Exercise 7.1

A liquid is in equilibrium with its vapour in a sealed container at a
fixed temperature. The volume of the container is suddenly
increased.
a. what is the initial effect of the change on vapour pressure?
b. How do rates of evaporation and condensation change initially?
c. What happens when equilibrium is restored finally and what will
be the final vapour pressure?

CORRECT ANSWER: N//A

Watch Video Solution On Doubtnut App

What is K_{c} for the following equilibrium concentration of each substance is:

$$
\begin{aligned}
& {\left[\mathrm{SO}_{2}\right]=0.60 \mathrm{M},\left[\mathrm{O}_{2}\right]=0.82 \mathrm{M} \text { and }\left[\mathrm{SO}_{3}\right]=1.90 \mathrm{M} ?} \\
& 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{SO}_{3}(g)
\end{aligned}
$$

CORRECT ANSWER: 12.229

Watch Video Solution On Doubtnut App

Exercise 7.3

At a certain temperature and a total pressure of $10^{5} \mathrm{~Pa}$, iodine vapour contains 40% by volume of Iatoms, Calculate K_{p} for the equilibrium.
$I_{2(g)} \Leftrightarrow 2 I_{(g)}$

CORRECT ANSWER: $2.67 X X 10^{4}$

Watch Video Solution On Doubtnut App $>$

Exercise 7.4

Write the expression for the equilibrium constant K_{c} for each of the following reactions:
a. $2 \mathrm{NOCl}(g) \Leftrightarrow 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g)$
b. $2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(s) \Leftrightarrow 2 \mathrm{CuO}(s)+4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
c.

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(a q)+\mathrm{H}_{2} \mathrm{O}(1) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q) \\
& \text { d. } \mathrm{Fe}^{3+}(a q)+3 O H^{?}(a q) \Leftrightarrow \mathrm{Fe}(\mathrm{OH})_{3}(s) \\
& \text { e. } \mathrm{I}_{2}(s)+5 \mathrm{~F}_{2} \Leftrightarrow 2 \mathrm{IF}_{5}
\end{aligned}
$$

CORRECT ANSWER: N//A

Find out the value of K_{c} for each of the following equilibrium from
the value of K_{p} :
a. $2 \mathrm{NOCl}(g) \Leftrightarrow 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g), K_{p}=1.8 \times 10^{-2}$ at 500 K
b. $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g), K_{p}=167$ at 1073 K

CORRECT ANSWER: (I) $4.33 \times X 10^{-4}$ (II) 1.90

Watch Video Solution On Doubtnut App $\boldsymbol{\rightharpoonup}$

Exercise 7.6

For the following equilibrium, $K_{c}=6.3 \times 10^{14} a t 1000 K$
$N O(g)+O_{3}(g) \Leftrightarrow N O_{2}(g)+O_{2}(g)$
Both the forward and reverse reactions in the equilibrium are
elementary bimolecular reactions. What is K_{c}, for the reverse

CORRECT ANSWER: $1.59 \times X 10^{-15}$

Watch Video Solution On Doubtnut App $\boldsymbol{\otimes}$

Exercise 7.7

Explain why pure liquids and solids can ignored while writing the equilibrium constant expression?

CORRECT ANSWER: N//A

Watch Video Solution On Doubtnut App

Exercise 7.8

Reaction between nitrogen and oxygen takes place as following:
$2 N_{2(\mathrm{~g})}+O_{2} \Leftrightarrow 2 \mathrm{~N}_{2} O_{(\mathrm{g})}$
If a mixture of $0.482 \mathrm{~mole}_{2}$ and 0.933 mole of O_{2} is placed in a reaction vessel of volume 10litre and allowed to form $\mathrm{N}_{2} \mathrm{O}$ at a temperature for which $K_{c}=2.0 \times 10^{-37}$ litremol $^{-1}$. Determine the
composition of equilibrium mixture.

CORRECT ANSWER: $\left[N_{2}\right]=0.0482 \mathrm{MOLL}^{-1}$,
$\left[O_{2}\right]=0.0933 \mathrm{MOLL}^{-1} \cdot\left[N_{2} O\right]=6.6 X X 10^{-21} \mathrm{MOLL}^{-1}$

Watch Video Solution On Doubtnut App $\boldsymbol{\nabla}$

Exercise 7.9

Nitric oxide reacts with bromine and gives nitrosyl-bromide as per reaction given below:
$2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Br}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NOBr}_{(\mathrm{g})}$.
When 0.087 mole of $N O$ and 0.0437 mole of $B r_{2}$ are mixed in a closed container at constant temperature, 0.0518 mole of NOBr is obtained at equilibrium. Calculate equilibrium amount of nitric oxide and bromine.

CORRECT ANSWER: 0.0352MOL OF NO AND

0.0178MOL OF $B R_{2}$

Exercise 7.10

At $450 K, K_{p}=2.0 \times 10^{10} /$ bar for the given reaction at equilibrium.
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{SO}_{3}(g)$
What is K_{c} at this temperature?

CORRECT ANSWER: $7.47 X X 10^{11} M^{-1}$

Watch Video Solution On Doubtnut App

Exercise 7.11

A sample of $H I(g)$ is placed in flask at a pressure of 0.2 atm . At equilibrium. The partial pressure of $\operatorname{HI}(g)$ is 0.04 atm . What is K_{p} for the given equilibrium?
$2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$

CORRECT ANSWER: 4.0

Watch Video Solution On Doubtnut App $\boldsymbol{>}$

Exercise 7.12

A mixture of 1.57 mol of $\mathrm{N}_{2}, 1.92 \mathrm{~mol}$ of H_{2} and 8.13 mol of NH_{3} is introduced into a 20 L reaction vessel at 500 K . At this temperature, the equilibrium constant K_{c} for the reaction $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ is 1.7×10^{2}. Is the reaction mixture at equilibrium? If not, what is the direction of the net reaction?

CORRECT ANSWER: $Q_{C}=2.379 X X 10^{3}$, NO.

