A Level Maths

Bronze Set B, Paper 1 (Edexcel version)

A Level Maths - CM Practice Paper 1 (for Edexcel) / Bronze Set B

Question	Solution	Partial Marks	Guidance
1	$\frac{d y}{d x}=2 x-x^{-2}-3 \mathrm{e}^{3 x}$	M1 M1 A1 A1 oe [4]	Method to differentiate one of the x^{n} terms, $n \neq 0$ Uses the chain rule to differentiate the exponential term Any two terms differentiated correctly (unsimplified or better) All four terms differentiated correctly and simplified. Accept equivalent forms e.g. $\frac{1}{x^{2}}$ instead of x^{-2}
2 (a)	$14=3 p+2 \Rightarrow p=4$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Sets up a correct equation using information about x_{1} and x_{2} Obtains the correct value of p
2 (b)	$\begin{aligned} & x_{3}=4(14)+2=58 \\ & x_{4}=4(58)+2=234 \end{aligned}$ $\begin{aligned} & \sum_{n=1}^{4} x_{n}=x_{1}+x_{2}+x_{3}+x_{4} \\ & =3+14+58+234 \\ & =309 \end{aligned}$	B1ft B1ft M1 A1 [4]	Correct value of $x_{3} \mathrm{ft}$ their p Correct value of $x_{4} \mathrm{ft}$ their p and their x_{3} Complete method to find the sum Correct value of the sum
3 (a)	(Since θ is acute,) $\begin{aligned} \cos \theta & =\sqrt{1-\sin ^{2} \theta} \\ & =\sqrt{1-p^{2}} \end{aligned}$	M1 A1 $[2]$	Complete method to find $\cos \theta$ (allow \pm here) Award method mark for complete method using right-triangle Correct expression of $\cos \theta$

3 (b)	$\operatorname{cosec} 2 \theta=\frac{1}{\sin 2 \theta}=\frac{1}{2 \sin \theta \cos \theta}=\frac{1}{2 p \sqrt{1-p^{2}}}$	M1 A1ft	[2]	Complete method to find $\operatorname{cosec} 2 \theta$ using their (a) Correct expression of $\operatorname{cosec} 2 \theta$
3 (c)	$\begin{aligned} \sin (\theta-45) & =\sin \theta \cos 45-\cos \theta \sin 45 \\ & =\frac{1}{\sqrt{2}}\left(p-\sqrt{1-p^{2}}\right) \end{aligned}$	M1 A1	[2]	Complete method to find $\sin (\theta-45)$ using their (a) and replacing some value for $\cos (45)$ and $\sin (45)$ Correct expression of $\sin (\theta-45)$
4	$2 x+3 y=-2 \Rightarrow y=-\frac{2}{3} x-\frac{2}{3}$, so gradient of l_{1} is $-\frac{2}{3}$ $\frac{-1-2}{-2-0}=\frac{3}{2}$, so gradient of l_{2} is $\frac{3}{2}$ Since the product of the gradients $-\frac{2}{3} \times \frac{3}{2}=-1$, the lines l_{1} and l_{2} are perpendicular	B1 M1 A1 A1ft	[4]	Correct gradient of l_{1} seen or implied Attempts to find the gradient of l_{2} (allow sign errors) Correct gradient of l_{2} Correct conclusion ft their gradients giving correct and clear reasoning
5 (a)	$\mathrm{f}(x)>3$		[1]	Correct range of f Condone y in place of $\mathrm{f}(x)$ but do not accept x
5 (b)	$\mathrm{fg}(x)=2 \mathrm{e}^{\ln (4 x)}+3=2(4 x)+3=8 x+3$ Hence, $\begin{aligned} & \operatorname{fg}(x)=5 \Rightarrow 8 x+3=5 \\ & \Rightarrow x=\frac{1}{4} \end{aligned}$	B1 M1 A1		Uses $\mathrm{e}^{\ln (4 x)}=4 x$ at any stage Finds $\operatorname{fg}(x)$ in any form and sets it equal to 5 Correct value of x
5 (c)	$\begin{aligned} & y=2 \mathrm{e}^{x}+3 \Rightarrow \mathrm{e}^{x}=\frac{y-3}{2} \\ & \Rightarrow x=\ln \left(\frac{y-3}{2}\right), \text { so } \mathrm{f}^{-1}(x)=\ln \left(\frac{x-3}{2}\right) \text { for } x>3 \end{aligned}$	M1 A1 B1ft		Sets y equal to x and attempts to re-arrange for x (getting up to $\mathrm{e}^{x}=\ldots$ is OK) Correct expression for $\mathrm{f}^{-1}(x)$ Correct domain ft their 5(a)

