A Level Maths

Bronze Set A, Paper 1 (Edexcel version)

A Level Maths - CM Paper 1 Practice Paper (for Edexcel) / Bronze Set A

Question	Solution	Partial Marks	Guidance
1 (a)	$\mathrm{f}(-2)=(-2)^{3}-3(-2)+2=-8+6+2=0$, therefore $(x+2)$ is a factor	$\begin{align*} & \text { M1 } \\ & \text { A1 } \tag{2} \end{align*}$	Substitutes ± 2 into f with substitution explicitly shown Shows $\mathrm{f}(-2)=0$ and gives a conclusion, i.e. 'therefore, $(x+2)$ is a factor', 'qed', 'as required', ‘ ', etc.
$\begin{aligned} & 1(\mathbf{a}) \\ & \text { ALT } \end{aligned}$	$\begin{array}{r} x+2 \begin{array}{r} x^{2}-2 x+1 \\ \frac{x^{3}+0 x^{2}-3 x+2}{2} \\ \frac{x^{3}+2 x^{2}}{-2 x^{2}-3 x} \\ \frac{-2 x^{2}-4 x}{x+2} \\ \frac{x+2}{0} \end{array} \\ \begin{array}{r} 1 \\ \hline \end{array} \\ \hline \end{array}$ therefore $(x+2)$ is a factor	M1 A1	Attempts long division. Must obtain x^{2} term in quotient and $\pm 2 x^{2}$ as first remainder Completely correct long division, obtaining 0 as the remainder, and gives a conclusion, i.e. 'therefore, $(x+2)$ is a factor', 'qed', 'as required', ‘ ', etc.
1 (b)	Other factor is $x^{2}-2 x+1$ $x^{2}-2 x+1=(x-1)^{2}$ So $\mathrm{f}(x)=(x+2)(x-1)^{2}$ or $\mathrm{f}(x)=(x+2)(x-1)(x-1)$	B1 M1 A1 [3]	Correct other factor. This can be scored in 1(a). Attempts to factorise their quadratic factor. M0 if their factor cannot be factorised Express $\mathrm{f}(x)$ correctly as a product of linear factors. Must see $\mathrm{f}(x)=\ldots$. Condone $\mathrm{f}=\ldots$. Answer only is $3 / 3$
1 (c)	$3 x^{2}+2 x-8=(3 x-4)(x+2)$ $\frac{3 x^{2}+2 x-8}{x^{3}-3 x+2}=\frac{(x+2)(3 x-4)}{(x+2)(x-1)^{2}}=\frac{3 x-4}{(x-1)^{2}}$	B1 M1 A1 oe [3]	Correct factorisation of numerator. Seen or implied Expresses numerator and denominator in terms of linear factors. Allow ft of their 1(b). Correct simplification oe

2 (a)	$\|2 x-1\|<1 \Leftrightarrow-1<2 x-1<1$ So $\quad 0<x<1$	M1 A1 [2]	States inequality is equivalent to $-1<2 x-1<1$. Give the M1 for considering $2 x-1(=,>,<) \pm 1$ and 'gluing' solutions together Obtains correct solution set. Final answer Answer only is $2 / 2$
2 (b)	$\begin{aligned} & 9\left(2^{x}-1\right)^{2}=2^{2 x} \quad \text { OR } \quad 3\left(2^{x}-1\right)= \pm 2^{x} \\ & 8\left(2^{2 x}\right)-18\left(2^{x}\right)+9=0 \\ & \Rightarrow 2^{x}=\frac{3}{2}, 2^{x}=\frac{3}{4} \\ & \Rightarrow x \log (2)=\log \left(\frac{3}{2}\right), \quad x \log (2)=\log \left(\frac{3}{4}\right) \\ & \Rightarrow x=0.585, \quad-0.415 \end{aligned}$	M1 A1 M1 A1 [4]	Attempts to square both sides OR states or implies a set of nonmodular equations Obtains both correct values of 2^{x} Complete method to solve an equation of the form $2^{x}=k, k>0$. No marks for solving an oversimplified equation, e.g. $2^{x}=1,4,1 / 2$ No marks for solving an equation that reduces to another base, e.g. $2^{2 x}=k, 2^{3 x}=k$, etc., but allow the M1 for an equation of the form e.g. $2^{x+1}=k$ Correct values of x. Cao Do not ISW if candidate goes on to reject one of the values SC1: allow B1 B1 for each value of 2^{x} if this leads to a better mark e.g. only considers $3\left(2^{x}-1\right)=2^{x}$, leading to $2^{x}=3 / 2$ can score B1 B0 M1 A0
3 (a)	$\begin{aligned} & 4 x^{2}+8 x+4 y^{2}-12 y=k \\ & \Rightarrow x^{2}+2 x+y^{2}-3 y=\frac{k}{4} \\ & \Rightarrow(x+1)^{2}-1+\left(y-\frac{3}{2}\right)^{2}-\frac{9}{4}=\frac{k}{4} \\ & \left(\Rightarrow(x+1)^{2}+\left(y-\frac{3}{2}\right)^{2}=\frac{k+13}{4}\right) \end{aligned}$ So centre of C is $(-1,1.5)$	M1 A1 A1ft [3]	Obtains coefficients of x^{2} and y^{2} to be the same and attempts to complete the square on either the x or y terms Obtains terms $(x+1)^{2}$ and $(y-1.5)^{2}$ in their expression. Ignore other terms Correct centre ft their $(x+1)^{2}$ and $(y-1.5)^{2}$. Accept $x=-1, y=1.5$ instead of coordinate form.