 REACTION IS NOT AT EQUILIBRIUM.
Watch Video Solution On Doubtnut App >

Exercise 7.13

The equilibrium constant expression for a gas reaction is :

$$
K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}
$$

Write the balanced chemical equation corresponding to this
expression.

CORRECT ANSWER: N//A

Watch Video Solution On Doubtnut App

Exercise 7.14

One mole of $\mathrm{H}_{2} \mathrm{O}$ and one mole of CO are taken in a 10litre vessel
and heated to 725 K . At equilibrium, 40percent of water (by mass)
reacts with carbon monoxide according to the equation,
$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{CO}_{(\mathrm{g})} \Leftrightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}$
Calculate the equilibrium constant for the reaction.

Exercise 7.15

At 700 K equilibrium constant for the reaction,

$$
H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}
$$

is 54.8. If 0.5 mollitre ${ }^{-1}$ of $H I_{(g)}$ is present at equilibrium at 700 K , what are the concentrations of $H_{2(g)}$ and $I_{2(g)}$, assuming that we initially started with $H I_{(g)}$ and allowed it to reach equilibrium at $700 K$.

CORRECT ANSWER: $0.068 \mathrm{MOLL}^{-1} \mathrm{EACH}$ OF H_{2} AND I_{2}

Watch Video Solution On Doubtnut App >

Exercise 7.16

What is the equilibrium concentration of each of the substance in
the equilibrium when the initial concentration of $I C l$ was $0.78 M$?
$2 I C l(g) \Leftrightarrow I_{2}(g)+C l_{2}(g), K_{c}=0.14$

CORRECT ANSWER:
$\left[I_{2}\right]=\left[C L_{2}\right]=0.167 M .[I C L]=0.0446 \mathrm{M}$

Watch Video Solution On Doubtnut App (>)

Exercise 7.17

$K_{p}=0.04 \mathrm{~atm}$ at 899 K for the equilibrium shown below. What is the equilibrium concentration of $\mathrm{C}_{2} \mathrm{H}_{6}$ when it is placed in a flask at 4.0atm pressure and allowed to come to equilibrium?
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$

CORRECT ANSWER: $\left[\mathrm{C}_{2} \mathrm{H}_{6}\right]_{E Q}=3.62 \mathrm{ATM}$

Watch Video Solution On Doubtnut App

The ester, ethyl acetate is formed by the reaction between ethanol and acetic acid and equilibrium is represented as:
$\mathrm{CH}_{3} \mathrm{COOH}_{(l)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(l)} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5_{(a q)}}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
(a) Write the concentration ratio (reaction quotient), Q_{e}, for this
reaction. Note that water is not in excess and is not a solvent in this
reaction.
(b) At 293 K , if one starts with 1.00 mole of acetic acid and 0.180 of ethanol, there is 0.171 mole of ehtyl acetate in the final equilibrium mixture. Calculate the equilibrium constant.
(c) Starting with 0.500 mole of ethanol and 1.000 mole of acetic acid and maintaining it at $293 \mathrm{~K}, 0.214$ mole of ethyl acetate is found after some time. Has equilibrium been reached?

CORRECT ANSWER: (I)

$\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right] /\left[\mathrm{CH}_{2} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]$
(II) 3.92 , (III) VALUE OF Q_{C} IS LESS THAN K_{C}

THEREFORE EQUILIBRIUM IS NOT ATTAINED.

Watch Video Solution On Doubtnut App

Exercise 7.19

A sample of pure PCl_{5} was introduced into an evacuted vessel at 473 K . After equilibrium was attained,concentration of PCl_{5} was found to be 0.5×10^{-1} mollitre $^{-1}$. If value of K_{c} is 8.3×10^{-3} mollitre ${ }^{-1}$. What are the concentrations of PCl_{3} and Cl_{2} at equilibrium?

CORRECT ANSWER: $0.02 \mathrm{MOLL}^{-1}$ FOR BOTH.

Watch Video Solution On Doubtnut App

Exercise 7.20

One of the reaction that takes plece in producing steel from iron ore is the reduction of iron(II) oxide by carbon monoxide to give iron
metal and CO_{2}.
$\mathrm{FeO}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}), K_{p}=0.265 \mathrm{~atm}$ at 1050 K
What are the equilibrium partial pressure of CO and CO_{2} at 1050 K
if the partical pressure are: $p_{\mathrm{CO}}=1.4 \mathrm{~atm}$ and $p_{\mathrm{CO}_{2}}=0.80 \mathrm{~atm}$?

CORRECT ANSWER: $\left[P_{C O}\right]=1.739 \mathrm{ATM}$,
$\left[P_{C O 2}\right]=0.461$ ATM.

Watch Video Solution On Doubtnut App (>)

Exercise 7.21

Equilibrium constant, K_{c} for the reaction,
$N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$,
at 500 K is 0.061 litre $^{2} \mathrm{~mole}^{-2}$. At a particular time, the analysis
shows that composition of the reaction mixture is 3.00 mollitre $^{-1} N_{2}$,
2.00 mollitre $^{-1} \mathrm{H}_{2}$, and 0.500 mollitre $^{-1} \mathrm{NH}_{3}$. Is the reaction at equilibrium? If not, in which direction does the reaction tend to
proceed to reach equilibrium?

CORRECT ANSWER: NO, THE REACTION

 PROCEEDS TO FORM MORE PRODUCTS.
Watch Video Solution On Doubtnut App $>$

Exercise 7.22

Bromine monochloride, (BrCl) decomposes into bromine and chlorine and reaches the equilibrium.
$2 B r C l_{(g)} \Leftrightarrow B r_{2(g)}+C l_{2(g)}$
For which $K_{c}=32$ at 500 K . If initially pure BrCl is present at a concentration of 3.30×10^{-3} mollitre $^{-1}$, what is its molar concentration in the mixture at equilibrium?

CORRECT ANSWER: $3 X X 10^{-4} \mathrm{MOLL}^{-1}$

At 1127 K and 1 atm pressure, a gaseous mixture of CO and CO_{2} in equilibrium with solid carbon has $90.55 \% C O$ by mass:
$C_{(s)}+\mathrm{CO}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{CO}_{(\mathrm{g})}$
Calculate K_{c} for the reaction at the above temperature.