6 (a)	$\begin{aligned} & \mathrm{f}(1)=\sqrt{1}-2(1)^{2}+3=2(>0) \\ & \mathrm{f}(2)=\sqrt{2}-2(2)^{2}+3=-3.587 \ldots(<0) \end{aligned}$ since there has been a change of sign and \mathbf{f} is continuous (on [1, 2]), f has a root between [1,2]	M1 A1 [2]	Calculates values of $f(1)$ and $f(2)$ Correctly calculated values and conclusion to complete the proof
6 (b)	$\begin{aligned} & \mathrm{f}(1.5)=-0.2752 \ldots \\ & \mathrm{f}^{\prime}(x)=\frac{1}{2 \sqrt{x}}-4 x, \text { so } \mathrm{f}^{\prime}(1.5)=\frac{1}{2 \sqrt{1.5}}-4(1.5)=-5.5917 \ldots \end{aligned}$ Applying NR process: $\begin{aligned} \alpha_{2} & =\alpha_{1}-\frac{\mathrm{f}\left(\alpha_{1}\right)}{\mathrm{f}^{\prime}\left(\alpha_{1}\right)} \\ & =1.5-\frac{(-0.2752 \ldots)}{(-5.5917 \ldots)} \\ & =1.4507 \ldots \end{aligned}$ so the second approximation is 1.45 to 3 sf	B1 M1* A1 M1 (dep*) A1 [5]	Correct value of $f(1.5)$ seen or implied anywhere Complete method to find $\mathrm{f}^{\prime}(1.5)$ Correct value of $\mathrm{f}^{\prime}(1.5)$ Valid attempt at Newton-Raphson using their values Correct second approximation to 3 sf
6 (c)	 since the graphs only intersect once, $\mathrm{f}(x)=0$ only has one root	M1 A1 [2]	Attempts to draw the graphs of $y=\sqrt{x}$ and $y=2 x^{2}-3$ on the same axis Correctly drawn graphs and conclusion that states that the graphs intersect once and so there is only one root Alternative: M1 - draws the graph of $y=\mathrm{f}(x)$ A1 - states that the graph only intersects the x-axis once and so the equation $\mathrm{f}(x)=0$ only has one root

7 (c)	$\begin{aligned} & \int_{0}^{\frac{1}{2}} \mathrm{f}(x) d x=\int_{0}^{\frac{1}{2}}\left(\frac{2}{3(2-x)}+\frac{2}{3(x+1)}\right) d x \\ & =\left[-\frac{2}{3} \ln (2-x)+\frac{2}{3} \ln (x+1)\right]_{0}^{\frac{1}{2}} \\ & =\left(-\frac{2}{3} \ln \left(\frac{3}{2}\right)+\frac{2}{3} \ln \left(\frac{3}{2}\right)\right)-\left(-\frac{2}{3} \ln (2)+\frac{2}{3} \ln (1)\right) \\ & =\frac{2}{3} \ln 2 \end{aligned}$	M1* A1ft M1 (dep*) A1	States integral of the form $a \ln (2-x)+b \ln (x+1)$ Correct indefinite integration ft their a and b Substitutes in the correct limits (ft their b) in the correct order Their upper limit from (b) must make sense with respect to the picture and function, i.e. be positive and less than $3 / 2$ Obtains correct result in the correct form ISW
8	$\begin{aligned} \frac{\mathrm{d}}{\mathrm{~d} \theta}(\sin \theta) & =\lim _{h \rightarrow 0} \frac{\sin (\theta+h)-\sin \theta}{h} \\ & =\lim _{h \rightarrow 0} \frac{\sin \theta \cos h+\sin h \cos \theta-\sin \theta}{h} \\ & =\lim _{h \rightarrow 0}\left(\frac{\sin \theta(\cos h-1)}{h}+\frac{\cos \theta \sin h}{h}\right) \\ & =(\sin \theta) \lim _{h \rightarrow 0} \frac{\cos h-1}{h}+(\cos \theta) \lim _{h \rightarrow 0} \frac{\sin h}{h} \\ & =(\sin \theta)(0)+(\cos \theta)(1) \\ & =\cos \theta \quad \mathbf{A G} \end{aligned}$	B1* M1* A1 M1(dep*) A1	Correct expression for the derivative Expands the compound angle (allow a sign error in the formula) Correct expression Groups the $\sin \theta$ terms and the $\cos \theta$ terms and attempts to apply the limit Complete and convincing proof with no errors seen and correct limiting process seen No consideration of limits is A0

