A-LEVEL-MATHEMATICS P_{3} VECTORS IN 3D (Notes)

Position Vector of Points A, B are $\overrightarrow{O A}$ and $\overrightarrow{O B}$

$$
\overrightarrow{\mathrm{OA}}=\vec{a}, \quad \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{b}}
$$

i) $\overrightarrow{A B}=(\vec{b}-\vec{a})$
ii) Position Vector of the Mid point of $A B, M$

$\overrightarrow{\mathrm{OM}}=\frac{\vec{a}+\vec{b}}{2}$

$$
\begin{aligned}
\because \overrightarrow{\mathrm{OM}} & =\vec{a}+\overrightarrow{\mathrm{AM}} \\
& =\vec{a}+\frac{\overrightarrow{\mathrm{AB}}}{2} \\
& =\vec{a}+\frac{(\mathrm{b}-\vec{a})}{2}=\frac{\vec{a}+\vec{b}}{2}
\end{aligned}
$$

Components of Vectors in 3D :

Unit Vectors along the axes $\mathrm{OX}, \mathrm{OY}, \mathrm{OZ}$ are denoted by $\mathrm{i}, \mathrm{j}, \mathrm{k}$ respectively.
$\overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A N}+\overrightarrow{N P}$
or $\overrightarrow{O P}=(x i+y j+z k)$
is the position vector of variable point \mathbf{P}.

\vec{r} or $\overrightarrow{O P}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \quad$ where $O A=x \quad, A N=O B=y \quad, \quad N P=O C=z$
Distance $O P=|\vec{r}|=v\left(x^{2}+y^{2}+z^{2}\right)$

Position vectors of given points:
$A\left(a_{1}, a_{2}, a_{3}\right) ; \quad \overrightarrow{O A}=a_{1} i+a_{2} j+a_{3} k=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)=\vec{a}$
and $B\left(b_{1}, b_{2}, b_{3}\right) ; \overrightarrow{O B}=b_{1} i+b_{2} j+b_{3} k=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)=\vec{b}$
and $\overrightarrow{A B}=(\vec{b}-\vec{a})=\left(\begin{array}{l}b_{1}- \\ a_{1} \\ b_{2}- \\ a_{2}- \\ b_{3}\end{array}\right)$

Magnitude of \vec{a}

$O A=|\vec{a}|=V\left(a_{1}{ }^{2}+a_{2}{ }^{2}+a_{3}{ }^{2}\right)$
Unit Vector along $\quad \vec{a}=\widehat{\boldsymbol{a}}=\frac{\vec{a}}{|\vec{a}|}$

$$
=\frac{a_{1}}{\left.\sqrt{\left(a_{1}^{2}\right.}+a_{2}^{2}+a_{3}^{2}\right)} i+\frac{a_{2}}{\left.\sqrt{\left(a_{1}^{2}\right.}+a_{2}^{2}+a_{3}^{2}\right)} j+\frac{a_{1}}{\sqrt{\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)}} k
$$

Parallel Vectors

Scalar Product of Vectors

$\operatorname{Def}^{n} \quad \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$

$$
\begin{equation*}
\text { Or } \quad \cos \theta=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}}{\overrightarrow{|\mathrm{a}||\overrightarrow{\mathrm{b}}|}} \tag{ii}
\end{equation*}
$$

where $\hat{\imath}, \hat{\jmath}, \hat{k}$ are unit vectors along axes (are mutually perpendicular) $\mathbf{i} \cdot \mathbf{i}=\mathbf{i}^{\mathbf{2}}=1 \times 1 \times \cos 0^{0}=1=\mathbf{j} . \mathbf{j}=\mathbf{k} . \mathbf{k}$
$\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=1$-----------------(iii) also $\vec{a} \cdot \vec{a}=(\vec{a})^{2}=|\vec{a}|^{2}$
and $\mathbf{i} \cdot \mathbf{j}=\mathbf{j} . \mathbf{k}=\mathbf{k} \cdot \mathbf{j}=\mathbf{0}$
and $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b}=0, \vec{a} \neq 0, \vec{b} \neq 0$
Now given $\vec{a}=a_{1} i+a_{2} j+a_{3} k=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right), \vec{b}=b_{1} i+b_{2} j+b_{3} k=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$
$\vec{a} \cdot \vec{b}=\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)$

