and is d%scribed by the polar parametgsse). The vector
i ; i m the intersection of'w; andIl; to the intersection opX£ andIl;, is
measurements’ WhIC.h along with the negllglbl? overheaq @f‘z The known IMU-laser transformation is denoted B\pr.,’qz ), while
line-segment extraction from laser data, provides reaéti ihe imu pose with respect G} is (°pr,ar).
execution even on hand-held computing devices with limited

computational and memory resources.

Sensor platform

IIl. ALGORITHM DESCRIPTION The remaining components are the biadegt) andb,(t),

~While walking through an indoor environment, thesgfacting the gyroscope and accelerometer measurements,
visually-impaired person is equipped with a navigation aigyhich are modeled as random-walk processes driven by

consisting of an IMU and a 2D laser scanner, which arg,q zero-mean, white Gaussian noisg,(t) and n..(t)
rigidly connected (see Fig. 2). A hand-held computer ctdlec respectively. g

the measurements from the two sensors, which then are fuse
in an EKF to concurrently estimate the six d.o.f. pose of th

dI'he building map is comprised d@f static planar features
f[i, i =1,...,N, and grows as new planes are detected.

moving platform, as well as the 3D map of the buildings Each plane is described by its Hessian normal form compo-
perpendicular structural planes (i.e., the walls, floord annentsdl- and “rr;, which are the distance from the plane to

ceiling). In what follows, we present the propagation anghe origin of{G}, and the3 x 1 normal vector of the plane

update models used by the EKF. expressed i{G}, respectively. The map statex,, consists

A. Filter Propagation of the scalar distances;, i = 1, ..., N, which are estimated
The EKF estimates the IMU pose and linear velociylong with the state of the sensing package. We only map

together with the time-varying IMU biases and the map. ThBerpendicular structural planes, hence, we do not need to

filter state is the(16 + N) x 1 vector: gstimate each plane’s normal-vector. Inste;ad, we stora the
in the map parameter vectdf =] ...“w% ]| , where each
=T T Gy, T T GNT T . . .
X = [ a; by °vi by °py | d1~-~dN} component®w; is determined once during the new plane
— [x§ | x§] " (1) initialization step (Section 111-C). With the state of thgssem

now defined, we turn our attention to the continuous-time

wherex(t) is the 16 x 1 sensor platform state, and;(f)  dynamical model which governs the state of the system.

IS the N x 1 state of the structural planie map. The first 1) Continuous-time modelThe system model describing

component of the sensor platform state’ds,(t) which is . . . i
the unit quaternion representing the orientation ofdgtubal the time evolution of the state is (see [21], [22]):

frame {G} in the IMU frame, {I}, at time¢. The frame o) = }Q(w(t))f%(t) )
{I} is attached to the IMU (see Fig. 2), whileG} is . 2 .

an inertial reference frame whose origin coincides with the Pit) = “vi(t) . Vi(t) =“a(t) 3)
initial IMU position, and whose orientation is aligned with by(t) = nuu(t) , ba(t) =n,.(t) (4)
the perpendicular structural planes according to the filter d'i(t) — 0, i=1,...,N. (5)

initialization procedure described in [8]. The sensorfplan
state also includes the position and velocity{d# in {G},
denoted by th& x 1 vectors®p, (t) and“v, (t), respectively. LA point € p lies on planell; if 77 Sp —d; = 0.



In these expressionsy(t) = [w1(t) wa(t) ws(t)]” is the continuous-time error-state transition matrix correspinog
rotational velocity of the IMU, expressed {Y}, “a is the to the sensor platform state, a@#l . is the continuous time

IMU acceleration expressed iz}, and input noise matrix, i.e.,
. 0 —Ww3 w2 — |_O:’ XJ —13 03 03 03
Qw) = { E‘:;(J ‘6’] ;o lex] = | ws 0 —wi. 03 03 O3 03 03
—Ww2 w1 0 Fs7c: —CT(IL?G)LQ XJ 03 03 —CT(IL?G) 03
The gyroscope and accelerometer measurements,and 83 83 (1)3 83 83
a,,, used for state propagation, are 3 30 3 3
—I5 03 03 03 n

Wi (t) = w(t) + by(t) +n4(t) (6) 0; I 0; 0; . g
am(t) = C('gs(t)) (“a(t) = “g) + ba(t) + ma(t), (7)  Gse= |03 03 —C'('ge) O3], m= | ™},

. . . 03 O3 03 I3 e

where n, and n, are zero-mean, white Gaussian noise 0 0 0 0 Nyq

) 3 3 3 3

processes, andg is the gravitational acceleration. The
matrix C(g) is the rotation matrix corresponding i Also ~ Where0; is the3 x 3 matrix of zeros. The system noise co-
note that the distances to the building planes are fixed witffriance matrixQ. depends on the IMU noise characteristics
respect to{ G}, thus their time derivatives are zero [see (5)]and is computed off-line [22].

