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Abstract

English. This paper describes the
UNITOR system that participated to the
itaLIan Speech acT labEliNg task within
the context of EvalIta 2018. A Struc-
tured Kernel-based Support Vector Ma-
chine has been here applied to make the
classification of the dialogue turns sensi-
tive to the syntactic and semantic informa-
tion of each utterance, without relying on
any task-specific manual feature engineer-
ing. Moreover, a specific Markovian for-
mulation of the SVM is adopted, so that
the labeling of each utterance depends on
speech acts assigned to the previous turns.
The UNITOR system ranked first in the
competition, suggesting that the combina-
tion of the adopted structured kernel and
the Markovian modeling is beneficial.

Italian. Questo lavoro descrive il sistema
UNITOR che ha partecipato all’itaLIan
Speech acT labEliNg task organizzato
nell’ambito di EvalIta 2018. Il sis-
tema è basato su una Structured Kernel-
based Support Vector Machine (SVM) che
rende la classificazione dei turni di dial-
ogo dipendente dalle informazioni sintat-
tiche e semantiche della frase, evitando la
progettazione di alcuna feature specifica
per il task. Una specifica formulazione
Markoviana dell’algoritmo di apprendi-
mento SVM permette inoltre di etichettare
ciascun turno in funzione delle classifi-
cazioni dei turni precedenti. Il sistema
UNITOR si é classificato al primo posto
nella competizione, e questo conferma
come la combinazione della funzione ker-
nel e del modello Markoviano adottati sia
molto utile allo sviluppo di sistemi di di-
aloghi robusti.

1 Introduction

A dialogue agent is designed to interact and com-
municate with other agents, in a coherent manner,
not just through one-shot messages, but according
to sequences of meaningful and related messages
on an underlying topic or in support to an overall
goal (Traum, 1999). These communications are
seen not just as transmitting information but as ac-
tions that change the state of the world, e.g., the
mental states of the agents involved in the con-
versation, as well as the state, or context, of the
dialogue. In other words, speech act theory al-
lows to design an agent in order to place its com-
munication within the same general framework as
the agent’s actions. In such a context, the robust
recognition of the speech acts characterizing an in-
teraction is crucial for the design and deployment
of artificial dialogue agents.

This specific task has been considered in the
first itaLIan Speech acT labEliNg task at EvalIta
(iLISTEN, (Novielli and Basile, 2018)): given a
dialogue between an agent and a user, the task
consists in automatically annotating the user’s di-
alogue turns with speech act labels, i.e. with the
communicative intention of the speaker, such as
statement, request for information or agreement.
Table 1 reports the full set of speech act labels con-
sidered in the challenge, with definition and exam-
ples.

In this paper, the UNITOR system participat-
ing in the iLISTEN task within the EvalIta 2018
evaluation campaign is described. The system re-
alize the classification task through a Structured
Kernel-based Support Vector Machine (Vapnik,
1998) classifier. A structured kernel, namely a
Smoothed Partial Tree Kernel (SPTK, (Croce et
al., 2011)) is applied in order to make the classifi-
cation of each utterance dependent from the syn-
tactic and semantic information of each individual
utterance.

Since turns are not observed in isolation, but im-
mersed in a dialogue, we adopted a Markovian for-



Speech Act Description Example
OPENING Dialogue opening or self-introduction Ciao, io sono Antonella
CLOSING Dialogue closing, e.g. farewell, wishes, in-

tention to close the conversation
Va bene, ci vediamo prossimamente

INFO-REQUEST Utterances that are pragmatically, semanti-
cally, and syntactically questions

E cosa mi dici delle vitamine?

SOLICIT-REQ-CLARIF Request for clarification (please explain)
or solicitation of system reaction

Mmm, si ma in che senso?

STATEMENT Descriptive, narrative, personal statements Devo controllare maggiormente il mio peso.
GENERIC-ANSWER Generic answer Si, No, Non so
AGREE Expression of agreement, e.g. acceptance

of a proposal, plan or opinion
Si, so che importante.

REJECT Expression of disagreement, e.g. rejection
of a proposal, plan, or opinion

Ho sentito tesi contrastanti al proposito.

KIND-ATT-SMALLTALK Expression of kind attitude through po-
liteness, e.g. thanking, apologizing or
smalltalk

Grazie,Sei per caso offesa per qualcosa che
ho detto?

