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ABSTRACT
This paper presents the SARC EyesWeb Catalog, (SEC),
a machine learning toolbox that has been specifically devel-
oped for musician-computer interaction. The SEC features
a large number of machine learning algorithms that can be
used in real-time to recognise static postures, perform re-
gression and classify multivariate temporal gestures. The
algorithms within the toolbox have been designed to work
with any N -dimensional signal and can be quickly trained
with a small number of training examples. We also provide
the motivation for the algorithms used for the recognition
of musical gestures to achieve a low intra-personal gener-
alisation error, as opposed to the inter-personal generalisa-
tion error that is more common in other areas of human-
computer interaction.
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1. INTRODUCTION
It has long been the goal of many composers, performers
and researchers alike to be able to use their own body
movements to trigger, control and manipulate electronic
sounds in real-time, live on stage. This goal is slowly being
made possible by the ever decreasing cost of sensor devices,
such as the Wii1 or SHAKE2, combined with the increas-
ing number of machine learning algorithms in programs like
Max/MSP3, Pure Data4, Chuck5, EyesWeb6 and the Wek-
inator[12]. As authors such as Fiebrink et. al.[12] have
shown, it is now possible for performers to train a machine
learning algorithm in real-time, live on stage and have the
performer’s movements (being sensed from anything such as
a common gamepad to body worn accelerometers or EMG)
be mapped directly to, for example, the synthesis parame-
ters of a FM synthesiser. The machine learning algorithms
featured in the programs listed above are generally excellent

1http://uk.wii.com/
2http://www.dcs.gla.ac.uk/research/shake/
3http://cycling74.com/products/maxmspjitter/
4http://puredata.info/
5http://chuck.cs.princeton.edu/
6http://www.infomus.org/EywMain.html
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for solving two common problems; namely the discrete clas-
sification of a static posture as one of K possible postures
and the mapping of an input signal to one or more contin-
uous output variables, also known as regression. However,
many of the existing machine learning toolboxes are still
unable to classify patterns that occur in a multidimensional
space and change over a variable time period, otherwise
known in the machine learning literature as multivariate
temporal signals. Further, it was found that the few tool-
boxes that do include multivariate temporal recognition al-
gorithms either only work offline, take an extensive amount
of time to train or are limited to accept a specific form of
sensor input, such as the 2D data from a mouse or 3D data
from an expensive motion capture device.

This has therefore provided the motivation for the de-
sign and development of a novel machine learning toolbox
that can recognise static postures, perform regression and
classify multivariate temporal gestures. The toolbox, called
the SARC EyesWeb Catalog (SEC), has been specifically
designed to work with any-type of N -dimensional signal
and operates as a middleware application; thus enabling
a performer to easily integrate it into their own existing
composition and performance environment. The SEC has
been designed so it is suitable for both performers with ba-
sic technology skills and no knowledge of machine learning
right through to domain experts who want to create their
own custom-built recognition systems. It is also suitable
for researchers who wish to integrate and test a new form
of feature extraction algorithm with the existing machine
learning algorithms in the SEC. One of the main benefits
that the SEC offers a performer is that it enables them to
use the raw data or features from any sensor to quickly
train a machine learning algorithm with the gestures the
performer wants to use. After training the machine learn-
ing algorithm the performer can then use it to recognise
their gestures in real-time, even in a continuous stream of
data that also contains non-gestural data. In this paper we
present the SEC and describe how its machine learning al-
gorithms have been specifically adapted for the recognition
of musical gestures.