9 (a)	p and q are odd numbers Let $p=2 n+1$ and $q=2 m+1$, where n and m are (positive) integers Then $\begin{aligned} p^{2}+q^{2} & =(2 n+1)^{2}+(2 m+1)^{2} \\ & =4 n^{2}+4 n+1+4 m^{2}+4 m+1 \\ & =2\left(2 n^{2}+2 m^{2}+2 n+2 n+1\right) \end{aligned}$ which is even. So the statement is true	B1 M1 A1	Deduces that p and q must both be odd Attempts to characterise p and q as potentially distinct odd integers and find the sum of the squares Complete, convincing and technical proof (need to see p and q explicitly defined and n, m defined as integers) with no errors and conclusion Note 1: if you don't see $p=2 n+1$ and $q=2 m+1$, but you do see $(2 n+1)^{2}+(2 m+1)^{2}$ then give the M1 by implication (but the A1 is withheld unless characterisation is clear) Note 2: if p and q are given the same characterisation or n is used for both (for example), then M0 A0 Note 3: unproven statements such as 'sum of odd number is odd' are not good enough for the M1
9 (b)	Suppose for a contradiction that there are a finite number of primes. Let $p_{1}, p_{2}, \ldots, p_{k}$ be a collection of all the primes. Consider the number $P=p_{1} p_{2} \ldots p_{k}+1$ (P must have a prime factor but) none of the primes p_{1}, p_{2}, \ldots, p_{k} divide P, so P must be prime	M1* M1 (dep*) A1	Attempts a proof by contradiction, assuming that there are finitely many primes Constructs the number P Complete and convincing proof with clear reasoning for why the construction of P implies the existence of another prime
$\begin{aligned} & 9(b) \\ & \text { ALT } \end{aligned}$	Suppose for a contradiction that there are a finite number of primes. Then the largest prime exists and let p_{k} be this prime Consider $P=p_{k}!+1$. (P must have a prime factor but) none of p_{k} or any of the smaller primes divide P, so P must be prime	M1* M1 (dep*) A1	Attempts a proof by contradiction, assuming that there are finitely many primes Constructs the number P Complete and convincing proof with clear reasoning for why the construction of P implies the existence of another prime

10 (a) (i)	$\begin{aligned} & \begin{aligned} y & =-2\left(x^{2}-3 x\right)+8 \\ & =-2\left[\left(x-\frac{3}{2}\right)^{2}-\frac{9}{4}\right]+8 \\ & =-2\left(x-\frac{3}{2}\right)^{2}+\frac{9}{2}+8 \\ & =-2\left(x-\frac{3}{2}\right)^{2}+\frac{25}{2} \end{aligned} \\ & \text { so } a=-2, b=-\frac{3}{2} \text { and } c=\frac{25}{2} \end{aligned}$	M1 A1 A1	[3]	Extracts a factor of -2 and attempts to complete the square on their left-over expression Correct unsimplified expression Completes the square correctly, obtaining the answer in the required form or values of a, b and c stated
10 (a) (ii)	Coordinates of the maximum point is $\left(\frac{3}{2}, \frac{25}{2}\right)$	B1 B1ft		Maximum point Correct coordinates ft their 10(a)
10 (b)		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	[3]	Correct shape of the graph Correct x intersections Correct y intersection
10 (c)	$\begin{aligned} & -2 x^{2}+6 x+8=k(x+2) \Rightarrow-2 x^{2}+6 x+8=k x+2 k \\ & \Rightarrow 2 x^{2}+k x-6 x+2 k-8=0 \\ & \Rightarrow 2 x^{2}+(k-6) x+(2 k-8)=0 \quad \text { AG } \end{aligned}$	M1 A1		Eliminates y from the two equations and attempts to move all the terms to one side Complete and convincing proof with no errors seen