$$
\left(\begin{array}{l}
a_{1} \tag{v}\\
a_{2} \\
a_{3}
\end{array}\right] \cdot\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)
$$

$$
\cos \theta=\frac{a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}}{\left.\left.\sqrt{\left(a_{1}^{2}\right.}+a_{2}^{2}+a_{3}^{2}\right) \cdot \sqrt{\left(b_{1}^{2}\right.}+b_{2}^{2}+b_{3}^{2}\right)}
$$

$$
\begin{aligned}
& \text { or } \vec{a} \| \vec{b} \Leftrightarrow \vec{a}=k \vec{b}, k \in R \\
& k \neq 0 \\
& \text { or } \quad=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=k\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \Leftrightarrow \vec{a} \| \vec{b}
\end{aligned}
$$

Equation of a line 'I' passing through a point A whose position

 vector $\overrightarrow{\mathbf{a}}$ and direction of line is $\overrightarrow{\mathbf{u}}$$$
\begin{aligned}
& \vec{r}=\vec{a}+\lambda \overrightarrow{\boldsymbol{r}} \quad--(i) \text { as } \quad \overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P} \\
& \vec{a}=a_{1} i+a_{2} j+a_{3} k=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \\
& \vec{r}=x i+y j+z k=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \\
& \text { Director of line ' } I \text { ' }
\end{aligned}
$$

$$
\overrightarrow{\mathbf{u}}=p i+q j+r k=\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)
$$

Equation of line I
$\vec{r}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)+\lambda\left(\begin{array}{l}p \\ q \\ r\end{array}\right)$

2. Equation of line passing through two points \vec{a} and \vec{b}

$$
\begin{equation*}
\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a}) \tag{iii}
\end{equation*}
$$

Direction $\overrightarrow{A B}=(\vec{b}-\vec{a})$

$$
\overrightarrow{\mathbf{u}}=\left(\begin{array}{ll}
\mathrm{b}_{1}- & \mathrm{a}_{1} \\
\mathrm{~b}_{2}- & \mathrm{a}_{2} \\
\mathrm{~b}_{3}- & \mathrm{a}_{3}
\end{array}\right)
$$

3. To verify that two given line \underline{l}_{1} and l_{2} (May be PARALLEL / COINCIDENT /
INTERSECTING / SKEW LINES):
$I_{1} \quad: \overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}+\overrightarrow{\lambda \mathbf{u}}$
(i) where $\overrightarrow{\mathbf{u}}=\mathrm{pi}+\mathrm{qj}+\mathrm{rk}=\left(\begin{array}{c}p \\ q \\ r\end{array}\right)$
$I_{2} \quad: \overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{b}}+\lambda \overrightarrow{\mathbf{v}}$
(ii) and $\overrightarrow{\mathbf{v}}=I \mathrm{i}+\mathrm{m} j+n k=\left(\begin{array}{c}l \\ m \\ n\end{array}\right)$

Case (a) : $I_{1} \| I_{2} \Longleftrightarrow \vec{u}=k \vec{v}: k \in R, k \neq 0$
Case (b) : $I_{1} \| I_{2}$ are coincident lines if

$$
\begin{aligned}
& \text { i) } \vec{u}=k_{1} \vec{v} \\
& \text { (ii) }(\vec{b}-\vec{a})=k_{2} \vec{u}
\end{aligned}
$$

Case (c): Intersecting $\overrightarrow{\mathbf{u}} \neq \overrightarrow{\mathrm{k}} ; \mathrm{I}_{1} \nVdash \mathrm{I}_{2}$
To find the point of intersection $\quad I_{1}: \vec{r}=\left(\begin{array}{ll}a_{1}+ & \lambda p \\ a_{2}+ & \lambda q \\ a_{3}+ & \lambda r\end{array}\right)$

$$
I_{2}: \vec{r}=\left(\begin{array}{ll}
b_{1}+ & \mu \eta \tag{iv}\\
b_{2}+ & \mu m \\
b_{3}+ & \mu n
\end{array}\right)
$$