3 (b)	$\begin{aligned} & \frac{k+13}{4}>0 \\ & \Rightarrow k+13>0 \\ & \Rightarrow k>-13 \end{aligned}$	M1 A1 [2]	Sets their 'radius term' >0 Correct range of values of k. Final answer
3 (c)	Coefficients of x^{2} and y^{2} not the same / it is the equation of an ellipse	B1 $[1]$	An explanation for why the equation does not define a circle
4	$\begin{aligned} \frac{1}{2}(4 & +2 \sqrt{3})(B C)=8+5 \sqrt{3} \\ B C & =\frac{16+10 \sqrt{3}}{4+2 \sqrt{3}} \\ & =\frac{(16+10 \sqrt{3})(4-2 \sqrt{3})}{(4+2 \sqrt{3})(4-2 \sqrt{3})} \\ & =\frac{64-32 \sqrt{3}+40 \sqrt{3}-20(3)}{16-4(3)} \\ & =\frac{4+8 \sqrt{3}}{4} \\ & =1+2 \sqrt{3} \end{aligned}$ Hence, $\begin{aligned} & A C^{2}=(4+2 \sqrt{3})^{2}+(1+2 \sqrt{3})^{2} \\ & \Rightarrow A C^{2}=16+16 \sqrt{3}+12+1+4 \sqrt{3}+12 \\ & \Rightarrow A C^{2}=41+20 \sqrt{3} \\ & \Rightarrow A C=(41+20 \sqrt{3})^{\frac{1}{2}} \end{aligned}$	$\text { M1 }\left(^{*}\right)$ M1 (dep*) A1 A1 M1 (dep*) A1	Sets up an equation involving $B C$ using the area of a triangle. Allow omission of the $1 / 2$ here Complete method to find exact simplified value of $B C$ by rationalising denominator Obtains numerator of $4+8 \sqrt{ } 3$ or denominator of 4 Correct simplified exact value of $B C$ Uses Pythagoras with their $B C$ to find $A C$ or $A C^{2}$. Their $B C$ must be greater than 0 for this mark Correct exact length of the hypotenuse in the required form obtained convincingly. Allow values of a and b stated instead of final answer. Also condone $\sqrt{ }$ instead of power of $1 / 2$. Final answer

