A Machine Learning Approach for Tracking and
Predicting Student Performance in Degree Programs

Jie Xu, Member, IEEE, Kyeong Ho Moon, Student Member, IEEE, and Mihaela van der Schaar, Fellow, IEEE

Abstract—Accurately predicting students’ future performance
based on their ongoing academic records is crucial for effectively
carrying out necessary pedagogical interventions to ensure stu-
dents’ on-time and satisfactory graduation. Although there is a
rich literature on predicting student performance when solving
problems or studying for courses using data-driven approaches,
predicting student performance in completing degrees (e.g. col-
lege programs) is much less studied and faces new challenges:
(1) Students differ tremendously in terms of backgrounds and
selected courses; (2) Courses are not equally informative for
making accurate predictions; (3) Students’ evolving progress
needs to be incorporated into the prediction. In this paper,
we develop a novel machine learning method for predicting
student performance in degree programs that is able to address
these key challenges. The proposed method has two major
features. First, a bilayered structure comprising of multiple base
predictors and a cascade of ensemble predictors is developed
for making predictions based on students’ evolving performance
states. Second, a data-driven approach based on latent factor
models and probabilistic matrix factorization is proposed to
discover course relevance, which is important for constructing
efficient base predictors. Through extensive simulations on an
undergraduate student dataset collected over three years at
UCLA, we show that the proposed method achieves superior
performance to benchmark approaches.

Index Terms—Student performance prediction, data-driven
course clustering, personalized education

I. INTRODUCTION

Making higher education affordable has a significant impact
on ensuring the nations’ economic prosperity and represents
a central focus of the government when making education
policies [1]. Yet student loan debt in the United States has
blown past the trillion-dollar mark, exceeding Americans’
combined credit card and auto loan debts [2]. As the cost
in college education (tuitions, fees and living expenses) has
skyrocketed over the past few decades, prolonged graduation
time has become a crucial contributing factor to the ever-
growing student loan debt. In fact, recent studies show that
only 50 of the more than 580 public four-year institutions in
the United States have on-time graduation rates at or above
50 percent for their full-time students [2].

To make college more affordable, it is thus crucial to
ensure that many more students graduate on time through
early interventions on students whose performance will be
unlikely to meet the graduation criteria of the degree pro-
gram on time. A critical step towards effective intervention
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is to build a system that can continuously keep track of
students’ academic performance and accurately predict their
future performance, such as when they are likely to graduate
and their estimated final GPAs, given the current progress.
Although predicting student performance has been extensively
studied in the literature, it was primarily studied in the contexts
of solving problems in Intelligent Tutoring Systems (ITSs)
[31[4]1[5][6], or completing courses in classroom settings or
in Massive Open Online Courses (MOOC) platforms [7][8].
However, predicting student performance within a degree
program (e.g. college program) is significantly different and
faces new challenges.

First, students can differ tremendously in terms of back-
grounds as well as their chosen areas (majors, specializations),
resulting in different selected courses as well as sequences in
which they take the courses. On the other hand, the same
course can be taken by students in different areas. Since
predicting student performance in a particular course relies
on the student past performance in other courses, a key
challenge for training an effective predictor is how to handle
heterogeneous student data due to the different areas and
interests. In contrast, solving problems in ITSs often follow
routine steps which are the same for all students [9]. Similarly,
predictions of students’ performance in courses are often based
on in-course assessments which are designed to be the same
for all students [7].

Second, students may take many courses but not all courses
are equally informative for predicting students’ future perfor-
mance. Utilizing the student’s past performance in all courses
that he/she has completed not only increases complexity but
also introduces noise in the prediction, thereby degrading the
prediction performance. For instance, while it makes sense to
consider a student’s grade in the course “Linear Algebra” for
predicting his/her grade in the course “Linear Optimization”,
the student’s grade in the course “Chemistry Lab” may have
much weaker predictive power. However, the course corre-
lation is not always as obvious as in this case. Therefore,
discovering the underlying correlation among courses is of
great importance for making accurate performance predictions.

Third, predicting student performance in a degree program
is not a one-time task; rather, it requires continuous tracking
and updating as the student finishes new courses over time.
An important consideration in this regard is that the prediction
needs to be made based on not only the most recent snapshot
of the student accomplishments but also the evolution of the
student progress, which may contain valuable information for
making more accurate predictions. However, the complexity
can easily explode since even mathematically representing the



evolution of student progress itself can be a daunting task.
However, treating the past progress equally as the current
performance when predicting the future may not be a wise
choice either since intuition tells us that old information tends
to be outdated.

In light of the aforementioned challenges, in this paper, we
propose a novel method for predicting student performance in
a degree program. Our main contributions are three-fold.

e« We develop a novel algorithm for making predictions
based on students’ progressive performance states. It
adopts a bilayered structure comprising a base predic-
tor layer and an ensemble predictor layer. In the base
layer, multiple base predictors make local predictions
given the snapshot of the student’s current performance
state in each academic term. In the ensemble layer, an
ensemble predictor issues a prediction of the student’s
future performance by synthesizing the local predictions
results as well as the previous-term ensemble prediction.
The cascading of ensemble predictor over academic terms
enables the incorporation of students’ evolving progress
into the prediction while keeping the complexity low. We
also derive a performance guarantee for our proposed
algorithm.

« We develop a data-driven course clustering method based
on probabilistic matrix factorization, which automatically
outputs course clusters based on large, heterogeneous
and sparse student course grade data. Base predictors are
trained using a variety of state-of-the-art machine learning
techniques based on the discovered course clustering
results. Specifically, only relevant courses in the same
cluster are used as input to the base predictors. This not
only reduces the training complexity but also removes
irrelevant information and reduces noise in making the
prediction.