10 (d)	If the curve and line are tangent, then they only intersect once, so $(k-6)^{2}-4(2)(2 k-8)=0$ $\Rightarrow k^{2}-12 k+36-8(2 k-8)=0$ $\Rightarrow k^{2}-28 k+100=0$ $\begin{aligned} & k=\frac{-(-28) \pm \sqrt{(-28)^{2}-4(1)(100)}}{2(1)} \\ & \Rightarrow k=14 \pm 4 \sqrt{6} \end{aligned}$	M1* A1 M1 (dep*) A1	Sets discriminant of the equation equal to 0 Obtains the correct 3TQ Complete method to solve their quadratic for k Use of a calculator does not score the method mark if it leads to the wrong answer Correct values of k
11 (a)	$\begin{aligned} & 6=a+d \\ & -7=a+6 d \\ & \Rightarrow 13=-5 d \\ & \Rightarrow d=-\frac{13}{5} \\ & a=6-d=6+\frac{13}{5}, \text { so } a=\frac{43}{5} \end{aligned}$	B1 B1 M1 A1 A1 [5]	One equation correct A second correct equation Attempts to solve their simultaneous equations Correct value of a or d Correct value of a and d
11 (b)	First term $=1.05$, common difference $=0.10$ In the nth week, she donates $150 \times 0.025=£ 3.75$ Hence $3.75=1.05+(n-1)(0.10) \Rightarrow n=28$ So sum of donations over the n week period is $S_{28}=\frac{28}{2}[2(1.05)+(28-1)(0.10)]=£ 67.20$	B1 B1 M1 A1 M1 A1 [6]	Correct first term and common difference of sequence seen or implied at any stage Correct amount of donation in the nth week seen or implied at any stage Sets up correct equation and attempts to find n Correct value of n Uses their values of a and d and their n to find S_{n} Correct sum of donations with units (accept 6720p)

12	SUBSTITUTION (R1)	M1	Chooses to use substitution. This is an overall process mark. Award for: 1) attempting use substitution $u=\ldots$, changing terms to u 's 2) integrating and using appropriate limits
	Let $u=2-x$, then $x=2-u$ and $d x=-d u$ When $x=1, u=1$ and when $x=-1, u=3$	B1	States substitution $u=2-x$ and a correct $d x$ in terms of $d u$ (or equivalent)
	$\begin{aligned} & \text { So } \int_{-1}^{1} 5 x \sqrt{2-x} d x=\int_{3}^{1} 5(2-u) \sqrt{u}(-d u) \\ & =\int_{3}^{1}(-10 \sqrt{u}+5 u \sqrt{u}) d u \end{aligned}$	M1*	Attempts to get all aspects of the integral in terms of u 's Condone slips in signs and coefficients
	$=\left[-10 u^{\frac{3}{2}}\left(\frac{2}{3}\right)+5 u^{\frac{5}{2}}\left(\frac{2}{5}\right)\right]_{3}^{1}$	$\begin{aligned} & \text { M1**(dep*) } \\ & \text { A1 } \end{aligned}$	States or implies integral of the form $a u^{3 / 2}+b u^{5 / 2}$ Correct integral
	$\begin{aligned} & =-\frac{20}{3}(1)^{\frac{3}{2}}+2(1)^{\frac{5}{2}}+\frac{20}{3}(3)^{\frac{3}{2}}-2(3)^{\frac{5}{2}} \\ & =-\frac{20}{3}+2+\frac{20}{3} \sqrt{27}-2 \sqrt{243} \\ & =-\frac{14}{3}+20 \sqrt{3}-18 \sqrt{3} \\ & =2 \sqrt{3}-\frac{14}{3} \end{aligned}$	M1(dep**)	Substitutes the correct limits into the integral in the correct order
	$=\frac{1}{3}(6 \sqrt{3}-14) \quad \mathbf{A G}$	A1 [7]	Obtains the given result convincingly with no errors seen