5 (a)	$\begin{aligned} & \frac{d}{d x}\left(x^{3}-2 x\right)=\lim _{h \rightarrow 0} \frac{(x+h)^{3}-2(x+h)-x^{3}+2 x}{h} \\ & =\lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-2 x-2 h-x^{3}+2 x}{h} \\ & =\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}-2 h}{h} \\ & =\lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}-2\right) \\ & =3 x^{2}-2 \end{aligned}$	M1* M1 (dep*) A1	Considers $\frac{(x+h)^{3}-2(x+h)-x^{3}+2 x}{h}$. No need to consider limit here. Allow use of other symbols for h Expands numerator correctly and attempts to collect like terms. Allow one slip. Complete and convincing proof with correct limiting process seen. No errors allowed.
$\begin{aligned} & 5 \text { (a) } \\ & \text { ALT } \end{aligned}$	$\begin{aligned} & \frac{d}{d x}\left(x^{3}-2 x\right)=\lim _{x^{\prime} \rightarrow x} \frac{x^{\prime 3}-2 x^{\prime}-x^{3}+2 x}{x^{\prime}-x} \\ & =\lim _{x^{\prime} \rightarrow x} \frac{x^{\prime 3}-x^{3}-2\left(x^{\prime}-x\right)}{x^{\prime}-x} \\ & =\lim _{x^{\prime} \rightarrow x} \frac{\left(x^{\prime}-x\right)\left(x^{\prime 2}+x^{\prime} x+x^{2}-2\right)}{x^{\prime}-x} \\ & =\lim _{x^{\prime} \rightarrow x}\left(x^{\prime 2}+x^{\prime} x+x^{2}-2\right) \\ & =x^{2}+x^{2}+x^{2}-2 \\ & =3 x^{2}-2 \end{aligned}$	M1* M1(dep*) A1	Considers $\frac{x^{\prime 3}-2 x^{\prime}-x^{3}+2 x}{x^{\prime}-x}$. No need to consider limit here. Allow use of other symbols (use of x and c is also common) Extracts a factor of x, x Complete and convincing proof with correct limiting process seen. No errors allowed.
5 (b)	Stationary points are where $3 x^{2}-2=0$ $\Rightarrow x= \pm \sqrt{\frac{2}{3}}$ \Rightarrow stationary points at $\left(\sqrt{\frac{2}{3}},-\frac{4 \sqrt{6}}{9}\right),\left(-\sqrt{\frac{2}{3}}, \frac{4 \sqrt{6}}{9}\right)$	M1 A1ft A1 [3]	Sets their derivative or the correct derivative $=0$. Allow correct derivative $=0$ even if their answer to (a) is different Correct x coordinates of stationary points ft their derivative. Allow decimals Correct coordinates of stationary points. Allow decimals. Allow if answers not given in coordinate form, i.e. in the form $x=\ldots, y=\ldots$

5 (c)	$a=\sqrt{2}$	B1	Correct value of a seen or implied
	$\int_{0}^{\sqrt{2}}\left(x^{3}-2 x\right) d x=\frac{1}{4} x^{4}-\left.x^{2}\right\|_{0} ^{\sqrt{2}}$	$\begin{aligned} & \text { M1* } \\ & \text { A1 } \end{aligned}$	Attempts indefinite integration of the equation of the curve Correct indefinite integration of the equation of the curve
	$\begin{aligned} & =\frac{1}{4}(\sqrt{2})^{4}-(\sqrt{2})^{2}-0 \\ & =-1 \end{aligned}$	M1 (dep*)	Substitutes limits into their integral in the correct order (ft their a)
	So the area of the shaded region is 1	A1 [5]	Correct area of the shaded region. Final answer
6 (a)	$4 \times \frac{1}{2}\left(\frac{a}{4}\right)^{2} \pi=\frac{1}{2} a^{2} \theta-\frac{1}{2} a^{2} \sin \theta$	M1	Forms an equation using the information. Allow the incorrect radius to be substituted on the LHS. Allow other expressions for the area of a triangle Correct expression
	$\begin{aligned} & 2 \times \frac{a^{2}}{16} \pi=\frac{1}{2} a^{2} \theta-\frac{1}{2} a^{2} \sin \theta \\ & \frac{1}{2} \theta=\frac{1}{8} \pi+\frac{1}{2} \sin \theta \\ & \Rightarrow \theta=\frac{1}{4} \pi+\sin \theta \end{aligned}$	A1 [3]	Complete and convincing proof with no errors seen NB: Candidates must work in a for the A marks, so working in r is not a misread and gets M1 A0 A0 unless recovered.
6 (b)	$\mathrm{f}(\theta)=\theta-\frac{1}{4} \pi-\sin \theta$		$\text { OR } \mathrm{f}(\theta)=\frac{1}{4} \pi+\sin \theta-\theta$
	$\begin{aligned} & \mathrm{f}(1)=1-\frac{1}{4} \pi-\sin (1)=-0.626 \ldots<0 \\ & \mathrm{f}(2)=2-\frac{1}{4} \pi-\sin (2)=0.305 \ldots>0 \end{aligned}$	M1	Substitutes 1 and 2 into the function Use of degrees is M0
	Since there has been a change of sign, θ must lie between 1 and 2	A1	Both values correct with sufficient argument. Sufficient argument includes either a statement that there is a change of sign OR >0 and <0