Linearizing at the current estimates and applying the 2) Discrete-time implementationThe IMU signalswy,

expectation operator on both sides of (2)-(5), we obtain th%nii a,, are sampled at a constant ratg'T’, where
state estimate propagation model T = tp+1 — tx. Every time a new IMU measurement is

received, the state estimate is propagated using 4th-order

IAG(t) = Q@) qs(t) (8) Runge-Kutta numerical integration of (8)—(11). In order to
o 3 ol s . . derive the covariance propagation equation, we evaluate th
Pf(t) = Vi) Vi (1) =C"("gs()a(t) +“g (9 giscrete-time state transition matrix
by(t) =0 ba(t) =0 10 e
Lg( ) 3x1 ( ) 3x1 (10) b, = (I;(thrl,tk) = exp </ FC(T)dT) (15)
di t)=0, i=1,...,N, (11) tk
. . and the discrete-time system noise covariance matrix
With &(t) =, (£) — ba (), AN () =wm (t)— by (1). t y
The (15 + N) x 1 error-state vector is defined as Qur = / o B(tps1,7)GQuGT D (bsr, )dr.  (16)
~ ~ ~ ~ T ' t ¢ ’
x — | I T T GGT T GRT ..
= { 00, by Vi by °pi | & dN} The propagated covariance is then computed as
= [%xT x7]", 12
[ s | d] (12) Pk+1|k = (I’kPk\ki’Z + Qak- a7

wherex,(t) is the 15 x 1 error state corresponding to the )
) ) B. Filter Update

sensing platform, anet,(¢) is the N x 1 error state of the ) ) )

map. For the IMU position, velocity, biases, and the map, an AS the IMU-laser platform moves in an indoor envi-

additive error model is utilized (i.6z = x — & is the error in  fonment, the laser-scan plane intersects the perpendicula

the estimatet of a quantityz). However, for the quaternion Structural planes of the building. These measurements are

we employ a multiplicative error model. Specifically, the€Xploited to update the state estimate. To simplify the dis-

error between the quaterniop and its estimatej is the Cussion, we consider a single line measuremeft, corre-

3 x 1 angle-error vectors®, implicitly defined by theerror ~ SPonding to the intersection of the laser-scan plane and map

quaternion plane II; (see Fig. 2). The line is described in the laser frame,

X . {L}, by (p, ¢), wherep is the distance from the origin ¢f_}
6g=q®q ' ~[3607 1], (13)  to the line, ands is the angle of the vectdt¢ perpendicular
the line? We will hereafter express the line direction in
}, as et =C('q,) [sing —cos¢ 0]", where’g, is
the unit quaternion representing the orientation of therlas
frame in the IMU framé In what follows, we describe how
aach line is exploited to define twoneasurement constraints
which are used by the EKF to update the state estimates.

1) Orientation Constraint:The first constraint is on the
orientation of {I} with respect to{G}. The normal to

wheredg describes the small rotation that causes the true a/fj
estimated attitude to coincide. The main advantage of th
error definition is that it allows us to represent the at&étud
uncertainty by thé x 3 covariance matri¥2{50660" }. Since
the attitude corresponds to three d.o.f., this is a minim
representation.

The linearized continuous-time error-state equation is

X = [ Foc 015XN] X [ o ] n 2We utilized the Split-and-M lgorithm [23] ene 1
~lo 1 0 e utilized the Split-and-Merge algorithm to segm aser-
JZXIS N Nx15 scan data and a weighted line-fitting algorithm [24] to eat@nthe line
=F.x+G:n, (14) parametergp, $) for each line.

) . . . 3Thelaser-to-IMU rigid transformatioris computed off-line using a laser-
whereIy denotes theV x N identity matrix, Fs . is the to-IMU calibration procedure adapted from [25] to estiméte ., /g, ).



the planell;, vector “m;, is perpendicular taC*(* ) ¢+ which are used in the expression for the Kalman gain
(see Fig. 2), which yields the followingrientation measure-
ment constraint

. . T
2= T C(gs) O = 0. (18) The residual vector is = .[rl 2], and the state and the
covariance update equations are

K = Py H” (HP,, ,H" +TRI") . (26)

The expected measurement is

s G_T i A \1pl Xpt1)h+1 = Xpq1)p + Kr
2 =% C'('qe) £, (19)

