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The Lazer – McKenna mathematical model of a suspension bridge applied to the Adomi Bridge in Ghana is 
presented. Numerical methods accessible in commercially available Computer Algebraic System “MATLAB” 
are used to analyze the second order non-linear ordinary differential equation. Simulations are performed using 
an efficient SIMULINK scheme, the bridge responses are investigated by varying the various parameters of the 
bridge. 
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INTRODUCTION 
 
The collapse of the Tacoma Suspension Bridge in 1940 
stimulated interest in mathematical modeling of suspension 
bridges. The reason of collapse was originally attributed to 
resonance and this was generally accepted for fifty years 
until it was challenged by mathematicians Lazer and 
McKenna (Lazer and McKenna, 1990). Using a system of 
uncoupled non-linear ordinary differential, these 
mathematicians explained the collapse of the Bridge. Their 
model with appropriate engineering constants will be used 
to determine the response of the Adomi Bridge subjected to 
large induced initial oscillations. 

Suspension bridges have the longest free span of all the 
different type of bridges constructed, currently the first 
fifteen bridges with the longest free span in the world are of 
the suspension bridge type.  
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(http://en.wikipedia.org/wiki/List_-of_longest_-
suspension_bridge_spans) The bridge with the longest free 
span in the world is The Akashi-Kaikyō Bridge.on the Kobe-
Awaji Route in Japan with a free maximum span of almost 
2000m. 
The collapse of the Tacoma Suspension Bridge 
 
On July 1, 1940, the Tacoma Narrows Bridge in the state of 
Washington was completed and opened to traffic. From the 
day of its opening the bridge began to undergo vertical 
oscillations, and it was soon nicknamed “Galloping Gertie”. 
As a result of its novel behaviour, traffic on the bridge 
increased tremendously. People came from hundreds of 
miles to enjoy riding over a galloping, rolling bridge. For 
four months, everything was all right, and the authorities in 
charge became more and more confident of the safety of 
the bridge that they were even planning to cancel the 
insurance policy on the bridge (Tajcová, 1997). 
The collapse of the bridge as described in (Tajcová, 1997) 
and (Menkveld and Pence, 2001) is paraphrased follows…. 
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“At about 7:00 a.m. of November 7, 1940, the bridge 
began to undulate persistently for three hours. Segments of 
the span were heaving periodically up and down as much 
as three feet. At about 10:00 a.m., the bridge started 
suddenly oscillating more wildly and concerned officials 
closed the bridge. Shortly after the bridge was closed, the 
character of the motion changed from vertical oscillation to 
two-wave torsional motion. The torsional motion caused the 
roadbed to tilt as much as 45 degrees from horizontal. At 
one moment, one edge of the roadway was twenty eight 
feet higher than the other; the next moment it was twenty-
eight feet lower than the other edge. The centre span, 
remarkably, endured the vertical and torsional oscillation 
for about a half hour, but then a centre span floor panel 
broke off and dropped into the water below At 10:30 a.m. 
the bridge began cracking, and finally, at 11:00 a.m. the 
entire structure fell down into the river”. 

The collapse of the Tacoma suspension bridge is of 
particular interest and thus referenced in many papers 
addressing mathematical modeling of suspension bridges. 
The aftermath of this collapse is that it generated a lot of 
interest in the mathematical modeling of suspension 
bridges within the mathematics community. Initially the 
Tacoma Narrows bridge failure was considered as a classic 
example of the resonance effects on structures, in this case 
under the action of time-periodic forcing caused by a von 
kármán street of staggered vortices due to impinging wind 
on the bridge structure (Amann et al, 1941).One of the 
most challenging and not fully explained areas of 
mathematical modeling involves nonlinear dynamical 
systems, in particular systems with so called jumping 
nonlinearity. It can be seen that its presence brings into the 
whole problem unanticipated difficulties and very often it is 
a cause of several solutions. The suspension bridge is an 
example of such a dynamical system. The nonlinearity is 
caused by the presence of the vertical supporting cable 
stays which restrain the movement of the centre span of 

the bridge in a downward direction, but have no influence 
on its behavior in the upwards direction.After the collapse 
of the Tacoma Narrows Bridge, it became important to 
establish what factors caused this disastrous failure so that 
these factors would be taken into consideration for the 
design of future suspension bridges. Although questions 
still persists about the exact cause for the Tacoma Narrows 
Bridge failure, mathematical models have been developed 
to illustrate how the bridge behaved during its final 
moments. There are models that illustrate both the vertical 
motion, as well as the torsional motion exhibited by the 
bridge. (McKenna, 1999) 
 
 
The Adomi Bridge 
 
One of Ghana’s most treasured landmarks and national 
heritage is the Adomi Bridge (originally opened as the Volta 
Bridge) which is the main link between the Eastern and 
Volta regions of Ghana. It bridges the Volta River at 
Atimpoku which is near Akosombo dam (the site of 
Ghana’s hydroelectric power plant). Figure 2 Shows the 
Adomi Bridge which is rightly described as arched 
suspension bridge. The Adomi Bridge is an arch 
suspension type whereby the roadway is suspended off 
two giant arches via cables. According to a 1958 article in 
the Structural Engineer, the bridge has a span of 805 feet 
and the rise to the crown of the arches is 219 feet. There 
have been debates in the past as to whether Adomi Bridge 
can be described to be suspension bridge or not. It suffice 
to say that so far as the roadbed are suspended by means 
of a vertical cable stays (hangers) connected to the steel 
truss arches, the bridge can be considered as a 
suspension type but undeniably in conventional suspension 
bridges the vertical cable stays are connected to a main 
cables which are strung between two supporting towers at 
the ends of the span as shown in figure 1.Adomi Bridge is a  

 

Figure 1. Akashi-Kaikyō Bridge on the Kobe-Awaji Route in Japan 

Figure 2. Adomi Bridge. 