7	Assume that the square root of n is rational, i.e. $\sqrt{n}=\frac{a}{b}$, where $b \neq 0$ and a and b are coprime Then $n^{2}=\frac{a^{2}}{b^{2}}$. So if p is a prime factor of b, then p must be a prime factor of a^{2} and therefore of a. But a and b cannot share any common prime factors, so b cannot have any prime factors, so $b=1$ Then $\sqrt{n}=a$, which is a contradiction, since n is not a square number, (so n must be irrational)	B1 M1 A1 A1 [4]	Makes the assumption with all conditions specified. Allow other descriptions for 'coprime' Considers prime factors (can be implied) Deduces that b must be 1 Obtains a contradiction to provide a complete and convincing proof with no errors seen and complete explanation
8 (i)	$\frac{d y}{d x}=3 x^{2} \mathrm{e}^{x}+x^{3} \mathrm{e}^{x}$ $\left.\frac{d y}{d x}\right\|_{x=1}=3(1)^{2} \mathrm{e}^{1}+(1)^{3} \mathrm{e}^{1}=4 \mathrm{e}$, so gradient of normal at $x=1$ is $-\frac{1}{4 \mathrm{e}}$ At $x=1, y=\mathrm{e}$, so equation of normal is $y-\mathrm{e}=-\frac{1}{4 \mathrm{e}}(x-1)$	M1 M1 (dep*) A1 B1 A1	Attempts to use the product rule Substitutes $x=1$ into their gradient function and attempts to uses their answer to find the gradient of the normal Obtains correct gradient of the normal States or implies $y=\mathrm{e}$ at $x=1$ Correct equation of the normal in terms of e . Any form is allowed. ISW once a correct answer is seen
8 (ii)	$\begin{aligned} & \frac{d y}{d x}=2\left(-\frac{1}{2}\right)\left(1+(1-x)^{2}\right)^{-\frac{3}{2}} \times \frac{d}{d x}\left(1+(1-x)^{2}\right) \\ & =-\frac{1}{\left(1+(1-x)^{2}\right)^{\frac{3}{2}}} \times(-2)(1-x) \\ & =\frac{2(1-x)}{\left(1+(1-x)^{2}\right)^{\frac{3}{2}}} \end{aligned}$	M1* A1 M1 (dep*) A1	Attempts to use chain rule Correct workings so far Method to differentiate $1+(1-x)^{2}$ using the chain rule Correct differentiation with answer in any form. Accept e.g. $\frac{2(1-x)}{\left(\sqrt{1+(1-x)^{2}}\right)^{3}} \text { or } \frac{2(1-x)}{\sqrt{\left(1+(1-x)^{2}\right)^{3}}}$

9 (a)	If $m=a b^{t}$, then $\ln m=\ln \left(a b^{t}\right)$ $\begin{aligned} & \Rightarrow \ln (m)=\ln (a)+\ln \left(b^{t}\right) \\ & \Rightarrow \ln (m)=t \ln (b)+\ln (a) \end{aligned}$ and so the graph of $\ln (m)$ against t is a straight line	M1 A1 [2]	Takes logs to both sides and uses product rule Complete and convincing proof
9 (b)	$\begin{aligned} & (\ln (a) \text { is the } y \text {-intercept, so }) \\ & \ln (a)=3.91 \\ & \Rightarrow a=\mathrm{e}^{3.91}=49.89 \ldots \approx 50 \end{aligned}$	B1 $[1]$	Complete and convincing proof. No need to see the statement $\ln (a)=3.91$, but we must see $a=\mathrm{e}^{3.91}$ in any case. $a=\mathrm{e}^{3.91} \approx 50 \text { is } \mathrm{B} 1$
9 (c)	$\begin{aligned} & \frac{1}{2}=b^{5} \\ & \Rightarrow b=\sqrt[5]{\frac{1}{2}}=0.8705 \ldots \\ & \text { so } b=0.871 \text { to } 3 \mathrm{sf} \end{aligned}$	M1 A1 [2]	States correct equation or equivalent. Allow $25=50 b^{5}$ Correct value of b to 3 sf
9 (d)	Initial mass of modified substance $=$ mass of old substance after 8 years +20 kg $=(49.898 \ldots)(0.8705 \ldots)^{8}+20=36.460 \ldots$ So $\begin{aligned} & 36.460 \ldots=P+40 \mathrm{e}^{-0.32(0)} \\ & \Rightarrow P=36.460 \ldots-40=-3.539 \ldots \end{aligned}$	B1ft M1 A1 [3]	Finds initial mass of modified substance using their b. Allow use of $a=50$ here. Accept awrt 36 Sets up correct equation using their initial mass. Allow 40 instead of $40 \mathrm{e}^{-0.32(0)}$ Correct value of P. Awrt -3.5