Table 1: Full set of speech act labels considered at iLISTEN

mulation of SVM, namely SVMhmm (Altun et al.,
2003) so that the classification of the ith utterance
also depends from the dialogue act assigned at the
i− 1th utterance.

The UNITOR system ranked first in the com-
petition, suggesting that the combination of the
adopted structured kernel and the Markovian
learning algorithm is beneficial.

In the rest of the paper, Section 2 describes the
adopted machine learning method and the under-
lying semantic kernel functions. In Section 3, the
performance measures of the system are reported
while Section 4 derives the conclusions.

2 A Markovian Kernel-based Approach

The UNITOR system implements a Marko-
vian formulation of the Support Vector Machine
(SVM) learning algorithm. The SVM adopts a
structured kernel function in order to estimate the
syntactic and semantic similarity between utter-
ances in a dialogue, without the need of any task-
specific manual feature engineering (only the de-
pendency parse of each sentence is required). In
the rest of this section, first the learning algorithm
is presented, then the adopted kernel method is
discussed.

2.1 A Markovian Support Vector Machine
The aim of a Markovian formulation of SVM is to
make the classification of a input example xi ∈ Rn

(belonging to a sequence of examples) dependent
on the label assigned to the previous elements in a
history of length m, i.e., xi−m, . . . , xi−1.

In our classification task, a dialogue is a se-
quence of utterances x = (x1, . . . , xs) each of
them representing an example xi, i.e., the specific

i-th utterance. Given the corresponding sequence
of expected labels y = (y1, . . . , ys), a sequence of
m step-specific labels (from a dictionary of d dif-
ferent dialogue acts) can be retrieved, in the form
yi−m, . . . , yi−1.

In order to make the classification of xi depen-
dent also from the previous decisions, we aug-
ment the feature vector of xi introducing a pro-
jection function ψm(xi) ∈ Rmd that associates to
each example a md−dimensional feature vector
where each dimension set to 1 corresponds to the
presence of one of the d possible labels observed
in a history of length m, i.e. m steps before the
target element xi.

In order to apply a SVM, a projection function
φm(·) can be defined to consider both the observa-
tions xi and the transitions ψm(xi) by concatenat-
ing the two representations as follows:

φm(xi) = xi || ψm(xi)

with φm(xi) ∈ Rn+md. Notice that the symbol
|| here denotes the vector concatenation, so that
ψm(xi) does not interfere with the original feature
space, where xi lies.

Kernel-based methods can be applied in order to
model meaningful representation spaces, encod-
ing both the feature representing individual exam-
ples together with the information about the transi-
tions. According to kernel-based learning (Shawe-
Taylor and Cristianini, 2004), we can define a ker-
nel functionKm(xi, zj) between a generic item of
a sequence xi and another generic item zj from the
same or a different sequence, parametric in the his-
tory length m: it surrogates the product between



φm(·) such that:

Km(xi, zj) = φm(xi)φm(zj) =

= Kobs(xi, zj) +Ktr
(
ψm(xi), ψm(zj)

)
In other words, we define a kernel that is the lin-
ear combination of two further kernels: Kobs op-
erating over the individual examples xi and a Ktr

operating over the feature vectors encoding the in-
volved transitions. It is worth noticing that Kobs

does not depend on the position nor the context of
individual examples in line with Markov assump-
tion characterizing a large class of these generative
models, e.g. HMM. For simplicity, we define Ktr

as a linear kernel between input instances, i.e. a
dot-product in the space generated by ψm(·):

Km(xi, zj) = Kobs(xi, xj) + ψm(xi)ψm(zj)

At training time, we use the kernel-based
SVM in a One-Vs-All schema over the feature
space derived by Km(·, ·). The learning pro-
cess provides a family of classification functions
f(xi;m) ⊂ Rn+md × Rd, which associate each
xi to a distribution of scores with respect to the
different d labels, depending on the context size
m. At classification time, all possible sequences
y ∈ Y+ should be considered in order to deter-
mine the best labeling ŷ, where m is the size of
the history used to enrich xi, that is:

ŷ = arg max
y∈Y+

{
∑

i=1...m

f(xi;m)}

In order to reduce the computational cost, a
Viterbi-like decoding algorithm is adopted1. The
next section defines the kernel function Kobs ap-
plied to specific utterances.