CORRECT ANSWER: 0.149

Watch Video Solution On Doubtnut App

Exercise 7.24

Calculate (a) $\Delta G^{?}$ and (b) the equilibrium constant for the
formation of NO and O_{2} at 298 K
$N O(g)+1 / 2 O_{2}(g) \Leftrightarrow N O_{2}(g)$
where
$\Delta_{f} G^{?}\left(N O_{2}\right)=52.0 \mathrm{kJmol}^{-1}$
$\Delta_{f} G^{?}(N O)=87.0 \mathrm{kJmol}^{-1}$
$\Delta_{f} G^{?}\left(O_{2}\right)=0 \mathrm{kJmol}^{-1}$

CORRECT ANSWER: A) $-35.0 K J, B) 1.365 X X 10^{6}$

Watch Video Solution On Doubtnut App

Exercise 7.25

Does the number of moles of reaction products increase, decrease, or remain same when each of the following equilibrium is subjected to a decrease in pressure by increasing the volume?
a. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
b. $\mathrm{CaO}(s)+\mathrm{CO}_{2}(g) \Leftrightarrow \mathrm{CaCO}_{3}(s)$
c. $3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(g)$

CORRECT ANSWER: N//A

Which of the following reactions will get affected by increasing the pressure? Also, mention whether change will cause the reaction the reaction to go into forward of backward direction.
a. $\mathrm{COCl}_{2}(g) \Leftrightarrow \mathrm{CO}(g)+\mathrm{Cl}_{2}(g)$
b. $\mathrm{CH}_{4}(g)+2 S_{2}(g) \Leftrightarrow \mathrm{CS}_{2}(g)+2 \mathrm{H}_{2} \mathrm{~S}(g)$
c. $\mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 \mathrm{CO}(g)$
d. $2 \mathrm{H}_{2}(g)+\mathrm{CO}(g) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(g)$
e. $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
f. $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \Leftrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$

CORRECT ANSWER: N//A

Watch Video Solution On Doubtnut App

The equilibrium constant for the following reaction is 1.6×10^{5} at $1024 K$

$$
H_{2}(g)+B r_{2}(g) \Leftrightarrow 2 H B r(g)
$$

find the equilibrium pressure of all gases if 10.0 bar of HBr is introduced into a sealed container at $1024 K$.

CORRECT ANSWER:

$$
\left[P_{H_{2}}\right]_{E Q}=\left[P_{B R_{2}}\right]_{E Q .}=2.5 \times X 10^{-2} \mathrm{BAR},\left[P_{H B R}\right]=10.0
$$

BAR

Watch Video Solution On Doubtnut App

Exercise 7.28

Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction:
$\mathrm{CH}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}(g)+3 \mathrm{H}_{2}(g)$
a. Write an expression for $K_{-}(\mathrm{p})$ for the above reaction.
b. How will the value of $K _(p)$ and composition of equilibrium mixture be affected by
i. Increasing the pressure
ii. Increasing the temperature
iii. Using a catalyst?

CORRECT ANSWER: N//A

Watch Video Solution On Doubtnut App $\boldsymbol{\rightharpoonup}$

Exercise 7.29

Decribe the effect of:
a. Addition of H_{2}
b. Addition of $\mathrm{CH}_{3} \mathrm{OH}$
c. Removal of $C O$
d. Removal of $\mathrm{CH}_{3} \mathrm{OH}$
on the equilibrium of the reaction:
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(g)$

CORRECT ANSWER: N//A

Watch Video Solution On Doubtnut App 》

Exercise 7.30

At $473 K$, equilibrium constant K_{c} for decomposition of phosphorus pentachloride, PCl_{5} is 8.3×10^{-3}. If decomposition is depicted as,
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g) \Delta_{r} H^{?}=124.0 \mathrm{kJmol}^{-1}$
a. Write an expression for K_{c} for the reaction.
b. What is the value of K_{c} for the reverse reaction at the same
temperature?
c. What would be the effect on K_{c} if
i. More $P C l_{5}$ is added
ii. Pressure is increased
iii. The temperature is increased?

Dihydrogen gas used in Haber's process is produced by reacting methane from natural gas with high temperature steam. The first stage of the two 2 stage reaction involves the formation of $C O$ and
H_{2}. In second stage, CO formed in first stage is reacted with more steam in water gas shift reaction,
$\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)$
If a reaction vessel at $400 C$ is charged with an equimolar mixture of
CO and steam such that $p_{\mathrm{CO}}=p_{\mathrm{H}_{2} \mathrm{O}}=4.0$ bar, what will be the partial pressure of H_{2} at equilibrium? $K_{p}=0.1$ at $400 C$.

CORRECT ANSWER: $\left[\mathrm{H}_{2}\right]_{E Q}=0.96 \mathrm{BAR}$

Predict which of the following reactions will have appreciable concentration of rectants and products:

$$
\text { a. } C l_{2}(g) \Leftrightarrow 2 C l(g), K_{c}=5 \times 10^{-39}
$$

b. $\mathrm{Cl}_{2}(g)+2 \mathrm{NO}(g) \Leftrightarrow 2 \mathrm{NOCl}(g), K_{c}=3.7 \times 10^{8}$
c. $\mathrm{Cl}_{2}(g)+2 \mathrm{NO}_{2}(g) \Leftrightarrow 2 \mathrm{NO}_{2} \mathrm{Cl}(g), K_{c}=1.8$

CORRECT ANSWER: N//A

Watch Video Solution On Doubtnut App

Exercise 7.33

The value of K_{c} for the reaction $3 O_{2}(g) \Leftrightarrow 2 O_{3}(g)$ is 2.0×10^{-50} at
25 C . If the equilibrium concentration of O_{2} in air at 25 C is
1.6×10^{-2}, what is the concentration of O_{3} ?