« We perform extensive simulation studies on an undergrad-
uate student dataset collected over three years across 1169
students at the Mechanical and Aerospace Engineering
department at UCLA. The results show that our proposed
method is able to significantly outperform benchmark
methods while preserving educational interpretability.

The rest of this paper is organized as follows. Section II

discusses the related work. Section III formulates the student
performance prediction problem and provides an overview of
the proposed method. Section IV describes how to discover
course correlations and train the term-wise base predictors.
Section V proposes a novel progressive prediction algorithm to
incorporate students’ evolving performance into the prediction.
Section VI presents the dataset and simulation results. Section
VII concludes the paper.

II. RELATED WORK
A. Student Performance Prediction

Machine learning for education has gained much attention
in recent years. A substantial amount of literature focuses
on predicting student performance in solving problems or
completing courses. Many machine learning techniques, such
as decision trees [10], artificial neural networks [11], matrix

factorization [12], collaborative filters [13] and probabilis-
tic graphical models [14][6], have been applied to develop
prediction algorithms. Most of this work ignores the tem-
poral/sequential effect that students improve their knowledge
over time and treats the prediction as a one-time task. To
take the temporal/sequential effect into account, a three-
mode tensor factorization (on student/problem/time) technique
was developed for predicting student performance in solving
problems in ITSs [15] and a similarity-based algorithm was
proposed to issue predictions of student grades in courses only
when a certain confidence level is reached [16]. However,
due to the aforementioned substantial differences of predicting
student performance in degree programs, these methods are not
applicable in our setting.

Our progressive prediction algorithm uses the ensemble
learning technique, in particular, the Exponentially Weighted
Average Forecaster (EWAF) [17] as a building block to en-
able progressive prediction of student performance and online
updating of the predictor as new student data is received. The
major difference from the conventional EWAF algorithm is
that an ensemble predictor has access to multiple base predic-
tors (experts) as well as the previous-term ensemble predictor,
whose output summarizes the outputs of all previous-term base
predictors (experts) whereas the conventional EWAF algorithm
has access to all experts directly. To our best knowledge, this is
a novel architecture for designing predictors for progressively
expanding input spaces, which significantly reduces design
and implementation complexity and easily scales with the
number of academic terms. In this setting, we prove that each
ensemble predictor still performs asymptotically no worse than
the best base predictor in hindsight among all previous-term
base predictors in the worst case, thereby providing strong
performance guarantee. More importantly, when the best base
predictor is biased towards current-term base predictors, our
algorithm is able to achieve better expected regret than the
conventional method that has access to all experts directly and
treats them equally.

B. Course Relevance Discovery

Our course relevance discovery method is based on the la-
tent factor model [18] and uses the probabilistic matrix factor-
ization algorithm [19] to perform course clustering, which are
extensively used in recommender systems [20][21][22]. The
problem faced by recommender systems is similar to that for
student performance prediction: the dataset in recommender
systems is sparse in the sense that each user has rated only
a small set of items in the entire item space whereas in our
case, each student has taken only a small set of courses in the
entire course space. The latent factor model is therefore used
to discover the hidden latent factor that resolves the sparsity
problem. While recommender systems use the discovered
latent factor to enable similarity matching among users and
make item recommendations, our system uses the discovered
latent factor to cluster relevant courses. It is worth noting
that, in the learning context, sparse factor analysis is used to
estimate a learner’s knowledge of the concepts underlying a
domain and the relationships among a collection of questions
and those concepts [23].



In [24], the authors make a different connection between
recommender systems and student performance prediction.
They develop a collaborative filtering algorithm, which is used
in recommender systems to recommend items to users based
on user similarity, to predict student performance based on stu-
dent similarity. In this paper, we do not develop collaborative
filtering prediction algorithms, although they can be adopted as
base predictors in our method. More broadly, there is a rich
literature on recommending relevant courses or problems to
students based on their associated knowledge level, learning
styles, and feedbacks [25][26][27]. Course sequence recom-
mendation, which considers the specific course constraints,
was studied in [28]. To utilize logged data for course sequence
recommendations and curriculum design, an off-policy esti-
mator was developed to estimate how an unobserved policy
performs given an observed policy [29]. A rank aggregation
framework is adapted for the discovery of optimal course
sequences at the university level [30]. However, whereas this
literature aims to recommend courses/course sequences based
on student backgrounds and past performance, the purpose
of the current work is to predict future performance based
on student backgrounds and past performance for a given
curriculum.

III. PROBLEM FORMULATION
A. System Model

We consider a degree program in which students must
complete a set of courses to graduate in 7' academic terms.
Courses have prerequisite dependencies, namely a course can
be taken only when certain prerequisite courses have been
taken and passed. In general, the prerequisite dependency can
be described as a directed acyclic graph (DAG) (see Figure 1
for an example), denoted by G = (7, &), where J is the set
of courses and & is the set of directed edges. A directed edge
j' — j between two courses 7' and j means that course ;'
is a prerequisite of course j. Let P(j) = {5/ : j/ > j € &}
be the set of (direct) prerequisite courses of 5. Only when all
courses in P(j) have been taken can course j be elected. Note
that if P(j) is an empty set, then course j has no prerequisite
courses. There can be multiple specialized areas in a program
which require different subsets of courses to be completed for
students to graduate. We will focus on the prediction problem
for one area in this department. Nevertheless, data from other
areas will still be utilized for our prediction tasks. The reason
is that data from a single area is often limited while different
areas still share many common courses.