For a Common point :

$$
\begin{align*}
& \left(\begin{array}{l}
a_{1}+\lambda p \\
a_{2}+\lambda q \\
a_{3}+\lambda r
\end{array}\right)=\left(\begin{array}{ll}
b_{1}+ & \mu l \\
b_{2}+ & \mu m \\
b_{3}+ & \mu \mathrm{n}
\end{array}\right) \\
& \text { or } a_{1}+\lambda p=b_{1}+\mu l \Rightarrow \lambda p-\mu l=b_{1}-a_{1} \tag{v}\\
& a_{2}+\lambda q=b_{2}+\mu m \Rightarrow \lambda q-\mu m=b_{2}-a_{2} \tag{vi}\\
& a_{3}+\lambda r=b_{3}+\mu n \Rightarrow \lambda r-\mu n=b_{3}-a_{3} \tag{vii}
\end{align*}
$$

Solve (v) and (vi) for λ and μ
And verify that these values of λ and μ satisfies the equation (vii) ; and to find the point of intersection, put the value of λ in equation(iii) (or μ in (iv))

3. d) Pair of lines I_{1} and I_{2} are Skew :

$I_{1} \nVdash I_{2}$ and I_{1} and I_{2} are non intersecting.
It happens when in [3] (c) we solve two equations for λ and μ but these values of λ and μ does not satisfy the third equation.

PLANE IN 3D

Direction of a Plane is expressed in terms of its Normal $\overrightarrow{\mathrm{n}}$ to the Plane:

Normal to the Plane is perpendicular to every line lying in the plane, through the point of intersection of Plane and normal.

$$
\overrightarrow{\mathbf{n}} \perp I_{1} \text { and } \overrightarrow{\mathbf{n}} \perp I_{2}
$$

1. Vector Equation of a Plane :

i) Passing through a point \vec{a} and given $\overrightarrow{\mathbf{n}}$ is the normal to the plane, $\overrightarrow{\mathbf{r}}$ is any point (variable) on the plane.
$(\vec{r}-\vec{a}) \cdot \vec{n}=0$

$$
\begin{equation*}
[\because \overrightarrow{\mathrm{AP}} \perp \text { Normal }] \tag{i}
\end{equation*}
$$

2. Cartesian Equation of a Plane :

i) Passing through a point $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and components of normal are $\left(\begin{array}{l}a \\ b \\ c\end{array}\right]$

$$
a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0----(\text { (iii) }[\vec{n}=a i+b j+c k]
$$

General Equation of Plane in Cartesian form:
$a x+b y+c z=d$---------------- (iv)
here a, b, c are Components of Normal

3. i) Length of perpendicular from a point to a Plane : Given a point $A\left(x_{1}, y_{1}, z_{1}\right)$
and a plane $a x+b y+c z=d$

Length of Perpendicular $\mathbf{A N}=\frac{\left|a x_{1}+b y_{1}+c z_{1}-d\right|}{\sqrt{\left(a^{2}+b^{2}+c^{2}\right)}}$

ii) Length of perpendicular from origin to the Plane :

$$
\mathrm{ON}=\frac{|\mathrm{d}|}{\sqrt{\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)}}
$$

4. i) Parallel Planes

Two Planes are parallel iff they have the same normal .i.e either the components of normal are same or proportional.

$$
\begin{aligned}
& \mathrm{P}_{1}: a_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1} \mathrm{z}=\mathrm{d}_{1} \\
& \mathrm{P}_{2}: \quad \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2} \mathrm{z}=\mathrm{d}_{2}
\end{aligned}
$$

$\overrightarrow{n_{1}}=a_{1} i+b_{1} j+c_{1} k$
$\overrightarrow{n_{2}}=a_{2} i+b_{2} j+c_{2} k$
$\mathrm{P}_{1} \| \mathrm{P}_{2} \Rightarrow\left(\begin{array}{l}a_{1} \\ b_{1} \\ c_{1}\end{array}\right)=\mathrm{k}\left(\begin{array}{c}a_{2} \\ b_{2} \\ c_{2}\end{array}\right) \quad: \mathrm{k} \in \mathrm{R}$ and $\mathrm{k} \neq 0$
Parallel Planes

$$
\left\{\begin{array}{l}
2 x-3 y+z=7 \\
6 x-9 y+3 z=10
\end{array} \quad \text { or } \quad 3 x-5 y+2 z=6\right.
$$

ii) Distance between two Parallel Planes

a) $\mathrm{P}_{1}: \quad a \mathrm{x}+\mathrm{by}+\mathrm{cz}=\mathrm{d}_{1}$
$P_{2}: a x+b y+c z=d_{2}$