2.2 Structured Kernel Methods for Speech
Act Labeling

Several NLP tasks require the explorations of
complex semantic and syntactic phenomena.
For instance, in Paraphrase Detection, verifying
whether two sentences are valid paraphrases in-
volves the analysis of some rewriting rules in
which the syntax plays a fundamental role. In
Question Answering, the syntactic information is
crucial, as largely demonstrated in (Croce et al.,
2011).

1When applying f(xi;m) the classification scores are
normalized through a softmax function and probability scores
are derived.

Devo controllare maggiormente il mio peso
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Figure 1: Dependency Parse Tree of “Devo con-
trollare maggiormente il mio peso” (In English:
“I need to control my weight more” )

A natural approach to exploit such linguistic
information consists in applying kernel methods
(Robert Müller et al., 2001; Shawe-Taylor and
Cristianini, 2004) on structured representations of
data objects, e.g., documents. A sentence s can
be represented as a parse tree2 that expresses the
grammatical relations implied by s. Tree kernels
(TKs) (Collins and Duffy, 2001) can be employed
to directly operate on such parse trees, evaluating
the tree fragments shared by the input trees. This
operation corresponds to a dot product in the im-
plicit feature space of all possible tree fragments.

Whenever the dot product is available in the
implicit feature space, kernel-based learning
algorithms, such as SVMs, can operate in order to
automatically generate robust prediction models.
TKs thus allow to estimate the similarity among
texts, directly from sentence syntactic structures,
that can be represented by parse trees. The
underlying idea is that the similarity between
two trees T1 and T2 can be derived from the
number of shared tree fragments. Let the set
T = {t1, t2, . . . , t|T |} be the space of all the
possible substructures and χi(n2) be an indicator
function that is equal to 1 if the target ti is rooted
at the node n2 and 0 otherwise. A tree-kernel
function over T1 and T2 is defined as follows:
TK(T1, T2) =

∑
n1∈NT1

∑
n2∈NT2

∆(n1, n2)

where NT1 and NT2 are the sets of
nodes of T1 and T2 respectively, and
∆(n1, n2) =

∑|T |
k=1 χk(n1)χk(n2) which com-

putes the number of common fragments between
trees rooted at nodes n1 and n2. The feature space
generated by the structural kernels obviously
depends on the input structures. Notice that
different tree representations embody different
linguistic theories and may produce more or less
effective syntactic/semantic feature spaces for a

2Parse trees can be extracted using automatic parsers. In
our experiments, we used SpaCy https://spacy.io/.



given task.
Dependency grammars produce a significantly

different representation which is exemplified in
Figure 1. Since tree kernels are not tailored to
model the labeled edges that are typical of de-
pendency graphs, these latter are rewritten into
explicit hierarchical representations. Different
rewriting strategies are possible, as discussed in
(Croce et al., 2011): a representation that is shown
to be effective in several tasks is the Grammatical
Relation Centered Tree (GRCT) illustrated in Fig-
ure 2: the PoS-Tags are children of grammatical
function nodes and direct ancestors of their asso-
ciated lexical items.

ROOT

OBJ

NOUN

peso::n

DET:POSS

DET

mio::d

DET

DET

il::d

ADVMOD

ADV

maggiormente::a

VERB

controllare::v

AUX
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Figure 2: Grammatical Relation Centered Tree
(GRCT) of “Devo controllare maggiorment il mio
peso”.

Different tree kernels can be defined accord-
ing to the types of tree fragments considered in
the evaluation of the matching structures. In the
Subtree Kernel (Vishwanathan and Smola, 2002),
valid fragments are only the grammatically well
formed and complete subtrees: every node in a
subtree corresponds to a context free rule whose
left hand side is the node label and the right hand
side is completely described by the node descen-
dants. Subset trees are exploited by the Sub-
set Tree Kernel (Collins and Duffy, 2001), which
is usually referred to as Syntactic Tree Kernel
(STK); they are more general structures since their
leaves can be non-terminal symbols. The subset
trees satisfy the constraint that grammatical rules
cannot be broken and every tree exhaustively rep-
resents a CFG rule. Partial Tree Kernel (PTK)
(Moschitti, 2006) relaxes this constraint consider-
ing partial trees, i.e., fragments generated by the
application of partial production rules (e.g. se-
quences of non terminal with gaps). The strict
constraint imposed by the STK may be problem-
atic especially when the training dataset is small
and only few syntactic tree configurations can be
observed. The Partial Tree Kernel (PTK) over-
comes this limitation, and usually leads to higher
accuracy, as shown in (Moschitti, 2006).