Figure 1 illustrates part of the prerequisite graph of the
undergraduate program in the Mechanical and Aerospace
Engineering (MAE) department at UCLA. In this department,
there are two areas, namely Mechanical Engineering (ME) and
Aerospace Engineering (AE). Since the complete prerequisite
graph is huge, Figure 1 only lists some lower-level courses and
a few higher-level courses. As we can see, ME and AE areas
share most of the lower level courses but they have distinct
upper-level courses.

Students start the program with different backgrounds (e.g.
high school GPAs and SAT scores). Denote student ¢’s back-
grounds by 6; € © where O is the space that includes all
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Fig. 1. Part of the prerequisite graph of MAE program at UCLA.

possible backgrounds. Student backgrounds are considered as
the static features of students which do not change as the
students advance in the program. In each term ¢, student ¢
takes a subsets of courses Sf C J and receives a grade
z;(j) for each of these courses j € S!. The courses that
student i has taken by term ¢ are denoted by S! = Uf_,S7.
The performance state of student 7 at the end of term ¢ is
represented by x! € X} £ [xmin,xmax]‘sﬂ where each entry
corresponds to the grade of the course taken so far. There-
fore, the performance state is expanding over time, namely
xl <z Yt = 1,2,.... We assume the 4.0 GPA scale.
The performance state is considered as the dynamic feature of
students which is evolving over time. The department usually
recommends for each area a sequence in which the students
should take the courses. In reality, students mostly follow the
recommended sequence of core courses. Hence, by disregard-
ing the elective courses, Sf is more or less the same for all
students having the same area. In this paper, we will focus on
the core courses and neglect the elective courses which can
be vastly different across students. Predicting performance in
elective courses will be our future work.

B. Objective

Our objective is to predict the final cumulative GPA (of
the core courses) of a student in a certain area at the end
of each term ¢. Specifically, at the end of each term ¢, the

predictor outputs a prediction (ﬁ: = F'(0;,z}, x2,...,xt)
given student ¢° backgrounds 6; and the evolving performance
x},x?, ..., xl. However, because the cumulative GPA is a
function of all course grades, namely the weighted average

of all course grades
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where ¢(j) is the credit of course j, the GPA prediction will
be more accurate by splitting the known course grades and
the unknown course grades. Therefore, the final GPA can be



predicted by
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In other words, instead of predicting the final GPA directly, we
will focus on predicting the grade of every course j € J*\S*
that has not been taken by the student yet where J* is
the set of required courses by the area under consideration.
Let §;(j) = f;(é)i,a:%,wf, ...,x!) denote the predicted grade
of course j given the student’s backgrounds and evolving
performance state up to term ¢. Note that §;(j) = 2;(j) in
equation (2). We use different letters to better differentiate
what is known (i.e. %) and what is to be predicted (i.e. y(j))
in a given term ¢. We also highlight that the predictor is using
not only a single performance state ! but all the performance
states in the previous terms x}, ..., mffl, thereby incorporating
the evolution of the student’s performance. However, the input
space of the predictor grows exponentially in the number of
terms, thereby making the predictor construction even more
challenging. For expositional brevity, we neglect the index j
for the targeted course in f; whenever it is clear from the
context.

2)

C. Overview of the Proposed Method

In this paper, we propose a novel method for designing
predictors based on the evolving progress of students. The
key idea is that since the input ! of predictor f! for term
t is a superset of the input a:ﬁfl of predictor f'~1 for term
t —1, f* can capitalize on the prediction output §:~* of f~1
by incorporating the incrementally new information x!. This
significantly reduces the complexity of constructing f! and
makes the prediction algorithm scalable.

Our approach to enable such progressive predictions is
based on the ensemble learning technique and integrates offline
learning and online learning. The proposed architecture con-
sists of two layers — a base prediction layer and an ensemble
prediction layer.

o In the base prediction layer, we construct a set of
base predictors H implemented using different predic-
tion algorithms. For each base predictor h € H, let
2, ; = h(6i,x}) denote the prediction result of h for
student ¢ given the student’s static feature and the current
performance state x!. The base predictors are trained
using a dataset consisting of all student data in the
department without differentiating areas to maximally
utilize the data. In fact, predictor h may even be trained
differently for each term ¢’s prediction task. Therefore,
we write h'(0;,z!) rather than h(6;,x!). Learning the
base predictors is done offline.

o In the ensemble prediction layer, we construct an en-
semble predictor for each term. The ensemble predictor
ft for term t synthesizes the output of the previous
ensemble predictor ;&f‘l and those of the base predictors
2, »Vh € H' and makes a final prediction g} based
on g§—1 and zfm,Vh € H!. The ensemble predictor
is learned using student data in the same area since
students having different areas take different courses and
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Fig. 2. System Block Diagram.

in different sequences and hence, the temporal correlation
is likely to be different. Learning the ensemble predictors
is done online.

A system block diagram of the proposed bilayered architecture
for the term ¢ ensemble learning is illustrated in Figure 2.
Although the proposed architecture is easy to understand, a
couple of challenges must be addressed in order to achieve
good prediction performance. The first challenge is how to
construct the base predictors. Although existing off-the-shelf
machine learning algorithms can be used to perform the
prediction task, we would like to construct a base predictor
that is customized to the considered course grade prediction
problem to improve its prediction performance. A specific
consideration in this regard is what information should be
included in the training of the predictor as well as making
the prediction. The second challenge is how to construct the
ensemble predictors and take the temporal correlation into
account. Specifically, this is to answer how to synthesize the
prediction results of the multiple base predictors as well as
the prediction from the previous term. In the next sections,
we will develop novel methods to address these challenges.

