A Longitudinal Analysis of DaTscan Data from Parkinson's Disease Subjects with and without REM Sleep Behavior Disorder

ISIB 2020

Jasmine Li, Alena Figueroa, and Stephanie Lewis

Project Mentors: Professor Ryan Cho and

Janel Fedler

Background – Parkinson's Disease and RBD

- <u>Parkinson's Disease (PD)</u>: a degenerative neurological disorder caused by the loss of dopamine producing neurons in the brain.
 - Main symptoms: rigidity, tremor, bradykinesia
 - Also non-motor symptoms
- Parkinson's Progressive Markers Initiative (PPMI): an international, multisite study designed to identify and validate potential biomarkers for PD.
- <u>Rapid Eye Movement (REM) Sleep Behavior Disorder (RBD):</u> a condition characterized by abnormal or violent behavior during REM sleep. RBD is accepted as a preclinical symptom of PD.
- DaTscan imaging: a brain imaging method used to capture the density of dopamine transporters (DAT) in the striatum.

Regions of the Brain and DAT

Black and white images: <u>https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/022454sOrig1s000Lbl.pdf</u> Colored images: <u>http://jnm.snmjournals.org/content/51/4/596/F4.expansion.html</u>

Background – PPMI

PARKINSON'S PROGRESSION MARKERS INITIATIVE

Play a Part in Parkinson's Research

- Observational clinical study
- Goal: identifying progression markers to improve PD treatment
- Establish protocol for imaging data and biological samples
- Project data was from PPMI
 - Studied at baseline as well as over period of 5 years

Methods

PPMI assesses subjects' RBD symptoms through the RBD screening questionnaire (RBDSQ).

- Range: [0, 13]
- RBDSQ score of 6 was determined to be the cutoff point between patients who did or did not have RBD.
 - For example, patients with a RBDSQ ≥ 6 were determined to have RBD
- Separated the PD patients into two groups: "RBD" and "No RBD."
- Using longitudinal PPMI data, we ran models to compare the progression of DaTscan measures between PD patients who have RBD and those who do not.

Variable	RBD Group	No RBD Group	p-value
	(N = 108)	(N = 312)	
Age		- İ İ.	
Mean (SD)	61.8 (9.8)	61.6 (9.7)	
Min – Max	34.8 - 82.3	33.5 – 84.9	0.828
Gender			
Female	29 (27%)	116 (37%)	
Male	79 (73%)	196 (63%)	0.068
Race			
White	98 (91%)	290 (93%)	
Black/African-American	3 (3%)	3 (1%)	0 596
Asian	2 (2%)	6 (2%)	0.560
Other	5 (4%)	13 (4%)	
Age at PD diagnosis			
Mean (SD)	59.9 (9.9)	59.6 (10.0)	
Min – Max	32.6 - 81.5	25.4 - 83.0	0.725
Duration of disease (mont	:hs)		
Mean (SD)	6.1 (6.1)	6.8 (6.7)	
Min – Max	0.4 - 26.1	0.7 – 35.8	0.280
Striatum SBR	1		
Mean (SD)	1.4 (0.5)	1.4 (0.4)	
Min - Max	0.3 – 2.6	0.5 – 2.5	0.571
Putamen SBR			
Mean (SD)	0.8 (0.3)	0.8 (0.3)	
Min – Max	0.2 – 2.2	0.3 – 2.2	0.700

Features at Baseline

- T-tests for continuous variables
- Chi-squared tests for categorical variables

Spaghetti Plots and Sample Mean Trajectories

- Measures were taken at baseline and at years 1, 2, and 4
- Measures at years 3 and 5 were taken out of the scheduled window
 - However, they did not noticeably change the sample mean trajectories, so they were included

Mean Putamen Measures for No RBD Group

Mean Putamen Measures for RBD Group

Mean Striatum Measures for No RBD Group

Mean Striatum Measures for RBD Group

Initial Model for Change in Mean DaT Measures Over Time

Assumption: Outcomes will change linearly over time

Goal: To compare the slopes for each group and test H_0 : $\beta_3 = 0$ versus H_A : $\beta_3 \neq 0$. Population:

 $E(SBR) = \beta_0 + \beta_1 \cdot year + \beta_2 \cdot RBD + \beta_3 \cdot year \cdot RBD$

Estimate:

$$\widehat{E(SBR)} = \widehat{\beta_0} + \underbrace{\widehat{\beta_1} \cdot year}_{\text{Time Effect}} + \underbrace{\widehat{\beta_2} \cdot RBD}_{\text{RBD Effect}} + \underbrace{\widehat{\beta_3} \cdot year \cdot RBD}_{\text{Interaction Effect}}$$

The RBD indicator equals 1 if the PD subject has RBD and 0 if the PD subject does not have RBD.