Watch Video Solution On Doubtnut App

Exercise 7.34

The reaction, $\mathrm{CO}(g)+3 \mathrm{H}_{2}(g) \Leftrightarrow \mathrm{CH}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(g)$ is at equilibrium at 1300 K in a $1 L$ flask. It also contains 0.30 mol of
$\mathrm{CO}, 0.10 \mathrm{~mol}$ of H_{2} and 0.02 mol of $\mathrm{H}_{2} \mathrm{O}$ and an unknown amount of CH_{4} in the flask. Determine the concentration of CH_{4} in the mixture. The equilibrium constant K_{c} for the reaction at the given temperature us 3.90.

CORRECT ANSWER: $5.85 X X 10^{-3}$

Watch Video Solution On Doubtnut App

Exercise 7.35

What is meant by the conjugate acid-base pair? Find the conjugate acid/ base for the following species:
$\mathrm{HNO}_{2}, \mathrm{CN}^{?}, \mathrm{HClO}_{4}, \mathrm{~F}^{?}, \stackrel{?}{\mathrm{OH}}, \mathrm{CO}_{3}^{2-}$, and S^{2-}

CORRECT ANSWER:

$\mathrm{NO}_{2^{-}}, \mathrm{HCN}, \mathrm{CLO}_{4}, \mathrm{HF}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3^{-}}, \mathrm{HS}^{-}$

Watch Video Solution On Doubtnut App

Exercise 7.36

Which of the followings are Lewis acids: $\mathrm{H}_{2} \mathrm{O}, \mathrm{BF}_{3}, \mathrm{H}^{\oplus}$ and NH_{4} ?

CORRECT ANSWER: $\mathrm{BF}_{3}, \mathrm{H}^{+}, \mathrm{NH}_{4}+$

Watch Video Solution On Doubtnut App $\boldsymbol{\nabla}$

Exercise 7.37

Write the conjugate bases for the following Brddotonsted acids
(a) HF (b) $\mathrm{H}_{2} \mathrm{SO}_{4}$ (c) $\mathrm{HCO}_{3}^{?}$

CORRECT ANSWER: $\mathrm{F}^{-}, \mathrm{HSO}_{4^{-}}, \mathrm{CO}_{3^{2-}}$

Watch Video Solution On Doubtnut App $>$

Exercise 7.38

Wirte the conjugate acids for the following Brdddotosted bases:
?
a. NH_{2} b. NH_{3} c. HCOO ?

CORRECT ANSWER: $\mathrm{NH}_{3}, \mathrm{NH}_{4}{ }^{+}, \mathrm{HCOOH}$

Watch Video Solution On Doubtnut App

Exercise 7.39

The species: $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}^{?}, \mathrm{HSO}_{4}^{?}$ and NH_{3} can act both as Bronsted acids and bases. For each case give the corresponding conjugate acid and base.

Exercise 7.40

Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base:
?
a. $O H, b . F^{?}, c . H^{\oplus}, d . B C l_{3}$

CORRECT ANSWER: N//A

Watch Video Solution On Doubtnut App

Exercise 7.41

The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} M$. What is its $p H ?$

CORRECT ANSWER: 2.42

The $p H$ of a sample of vinegar is 3.76 , Calculate the concentration of hydrogen ion in it.

CORRECT ANSWER: $1.7 X X 10^{-4} M$

Watch Video Solution On Doubtnut App

Exercise 7.43

The ionization constant of $H F, H C O O H$ and $H C N$ at 298 K are $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ and 4.8×10^{-9} respectively. Calculate the ionization constant of the corresponding conjugate base.

CORRECT ANSWER:

$$
F^{-}=1.5 X X 10^{-11}, H C O O^{-}=5.6 X X 10^{-11}, C N^{-}=2.08 X X 10^{-6}
$$

The ionization constant of phenol is 1.0×10^{-10}. What is the concentration of phenolate ion in 0.05 M solution of phenol? What will be its degree of ionization if the solution is also $0.01 M$ in sodium phenolate?

CORRECT ANSWER: [PHENOLATE ION]
 $=2.2 X X 10^{-6}, A L P H A=4.47 X X 10^{-5}, A L P H A$ IN SODIUM

PHENOLATE $=10^{-8}$

Watch Video Solution On Doubtnut App >

Exercise 7.45

The first ionization constant of $H_{2} S$ is 9.1×10^{-8}. Calculate the concentration of $H S^{?}$ ion in its $0.1 M$ solution. How will this
second dissociation constant if $H_{2} S$ is 1.2×10^{-13}, calculate the concentration of S^{2-} under both conditions.

> CORRECT ANSWER: $\left[H S^{-}\right]=9.54 X X 10^{-5}$, IN
> $0.1 \mathrm{MHCL}\left[H S^{-}\right]=9.1 X X 10^{-8} M,\left[S^{2-}\right]=1.2 \times X 10^{-13} \mathrm{M}, \mathrm{IN}$
> $0.1 \mathrm{MHCL}\left[S^{2-}\right]=1.09 X X 10^{-19} \mathrm{M}$

Watch Video Solution On Doubtnut App

Exercise 7.46

The ionization constant of acetic acid 1.74×10^{-5}. Calculate the degree of dissociation of acetic acid in its $0.05 M$ solution. Calculate the concentration of acetate ion in the solution and its $p H$.

CORRECT ANSWER: $\left[A C^{-}\right]=0.00093, P H=3.03$

Watch Video Solution On Doubtnut App

It has been found that the $p H$ of a $0.01 M$ solution of an organic acid is 4.15. Calculate the concentration of the anion, the ionization constant of the acid and its $p K_{a}$.