IV. OFFLINE LEARNING BASE PREDICTORS

In this section, we describe how to learn a base predictor
h. In fact, we will learn term-wise base predictors ht,vt,
which are the same predictor h trained on different training
datasets. Specifically, to learn ht, we will utilize a training
dataset D' = {«!,y;}iez that contains the performance state
! up to term ¢ for a number of students who have graduated
and earned grades y; for the targeted course. Note that the
students, although they are in the same department, are in
different areas. One may also wonder why not simply train
a single base predictor h based on DT and use it for every
term. This is because in term ¢ < 7', much information in DT
is unavailable yet which may negatively affect the prediction
accuracy given the current performance .

A. Method Overview

An important question when training h’ is how to construct
the (input) feature vector given the student performance states
x!,Vi € . Because students come from different areas as
well as have different interests, the courses in the performance



states can be very different. A straightforward way is to
construct a large feature vector that contains the grade of
courses that have appeared in D!. Entries corresponding to
courses that a student did not take in this vector are filled
with null values. In this way, students have the same feature
vector format. However, there are two major drawbacks for
this method. First, the feature vector can be very large,
especially in the later terms of the program when students have
taken more courses. The problem is more severe since even
though students in different areas may have many courses in
common, they also have considerably many distinct courses. In
addition to the increased complexity, the second drawback is
the possible degraded prediction accuracy due to added noise
since not all courses, even the courses within the same area,
have predictive power for predicting the grade of the targeted
course. Therefore, we will learn the set of courses that are
more relevant to the targeted course. Notice that for different
targeted courses, the relevant courses will also be different.
Once the relevant courses are found, the feature vector is
constructed using only elements in x! that corresponds to
the relevant courses. Then our method will utilize various
state-of-the-art supervised learning algorithms to train the base
predictors. In this paper, we do not invent new supervised
learning algorithms but only focus on learning the relevant
courses.

B. Learning Relevant Courses

One way to determine the relevant courses is by using the
educational domain knowledge. For instance, the prerequisite
dependencies of courses can be used to determine the rele-
vance of different courses. Suppose we want to predict for
course j, then only courses that are prerequisites of j are
considered as the input courses.

Our method in this paper adopts a data-driven approach
to learn the relevant courses in addition to utilizing the
educational domain knowledge. We aim to find course clusters
where relevant courses are grouped in the same cluster. To
this end, we construct a matrix X of size I x J based on DT
where the rows represent students and the columns represent
courses that appeared in D”. We aim to find a factorization
on X such that X = UTV where U is the compressed grade
matrix of size K x I and V is the course-cluster matrix of
size K x J. The physical meaning of this factorization is as
follows. K is the number of course clusters that we try to find.
The matrix V represents how the courses are grouped in these
K clusters. In particular, V}, ; represents the relevance weight
of course j with respect to cluster k. A higher value of V} ;
means that course j is more likely to be grouped in cluster k.
The matrix U represents the students’ performance (grades) in
each cluster. In particular, Uy ; represents student i’s average
performance (grade) in courses belonging to cluster k. Figure
3 illustrates the idea of matrix factorization.

The above problem can be solved using Singular Value
Decomposition (SVD), which aims to minimize || X — U7 V||.
However, student grade matrix X can be sparse since it is
constructed using data from multiple areas and students only
take a subset of courses. When X is constructed using all
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Fig. 3. Illustration of matrix factorization.

courses not only limited to the core courses, it can be highly
sparse. The sparsity results in a difficult non-convex optimiza-
tion problem which cannot be solved using standard SVD
implementations. In this paper, we leverage the probabilistic
matrix factorization method proposed in [19] to deal with the
sparse matrix X, which is detailed as follows.

Probabilistic Matrix Factorization. We define the condi-
tional distribution over the observed course grades as
I J
ITTTIv(

i=1j=1

PXIUV,o%) = XUV o @

where N (x|u,o?) is the probability density function of the
Gaussian distribution with mean w and variance o2, and 1;; is
the indicator function that is equal to 1 if student ¢ takes course
7 and equal to 0 otherwise. We also place zero-mean spherical
Gaussian priors on student and course feature vectors:

I

p(Ulog) = [[N(WUil0,07D), )
’le

p(Vloy) = [TV (V;0,071) )
j=1

The log of the posterior distribution over the student and
course features is given by
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where C' is a constant that does not depend on the parameters.
Fix 02, 0%, 0%, maximizing the log-posterior over U and V
is equivalent to minimizing the following regularized problem

I J

: 1 T Ay 2 Av 2
ggﬁggm( UV + 20N + SV
(N
where \yy = &, Ay = 0‘7—22 and || - || denotes the Frobenius

norm. A local minimum of the objective function can be found
by performing gradient descent in U and V. This model can
be viewed as a probabilistic extension of the SVD model.



In particular, if all course grades have been observed, the
objective reduces to the SVD objective in the limit of prior
variances going to infinity.

In order to estimate the best values of the parameters ) =
(02,0%,0%), we utilize the Expectation-Maximization (EM)
algorithm. The objective is to find the maximum likelihood
estimate of {2 such that

Q) = arg ms%mxp(Xm) = arg m{ezmx/p(X, U, V|Q)dUudv
8)

The EM algorithm works iteratively. In the r-th iteration,
the EM algorithm performs two steps:

« Expectation Step. Compute 9(Q) =
Ewvix.ae-u)[np(U, V[X,Q)], where In p(U, V| X, Q)
is given in (6) and Q=1 is the estimate from the last
iteration. Since the expectation is not in closed form,
we draw Gibbs samples and compute the Monte Carlo
mean.