2. RELATED WORK
Machine learning algorithms have been successfully applied
to a number of tasks throughout many areas of musician-
computer interaction (MCI). Lee et al. [17] and Fels et
al. [9] were some of the first to apply the broad history
of machine learning research on Artificial Neural Networks
(ANN) to the field of MCI. Lee used an ANN to map the
input from a radio baton, sensor glove or a MIDI keyboard
to audio output and Fels mapped the input from a Cyber-
glove, 3-D tracker and a footpedal to a speech synthesiser.
Fels work was later extended by Pritchard [22] who used
several ANN to allow the user to synthesise audio, speech



and song in real-time. Modler [19] also applied an ANN to
map the sensor data captured by a sensor glove to continu-
ously control the parameters of a synthesis engine running
in SuperCollider. Along with applying the ANN to con-
tinually map the glove data to synthesis parameters, Mod-
ler also used the ANN to recognise patterns in the glove
data, such as the classification of certain hand postures like
thumbs up or an extended index finger. The recognition
of a specific symbolic hand gesture could then be used to
trigger a sound, with the energy of the finger movement be-
ing mapped to control the damping factor of a plate model.
Cont et al. [6] created a number of ANN blocks for the
Graphical User Interface (GUI) program Pure Data that
enabled a performer to quickly train and recognise dynamic
temporal gestures sensed by two perpendicular accelerome-
ters. The network was trained using six constant speed cir-
cle gestures and was able to satisfactorily recognise a large
variety of circles performed at different speeds and sizes.

Merrill et al. [18] built the FlexiGesture, a two handed de-
vice that features a number of sensors including 3-degree-of-
freedom (DOF) accelerometers, 3-DOF gyroscopes, 4-DOF
squeezing, 2-DOF bending and 1-DOF twisting. The user
could train the system to recognise a temporal gesture by
pressing a ‘trigger’ button which starts the data recording
process, releasing the button when they have completed the
gesture. The system then asks the user to continually re-
perform the gesture as it trains a template model for that
gesture. Dynamic Time Warping was used as the recogni-
tion algorithm and tests showed that the system was able
to classify novel gestures into one of ten classes with up to
98% accuracy.

Fiebrink et al. [12] created a real-time, on-the-fly ma-
chine learning-based system called the Wekinator that can
be trained by the user in a number of seconds. The Wekina-
tor affords the user the ability to quickly experiment with
input/output mappings and even form judgements on the
quality of the mapping by training and running it in real-
time and observing the sonic results. The system was used
for a live performance in which six performers started the
training/mapping process from scratch, live on stage, and
each performer gradually converged on the mapping setup
they wanted as the piece progressed. Fiebrink et al. [11]
extended this work by adding an additional ‘play-along’
paradigm to the Wekinator in which the user listened to
a specific piece of music whilst mimicking the gesture they
would have liked to have performed to make that sound.
The system was then trained on this gesture-sound rela-
tionship and the user was able to create a sound or effect
by performing the corresponding gesture.

Bevilacqua et al. [1] [3] have developed a real-time con-
tinuous gesture recognition system for Max/MSP in which
a Hidden Markov Model can continuously output, not only
the likelihood of the user performing a given gesture at the
current time, but also, where in that gesture the user might
be. One of the main benefits of this system is that it has
been specifically designed to be trained with the minimum
possible training examples (in some cases even one exam-
ple can be sufficient). Bevilacqua et al. also [2] developed
the MnM toolbox for Max/MSP which is dedicated to map-
ping between gesture and sound, applying algorithms such
as Principal Component Analysis to reduce the dimension-
ality of the data, thus simplifying the mapping procedure.

A number of researchers have focused on capturing the
natural gestures performed on acoustic instruments such as
Overholt et. al. [21] who added a number of algorithms
from the OpenCV library to their Multimodal Music Stand
System (MMSS) to recognise the gestures of a flautist and
use these to control a Max/MSP patch. Morales-Mazanares

et al. [20] also tried to recognise the gestures of a flautist,
using a probabilistic model to estimate what the attacks or
angular displacement of the instrument could inferrer about
the player’s gestures. The accurate classification of violin
bowing gestures has also received attention from [23] [26]
[10]. Finally the recognition of a conductors gestures has
received a large body or research [24] [16] [7].