CORRECT ANSWER:

$$
\left[A^{-}\right]=7.08 X X 10^{-5} M, K_{A}=5.08 X X 10^{-7}, P K_{A}=6.29
$$

Watch Video Solution On Doubtnut App

Exercise 7.48

Assuming complete dissociation, calculate the pH of the following
solutions,
a. $0.003 \mathrm{MHCl}, b .0 .005 \mathrm{MNaOH}$,
c. $0.002 \mathrm{MHBr}, d .0 .002 \mathrm{MKOH}$

CORRECT ANSWER: A) 2.52 , B) 11.70 , C) 2.70 , D) 11.30

Watch Video Solution On Doubtnut App >

Exercise 7.49

Calculate the pH of the following solutions:
a. $2 g$ of TlOH dissolved in water to give 2 litre of solution.
b. 0.3 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ dissolved in water to give 500 mL of solution.
c. 0.3 g of NaOH dissolved in water to give 200 mL of solution.
d. 1 mL of 13.6 MHCl is duluted with water to give 1 litre of solution.

CORRECT ANSWER: A) 11.65 , B) $12.21, ~ C) 12.57$, D)

 1.87
Watch Video Solution On Doubtnut App

The degree of ionization of a 0.1 M bromoacetic acid solution is 0.132. Calculate the pH of the solution and the pK _(a) of bromoacetic acid.

CORRECT ANSWER: $\mathrm{PH}=1.88$, PK_(A) $=2.70$

Watch Video Solution On Doubtnut App $\boldsymbol{\nabla}$

Exercise 7.51

The pH of 0.005 M codenine (C_(18)H_(21)NO_(3)) solution is
9.95. Calculate its ionisation constant and pK _(b).

CORRECT ANSWER: $\mathrm{K} _(B)=1.6$ XX 10^(-6), PK_(B) = 5.8

Watch Video Solution On Doubtnut App

What is the pH of 0.001 M aniline solution? The ionization constant of aniline $4.27 \mathrm{xx} 10^{\wedge}(-10)$. Calculate the degree of ionization of aniline in the solution. Also calculate the ionization constant of the conjugate acid of aniline.

CORRECT ANSWER: ALPHA = 6.53 XX $10^{\wedge}(-4), K_{_}(A)$

$=2.35 \mathrm{XX} 10^{\wedge}(-5)$

Watch Video Solution On Doubtnut App

Exercise 7.53

Calculate the degree of ionisation of 0.05 M acetic acid if its pK (a) value is 4.74 . How is the degree of dissociation affected when its solution also contains
a. 0.01 M, b. 0.1 M in HCl ?

The ionisation constant of dimethylamine is $5.4 \times x 10^{\wedge}(-4)$. Calculate its degree of ionization in its 0.02 M solution. What percentage of dimethylamine is ionized if the solution is also 0.1 M in NaOH ?

CORRECT ANSWER: ALPHA $=0.0054$

Watch Video Solution On Doubtnut App

Exercise 7.55

Calculate the hydrogen ion concentration in the following biological
fluids whose pH are given below:
a. Human muscle-fluid, 6.83
b. Human stomach fluid, 1.2
c. Human blood, 7.38

d. Human saliva, 6.4.

CORRECT ANSWER: A) 1.48 XX 10^(-7) M , B) 0.063 , C) $\left.4.17 \mathrm{XX} 10^{\wedge}(-8) \mathrm{M}, \mathrm{D}\right) 3.98 \mathrm{XX}$ 10^(-7)

Watch Video Solution On Doubtnut App $\boldsymbol{\rightharpoonup}$

Exercise 7.56

The pH of milk, black coffee, tomato juice, lemon juice and egg white are $6.8,5.0,4.2,2.2$ and 7.8 respectively. Calculate corresponding hydrogen ion concentration in each.

CORRECT ANSWER: A) 1.5 XX $\left.10^{\wedge}(-7) \mathrm{M}, \mathrm{B}\right) 10^{\wedge}(-5)$ $\left.\mathrm{M}, \mathrm{C}) 6.31 \mathrm{XX} 10^{\wedge}(-5) \mathrm{M}, \mathrm{D}\right) 6.31 \mathrm{XX} 10^{\wedge}(-3) \mathrm{M}$

Watch Video Solution On Doubtnut App

If 0.561 g of (KOH) is dissolved in water to give. 200 mL of solution at 298 K . Calculate the concentration of potassium, hydrogen and hydroxyl ions. What is its pH ?

CORRECT ANSWER: $\left[\mathrm{K}^{\wedge}(+)\right]=\left[\mathrm{OH}^{\wedge}(-)\right]=0.05 \mathrm{M}$,

$$
\left[\mathrm{H}^{\wedge}(+)\right]=2.0 \mathrm{XX} 10^{\wedge}(-13) \mathrm{M}
$$

Watch Video Solution On Doubtnut App

Exercise 7.58

The solubility of $\operatorname{Sr}(\mathrm{OH})_{-}(2)$ at 298 K is $19.23 \mathrm{~g} \mathrm{~L}^{\wedge}(-1)$ of solution.
Calculate the concentrations cf strontium and hydroxyl ions and the pH of the solution.

CORRECT ANSWER: $\left[\mathrm{SR}^{\wedge}(2+)\right]=0.1581 \mathrm{M},\left[\mathrm{OH}^{\wedge}(-)\right]=$ $0.3162 \mathrm{M}, \mathrm{PH}=13.50$

The ionization constant of propionic acid is $1.32 \times x 10^{\wedge}(-5)$.
Calculate the degree of ionization of the acid in its 0.05 M solution and also its pH . What will be its degree of ionization in the solution of 0.01 N HCI ?

CORRECT ANSWER: ALPHA = 1.63 XX 10^(-2), PH =

 3.09, IN PRESENCE OF 0.01 M HCL, ALPHA $=1.32 \mathrm{XX}$ $10^{\wedge}(-3)$
Watch Video Solution On Doubtnut App

Exercise 7.60

The pH of 0.1 M solution of cyanic acid (HCNO) is 2.34. Calculate the ionization constant of the acid and its degree of ionisation in the solution.

CORRECT ANSWER: K_(A) = 2.09 XX 10^(-4) AND

 DEGREE OF IONIZATION $=0.0457$
Watch Video Solution On Doubtnut App $\boldsymbol{\otimes}$

Exercise 7.61

The ionization constant of nitrous acid is $4.5 \times x 10^{\wedge}(-4)$. Calculate the pH of 0.04 M sodium nitrite solution and also its degree of hydrolysis.