« Maximization Step. Find Q(") = arg maxg ().

Once U and V are found through probabilistic matrix
factorization, course clustering can then be performed. There
are several ways to perform the clustering, below we describe
two.

o Method 1: Each course j is assigned to a single cluster

k in which the value of the cluster-course matrix V' has
the highest value among all possible K course clusters.
Let k(j) denote the cluster that course j belongs to, then
k(j) = argmaxy Vi ;.

o Method 2: Course clusters are determined using a thresh-
olding rule. Specifically, course j belongs to cluster k if
Vi,; > v where © is a predefined threshold value. In this
case, a course may belong to multiple clusters.

Our simulations adopt Method 1 to perform course clustering.

C. Training Base Predictors

Given the course clustering results, the base predictors
are constructed by implementing off-the-shelf machine learn-
ing algorithms, such as linear regression, logistic regression,
support vector machines, artificial neural networks etc. As
we mentioned before, even for the same predictor, multiple
instances are trained, one for each term. In term ¢, students in
the area under consideration have taken courses S* following
the recommended course sequence. Let k(;*) be the course
cluster to which the targeted course belongs to. For term ¢
base predictor h?, the feature vector &' has a size equal to
ISt N Ni(;+)|- That is, only relevant courses that have been
taken by term t are used in the training for h’. If a student
did not take a course in S NN (;-) (e.g. the student is in a
different area), then the corresponding entry is set to NULL.
Clearly 53’2 is also expanding over ¢ since S! is expanding.
Given the new dataset {Z!, y;};cz, h can be trained by using
any of the off-the-shelf algorithms.

V. ONLINE LEARNING ENSEMBLE PREDICTORS

So far we have obtained a set of base predictors ! for each
term ¢. Let H = |H!| denote the number of base predictors

per term. The next question is how to make predictions using
these base predictors for new students. There would not be
any problem if there were just one term, i.e. 7' = 1 and one
base predictor, i.e. H = 1. However, multiple base predictors
and multiple terms introduce new challenges that (1) how to
synthesize the prediction outcome of base predictors in each
term and (2) how to incorporate the prediction outcome from
previous terms. The second challenge is of particular interest
since it is closely related to incorporating students’ evolving
performance. In this section, we propose an online progressive
prediction architecture based on ensemble learning techniques.

A. Problem Formulation

To formalize the problem, we consider a stochastic setting
where new students arrive in sequence ¢ = 1,2,.... Such a
stochastic setting is in fact suitable for both offline training and
online updating. Given an offline training dataset, the student
arrival sequence can be easily generated according to a random
process. In the online scenario, the ensemble predictors are
able to keep improving themselves using the new student data.
Each student belongs to a student group depending on 6; the
static feature of the student (e.g. high school GPAs and SATs).
The student group can be created by a variety of state-of-the-
art clustering algorithms. Let g; € G be the group of student
i and G be the group space. For instance, G can consist of a
high SAT score student group and a low SAT score student
group.

In each term ¢, each of the base predictor h* € H! makes a
prediction z}, ; = h'(6;,&;) of the grade of a targeted course
7" that student ¢ is supposed to take in a later term using the
static feature 6; as well as the performance vector & restricted
to the relevant courses. Therefore, in term ¢, we have a total
number of ¢ X H prediction results per targeted course, namely
ZZ’NVT < t. Our task is to synthesize these base prediction
results and output a final prediction §!. The reason why we
want to utilize all these base prediction results is that even
though one particular base predictor performs the best in the
offline testing, it may not be the best in the online setting since
the underlying distribution of new students may not be exactly
the same as that of students in the existing dataset. Sticking
to one particular base predictor may end up with a very
suboptimal performance. Note that base predictor h* may not
necessarily perform better than h'~! since it is possible that
the newly added course grade information represents noise.

Before presenting our algorithm, we define a performance
measure which will be useful for the description and the
analysis of our algorithm. The cumulative loss for a term ¢
base predictor h € H! with respect to group g up to student
n is defined as

Ln(hlg) = Zl(zf,myi)l{gi =g}, )
=1

where [(y’,y) is a loss function that characterizes the predic-
tion error. For instance, I(y,y) = (y —y)? for the regression
case and I(y',y) = 1{y # y'} for the classification case. The
overall cumulative loss for a term ¢ base predictor h up to



student n is thus

Ln(h) = Z Ly (hlg)

g€eg

(10)

These loss functions can be easily computed using the
individual prediction of the base predictors and the real-
ized performance of student 1 through n. Let h*(t|g) =
arg minpey- vr<t Ln(h|g) be the best base predictor for
group g among all base predictors up to term ¢ in hindsight
and L**(g) = L,(h*(t|g)|g) be the corresponding minimal
cumulative loss.

Similarly, we define the cumulative loss for a term ¢
ensemble predictor f! with respect to group g of student 1
through n as

Lo(f'9) = > 1@} v)Hgi = g} (11)
i=1
and the overall cumulative loss as
Lo(f) = Lu(f"]9) (12)

geg

These cumulative loss functions will depend on how the
ensemble prediction is made based on the base prediction
results. Our objective is to synthesize the local prediction
results such that the long-term performance of the ensemble
predictor is at least as good as that of the optimal individual
base predictor in hindsight.

B. Progressive Prediction

A major challenge in utilizing all the base prediction results
2}, »VT <t is that the number of these prediction results
grows linearly with the number of terms and can be very large
when ¢t is large. Moreover, even though the previous-term pre-
dictors A7, 7 < ¢ may still add valuable information, in general
their predictive power is less than the current-term predictor
ht and hence should be treated differently. To address these
two issues, we propose a progressive prediction architecture
based on ensemble learning techniques. Specifically, for each
term ¢ we construct an ensemble predictor f¢. The input to f*
is the prediction results of the term ¢ base predictors H! and
the ensemble prediction from the previous term. Due to the
cascading structure, the prediction results of all base predictors
up to term ¢ is implicitly taken into account.