Capitalizing lexical information in Convolution
Kernels. The tree kernels introduced above per-
form a hard match between nodes when compar-
ing two substructures. In NLP tasks, when nodes
are words, this strict requirement reflects in a too
strict lexical constraint, that poorly reflects seman-
tic phenomena, such as the synonymy of differ-
ent words or the polysemy of a lexical entry. To
overcome this limitation, we adopt Distributional
models of Lexical Semantics (Sahlgren, 2006;
Mikolov et al., 2013) to generalize the meaning
of individual words by replacing them with ge-
ometrical representations (also called Word Em-
beddings) that are automatically derived from the
analysis of large-scale corpora. These representa-
tions are based on the idea that words occurring in
the same contexts tend to have similar meaning:
the adopted distributional models generate vec-
tors that are similar when the associated words ex-
hibit a similar usage in large-scale document col-
lections. Under this perspective, the distance be-
tween vectors reflects semantic relations between
the represented words, such as paradigmatic rela-
tions, e.g., quasi-synonymy. These word spaces
allow to define meaningful soft matching between
lexical nodes, in terms of the distance between
their representative vectors. As a result, it is pos-
sible to obtain more informative kernel functions
which are able to capture syntactic and semantic
phenomena through grammatical and lexical con-
straints.

The Smoothed Partial Tree Kernel (SPTK) de-
scribed in (Croce et al., 2011) exploits this idea
extending the PTK formulation with a similarity
function σ between nodes:

∆SPTK(n1, n2) = µλσ(n1, n2) , if n1 and n2 are leaves

∆SPTK(n1, n2) = µσ(n1, n2)
(
λ2+

+
∑

~I1,~I2:l(~I1)=l(~I2)

λd(~I1)+d(~I2)

l(~I1)∏
k=1

∆SPTK

(
cn1(i1k), cn2(i2k)

))
(1)

In the SPTK formulation, the similarity function
σ(n1, n2) between two nodes n1 and n2 can be
defined as follows:
• if n1 and n2 are both lexical nodes, then
σ(n1, n2) = σLEX(n1, n2) = τ

~vn1 ·~vn2

‖~vn1‖‖~vn2‖
.

It is the cosine similarity between the word
vectors ~vn1 and ~vn2 associated with the la-
bels of n1 and n2, respectively. τ is called
terminal factor and weighs the contribution



of the lexical similarity to the overall kernel
computation.
• else if n1 and n2 are nodes sharing the same

label, then σ(n1, n2) = 1.
• else σ(n1, n2) = 0.

In the challenge we adopt the SPTK in order to im-
plement the Kobs function used in the Markovian
SVM. This kernel in fact has been showed very
robust in the classification of (possibly short) sen-
tences, such as in Question Classification (Croce
et al., 2011) or Semantic Role Labeling (Croce et
al., 2011; Croce et al., 2012).

Dataset #dialogues #user #system #total
turns turns turns

train 40 1,097 1,119 2,216
test 20 479 492 971
complete 60 1,576 1,611 3,187

Table 2: Statistics about the iLISTEN dataset

3 Experimental Results

In iLISTEN, the reference dataset includes the
transcriptions of 60 dialogues amounting to about
22, 000 words. The detailed statistics regarding di-
alogues and turns in the train and test dataset are
reported in Table 2.

Micro Macro
Run P R F1 P R F1
UNITOR .733 .733 .733 .681 .628 .653
System2 .685 .685 .685 .608 .584 .596
Baseline .340 .340 .340 .037 .111 .056

Table 3: Results of the UNITOR system

In the proposed classification workflow each ut-
terance from the training/test material is processed
through the SpaCy3 dependency parser whose out-
puts are automatically converted into GRCT struc-
tures4 discussed in Section 2. These structures are
used within the Markovian SVM implemented in
KeLP5 (Filice et al., 2015; Filice et al., 2018).