These examples have illustrated how machine learning al-
gorithms have been successfully applied to solve both clas-
sification and regression problems throughout many areas
of MCI. A large majority of this work, however, has been
designed for custom-built hardware devices [9] [18] or is con-
strained to recognising gestures from a specific sensor, such
as the data from a 2D mouse [3], or is designed for a par-
ticular instrument, such as a flute [21]. This provided the
motivation for us to develop a new machine learning tool-
box that is specifically aimed for the real-time recognition
of musical gestures. The SEC contributes to this existing
work because it has not be constrained to work with just
one sensor device or audio environment, can be used to clas-
sify both static postures, temporal gestures and perform re-
gression and most importantly can be quickly trained by a
musician with a small number of training examples.

3. THE SEC
The SEC7 has been fully integrated as a third party library
within a free program called EyesWeb. EyesWeb is an open
software platform that was established to support the de-
velopment of real-time multimodal distributed interactive
applications and already features a large number of algo-
rithms for processing both video and audio signals [5]. Eye-
sWeb is a GUI orientated program that runs in Windows8

which features a patch window onto which the user can drag
a number of blocks that represent a specific algorithm or
function. A block will commonly feature a number of in-
put, output and parameter pins, with one block’s output
pin being connected to another block’s input pin to create
a signal flow between the two respective blocks. Using a
small number of blocks in EyesWeb, for example, a per-
former could build a patch to capture real-time data from a
sensor unit, filter the data and plot the results without hav-
ing to write a single line of code. EyesWeb also enables any
performer with more technical skills to develop their own
blocks, which may be required to perform a specific type of
feature extraction or to interface with a custom-built piece
of hardware. All the blocks in EyesWeb are written in C++,
giving the developer the ability to write fast, efficient code
which is a necessity for real-time machine learning due to
the large number of calculations required. EyesWeb there-
fore provides an excellent environment for both technical
and non-technical users as complex signal processing oper-
ations can be easily constructed by connecting a number
of blocks together or, alternatively, a custom block can be
developed to perform one specific task.

3.1 The SEC Blocks
The SEC contains over 80 blocks (almost twice the num-
ber of blocks since its first public release [13]), all of which
have been specifically designed for the real-time recogni-
tion of musical gestures. Along with featuring a number
of rudimentary blocks for saving/loading data, converting
from one data type to another etc., the SEC also contains
blocks for signal processing, performing mathematical oper-
ations, and interfacing directly with hardware sensor units
such as the Wii, the SHAKE and Infusion System’s Wi-

7http://www.somasa.qub.ac.uk/~ngillian/SEC.html
8EyesWeb is currently being ported to Linux



Table 1: SEC Gesture Recognition Algorithms
Algorithm Name Suitable Application Learning Type
Adaptive Näıve Bayes Classifier Classification Supervised
Artificial Neural Networks Regression Supervised
Hidden Markov Models Classification Supervised
N -Dimensional Dynamic Time Warping Classification Supervised
Fuzzy C-Means Clustering Classification Unsupervised
K-Means Clustering Classification Unsupervised
K-Nearest Neighbor Classification Classification Supervised
Support Vector Machines Classification Supervised

microDig9. The SEC contains a large number of machine
learning algorithms that can be used to classify static and
temporal gestures as well as perform regression, a list of the
main algorithms can be found in table 1. The SEC also
contains a number of pre-processing or feature extraction
algorithms that can be applied to reduce the computational
load and complexity of a recognition problem along with a
variety of post-processing algorithms that can be used to im-
prove the overall system’s classification performance. Each
machine learning, feature extraction and post-processing al-
gorithm in the SEC has been encapsulated as a single block,
enabling the user to quickly create their own recognition
system by dragging the algorithms they wish to use onto
the EyesWeb patch window and connecting them together.
This facilitates a user with even basic technical skills to ap-
ply a wide range of extremely powerful machine learning
algorithms, such as Support Vector Machines (SVM) or
Hidden Markov Models (HMM), to recognise their musi-
cal gestures without having to write a single line of code.
One of the most important features of the algorithms within
the SEC is that they have all been designed to work with
any N -dimensional input signal. This means that the recog-
nition algorithms are not constrained to just work with the
two-dimensional data from a mouse for example, but can
work with any N -dimensional continuous stream of data.
This is a key advantage for performers, particularly those
that create their own custom built sensors, interfaces or in-
struments, as the output from any sensor(s), or features
derived from this sensor data, can easily be used as input
to any of the SEC blocks.