The term ¢ ensemble predictor is learned using the ex-
ponentially weighted average forecaster (EWAF) algorithm.
Specifically, each base predictor A’ is associated with a weight
vector w;(h') and the previous term ensemble predictor f¢~*
is associated with a weight vector v;(f?~1). All these weight
vectors have a size |G| equal to the number of student groups.
Therefore, weights are maintained for each student group.
The weights are updated when the student performance in
the targeted course j* is realized and hence are changing
over the student index ¢. All weight vectors are initialized
to be (1,...,1). For student 4, at the beginning of term ¢,
the ensemble predictor f* makes a prediction ¢! based on a
weighted average of the base prediction results zfm, Vh € H!
and the previous-term ensemble prediction results fol. De-
pending on whether the prediction is a regression problem or a

Student groups
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Fig. 4. Ensemble Prediction and Weight Update.

classification problem, the weighted averaging is deterministic
or probabilistic as follows.

o Regression. The ensemble prediction is the weighted
average of the input predictions:

ot D ohent wi,g(h)zf,h + Ui,g(ftil)@f_l

Y = - 13)
Donent Wig(h) +vig(f1=1)
« Classification. The ensemble prediction is @f‘l with
probability
o (ft—1
Vi,g (f ) — (14)
Zhe?—[ﬁ wi,g(h) + Ui,g(f )
and is z{, with probability
ig(R
wig(h) (15)

Y hent Wig(h) +vig(fi=1)

Using the later realized performance in the targeted course
7% of student i, the weights of the base predictors and the
previous-term ensemble predictor are updated according to
their cumulative loss for group ¢ students. Specifically, the
weights to be applied to student ¢ + 1 are updated to

wf iy ,(h') = exp(—n; Li(h'|g)) (16)
vl (W) = exp(=miLi(f"g)), if g=g; (D)

where 7); is a sequence of input constants. For g # g;, the
weights remain the same. Intuitively, the predictor with a larger
cumulative loss will be assigned with a smaller weight and
hence its prediction for future students will be considered
less important in the ensemble synthesis. Figure 4 illustrates
the ensemble prediction and the weight update. Algorithm 1
provides the pseudo code of the proposed Ensemble-based
Progressive Prediction (EPP) algorithm.

C. Performance Analysis

In this section, we characterize the performance of the
proposed progressive predictor. We study only the case |G| = 1
since the extension is straightforward. We will focus on
the ensemble predictor for a particular term ¢ and compare
it with the best base predictor among terms 1,2,....¢ in
hindsight. Once the performance of ensemble predictor f* is
characterized, characterizing the overall performance of the
progressive predictor is also straightforward. However, since



Algorithm 1 Ensemble-based Progressive Prediction (EPP)
1: Imitialization: L(h') = 0, L(f*) = 0, Vt.
2: for each student 7 do
3 Observe backgrounds 6;, student group g;
4 for term t =1 to T do > Prediction Phase
5 Observe performance state !
6: Extract relevant state i
7
8
9

Receive prediction j; ! from ft-1
Base predictor h € ”Ht predicts z} ; = h*(0;, )
Ensemble predictor f! predicts

o 9 = PG Lo kot )

11: end for

12: Observe true label y;.

13: for term t =1 to T do > Update Phase
14: Compute prediction loss I(3!,y;) and (2! ., ;)
15: Update Lz(ht|gl) — Li_l(ht|gi) + l(Zf’ht; yi)

16: Li(f*""gi) + Li—a (f* g) + 135, v:)

17: Update weights w!, and v}, according to (16)
18: end for

19: end for

the ensemble prediction is deterministic in the regression case
whereas it is probabilistic in the classification case, we analyze
the performance separately for these two cases.

Regression Case. We define the regret of ensemble predic-
tor f* up to student n as the difference between its cumulative
loss L, (f*) and the cumulative loss of the best base predictor
L*t, denoted by Reg'(n) = L, (f*) — L**.

Proposition 1 (Regret for Regression). When the EPP algo-
rithm runs with parameter n; = /8(In(H + 1))/i, then for
any number n of students, the regret of ensemble predictor
ft satisfies (1) Reg'(n) < O(yv/n) and (2) E[Reg'(n)] <
o((t— 23:1 p"T+1)y/nln(H + 1)) assuming that the best
base predictor h* is in term T with probability p™ (we must
have S0 _ p" = 1).

Proof. This proof is largely based on Theorem 2.3 in [17],
which can be establish regret bounds on the performance
difference between f* and the best among ! when we restrict
to the ensemble learning problem in term ¢. In particular, we
have

— min{ L, ( f* D)

<21/ lnH—|—1 \/

Now consider term ¢ — 1, we have the same bound for fi=!

VheH}

(18)

L,(f7') — min{L, ft %) h),Yh € H'™1}
<2,/ ln (H+1)+ \/ H+1 (19)
Combining both bounds, we have
Ln(ft — min{L (h),Yh € H'™1}
=L, (f") = Lo(f7 Y + Lo (f71) — min{ L, (h),Vh € H'™'}
— <o (,/ In(H +1) + ) 2 H“) 20)

By induction, we have V7 <t

Ln(f") —min{L, (h),Yh € H"}

t¢+1<1/ In(H+1) + /" HH) @1

Therefore,

Reg! (n (,/ I(H+1)+ /" H+1> 22)
and
E[Reg’ (n)]

S]E(tT*+1)<21/ZIH(H+1)+\/IH<H8+1)>
! n In(H + 1)
< (t— T+ 1) (2¢/=In(H +1) + 4/ ————>
rren (afaun e R

(23)

where 7* is the term of the optimal base predictor in hindsight.
O

Several remarks are made as follows.