The learning algorithm is based on a SPTK
combined with a One-Vs-All multi-classification
schema adopted to assign individual utterances to
the targeted classes. All the parameters of the

3It is freely available for several languages (including Ital-
ian) at https://spacy.io/

4Utterances may include more than one sentence and po-
tentially generate different trees. These cases are handled as
follows: all trees after the first one are linked through the cre-
ation of an artificial link between their roots and the root of
the tree generated by the first sentence.

5http://www.kelp-ml.org/?page_id=215

specific kernel (i.e. the contribution of the lexi-
cal nodes in the overall computation) and of the
SVM algorithm have been tuned via 10-cross fold
validation over the training set. In the Markovian
SVM, a history of m = 1 previous steps allowed
to achieve the best results during the parameteri-
zation step. Given the limited size of the dataset,
higher values of m led to sparse representation of
the transitions ψm that are not helpful. As a multi-
classification task, results are reported in terms
of precision (P), recall (R) and F1-score with re-
spect to the gold standard, as reported in Table 3.
These are averaged across each utterance (micro-
statistics) and per class (macro-statistics).

Among the two submitted systems, UNITOR
(reported on top of the table) achieved best re-
sults, both considering micro and macro statistics,
where a F1 of 0.733 and 0.653 are achieved, re-
spectively. These results are higher with respect
to the other participant (namely System2) and far
higher than the baseline (that confirms the diffi-
culty of the task).

Given the unbalanced number of examples
for each class, UNITOR achieves higher results
w.r.t. the micro statistics, while lower results are
achieved w.r.t. classes with a reduced number of
examples. The confusion matrix reported in Ta-
ble 4 shows that some recurrent misclassifications
(e.g. the STATEMENT class with respect to the
REJECT class) need to be carefully addressed.
Clearly this is a very challenging task, also for
the annotators, where the differences between the
speech act is not strictly defined: as for example,
given the stimulus of the system “Bisognerebbe
mangiare solo se si ha fame, ed aspettare che la
digestione sia completata prima di assumere altri
cibi6” the answer “a volte il lavoro non mi per-
mette di mangiare con ritmi regolari!7” should
be labeled as REJECT while the system provides
STATEMENT. Overall this results is straightfor-
ward, also considering that the system did not
required any task specific feature modeling, but
the adopted structured kernel based method allows
capitalizing the syntactic and semantic informa-
tion useful for the task. The only requirement
of the system is the availability of a dependency
parser.

6Translated in English: “You should only eat if you are
hungry, and wait until digestion is complete before eating
again.”

7Translated in English: “sometimes work doesn’t allow
me to eat at a regular pace!”



STATEMENT KIND-ATT. GEN.-ANSW. REJECT CLOSING SOL.-CLAR. OPENING AGREE INFO-REQ.
STATEMENT 153 6 3 24 0 3 0 2 13
KIND-ATT. 4 17 0 5 1 2 0 3 2
GEN.-ANSW. 1 0 48 0 0 1 0 6 0
REJECT 0 3 0 3 0 0 0 0 1
CLOSING 0 0 0 0 7 1 0 1 0
SOL.-CLAR. 0 6 0 2 1 8 0 1 2
OPENING 0 0 0 0 0 0 11 0 0
AGREE 0 3 1 1 0 0 0 11 1
INFO-REQ. 4 9 0 4 1 9 0 0 93

Table 4: Confusion Matrix of the UNITOR system w.r.t. gold standard. In column the number of classes
from the gold standard, while rows report the system decisions. In bold correct classifications.

4 Conclusions

In this paper the description of the UNITOR sys-
tem participating to the iLISTEN task at EvalIta
2018 has been provided. The system ranked first
in all the evaluations. Thus, the proposed classifi-
cation strategy shows the beneficial impact of the
combination of a structured kernel-based method
with a Markovian classifier, capitalizing the con-
tribution of the dialogue modeling in deciding the
speech act of individual sentences. One impor-
tant finding of this evaluation is that a quite ro-
bust speech classifier can be obtained with al-
most no requirement in term of task-specific fea-
ture and system engineering: results are appeal-
ing mostly considering the reduced size of the
dataset. Further work is needed to improve the
overall F1 scores, possibly extending the adopted
kernel function by addressing other dimensions
of the linguistic information or also making the
kernel more sensitive to task-specific knowledge.
Also the combination of the adopted strategy with
recurrent neural approaches is an interesting re-
search direction.
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