10 (a)	$12 \cos x-4 \sin x=R \cos x \cos \alpha-R \sin x \sin \alpha$ So $R \cos \alpha=12, R \sin \alpha=4$ $\Rightarrow R=\sqrt{12^{2}+4^{2}}=4 \sqrt{10}$ $\tan \alpha=\frac{4}{12} \Rightarrow \alpha=0.3217 \ldots$, so $\alpha=0.322$ to 3 sf So $\mathrm{f}(x)=4 \sqrt{10} \cos (x+0.322) \quad$ (not needed)	B1 M1 A1 [3]	Correct exact value of R oe Method to find α Correct value of α to 3sf
10 (b)	$\begin{aligned} & 4=4 \sqrt{10} \cos (2 x+0.322) \\ & \cos (2 x+0.322)=\frac{1}{\sqrt{10}} \\ & \Rightarrow 2 x+0.322=\cos ^{-1}\left(\frac{1}{\sqrt{10}}\right)=1.2490 \ldots \end{aligned}$ Other values are $5.0341 \ldots, 7.5321 \ldots$ and $11.3172 \ldots$ So $2 x=0.927,4.7121,7.2101,10.9952$ $\Rightarrow x=0.46,2.36,3.61,5.50$	M1* A1 M1 (dep*) A1	Writes down/implies correct equation ft their (a) Correct principal value of $2 x+0.322$ Method to find all the other values in range using their principal value Correct values of x. Awrt 0.5, 2.4, 3.6, 5.5
10 (c)	Maximum value is $4 \sqrt{10}$ Occurs when $x+0.322=0,2 \pi$ $\Rightarrow x=-0.322,5.96$	B1ft M1 A1 [3]	Correct maximum value ft their R Correct method to find one value of x where the maximum occurs, i.e. writes down or implies $x+$ their $\alpha=0$ or $x+$ their $\alpha=2 \pi$ Correct values of x at which maximum occurs

11 (a)	$\mathbf{v}=\mathbf{i}-2 \mathbf{j}$ So magnitude of \mathbf{v} is $\sqrt{1^{2}+(-2)^{2}}=\sqrt{5}$	B1 B1 [2]	States or implies $\mathbf{v}=\mathbf{i}-2 \mathbf{j}$ at the point Correct magnitude Answer only is $2 / 2$
11 (b)	$\begin{aligned} & \frac{1}{y} \frac{d y}{d x}=-\frac{1}{x} \\ & \int \frac{1}{y} \frac{d y}{d x} d x=-\int \frac{1}{x} d x \\ & \int \frac{1}{y} d y=-\int \frac{1}{x} d x \\ & \Rightarrow \ln y=-\ln x+c \\ & \Rightarrow y=\mathrm{e}^{-\ln x+c}=\frac{A}{x},\left(\text { where } A \text { is a constant }=\mathrm{e}^{c}\right) \end{aligned}$	$\begin{aligned} & \text { B1* } \\ & \text { B1(dep*) } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \end{aligned}$	Separates variables correctly Attempts to integrate one side Takes exponentials to obtain y in terms of x Simplifies the expression. Accept equivalent forms and any letters/expressions for the constants, i.e. $y=A x^{-1}, y=\frac{\mathrm{e}^{c}}{x}$ etc.
11 (c)		B1 B1 [2]	One streamline correctly drawn (no arrows needed) At least three non-overlapping streamlines drawn (no arrows needed) [NB: candidates do not need to specify the equation of each curve they draw, so ignore any labels (and even the wrong labels).] Ignore any streamlines drawn in other quadrants.