3.2 Using the SEC for MCI
The machine learning algorithms within the SEC enable any
performer to use one or more musical gestures to control
and manipulate the performer’s composition or improvisa-
tion software in real-time. For example, a musician could
use a classification algorithm such as N -Dimensional Dy-
namic Time Warping (ND-DTW) [15] to classify a specific
conducting gesture and use the recognition of this move-
ment to trigger the computer to start manipulating the live
audio recording of the musician the gesture was directed
towards. At the same time, the performer could use a re-
gression algorithm like an ANN to continuously map the
velocity at which the performer made the conducting ges-
ture to control the degree of the warping effect on the live
audio recording.

Rather than targeting the SEC for just one specific piece
of audio software, it has been designed to function as mid-
dleware enabling the user to pipe their sensor data into the
SEC via a number of standard communication protocols,
such as Open Sound Control (OSC) [25]. After recognition
the classification results can be piped out of the recognition
system to control any piece of audio or visualization soft-

9http://infusionsystems.com

ware that use the same communication protocols. A middle-
ware design architecture also enables the SEC to run on an
independent machine from that which is running the audio
software; which is beneficially for CPU intensive recognition
algorithms. A performer can therefore write their own soft-
ware to capture and parse the real-time data from whatever
sensor(s) they might be using and pipe this data into Eye-
sWeb via OSC. Alternatively, a performer could directly
implement the sensor interface as an additional EyesWeb
block.

3.2.1 Creating a Robust Recognition System
Machine learning algorithms rarely exist in a vacuum [8].
A robust recognition system commonly requires an appro-
priate pre-processing or feature extraction stage prior to
any classification by a trained machine learning algorithm,
with the predicted classification label being post-processed
prior to being acted upon. A user may therefore want to
experiment with various feature extraction algorithms or
post-processing functions as well as testing which machine
learning algorithm works best for the recognition of their
gestures. It is for this reason that each feature extraction
algorithm or machine learning algorithm has been encapsu-
lated as a single EyesWeb block as this enables the user to
connect the blocks together to create the recognition sys-
tem the user thinks maybe most appropriate for solving
their recognition problem. One of the major advantages
of using a patch-based GUI program such as EyesWeb is
that multiple recognition algorithms can be used in paral-
lel, with the output of one classifier providing contextual
information for another classification chain. For example,
the predicted event of one classifier could be used to per-
mit/deny the output of a second classifier from being acted
upon.

3.2.2 Training a Machine Learning Algorithm
Prior to using any machine learning algorithm it must first
be trained. This can be achieved by using a number of
examples, called a training set, to tune the parameters of
the algorithm’s adaptive model or function. The training
set could contain, for example, a number of recordings of
each of the G gestures the performer wants the algorithm
to recognise. Each training example may also be hand-
labelled by the user in which case the problem is known
as supervised learning. By adopting a machine learning ap-
proach, a musician can teach a computer to recognise their
musical gestures by performing a number of repetitions of
each gesture and use this data to train a machine learning
algorithm. If the appropriate feature(s) are used to repre-
sent the gesture and a suitable algorithm is trained then the
algorithm should be able to classify a new input vector as
one of the G gestures it was trained with; even if the new
input vector was not contained in the original training set.
The ability to categorize correctly new examples that differ
from those used for training is known as generalisation. In



practical applications, the variability of the input vectors
will be such that the training data can comprise only a tiny
fraction of all possible input vectors, and so generalisation
is a central goal in pattern recognition [4].