Distance $\quad A B=\frac{\left|d_{1}-d_{2}\right|}{\sqrt{\left(a^{2}+b^{2}+c^{2}\right)}}$

Make the coefficient of x, y, z in both the equations equal.

b) Alternate Method : Take any point on plane P_{1} and find the distance (length of perpendicular) of this point to second plane.

5. Equation of a Plane passing through the intersection of two given planes:

$$
\begin{array}{ll}
\mathrm{P}_{1}: & a_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1} \mathrm{z}=\mathrm{d}_{1} \\
\mathrm{P}_{2}: & \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2} \mathrm{z}=\mathrm{d}_{2}
\end{array}
$$

is given by :
$\left(a_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1} \mathrm{z}-\mathrm{d}_{1}\right)+\lambda\left(\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2} \mathrm{z}-\mathrm{d}_{2}\right)=0$

6. To find the equation of a plane passing through three points $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$, $C\left(x_{3}, y_{3}, z_{3}\right)$

Equation of any plane through point $A\left(x_{1}, y_{1}, z_{1}\right)$ is
$a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$
$B\left(x_{2}, y_{2}, z_{2}\right)$ lies on (i) $\longrightarrow a\left(x_{2}-x_{1}\right)+\cdots--+-=0$
$C\left(x_{3}, y_{3}, z_{3}\right)$ lies on (i) $\longrightarrow a\left(x_{3}-x_{1}\right)+\cdots+--=0$

Solve (ii) and (iii) by cross -multiplication method and put the values of a, b,
c in (i)
7. To find the Equation of Plane passing through line ' I ' and point

$$
B\left(x_{2}, y_{2}, z_{2}\right)
$$

$$
\mid \overrightarrow{: r}=\mathbf{a}+\lambda \overrightarrow{\mathbf{u}}
$$

or $\mid: \vec{r}=\left(x_{1} i+y_{1} j+z_{1} k\right)+\lambda(p i+q j+r k)$

Now Point $A\left(x_{1}, y_{1}, z_{1}\right)$ on line ' l ' lies on Plane

$\therefore \quad$ Equation of Plane through $A\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$
$a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$
and the given point $B\left(x_{2}, y_{2}, z_{2}\right)$ lies on required Plane
Put in (i)
$a\left(x_{2}-x_{1}\right)+b\left(y_{2}-y_{1}\right)+c\left(z_{2}-z_{1}\right)=0$
as line ' I ' lies in plane.

$$
\mathrm{l} \perp \text { Normal }
$$

$$
\vec{u} \cdot \vec{n}=0
$$

$$
\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right] \cdot\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=0
$$

$$
\begin{equation*}
\Rightarrow a p+b q+c r=0 \tag{iii}
\end{equation*}
$$

Solve equations (ii) and (iii) for a, b and c by cross multiplication and put the values of a, b, c in (i)

8. To find the equation of the Line ' I ' of intersection of two planes:

Given Two Planes

$$
\begin{align*}
& \mathrm{P}_{1}: a_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1} \mathrm{z}=\mathrm{d}_{1} \tag{i}\\
& \mathrm{P}_{2}: \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2} \mathrm{z}=\mathrm{d}_{2} \tag{ii}
\end{align*}
$$

Put $x=0$ in equation (i) and (ii), we get

$$
\begin{aligned}
\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1} \mathrm{z} & =\mathrm{d}_{1} \\
\mathrm{~b}_{2} \mathrm{y}+\mathrm{c}_{2} \mathrm{z} & =\mathrm{d}_{2}
\end{aligned}
$$

Solve for y and z

Get the coordinate of a common point $A\left(0, y_{1}, z_{1}\right)$
Again put $\mathrm{y}=0$ (or may $\mathrm{z}=0$) and get

$$
a_{1} \mathrm{x}+\mathrm{c}_{1} \mathrm{z}=\mathrm{d}_{1}
$$

$$
\mathrm{a}_{2} \mathrm{x}+\mathrm{c}_{2} \mathrm{z}=\mathrm{d}_{2}
$$

Solve for x and z to get $B\left(x_{2}, 0, z_{2}\right)$

As A, B lies on Required line ' I '
Find the equation of line through two points A and B.