CORRECT ANSWER: PH = 7.97. DEGREE OF HYDROLYSIS = 2.36 XX 10^(-5)

Watch Video Solution On Doubtnut App

Exercise 7.62

A 0.02 M solution of pyridinium hydrochloride has $\mathrm{pH}=3.44$.
Calculate the ionization constant of pyridine.

CORRECT ANSWER: K_(B) = 1.5 XX 10^(-9)

Watch Video Solution On Doubtnut App $\boldsymbol{\nabla}$

Exercise 7.63

Predict if the solutions of the following salts are neutral, acidic or basic: $\mathrm{NaCl}, \mathrm{KBr}, \mathrm{NaCN}, \mathrm{NH} _(4) \mathrm{NO} _(3), \mathrm{NaNO}$ _(2) and KF

CORRECT ANSWER: NACL, KBR SOLUTIONS ARE NEUTRAL, NACN, NANO_(2) AND KF SOLUTION ARE BASIC AND NH_(4)NO_(3) SOLUTION IS ACIDIC.

Watch Video Solution On Doubtnut App

Exercise 7.64

The ionization constant of chloroacetic acid is $1.35 \times x 10^{\wedge}(-3)$. What will be the pH of 0.1 M acid and its 0.1 M sodium salt solution?

CORRECT ANSWER: (A) PH OF ACID SOLUTION =

1.9 , (B) PH OF ITS SALT SOLUTION = 7.9

Watch Video Solution On Doubtnut App $>$

Exercise 7.65

Ionic product of water at 310 K is $2.7 \times x 10^{\wedge}(-14)$. What is the pH of netural water at this temperature?

CORRECT ANSWER: $\mathrm{PH}=6.78$

Watch Video Solution On Doubtnut App

Exercise 7.66

Calculate the pH of the resultant mixture:
a. 10 mL of $0.2 \mathrm{M} \mathrm{Ca}(\mathrm{OH}) _(2)+25 \mathrm{~mL}$ of 0.1 M HCl b. 10 mL of $0.01 \mathrm{M} \mathrm{H}_{-}(2) \mathrm{SO}_{_}(4)+10 \mathrm{~mL}$ of $0.01 \mathrm{M} \mathrm{Ca}(\mathrm{OH}) _(2)$.
c. 10 mL of $0.1 \mathrm{M} \mathrm{H} \mathrm{_(2)SO} \mathrm{_(4)+} 10 \mathrm{~mL}$ of 0.1 M KOH .

CORRECT ANSWER: A) 12.6 , B) 7.00 , C) 1.3

Watch Video Solution On Doubtnut App

Exercise 7.67

Determine the solubilities of silver chromate, barium chromate,
ferric hydroxide, lead chloride and mercurous iodide at 298K from
their solubility product constants given in Table 7.9. Determine also
the molarities of individual ions.

CORRECT ANSWER: SILVER CHROMATE $S=0.65$
XX 10^(-4) M; MOLARITY OF AG^(+) = 1.30 XX 10^(-4)
M
MOLARITY OF CRO_(4^(2-)) = 0.65 XX 10^(-4) M;
BARIUM CHROMATE $S=1.1$ XX 10^(-5) M; MOLARITY
OF
BA^(2+) AND CRO_(4^(2-)) EACH IS 1.1 XX 10^(-5) M;

FERRIC HYDROXIDE S = 1.39 XX 10^(-10) M;
MOLARITY OF FE^(3+) = 1.39 XX 10^(-10) M;
MOLARITY OF $\left[\mathrm{OH}^{\wedge}(-)\right]=4.17 \mathrm{XX}$ 10^(-10)M
LEAD CHLORIDE $S=1.59$ XX 10^(-2) M; MOLARITY
OF PB^ $(2+)=1.59 \mathrm{XX} 10^{\wedge}(-2) \mathrm{M}$
MOLARITY OF CL^(-) = 3.18 XX 10^(-2) M;
MERCUROUS IODIDE S = 2.24 XX 10^(-10) M;
MOLARITY OF HG_(2^(2+)) = 2.24 XX 10^(-10)M AND
MOLARITY OF $I^{\wedge}(-)=4.48$ XX 10^(-10) M

Watch Video Solution On Doubtnut App

Exercise 7.68

The solubility product constant of $\mathrm{Ag}_{-}(2) \mathrm{CrO}_{-}(4)$ and AgBr are
1.1 $\mathrm{xx} 10^{\wedge}(-12)$ and $5.0 \mathrm{xx}^{10^{\wedge}(-13)}$ respectively. Calculate the ratio of
the molarities of their saturated solutions.

CORRECT ANSWER: SILVER CHROMATE IS MORE

SOLUBLE AND THE RATIO OF THEIR MOLARITIES =

 91.9
Watch Video Solution On Doubtnut App

Exercise 7.69

Equal volumes of 0.002 M solution of sodium iodate and cupric chlorate are mixed togather. Will it lead to precipitation of copper iodate?
("for cupric iodate" $\left.\mathrm{K}=7.4 \times x 10^{\wedge}(-8)\right)$.

CORRECT ANSWER: NO PRECIPITATE

Watch Video Solution On Doubtnut App

Exercise 7.70

The ionisation constant of benzoic acid (PhCOOH) is 6.46 xx
$10^{\wedge}(-5)$ and $\mathrm{K}_{-}(\mathrm{sp})$ for silver benzoate is $2.5 \mathrm{xx} 10^{\wedge}(-3)$. How many
times is silver benzoate more soluble in a buffer of pH 3.19
compared to its solubility is pure water?

CORRECT ANSWER: SILVER BENOZATE IS 3.317

TIMES MORE SOLUBLE AT LOWER PH

Watch Video Solution On Doubtnut App $\boldsymbol{\nabla}$

Exercise 7.71

What is the maximum concentration of equimolar solutions of
ferrous sulphate and sodium sulphide so that when mixed in equal
volumes, there is no precipitation of iron sulphide? (For iron
sulphide, $\left.\mathrm{K}_{-}(\mathrm{sp})=6.3 \times x 10^{\wedge}(-18)\right)$.