Whereff,ln _ C(’(L) [Sinqu — COS b O]T is the mea- Pk+1\k+1 = (I—KH)P;H_H;C(I—KH)T + KI'RI'"K".

suredline direction with ¢,, = ¢ — ¢. The measurement
residual isr; = z; — 21 = —%; and the corresponding lin-
earized error model is

C. New Plane Initialization

. In Section IlI-B, we described the filter update step
7 [_G iTCT(I(?c)LIE#@XJ 01x12] Xs using a line measurement to one of tivestructural planes
~ o ) comprising the estimated map. We now present a procedure
+ [0uxn] Xa + [77CT (') b O] {(g] to initialize the state and covariance of a previously unkmo
plane the first time it is observédWhen measuring a new
plane,Ily 1, we first determine if the plane’s orientation,
where’t,, = C(‘q.) [cos Om  Sin oy, O]T is the perpen- “mxn41, corresponds to one of the three cardinal directions
dicular to the measured line direction apgl = p— p is the considered in the mape;, j = 1,2,3. We employ a
measured distance to the line. The veclofs, hi ;, andy{  Mahalanobis distance test to measure the probability of
are the Jacobians of (18) with respect to the state and limerrespondence, i.e., we compute the orientation residual
parameters, respectively. TRe 1 error vectomy is assumed 71; = —eJT-CT(Iég) IIZ,L,L, j = 1,2,3, and the covariance
to be zero-mean, white Gaussian, with covariance matrif the residual

= th,S Xs + th,d X4 + ’7? ny, (20)

R = E{n/nj} computed for each line from the weighted . . hy . .
line-fitting procedure [24]. Sj = [hl,s hl,d] Prik [hl_’d] T oY1V (27)
2) Distance Constraint:From Fig. 2, the following geo- whereh,; ; and~, are the measurement Jacobians defined
metric relationship holds: in (20) evaluated afm; = e;. If the smallest Mahalanobis
distance
“pr+C('06) (pu + ') = di “mi 9%, (21) 3,
2 RN WY}

where? = C('q,) [cos¢ sing 0] is the perpendicular Himin = TP (28)

to the line direction. The vectoft is eliminated by pro-
jecting (21) onto“w}, yielding the distance measurement
constraint

is less than a probabilistic threshold, then a new landmark
is initialized with normal vector’m i1 = €jmin. After
determining the new plane’s orientation, we compute the
29 = w7 (°p; + CT("Gs) ("pr +p€)) —d; = 0. (22) distance to the new plane by solving (23) Ebt}+1, ie.,

The expected measurement is d' 2 dyp1 =78 1 (°Pr+ C("Go) (Prt+pmm)) (29)

20 =7l (“pr + C("4o) ('Pr + pm'€m)) —di.  (23) and augment the state vector &' 2 [T | cZNH]T.
Next, we need to augment the filter's covariance, which

The measurement residualsg = z, — 2, = —% and the requires first partitioning the prior covariance into

corresponding linearized error model is

~ ~ ~ Pss Psd
Z2 = [—G ; CT (Iq_c) I'Pr + pmmx]  O1xo GTl'l-T] Xs Pry = [Pds Pdd} ) (30)
+[Oix-1 —1 Ouxwv—] Xa B whereP,, is the15x 15 sensor error-state covarian&®;, is
+ [_G TCT(I(iG) meIZL GTTCT(I(?G) Iem] [fé the N x N map error-state covariance, aRgy = P, are the
! " ! P 15 x N cross-correlation components. We then compute the
=hl, X, +hl, xq+~3 ng, (24) scalar variance of the new planBy 4, and the correlation

. between the new plane and the current stRigy, i.e.,
where the vectorkj ,, hj ;, andy7 are the Jacobians of (22)

with respect to the state and line parameters, respectively Pya = hj Pshy o + 73Ry, (31)

— T __ T T
We process the two measurement constraints together; Pyx =Py = [h3,Pss h3 Poa]. (32)

stacking (20) and (24), we obtain the measurement Jacobians

hi, hi, i
H= [hT’S h;’ } , I'= [ IT] ) (25) “4Previously detected planes (already in the state vectar)identified
2,8 2,d 2 using a chi-square test [26].