The SEC features a number of useful tools to facilitate
a user to efficiently create a training set and then quickly
train a machine learning algorithm. Each algorithm, for ex-
ample, will commonly have a dedicated block for recording
training data, a second block for training the algorithm and
a third block for the real-time classification of any new data
using the trained model. This three block design enables the
user to create a ‘training patch’ for recording and training
the algorithm and a separate ‘prediction patch’ for real-time
classification that may also contain other trained machine
learning algorithms, post-processing algorithms and net-
work connections to communicate with other audio/visual
software.

Figure 1: An example training patch for the ND-
DTW algorithm

The training patch, illustrated in Figure 1, will have the
identical sensor input and feature extraction methods as the
prediction patch, see Figure 2, but can also contain a num-
ber of helpful features that assist the user in collecting and
labeling the training data. This could consist of timer func-
tions, for example, that enable the user to press a key to
prepare the system to record a two-handed gesture. After
a predetermined delay the user can then start to perform
the gesture while the system records the training data, au-
tomatically labeling each training sample with the ID value
of that gesture. After a further predetermined delay the
system stops recording the gesture and the user can either
record another example of the same gesture or move onto
the next gesture in their vocabulary. When the user has cre-
ated a number of training examples for each gesture they
can save the training data to a file and then use this to train
the machine learning algorithm. Each algorithm will then
save its trained model to a file to enable it to be loaded by
the real-time classification block.

The user can select if they wish to train the algorithm
using an automatic validation method, such as K-fold cross-
validation, to estimate the generalisation ability of the trained
model or if they want to devote all of the available data to
training the model and instead test the algorithm ‘online’
using the prediction patch. Either way, if a poor model
has been created the user can quickly reload the original
training data in the training patch and modify some of
the parameters of the machine learning algorithm or even
change the feature extraction method and quickly retrain
a new model with the updated settings. Alternatively, the
performer could use the one training set to train and vali-
date several algorithms each with different settings all at the
same time to determine the best features/algorithm/settings
to use. The performer then simply needs to load the best
model into the predication patch. These examples illus-
trate the advantages of using three separate blocks to cre-

ate a training set, actually train a model and finally perform
real-time prediction on new data using the trained model.

Figure 2: An example prediction patch for the ND-
DTW algorithm

4. DESIGNING ALGORITHMS FOR MCI
The design, development and evaluation strategies applied
to the algorithms within the SEC have required a fundamen-
tal paradigm shift from the common strategies employed
throughout other areas of machine learning. In many areas
of machine learning and gesture recognition the primary
goal of any algorithm is to achieve a low inter-personal gen-
eralisation error, which is the algorithms ability to correctly
classify the gestures of a new participant that was not in-
cluded in the training set. This is the case, for example, with
a computer game that recognises the gestures of a player and
uses these to control a character in the game. In order for
the system to robustly recognise thousands of different play-
ers across the world who may want to play the game, the
recognition algorithm may need to be trained with a very
large number of training examples collected from perhaps
hundreds of different participants. The machine learning
algorithm can then be trained with this extensive data set,
perhaps overnight, after which it could be tested with an-
other large test set that contains new data that was not used
to train the algorithm to validate the classification abilities
of the model.

4.1 The Intra-personal Generalisation Goal
Applying this approach to training and testing a machine
learning algorithm may not be suitable, however, for the
recognition of musical gestures - such as in a NIME inter-
action scenario. This is because each performer may want
to define their own unique gestural vocabulary, i.e. the re-
lationship between a gesture and its corresponding action.
A performer may also want to capture the gestures using
their own specific sensor device and use the recognition of
a gesture to control a custom-made piece of audio software.
It is therefore difficult to create the pre-trained recogni-
tion systems that are common throughout many areas of
human-computer interaction (HCI). Musician-computer in-
teraction alternatively requires a system that has a flexible
input/output configuration and that can be trained by the
performer using gestures from their own vocabulary.