CORRECT ANSWER: THE HIGHEST MOLARITY FOR

THE SOLUTION IS 2.5 XX 10^(-9) M

What is the minimum volume of water required to dissolve 1.0 g of calcium sulphate at 298 K ?
(For calcium sulphate, $\mathrm{K}_{-}(\mathrm{sp})$ is $\left.9.1 \times x 10^{\wedge}(-6)\right)$.

CORRECT ANSWER: 2.43 LITRE OF WATER

Watch Video Solution On Doubtnut App

Exercise 7.73

The concentration of suphide ion in 0.1 M HCl solution saturated with hydrogen sulphide is $1.0 \times \times 10^{\wedge}(-19) \mathrm{M}$. If 10 mL of this is added to 5 mL of 0.04 M solution of the following: FeSO (4),

MnCl_(2), $\mathrm{ZnCl}_{-}(\mathrm{z})$ and $\mathrm{CdCl} _(2)$. In which of these solutions precipitation will take place?

CORRECT ANSWER: PRECIPITATION WILL TAKE

PLACE IN CADMIUM CHLORIDE SOLUTION.

Watch Video Solution On Doubtnut App 》

Solved Example 1

The following concentrations were obtained for the formation of NH_(3) from N_(2) and $H _$(2) at equilibrium at 500 K . $\left[\mathrm{N} _(2)\right]=1.5 \times x 10^{\wedge}(-2) \mathrm{M},\left[\mathrm{H} _(2)\right]=3.0 \times x 10^{\wedge}(-2) \mathrm{M}$, and
$\left[\mathrm{NH} _(3)\right]=1.2 \times x 10^{\wedge}(-2) \mathrm{M}$. Calculate the equilibrium constant.

Watch Video Solution On Doubtnut App

Solved Example 2

At equilibrium, the concentrations of $\mathrm{N}_{-}(2)=3.0 \times \times 10^{\wedge}(-3) \mathrm{M}$,
O_(2)=4.2xx10^(-3) M, and $N O=2.8 \times x 10^{\wedge}(-3) \mathrm{M}$ in a sealed vessel at 800 K . What will be K_(c) for the reaction

N_(2)(g)+O_(2)(g)N_(2)(g)+O_(2)(g)hArr2NO(g)2NO(g)

Watch Video Solution On Doubtnut App $\boldsymbol{>}$

Solved Example 3

PCl_(5), $\mathrm{PCl} _$(3) and $C l _(2)$ are at equilibrium at 500 K and having concentration $1.59 \mathrm{M} \mathrm{PCl} _(3), 1.59 \mathrm{M} \mathrm{Cl}_{\text {_ }}(2)$ and $1.41 \mathrm{M} \mathrm{PCl} \mathrm{_(5)}$.

Calculate K_(c) for the reaction,
PCl_(5) hArr PCl_(3) + Cl_(2)

Watch Video Solution On Doubtnut App

Solved Example 4

The value of $K _(c)=4.24$ at 800 K for the reaction.
$\mathrm{CO}(\mathrm{g})+\mathrm{H} _(2) \mathrm{O}(\mathrm{g})$ hArr $\mathrm{CO} _(2)(\mathrm{g})+\mathrm{H} _(2)(\mathrm{g})$
Calculate equilibrium concentration of $\mathrm{CO} _(2), \mathrm{H} _(2), \mathrm{CO}$ and H_(2)O at 800 K . If only $\mathbf{C O}$ and $H_{-}(2) \mathrm{O}$ are present initially at
concentrations of 0.10 M each.

Watch Video Solution On Doubtnut App $\boldsymbol{\rightharpoonup}$

Solved Example 5

For the equilibrium
$2 \mathrm{NOCl}(\mathrm{g})$ hArr $2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl} _(2)(\mathrm{g})$
the value of the equilibrium constant, $K _(c)$ is $3.75 \times x 10^{\wedge}(-6)$ at
1069 K. Calcualate the K_(p) for the reaction at this temperature?

Watch Video Solution On Doubtnut App 》

Solved Example 6

The value of $K_{-}(p)$ for the reaction

CO_(2)(g)+C(s)hArr2CO(g)

is 3.0 bar at 1000 K . If initially $\mathrm{P}_{_}\left(\mathrm{CO}_{-}(2)\right)=0.48 \mathrm{bar}, \mathrm{P} _(\mathrm{CO})=0$
bar and pure graphite is present then determine equilibrium partial

Watch Video Solution On Doubtnut App $\boldsymbol{\rightharpoonup}$

Solved Example 7

The value of $\mathrm{K}_{-}(\mathrm{c})$ for the reaction 2 A hArr $\mathrm{B}+\mathrm{C}$ is $2.0 \times x 10^{\wedge}(-3)$.
At a given time, the composition of reaction mixture is $[\mathrm{A}]=[\mathrm{B}]=$ $[C]=3 \times x 10^{\wedge}(-4) \mathrm{M}$. In which direction the reaction will proceed?

Watch Video Solution On Doubtnut App

Solved Example 8

13.8 g of $\mathrm{N} _$(2)O_(4) was placed in a 1 L reaction vessel at 400 K
and allowed to attain equilibrium
N_(2)O_(4) (g) hArr 2NO_(2)(g)

The total pressuers at equilibrium was found to be 9.15 bar.
Calculate $K_{-}(c), K_{-}(p)$ and partial pressure at equilibrium.