• No RBD Group:

$$\widehat{E(SBR)} = \widehat{\beta_0} + \widehat{\beta_1} \cdot year$$

RBD Group:

 $\widehat{E(SBR)} = (\widehat{\beta}_0 + \widehat{\beta}_2) + (\widehat{\beta}_1 + \widehat{\beta}_3) \cdot year$

GEE Results

 We used an autoregressive correlation structure (arl) to account for within-subject correlation.

Region: Putamen

	Coefficient	Estimate	SE	p-value
	Intercept	0.821	0.0156	< 0.001
	Year	-0.067	0.003	< 0.001
	RBD	-0.027	0.036	0.460
>	RBD:year	-0.003	0.007	0.650

 $\widehat{E(SBR_P)} = 0.821 - 0.067 \cdot year - 0.027 \cdot RBD - 0.003 \cdot year \cdot RBD$

Region: Striatum

Coefficients	Estimate	SE	p-value
Intercept	1.405	0.021	< 0.001
Year	-0.094	0.004	< 0.001
RBD	-0.037	0.048	0.447
RBD:year	-0.020	0.008	0.017

 $E(SBR_S) = 1.405 - 0.094 \cdot year - 0.037 \cdot RBD - 0.020 \cdot year \cdot RBD$

Linear Trends for No RBD and RBD Groups

10

Adjusting the Model for Covariates

where the age of the subject and the duration of PD since diagnosis are the values at baseline.

GEE Results

Region: Putamen

Coefficients	Estimate	SE	p-value
Intercept	0.983	0.092	<0.001
Year	-0.067	0.003	<0.001
RBD	-0.027	0.037	0.458
RBD:year	-0.003	0.007	0.616
Age	-0.003	0.001	0.033
Gender	0.013	0.027	0.628
Duration	-0.034	0.019	0.076

Region: Striatum

Coefficients	Estimate	SE	p-value
Intercept	1.731	0.129	<0.001
Year	-0.094	0.004	<0.001
RBD	-0.033	0.049	0.496
RBD:year	-0.020	0.008	0.015
Age	-0.006	0.002	0.001
Gender	0.030	0.037	0.420
Duration	-0.007	0.031	0.824

 $E(\widehat{SBR}_{P}) = 0.983 - 0.067 \cdot year - 0.027 \cdot RBD - 0.003 \cdot year \cdot RBD - 0.003 \cdot age + 0.013 \cdot gender - 0.034 \cdot duration$ $E(\widehat{SBR}_{S}) = 1.731 - 0.094 \cdot year - 0.033 \cdot RBD - 0.020 \cdot year \cdot RBD - 0.006 \cdot age + 0.030 \cdot gender - 0.007 \cdot duration$

Conclusion

- Significant interaction between yearly progression and RBD status for <u>mean striatum</u> <u>measure</u>
 - NOT for mean putamen measure
- Additional 0.020 reduction in striatum measure per year for RBD patients
- Statistical significance \neq Clinical significance
- Underlying cause for this difference between RBD / RBD no is unknown

Acknowledgement

- Ryan Cho, PhD. Assistant Professor, Dept. of Biostatistics, University of Iowa
- Janel Fedler, PhD. Biostatistician, Clinical Trials Statistical and Data Management Center
- All the biostatistics faculty
- Our ISIB cohort
- Sponsored by the National Heart Lung and Blood Institute (NHLBI), grant # HL-147231.

National Heart, Lung, and Blood Institute

References

Bajaj N, Hauser RA, Grachev ID. (2013). Clinical utility of dopamine transporter single photon emission CT (DaT-SPECT) with (¹²³I) ioflupane in diagnosis of parkinsonian syndromes. Journal of Neurology, Neurosurgery & Psychiatry, **84:**1288-1295.

Booth TC, Nathan M, Waldman A. D, Quigley A.-M, Schapira A. H, Buscombe J. (2015): The Role of Functional Dopamine-Transporter SPECT Imaging in Parkinsonian Syndromes, Part 1. In *American Journal of Neuroradiology* 36 (2), 229–235.

Carey, G. (2013). Chapter 9 The General Linear Model (GLM): A gentle introduction. In Quantitative Methods in Neuroscience, 129-140.