A user-configurable recognition system for MCI would
not therefore require the inter-personal generalisation abil-
ities found in other areas of HCI; instead it would simply
need to provide a good intra-personal generalisation for the
one performer that initially trained the system. If another
performer wants to use their own input device or gestural
vocabulary to control the same audio software, then they
simply have to retrain the machine learning system with
their own gestures. This intra-personal generalisation goal,
which is quite a paradigm shift from many areas of machine
learning and HCI, would not only offer the performer the
advantage of being able to use their own hardware to cap-
ture gestures from their own gestural vocabulary and use



these to control their own specific audio software, it would
also result in the requirement for a lower number of training
examples per gesture - leading to a reduced amount of time
spent in data collection and computational-training time.

4.2 Rapid Training, Testing & Prototyping
Any machine learning algorithm that can be quickly trained
with a small number of training examples is extremely ben-
eficial to a performer. An efficient training phase enables
a performer to quickly decide upon a possible gestural vo-
cabulary to use, train the recognition system and then, im-
portantly, test the real-time prediction abilities of the sys-
tem by performing the gestures and checking if they are
correctly classified. Testing the system in this manner not
only validates if a robust intra-personal generalisation error
has been achieved, it also tests the aesthetic and practical
validity of the gestures themselves. If a performer is un-
happy with either then they can either change the feature
extraction method or parameters of the machine learning
algorithm being used and retrain the model. Alternatively
the performer could scrap one or more of the gestures and
replace them with more suitable movements. A recognition
system that can be quickly trained and tested allows a mu-
sician to rapidly prototype any action-sound relationship
they think may be useful for a real-time performance sce-
nario, test the validity of such gestures and then focus their
time on the musical elements of the performance instead of
spending hours training a system to recognise their gestures
only to find that the gestures do not work aesthetically or
practical.

4.3 Validating An Intra-Personal Classifica-
tion Algorithm

An intra-personal generalisation error would call for a new
method of evaluating the classification abilities of a machine
learning algorithm for MCI. For example in most machine
learning applications, a large amount of data is collected
from perhaps hundreds of users and the data is split into
a training set and a test set. The machine learning algo-
rithm is then trained with the training set and evaluated
with the test set. If the training data is difficult or ex-
pensive to acquire, then a hold-out validation method such
as K-fold cross-validation is used instead. Both of these
validation methods are suitable for estimating the generali-
sation abilities of an algorithm that will be used in an inter-
personal recognition system. For MCI however, a more
suitable generalisation metric would be to use the aver-
age cross-validation error (ACVE) calculated by indepen-
dently computing the cross-validation error for each of the
P participants and then averaging this result. The ACVE
is suitable for MCI because it can accurately estimate the
intra-personal generalisation abilities of a machine learning
algorithm, while at the same time being validated by a large
number of different users.

In addition to using a quantitative error function, such as
the ACVE, qualitative subjective measures can also be par-
ticularly useful for validating an algorithms potential ap-
plication for MCI. This is because, as highlighted in [10],
cross-validation-based approaches may be problematic un-
der certain circumstances, such as overestimating a models
quality when there are errors in the training data. In ad-
dition, cross-validation does not capture user-specific and
subjective notions of cost (e.g., whether the classifier makes
a mistake on an input that is highly likely to occur in per-
formance, or on an input that can be avoided). Therefore
combining both quantitative and qualitative error measures
provides an appropriate method for validating algorithms
for MCI.