Solved Example 9

3.00 mol of PCl_(5) kept in 1L closed reaction vessel was allowed to attain equilibrium at 3.80 K . Calculate composition of the mixture at equilibrium K_(c) $=1.80$

Watch Video Solution On Doubtnut App $\boldsymbol{>}$

Solved Example 10

The value of DeltaG $^{\wedge}($? $)$ for the phosphorylation of glycose in glycolysis is $13.8 \mathrm{~kJ} \mathrm{~mol}^{\wedge}(-1)$. Find the value of $\mathrm{K}_{-}(\mathrm{c})$ at 298 K

Watch Video Solution On Doubtnut App $\boldsymbol{>}$

Solved Example 11

Hydrolysis of sucrose gives

"Sucrose" +H_(2)OhArr"Glucose + Fructose"

Equilibrium constant $\mathrm{K} _(\mathrm{c})$ for the reaction is $2 \times \times 10^{\wedge}(13)$ at 300 K .
Calculate $\operatorname{DeltaG}^{\wedge}(?)$ at 300 K.

Watch Video Solution On Doubtnut App $\boldsymbol{\rightharpoonup}$

Solved Example 12

Write the conjugate bases for the following Brddotonsted acids
(a) HF
(b) H_{-} (2)SO (4)
(c) HCO (3)^(?)

Watch Video Solution On Doubtnut App $\boldsymbol{\rightharpoonup}$

Solved Example 13

Wirte the conjugate acids for the following Brdddotosted bases:
a. $\operatorname{overset}(?) \mathrm{NH} _(2)$ b. NH_(3) c. $\mathrm{HCOO}^{\wedge}(?)$

Solved Example 14

The species: $\mathrm{H} _(2) \mathrm{O}, \mathrm{HCO} _(3)^{\wedge}(?), \mathrm{HSO}_{-}(4)^{\wedge}(?)$ and $\mathrm{NH} _$(3) can act both as Bronsted acids and bases. For each case give the corresponding conjugate acid and base.

Watch Video Solution On Doubtnut App $\boldsymbol{>}$

Solved Example 15

Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid//base:
a. overset(?)(O)H, b. $\mathrm{F}^{\wedge}(?)$, c. $\mathrm{H}^{\wedge}(\mathrm{o}+)$, d. $\mathrm{BCl}_{-}(3)$

Watch Video Solution On Doubtnut App $\boldsymbol{>}$

The concentration of hydrogen ion in a sample of soft drink is 3.8 $\mathrm{xx} 10^{\wedge}(-3) \mathrm{M}$. What is its pH ?

Watch Video Solution On Doubtnut App >

Solved Example 17

The pH of $10^{\wedge}(-8) \mathrm{M}$ solution of HCl in water is

Watch Video Solution On Doubtnut App $\boldsymbol{\rightharpoonup}$

Solved Example 18

The ionization constant of HF is $3.2 \times \times 10^{\wedge}(-4)$. Calculate the degree of ionization of HF in its 0.02 M solution. Calculate the concentration of all species present in the solution and its pH .

The pH of 0.1 M monobasic acid is 4.50 . Calculate the concentration of species, $\mathrm{H}^{\wedge}(\mathrm{o}+), \mathrm{A}^{\wedge}($? $)$, and HA at equilibrium. Also determine the value of K_{-}(a) and $p K_{-}$(a) of the monobasic acid.

Watch Video Solution On Doubtnut App $\boldsymbol{\rightharpoonup}$

Solved Example 20

Calculate the pH of 0.08 solution of HOCI (hydrochlorous acid).

The ionisation constant of the acid is $2.5 \mathrm{xx} 10^{\wedge}(-5)$. Determine the percent dissociation of HOCI.

Watch Video Solution On Doubtnut App $\boldsymbol{>}$

Solved Example 21

The pH of 0.004 M hydrazine ($\left.\mathrm{NH} _(2) . \mathrm{NH} _(2)\right)$ solution is 9.7 .

Calculate its ionisation constant K_(b) and pK_(b).

Watch Video Solution On Doubtnut App >

Solved Example 22

Calculate the pH of the solution in which $0.2 \mathrm{M} \mathrm{NH}_{-}(4) \mathrm{Cl}$ and 0.1
M NH_(3) are present. The pK_(b) of ammonia solution is 4.75 .

Watch Video Solution On Doubtnut App >

Solved Example 23

Determine the degree if ionization and pH of 0.05 M of ammonia solution. The ionization constant of ammonia can be taken from

Table 7.7. Also calculate the ionization constant of the conjugate acid of ammonia.
50.0 mL of 0.10 M ammonia solution is treated with 25.0 mL of 0.10 M HCI. If $\mathrm{K} _(\mathrm{b})\left(\mathrm{NH} _(3)\right)=1.77 \times x 10^{\wedge}(-5)$, the pH of the resulting solution will be

Watch Video Solution On Doubtnut App >

Solved Example 25

The pK_(a) of acetic acid and pK_(b) of ammonium hydroxide are
4.76 and 4.75 respectively. Calculate the pH of ammonium acetate
solution.

Watch Video Solution On Doubtnut App $\boldsymbol{\otimes}$

Solved Example 26

Calcualte the solubility of $M_{-}(2) X_{-}(3)$ in pure water, assuming that
neither kind of ion reacts with $\mathrm{H}_{-}(2) \mathrm{O}$. The solubility product of

$$
\mathrm{M}_{-}(2) \mathrm{X} _(3), \mathrm{K}_{-}(\mathrm{sp})=1.1 \times x 10^{\wedge}(-23) .
$$

Watch Video Solution On Doubtnut App $\boldsymbol{>}$

Solved Example 27

The values of $\mathrm{K}_{-}(\mathrm{sp})$ of two sparingly solubles salts, $\mathrm{Ni}(\mathrm{OH}) _(2)$ and AgCN are $2.0 \mathrm{xx} 10^{\wedge}(-15)$ and $6 \mathrm{xx} 10^{\wedge}(-7)$ respectively, which
salt is more soluble? Explain

Watch Video Solution On Doubtnut App >

Solved Example 28

The solubility product of $\mathrm{Ni}(\mathrm{OH}) _(2)$ is $2.0 \times x 10^{\wedge}(-15)$. The molar solubility of $\mathrm{Ni}(\mathrm{OH})_{-}(2)$ in 0.1 M NaOH solution is

LApnedoúbits kallinstant Videosolution paayein

Abhi Doubtnut try karein!

Whatsapp your doubts on
(C) 8400400400

©゚doubtnut