(1) The regret bound is O(/n), which is sublinear in the
number of students n. This implies that the average regret
tends to zeros when n — oo, i.e. lim,_,o ~Reg’(n) — 0.
This bound provides a worst-case performance guarantee for
the ensemble predictor, stating that the ensemble predictor is
no worse than the best base predictor in hindsight asymptoti-
cally.

(2) Another way to perform the ensemble learning in term
t is to learn directly among all the base predictors up to
term t. Therefore, the input to f* is zp, Vh € HT VT < &
Figure 5 illustrates the difference between the direct method
and the proposed progressive prediction method. However, the
direct method not only induces significantly larger complexity
since the ensemble learning in each term becomes much more
complicated but also has worse expected regret performance.
In particular, the expected regret bound for the direct method
can be shown as

E[Reg’ (n)] < O(y/nIn(Ht)) (24)

which is independent of the probability distribution p”. In
practice, p” tends to be larger for larger 7 since in general
h? has more predictive power than h'~!. Therefore, when
(t — Zizl p™T + 1) < \/t, the progressive prediction has
a smaller expected regret bound than the direct method. For
instance, in the extreme case when p! = 1 and p” = 0,V7 < t,
the left hand side is 1 (for the progressive method) whereas
the right hand side is v/¢ (for the direct method).

(3) Proposition 1 in fact highlights the importance of taking
the student’s evolving progress into account when predicting
the student’s future performance. Consider a particular term
t. The base predictor H' uses only the current performance
state but not the previous performance state to make the
prediction whereas the ensemble predictor f! implicitly uses
all past performance states. The cumulative loss Ly, (h!) clearly
is no less than L' on average for any t. Since L, (f?)



Direct

Progressive

Fig. 5. Difference between direct method and progressive method.

is asymptotically no more than L’* on average, it can be
concluded that using the student’s evolving progress improves
the prediction performance.

Classification Case. Since the prediction output in the clas-
sification case is randomly sampled according to a distribution,
we define regret in a slightly different way. Instead of using the
realized cumulative loss, we use the expected cumulative loss
when defining regret: Reg’(n) = E[L, (f*)] — L}*. Because
of the probabilistic prediction, the space of predictions and
the loss functions are not convex in the classification case
and hence, results of Theorem 2.3 in [17] are no longer
applicable. Our prior work [31] establishes a similar result for
the classification case, which is utilized in the regret analysis
in this paper.

Proposition 2 (Theorem 2 in [31]). When the EPP algorithm

runs with parameter 1n; = \/In(H + 1) /i, then we have
E[L,(f")] — min{L,(f* 1), L.(h),Yh € H'}

<2v/nln(H +1) 25)

Using Proposition 2, we can perform a similar analysis for
the classification case and obtain the following proposition.

Proposition 3 (Regret for Classification). Assume that the
best base predictor h* is in term T with probability p™ (we
must have Zj—:l p” = 1). When the EPP algorithm runs
with parameter 1n; = /In(H + 1)/i, then for any number
n of students, the regret of ensemble predictor f' satisfies (1)
Reg'(n) < O(y/n) and (2) E[Reg'(n)] < O((t— 3L _, p"r +
1)y/nln(H + 1)).

The implications of Proposition 3 for the classification case
are similar to those of Proposition 1 for the regression case.

VI. SIMULATIONS
A. Dataset

Student data used to test our method is collected from
Mechanical and Aerospace Engineering department at UCLA
across students graduated in three years (2013, 2014, 2015).
The dataset has 1169 anonymized undergraduate students
enrolled in the program in two different areas (Mechanical
Engineering and Aerospace Engineering). We excluded the
transferred students to UCLA since the course information of
these students before the transfer is missing. The data of each
student contains the student’ pre-college traits (high school
GPA and SAT scores), the courses (including lectures and
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labs) that the students take in each academic quarter, the course
credits and the obtained grades. UCLA adopts a quarter system
and hence, each academic term is a quarter. We consider
only the fall, winter and spring quarters but not the summer
quarter which has a different enrollment pattern and different
course durations (i.e. shorter than courses in other quarters).
We consider only letter-grade courses but not pass/fail courses.

Figure 6 shows the correlation between the SAT score
of the students and their final GPA, and Figure 7 shows
the correlation between the high school GPA and the final
GPA. The general trend is that students with higher SAT
scores also obtain higher final GPA in the degree program.
However, high school GPA is almost not correlated with
the final GPA in the college, suggesting that high school
GPA has weaker predictive power than SAT scores. Figure 8
further illustrates the correlation (obtained by linear fitting)
between SAT verbal/math/writing/combined and final GPA.
SAT combined score has the highest correlation with the
final GPA. SAT math is the most powerful predictor among
individual SAT scores, which is reasonable since students are
from an engineering department.

Figure 9 illustrates the distribution of the number of courses
selected by students. The average number of courses that
students take is 38. Although students take a similar number
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of courses, the courses that they take are extremely diverse,
as shown in Figure 10. The total number of distinct courses
among all students is 811 while 759 of them are taken by less
than 10% of the students. The diversity is mainly due to the
elective courses, which can be vastly different depending on
students’ own interest. We observed that a significantly large
portion of the courses are taken by only one student in our
dataset, making the distribution extremely biased towards the
lower percentage end.