ALT	PARTS (R3)	M1	Chooses to use parts. This is an overall process mark. Award for: 1) Attempting to use parts the correct way around 2) using limits
	$\int_{-1}^{1} 5 x \sqrt{2-x} d x=\left[\frac{5 x(2-x)^{\frac{3}{2}}(2)}{3(-1)}\right]_{-1}^{1}+\frac{2}{3} \int_{-1}^{1} 5(2-x)^{\frac{3}{2}} d x$	B1 M1*	States or implies $\int \sqrt{2-x} d x=-\frac{2}{3}(2-x)^{\frac{3}{2}}$ Uses parts correctly once and obtains expression of the form $A x(2-x)^{\frac{3}{2}}+B \int(2-x)^{\frac{3}{2}} d x$
	$=\left[-\frac{-}{3} x(2-x)^{2}\right]_{-1}+\frac{1}{3}\left[\frac{5(-1)}{-1}\right.$	M1**(dep*)	Integrates a second time to obtain integral of the form $P x(2-x)^{\frac{3}{2}}+Q(2-x)^{\frac{5}{2}}$
		A1	Correct integral of $-\frac{10}{3} x(2-x)^{\frac{1}{2}}-\frac{4}{3}(2-x)^{\frac{2}{2}}$ seen or implied This may be partitioned as in the mark scheme so you may see the integral in separate parts (the partitioned parts may be evaluated separately also)
	$\begin{aligned} & =-\frac{10}{3}(1)(1)^{\frac{3}{2}}+\frac{2}{3}(-2)(1)^{\frac{5}{2}}+\frac{10}{3}(-1)(3)^{\frac{3}{2}}+\frac{2}{3}(2)(3)^{\frac{5}{2}} \\ & =-\frac{10}{3}-\frac{4}{3}-\frac{10}{3} \sqrt{27}+\frac{4}{3} \sqrt{243} \\ & =-\frac{14}{3}-10 \sqrt{3}+12 \sqrt{3} \end{aligned}$	M1(dep**)	Substitutes correct limits into their integral in the correct order
	$\begin{aligned} & =2 \sqrt{3}-\frac{14}{3} \\ & =\frac{1}{3}(6 \sqrt{3}-14) \quad \mathbf{A G} \end{aligned}$	A1 [7]	Obtains the given result convincingly with no errors seen

13 (a)	e.g. The liquid's surface is a circle of radius 1 m and so has area π	B1 [1]	Any sensible explanation/illustration of why $A=\pi$
13 (b)	$\begin{aligned} & \pi \frac{d h}{d t}=-0.016 \pi \sqrt{h} \\ & \Rightarrow \frac{1}{\sqrt{h}} \frac{d h}{d t}=-0.016 \\ & \Rightarrow \int \frac{1}{\sqrt{h}} d h=\int-0.016 d t \\ & \Rightarrow 2 \sqrt{h}=-0.016 t+c \end{aligned}$ $\begin{aligned} & \text { When } t=0, h=4 \text {, so } c=2 \sqrt{4}=4 \\ & \Rightarrow 2 \sqrt{h}=4-0.016 t \\ & \Rightarrow \sqrt{h}=2-0.008 t \\ & \Rightarrow h=(2-0.008 t)^{2} \quad \text { AG } \end{aligned}$	B1* B1(dep*) M1 A1	Separates variables correctly Attempted integration of one of the sides Uses initial conditions to find their c in an expression which contains the terms at and $b \sqrt{ } h, a, b \neq 0$ Obtains the given result convincingly with no errors seen
13 (c)	Tank is empty when $h=0$, i.e. $(2-0.008 t)^{2}=0$ $\begin{aligned} & \Rightarrow 2-0.008 t=0 \\ & \Rightarrow t=250 \mathrm{~s} \end{aligned}$ so 4.17 minutes	M1 A1 A1 [3]	Sets $h=0$ and attempts to re-arrange for t If they expand into a 3 TQ , must see a valid attempt to solve this Correct value of t in seconds Correct value of t in minutes
13 (d)	e.g. The area of the liquid's surface now changes as the liquid drains	B1 [1]	Correct explanation