9. To find the distance of a point $B\left(x_{2}, Y_{2}, z_{2}\right)$ from a line :

Given $B\left(x_{2}, y_{2}, z_{2}\right)$
Line $I: \vec{r}=\vec{a}+\lambda \vec{u}$
Or $\quad \vec{r}=\left(\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{y}_{1} \\ \mathrm{z}_{1}\end{array}\right)+\lambda\left(\begin{array}{l}p \\ q \\ r\end{array}\right)$
Find $\overrightarrow{A B}=\left(x_{2}-x_{1}\right) i+\left(y_{2}-y_{2}\right) j+\left(z_{2}-z_{1}\right) k$
Now $A N=$ Projection of $\overrightarrow{A B}$ on line I

$$
=\overrightarrow{\mathrm{AB}} \cdot \frac{\overrightarrow{\mathbf{u}}}{\overrightarrow{|\mathbf{u}|}}\{\overrightarrow{\mathbf{u}}=p i+q j+r k\}
$$

Required length of perpendicular distance

$$
B N=V\left(A B^{2}-A N^{2}\right)
$$

GENERAL RESULTS :

i) Any line || to x-axis has Direction $\vec{V}=a \mathrm{i}=\left(\begin{array}{l}a \\ 0 \\ 0\end{array}\right)$ or $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
ii) A Plane || x-axis $\Rightarrow \underset{\vec{n} \quad \perp \text { - axis }}{\text { Normal to Plane }}$

$$
\begin{gathered}
{\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=0} \\
\Rightarrow a=0
\end{gathered}
$$

$\therefore \vec{n}=\left(\begin{array}{l}0 \\ b \\ c\end{array}\right)$
iii) Line $\left\lvert\,: \vec{r}=\vec{a}+\lambda \vec{u}=\left(\begin{array}{l}x_{1} \\ y_{1} \\ z_{1}\end{array}\right)+\lambda\left(\begin{array}{l}p \\ q \\ r\end{array}\right)\right.$

Plane $P: \vec{r} \cdot \vec{n}=d \quad \Rightarrow a x+b y+c z=d$
then (a) line I|| Plane $P \Rightarrow$ I \perp normal

$$
\begin{aligned}
& \Rightarrow \vec{u} \cdot \overrightarrow{\mathbf{n}}=0 \\
& \text { or } a p+b q+c r=0
\end{aligned}
$$

(b) $\mid \perp$ Plane \Rightarrow | \| Normal

$$
\Rightarrow \overrightarrow{\boldsymbol{n}}=\overrightarrow{k \boldsymbol{u}}
$$

Direction of normal is same as direction of line.
10. To find the angle ' θ ' between line ' I ' $(A Q)$ and plane ' P '.

\vec{n} is normal to the Plane.

line $\quad \mid: \vec{r}=\vec{a}+\lambda \vec{u}$
Plane $P: \vec{r} \cdot \vec{n}=d$
Now $\angle C A Q=\frac{\pi}{2}-\theta$
$\operatorname{Cos}\left(\frac{\pi}{2}-\theta\right)=\frac{\overrightarrow{\mathrm{n}} \cdot \overrightarrow{\mathrm{u}}}{\overrightarrow{|\mathrm{n}|} \overrightarrow{\mathrm{u} \mid}}=\mathrm{k}$ (let)
Or $\sin \theta=k$

$$
\theta=\sin ^{-1}(k)
$$

Case I: Let line ' \mid ' intersects plane ' P ' at a point A.
And Let the plane containing the line ' I ' and normal \vec{n} intersects the plane ' P ' in the line $\overleftrightarrow{A B}$

Then the required angle ' θ ' is between ' I ' and line $A B$.

$$
\theta=\angle \mathrm{QAB}
$$

Hence, the angle between Normal and line ' 1 ' $=\left(\frac{\pi}{2}-\theta\right)$

Case II: If the angle between Normal and the line is obtuse.