4.4 The SEC Design Goals
Creating a recognition system that has a flexible input/ouput
configuration, can be easily trained with examples from
the user’s own gestural vocabulary and that achieves a low
intra-personal generalisation goal have therefore been the
key objectives in the design and development process of
the SEC. These objectives not only informed the design
of the SEC blocks but they also challenged us to adapt a
number of existing machine learning algorithms and develop
some novel recognition algorithms specifically for musician-
computer interaction. The algorithms were adapted and
developed because we wanted each algorithm to be able to:

• Classify any N -dimensional signal and not be con-
strained to just working with one type of sensor

• Be quickly trained with a small number of training
examples for each gesture

• Be capable of recognising a gesture from within a con-
tinuous stream of real-time data that also contains
non-gestural data without having to train a null-class,
such as a noise or silence class that is used in speech
recognition

• Classify both static and temporal musical gestures

Several existing machine learning algorithms were adapted
to meet these criteria by developing specific feature extrac-
tion methods that enabled any N -dimensional signal to be
quantized and used as input to the algorithm. The training
time of the HMM algorithm, for example, was significantly
improved by developing multi-threaded training routines so
that a unique thread was created to train the model for each
individual gesture. The HMM algorithm was also adapted
so that a classification threshold was computed for each ges-
ture in the model, thus enabling the algorithm to reject any
null-gesture if the log-likelihood estimate for that gesture
was below a given threshold.

The SEC also features a number of novel classification
algorithms that have been developed specifically for MCI,
such as the Adaptive Näıve Bayes Classifier (ANBC) [14]
and N -Dimensional Dynamic Time Warping (ND-DTW)
[15]. Both algorithms have been specifically designed to be
quickly trained with a small number of training examples,
with the average training times for both algorithms on a
small sized vocabulary of 10 gestures of just a few seconds.

5. APPLICATIONS OF THE SEC
5.1 Real-Time Improvisation For Piano
The SEC is being used in a collaboration between the first
author and the UK based pianist Sarah Nicolls10 to facili-
tate an improvised piece that is built only from live sampled
piano, controlled entirely by the pianist’s gestures. During
the piece, the recognition algorithms in the SEC enable the
performer to use subtle hand gestures to ‘save’ an impro-
vised theme to an area of space located at various points
above the piano keys. After a theme has been ‘saved’ to a
space, the performer can then revisit this space at anytime
and perform a number of other fine-grain hand gestures to
playback the theme, warping, stretching, looping and filter-
ing the sample all via gestural control.

5.2 Gestural Diffusion
The SEC machine learning algorithms are currently being
used in an electroacoustic composition by Robyn Farah for
live gestural diffusion. For this piece, the SEC algorithms

10www.sarahnicolls.com



have been trained to recognise a number of gestures that
enable the performer to ‘throw’ a sound into the sonic space,
with the trajectory and intensity the of gesture being used
to control a number of parameters of the behavior of the
sound. The performer can also use a number of two handed
‘sweeping gestures’ to control a large body of sounds that
have already been introduced to the sonic space, pushing
and pulling them around the space or removing them all
together.

5.3 RadioStreams
The SEC is being used as the recognition system for an
interactive installation piece called RadioStreams. In Ra-
dioStreams, a user can navigate around a virtual globe using
intuitive pointing gestures and listen to live radio streams
from each country they navigate through. If the user likes
a radio station they can ‘grab’ and ‘throw’ it onto one of
eight speakers located around them. When all eight speak-
ers have been populated with a radio station the user can
then create a live improvisation by playing and controlling
the live radio stations using gestures similar to that of a
choral conductor.

6. CONCLUSIONS
This paper presented the SEC, a machine learning toolbox
that has been specifically developed for musician-computer
interaction. The SEC features a large number of machine
learning algorithms that can be used in real-time to recog-
nise static postures, perform regression and classify multi-
variate temporal gestures. We also provided the motivation
for the algorithms used for the recognition of musical ges-
tures to achieve a low intra-personal generalisation error,
as opposed to the inter-personal generalisation error that is
more common in other areas of human-computer interac-
tion.
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