B. Learning Correlated Courses

We performed probabilistic matrix factorization on the
student dataset to learn the course correlation. We explored
different numbers of course clusters by setting K = 5, 10, 20.
Figures 11 and 12 show the discovered V matrix for core
courses in a colormap representation, where the values are
represented by color, for K = 20 and K = 5, respectively.

Below we provide a couple of case studies to show how
the clustering results relate to and are different from course
clustering using educational domain knowledge.

MAE 182A. MAE 182A is the course “Mathematics of
Engineering”. The prerequisite courses of MAE 182A are
shown in Figure 13 which are all math courses. Besides these
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Fig. 11. Matrix Factorization Results (the V' matrix restricted to the core
courses) in Colormap (K = 20).

courses, our methods discover several other correlated courses,
including CHEM 20BH, EE 110L, MAE 102, MAE 105A
and PHYS 1A, even though they are not prerequisite courses
of MAE 182A. Figure 14 plots student grade correlation
between MAE 182A and MATH 33B / MAE 105A. As we
can see, MAE 105A is more strongly correlated with MAE
182A. The figure also shows that course MAE 105D is almost
uncorrelated with MAE 182A, which is not a prerequisite
course and is also excluded by our method.

EE 100 and EE 110L. These two courses are “Electrical
and Electronics Circuits” and “Circuit Measurements Labo-
ratory”. Figure 15 shows their prerequisite courses. Besides
the prerequisite courses, our method discovered three more
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Fig. 13. Prerequisite courses of MAE 182A. (Dashed lines are co-requisite
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courses that have predictive power, namely CHEM 20B/BH,
MAE 103, MAE 102, and MAT SCI 104. However, our
method shows that MATH 32B is not a strongly correlated
course even though it is a co-requisite course of PHYS 1B
and PHYS 1C.

C. Prediction Performance

We constructed four base predictors for each quarter im-
plemented by four classic machine learning algorithms: linear
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EM Ficlds MATH 32B:
PHYS 1C: Multi-variable Calculus |1
Electrodynamics, Optics,
Special Relativity
EE 100:
Electrical & Electronic
Circuits
EE 110L:
Circuit Measurement
Laboratory

Fig. 15. Prerequisite courses of EE 100 and EE 110L.
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Fig. 16. Prediction performance for MAE 182A. (Ensemble v.s. Base)

regression, logistic regression, random forest and k-Nearest
Neighbors (kNN). Base predictors in quarter ¢ are trained using
course grade data up to quarter ¢ restricted to the discovered
relevant courses of the targeted course.

We point out an important difference between the setup
used in the simulation and that in the model. In our model,
we assumed that students in the same area follow the exact
same course sequence and take the exact (core) courses in each
quarter. In practice, however, students may still take courses in
slightly different orders. As a result, some students may take a
targeted course later than the recommended quarter in which
the course should be taken. Therefore, in the simulations, the
prediction performance for a targeted course is shown for the
entire program duration, namely 12 quarters.

Figures 16 and 17 show the mean square errors of the
grade prediction for MAE 182A and EE 110L, respectively.
In general, the prediction error decreases over the quarters
for all the base predictors as well as the ensemble predictor.
This is because more information is accumulated over time.
Among the base predictors that we implemented, random for-
est performs the best, KNN performs the worst in most cases.
The proposed progressive prediction algorithm outperforms
all base predictors since it not only utilizes the prediction of
the base predictors in the current quarter but also utilizes the
previous quarter prediction results.

We further compare the prediction performance with algo-
rithms taking different input features in order to show the
impact of learning relevant courses. Specifically, we compare
three benchmarks based on the educational domain knowledge

o Same Department Only. The courses in a curriculum
are offered by different departments. For instance, in the
MAE curriculum, courses EE 100, EE 110L etc. are
offered by Electrical Engineering department. Courses
MATH 33A, MATH 33B etc. are offered by Mathematics
department. In this benchmark, only courses offered by
the same department as that of the targeted course are
considered relevant.

o Direct Prerequisite Only. In this benchmark, only the
direct pre-requisite courses are considered as the relevant
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courses of the targeted course. For instance, the direct
pre-requisite courses of MAE 182A are MATH 33A and
MATH 33B.

o Series of Prerequisites. Direct prerequisite courses may
also have their pre-requisite courses. In this benchmark,
the series of the prerequisite courses are considered as
the relevant courses of the targeted course. For instance,
for MAE 182A, in addition to MATH 33A and MATH
33B, MATH 32A and MATH 31B are also considered as
the input to the prediction algorithm.

Figures 18 and 19 compare the prediction performance. For
MAE 182A, courses offered by the same department have
more predictive power than the prerequisite courses. For EE
110L, prerequisite courses have more predictive power than
courses offered by the same department. In both cases, our
algorithm based on course clustering yields the best prediction
performance.

VII. CONCLUSIONS

In this paper, we proposed a novel method for predicting
students’ future performance in degree programs given their
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Fig. 19. Prediction performance for EE 110L. (Different Inputs)

current and past performance. A latent factor model-based
course clustering method was developed to discover relevant
courses for constructing base predictors. An ensemble-based
progressive prediction architecture was developed to incorpo-
rate students’ evolving performance into the prediction. These
data-driven methods can be used in conjunction with other
pedagogical methods for evaluating students’ performance
and provide valuable information for academic advisors to
recommend subsequent courses to students and carry out ped-
agogical intervention measures if necessary. Additionally, this
work will also impact curriculum design in degree programs
and education policy design in general. Future work includes
extending the performance prediction to elective courses and
using the prediction results to recommend courses to students.
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