contained a multitude of clutter (e.g., trashcans, open and
closed doors, storage boxes, and furniture), as well asalorm
pedestrian traffic flow. Despite the large amount of irrefiétva
objects observed by the laser scanner, our localization aid
accurately captured the 3D layout of the building, which in
= turn enabled precise localization.
20 10 0o -0 20 During the experiment, the motion profile of the sen-
sor platform contained instantaneous stationary time- peri
ods to allow for zero-velocity updates [8]. These updates
caused small reductions in the position estimates’ covari-
ance [see Fig. 4(a)]. Larger reductions in the covariance
- occurred whenever an estimated structural plane was re-
: - detected (e.g.t = 555 sec,x-axis update). The trajectory
¢ — was accurately tracked, with an average position unceytain
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ L~ of 3.18 cm (lo), and an average attitude uncertainty of
S * 0 T 002 deg (lo) [see Figs. 4(a), 4(b)]. The final position
uncertainty after loop closure wgg.29 6.84 0.43] cm
Fig. 3. A torr:-vitevtvalognhethezt]jr?r?;e?ra?ctgajegg%dUTFLHE? ttrﬂ;fﬁeé?ci)n (1o). This level of accuracy ensures that the system is safe
gi(efrglrgr?%e-rﬂrzt fcl)oor (bogttom figure), (J:Iimb;yup the .disit;bilarr{p anrg for human -naV|gat|0n indoors, and can _be used to hel_p a
the front stairs (picture A), and traverses the corridoistgpe B) of the ~P€rson avoid hazards such as open stair wells. In addition
second floor clockwise (top figure). Subsequently, it dedsdmack to the to tracking the six d.o.f. pose of the person, a map was
first floor on the second staircase (picture C), and travettsedirst floor constructed which containets walls and the ceilings of

(bottom figure) counter clockwise, returning to the origiicture D shows o . .
the curved intersection of the two corridors where no wall was detectedPOth building levels (see Figs. 1 and 3). The uncertainty of

The estimated walls are depicted in blue, and the ceiling flowt have  the least accurately estimated distance to a wall 4v&® cm
been omitted for clarity of presentation. (1o), whereas the average uncertainty for all planes was
1.51 cm (1o). The quality of the map and trajectory estimates
is due to more than9, 000 measurement updates that were
performed during thel3 minute trial. These measurement
paug — [PkJrlk de/} updates enabled the filter to remain consistent, an obsemnvat
= . (33) . SRS
Pix Paa corroborated by the measurement residuals which lie within
their 30 bounds [see Fig. 4(c)].

Lastly, the augmented covariand?“J is computed as

D. Zero-Velocity Update

When the laser scanner does not detect any structural
planes along certain directions for an extended period of
time, the position estimates accumulate errors along thoseThis paper presented a novel L-INS capable of 3D local-
directions, due toaccelerometer drift This effect can be jzation and mapping in indoor environments. In the proposed
compensated by means of drift correction during instantanethod, the orthogonal structural planes of the buildireg ar
neous stationary periods of the motion [13]. The details &dmployed as landmarks to aid in localization. Since the
this procedure, termezkro-velocity updateare givenin [8].  building layout is not knowra priori the planes’ parameters
are estimated concurrently with the six d.o.f. pose of the
person. To this end, an EKF is utilized to fuse information

Our proposed IMU-laser localization and mapping algofrom an IMU and a 2D laser scanner, and estimate the
rithm was evaluated with a sensing package comprised pérson’s motion, and the building’s structural planes. The
a solid-state ISIS IMU operating at 100 Hz and a SICKalidity of the approach is demonstrated experimentally in
LMS200 laser scanner operating at 10 Hz, mounted on @ multistory building, on a path that includes staircases, a
navigation box to log datd.These sensors were interfaceddisability access ramp, and corridors, with a normal flow of
to a laptop via RS-232 which recorded the time-stampegedestrian traffic.
measurements. The data-logging software was implementedoyr future work includes providing an efficient and intu-
in C++, whereas the EKF was written in MATLAB. itive system interface for a visually impaired person. 6is

We conducted the experiment in an indoor environmengation of the non-planar objects and obstacles by proagssin

along a closed-loop path of approximat@y0 m in length  the |aser scans is also within our near goals.
(see Figs. 1 and 3). The 3D trajectory covered two floors

of Akerman Hall at the University of Minnesota, which in-
cluded traversing two stairways and a ramp. The environment

[1] S. Thrun, D. Fox, and W. Burgard, “Monte Carlo localizati with
5This sensor pair was used for ease of implementation. Weuarertly mixture proposal distribution,” ifProc. of the AAAI National Confer-
replacing these sensors with the small-scale Hokuyo UREr lasanner, ence on Artificial IntelligenceAustin, TX, July 30-Aug. 3, 2000, pp.
and the Memsense nIMU, which can easily fit on a white cane. 859-865.

V. CONCLUSIONS ANDFUTURE WORK

IV. EXPERIMENTAL RESULTS
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