Chahine L M, Siderowf A, Barnes J, Seedorff N, Caspell-Garcia C, Simuni T, Coffey CS, Galasko D, Mollenhauer B, Arnedo V, Daegele N, Frasier M, Tanner C, Kieburtz K, Marek K, & The Parkinson's Progression Markers Initiative (2019). Predicting Progression in Parkinson's Disease Using Baseline and 1-Year Change Measures. *Journal of Parkinson's disease*, 9(4), 665–679.

Dauer W, Przedborski, S. (2003). Parkinson's Disease: Mechanisms and Models. Neuron, 39(6), 889-909.

Fitzmaurice, GM, Ravichandran, C. (2008). A Primer in Longitudinal Data Analysis. Circulation, 118(19), 2005-2010.

General Electric Company. (2011). 022454sOrig1s000Lbl.

Heimer L. (1983). Chapter 8: Basal Ganglia. In The Human Brain and Spinal Cord: Functional Neuroanatomy and Dissection Guide. New York: Springer. 199-209.

Højsgaard S, Halekoh U, Yan J. (2005). The R Package geepack for Generalized Estimating Equations. 2005, 15(2), 1-11.

Howell MJ, Schenck CH (2015). Rapid Eye Movement Sleep Behavior Disorder and Neurodegenerative Disease. JAMA neurology, 72(6), 707–712.

Jankovic J. (2008): Parkinson's disease: clinical features and diagnosis. In Journal of Neurology, Neurosurgery & Psychiatry 79 (4), 368–376.

Kalia LV, Lang AE. (2015). Parkinson's disease. The Lancet, 386(9996), 896-912.

References Continued

Lanciego JL, Luquin N, Obeso J. A. (2012). Functional neuroanatomy of the basal ganglia. Cold Spring Harbor perspectives in medicine, 2(12).

Marek K, Chowdhury S, Siderowf A, Lasch S, Coffey CS, Caspell-Garcia C, ... the Parkinson's Progression Markers Initiative (2018). The Parkinson's progression markers initiative (PPMI) - establishing a PD biomarker cohort. *Annals of clinical and translational neurology*, 5(12), 1460–1477.

Marek K, Jennings D, Lasch S, Siderowf A, Tanner C, Simuni T, ... Taylor P. (2011). The Parkinson Progression Marker Initiative (PPMI). Progress in Neurobiology, 95(4), 629-635.

Mayo Foundation for Medical Education and Research. (2018,). *Parkinson's disease*. Mayo Clinic. <u>https://www.mayoclinic.org/diseases-conditions/parkinsons-disease/symptoms-causes/syc-20376055</u>.

Nomura T, Inoue Y, Kagimura T, Uemura Y, Nakashima K. (2011). Utility of the REM sleep behavior disorder screening questionnaire (RBDSQ) in Parkinson's disease patients. Sleep medicine. 12. 711-3.

Palermo G, Ceravolo R. (2019). Molecular Imaging of the Dopamine Transporter. Cells, 8(8), 872.

Parkinson's Progression Markers Initiative. https://www.ppmi-info.org/.

Simuni T, Caspell-Garcia C, Coffey, CS, Weintraub D, Mollenhauer B, Lasch S, Tanner CM, Jennings D, Kieburtz K, Chahine LM, & Marek K. (2018). Baseline prevalence and longitudinal evolution of non-motor symptoms in early Parkinson's disease: the PPMI cohort. *Journal of neurology, neurosurgery, and psychiatry*, 89(1), 78–88.

Variable	RBD Group (N = 108)	No RBD Group (N = 312)	p-value
MDS-UPDRS part III			
Mean (SD)	22.0 (8.8)	20.4 (8.8)	
Min - Max	6.0-41.0	4.0-51.0	0.109
Missing	0	0	
MDS-UPDRS total			
Mean (SD)	37.5 (14.1)	30.4 (12.3)	
Min - Max	10.0 - 70.0	7.0 – 72.0	< 0.001
Missing	0	1	
Epworth Sleepiness Sc	ale Score		
Mean (SD)	6.5 (4.2)	5.5 (3.1)	
Min - Max	0.0 - 20.0	0.0 - 15.0	0.025
Missing	0	0	
Geriatric Depression S	cale Score		
Mean (SD)	3.0 (2.8)	2.1 (2.3)	
Min - Max	0.0 - 12.0	0.0 - 14.0	0.002
Missing	0	0	

The Brain and Parkinson's Disease

Top: https://commons.wikimedia.org/wiki/File:The structures of the basal ganglia.png Bottom: https://doi.org/10.1016/S0896-6273(03)00568-3