$$
\begin{aligned}
& \text { Take } \angle C A Q=\left(\frac{\pi}{2}+\theta\right) \\
& \operatorname{Cos}\left(\frac{\pi}{2}+\theta\right)=\frac{\overrightarrow{\mathrm{n}} \cdot \overrightarrow{\mathrm{u}}}{\overrightarrow{\mathrm{n} \mid \overrightarrow{\mathrm{u} \mid}}}=-\mathrm{k}(\text { let }) \\
& \Rightarrow-\sin \theta=-k \\
& \Rightarrow \quad \sin \theta=k \\
& \theta=\sin ^{-1}(\mathrm{k})
\end{aligned}
$$

SOME IMPORTANT CONCEPTS

1. Projection of a segment of a line :

Projection of $\overline{A B}$ on $I=P Q$

2. Projection of $\overline{\mathrm{AB}}$ on line $\mathrm{I}=\mathrm{AN}$

3. Let $\overrightarrow{A B}=\vec{a}$

$$
\begin{aligned}
& \text { AN }=\text { Projection of } A B \text { on } \vec{b} \\
& \therefore \quad A N=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}
\end{aligned}
$$

$$
\begin{aligned}
& \text { In right } \triangle A N B \\
& \because \frac{A N}{\overrightarrow{|a|}}=\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\overrightarrow{|a|}| \overrightarrow{|b|}} \\
& \Rightarrow A N=\frac{\vec{a} \cdot \vec{b}}{\mid \overrightarrow{b \mid}}
\end{aligned}
$$

To Solve two equation in three variables (CROSS MULTIPLICATION METHOD)
$a_{1} x+b_{1} y+c_{1} z=0$
$a_{2} x+b_{2} y+c_{2} z=0$
Note : $A=\left|\begin{array}{ll}\mathrm{a} & \chi_{\mathrm{c}}^{\mathrm{b}} \\ \mathrm{a}_{\mathrm{d}}\end{array}\right|=\mathrm{ad}-\mathrm{bc}$

ALTERNATE METHOD

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z=0 \\
& a_{2} x+b_{2} y+c_{2} z=0
\end{aligned}
$$

$$
\frac{\mathrm{x}}{\mathrm{~b}_{1} \mathrm{c}_{2}-\mathrm{b}_{2} \mathrm{c}_{1}}=\frac{\mathrm{y}}{-\left(\mathrm{a}_{1} \mathrm{c}_{2}-\mathrm{a}_{2} \mathrm{c}_{1}\right)}=\frac{\mathrm{z}}{\mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{a}_{2} \mathrm{~b}_{1}}=\lambda
$$

$$
\begin{aligned}
& \frac{\mathrm{x}}{\mathrm{~b}_{1} \mathrm{c}_{2}-\mathrm{b}_{2} \mathrm{c}_{1}}=\frac{\mathrm{y}}{\mathrm{c}_{1} \mathrm{a}_{2}-\mathrm{c}_{2} \mathrm{a}_{1}}=\frac{\mathrm{z}}{\mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{a}_{2} \mathrm{~b}_{1}}=\lambda
\end{aligned}
$$

APPLICATION :

To Solve for $\mathbf{a}, \mathbf{b}, \mathbf{c}$
Q6. $\quad a+2 b+3 c=0$

$$
2 a+b-2 c=0
$$

$\frac{a}{2(-2)-1 \times 3}=\frac{b}{3 \times 2-(1)(-2)}=\frac{c}{1 \times 1-2 \times 2}$
Or $\frac{a}{-7}=\frac{b}{8}=\frac{c}{-3}=k$
$a=-7 k$

$b=8 k$	or	$k\binom{8}{-3}$
$c=-3 k$		

Q9. Solve :
$3 a+b-c=0$
$-a+2 b-c=0$
$\frac{\mathrm{a}}{1(-1)-2(-1)}=\frac{\mathrm{b}}{(-1)(-1)-(-1) \times 3}=\frac{\mathrm{c}}{3 \times 2-(-1) \times 1}$
$\frac{\mathrm{a}}{-1+2}=\frac{\mathrm{b}}{1+3}=\frac{\mathrm{c}}{6+1}$
$a: b: c=1: 4: 7$

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
1 \\
4 \\
7
\end{array}\right)
$$