12 (a)	$-x=A(2 x-3)+B(x-1)$ When $x=1, \quad-1=A(-1)$, so $A=1$ When $x=0,0=-3(1)-B$, so $B=-3$	M1 A1 A1 [3]	Method to find one of the coefficients Correct value of A or B Correct value of A and B
12 (b)	$\begin{aligned} & (x-1)^{-1}=-(1-x)^{-1} \\ & =-\left(1+(-1)(-x)+\frac{(-1)(-2)}{2!}(-x)^{2}+\frac{(-1)(-2)(-3)}{3!}(-x)^{3}+\ldots\right) \\ & =-1-x-x^{2}-x^{3}+\ldots \\ & -3(2 x-3)^{-1}=\left(1-\frac{2}{3} x\right)^{-1} \\ & =1+(-1)\left(-\frac{2}{3} x\right)+\frac{(-1)(-2)}{2!}\left(-\frac{2}{3} x\right)^{2}+\frac{(-1)(-2)(-3)}{3!}\left(-\frac{2}{3} x\right)^{3}+\ldots \\ & =1+\frac{2}{3} x+\frac{4}{9} x^{2}+\frac{8}{27} x^{3}+\ldots \end{aligned}$ So $\mathrm{f}(x)=-\frac{1}{3} x-\frac{5}{9} x^{2}-\frac{19}{27} x^{3}+\ldots$	M1 A1ft + A1ft A1	Finds unsimplfiied expressions for first two terms in expansion of $(1-x)^{-1}$ or $(1-2 / 3 x)^{-1}$ Correct unsimplfiied expansion of each partial fraction up to x^{3}. This is ft their A and B Need to see A or B multiplied by the expansion of the denominator to get the A1, so e.g. $1+x+x^{2}+x^{3}+\ldots$ for expansion of $(1-x)^{-1}$ is A0 until multiplied by -1 . Coefficients must be dealt with correctly, so e.g. expanding $-3(2 x-3)^{-1}= \pm 9\left(1-\frac{2}{3} x\right)^{-1} \text { is A0 }$ One mark for the expansion of each partial fraction Correct expansion. Ignore any addition terms after x^{3}. Final answer. If fractions expressed as decimals, these must be given to at least 3 sf
13 (i) (a)	$\begin{aligned} & S_{n}=a+[a+(2 a+1)]+\ldots+[a+(n-1)(2 a+1)] \\ & S_{n}=[a+(n-1)(2 a+1)]+\ldots+[a+(2 a+1)]+a \\ & \left.2 S_{n}=[2 a+(n-1)(2 a+1)]+\ldots+[2 a+(n-1)(2 a+1)]\right] \text { either } \\ & \Rightarrow 2 S_{n}=n[2 a+(n-1)(2 a+1)] \\ & \Rightarrow S_{n}=\frac{n}{2}[2 a+(n-1)(2 a+1)] \quad \text { AG } \end{aligned}$	B1 M1 M1 (dep*) A1	Writes the series down. Requires at least 3 terms, including the first and last terms, an adjacent term, the dots and + signs Reverses their series. Must be arithmetic in terms of a and n Adds the two series together - one of the two lines is sufficient for the mark Complete and convincing proof with no errors seen Allow the M1 if proof given in terms of d and not $(2 a+1)$. For the B1 and A1, must define/substitute $d=2 a+1$ explicitly

13 (i) (b)	$\begin{aligned} & 11225=\frac{n}{2}(8+9(n-1)) \\ & \Rightarrow 22450=8 n+9 n^{2}-9 n \\ & 9 n^{2}-n-22450=0 \\ & (9 n+449)(n-50)=0 \end{aligned}$ Since $n>0, n=50$	M1* M1(dep*) A1	Substitutes $a=4$ and $S_{n}=11225$ to form correct equation Forms correct 3TQ and uses a complete method to solve it Chooses $n=50$. No need to justify excluding the other solution. If both/any additional solutions given, then A0.
13 (ii)	$\sum_{n=1}^{\infty}\left(\frac{1}{2} \sin x\right)^{n}=\frac{\frac{1}{2} \sin x}{1-\frac{1}{2} \sin x}=\frac{\sin x}{2-\sin x}, \text { since }\left\|\frac{1}{2} \sin x\right\|<1,$	B1 B1 [2]	Evaluates series using sum of infinite geometric series formula. Accept answer in any form Justifies validity of answer by stating that $\left\|\frac{1}{2} \sin x\right\|<1$. Accept stronger inequalities, i.e. $\left\|\frac{1}{2} \sin x\right\| \leq \frac{1}{2}$