 
 
 
 
major landmark and a national heritage and remains so 
even after fifty four years of exploitation. According to 
Ghana Highway Authorities (GHA), the Bridge is the main 
means by which an average of 120,000 workers, traders 
and tourists cross the Volta River daily to and from the 
eastern corridor and northern regions of the country. An 
average of 3,000 vehicles uses the Bridge daily.The main 
problem to tackle in this paper is that Suspension bridges 
are generally susceptible to visible oscillations, which if not 
controlled can lead to failure of the bridge. An uncoupled 
system of non-linear differential equation first derived in 
(McKenna, 1990) was used to explain the ultimate failure of 
the Tacoma Bridge. We apply this model to the Adomi 
Bridge with few modifications and appropriate engineering 
constants to predict the response of the Bridge to large 
oscillatory motions.We determine whether small or large 
amplitude oscillations once started on the Bridge, will 
eventually diminish or rather continue oscillatory motion 
unceasingly until the Bridge collapses. 
Hence the objectives will be to; 
 Use appropriate software program to create a 

simulation of the mathematical model of suspension bridge 
proposed in (McKenna, 1999) with some modifications. 
 To determine using numerical experiments the 

response of Adomi Bridge when subjected to large initial 
vertical displacement or large torsional rotation.  
 Investigate the stability of the Adomi Bridge under 

various initial conditions and varying engineering constants  
 To establish if in spite of the apparent rigidity of 

steel arched- suspension bridge, they are as susceptible to 
large oscillation as in the conventional type. 
 To make an input to the general stock of 

knowledge available to determine the safe and economical 
parameters for design and construction of steel arched- 
suspension bridges 
 
 
Related Literature 
 
Pioneering studies 
 
The pioneering paper on mathematical modeling of 
suspension bridge (Lazer and McKenna, 1990) was 
published fifty years after the collapse of the Tacoma 
Suspension Bridge. Their research directly contradicted the 
long-standing view that resonance phenomena caused the 
collapse of the Tacoma Narrows Bridge. 

They suggested several alternative types of differential 
equations that govern the motion of such suspension 
bridges. In their paper the authors made a strong case 
against the popular notion that the collapse of the Tacoma 
Bridge was due to resonance. They contended that a 
complete mathematical explanation for the Tacoma 
Narrows disaster must isolate the factors that make 
suspension bridges prone to large-scale oscillations; show 
how a bridge could go into large oscillations as the result of 
a single gust and at other times remain motionless even in 
high winds; and demonstrate how large vertical oscillations  
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could rapidly change to a twisting motion. One significant 
detail, they asserted, lies in the behaviour of the cable 
stays (hangers), connecting the roadbed to a bridge's main 
cable. 

When the hangers are loose, they exert no force, and 
only gravity acts on the roadbed. When the hangers are 
tight, they pull on the bridge, countering the effect of 
gravity. Solutions of the nonlinear differential equations that 
correspond to such an asymmetric situation suggest that, 
for a wide range of initial conditions, a given push can 
produce either small or large oscillations. Lazer and 
McKenna went on to argue that the alternate slackening 
and tightening of cables might also explain the large 
twisting oscillations experienced by a suspension bridge. 

In (Lazer and McKenna, 1987) the authors proposed a 
nonlinear beam equation as a model for vertical oscillations 
in suspension bridges. They modeled the restoring force 
from the cable as a piecewise linear function of the 
displacement in order to capture the fact that the 
suspension cables resist elongation, but do not resist 
compression. Later investigations of the qualitative and 
quantitative properties of solutions to this type of 
asymmetric system suggest that this is a convincing model 
for nonlinearly suspended structures.  

The results on existence, uniqueness, multiplicity, 
bifurcation, and stability of periodic solutions are consistent 
with the nonlinear behavior of some suspension bridges; 
see (Chen and McKenna, 1999), (Doole and Hogan, 2000), 
(Humphreys and McKenna, 1999) (Lazer and McKenna, 
1990) and (McKenna and Walter, 1987) for example. In 
(McKenna, 1999) and (Moore, 2002), McKenna and Moore 
extended the models of Lazer and McKenna to the coupled 
vertical and torsional motions of suspension bridges. 
Though they were able to replicate the phenomena 
observed on the Tacoma Narrows Bridge on the day of its 
famous collapse, the model had several shortcomings. 
First, the treatment of the restoring force from the cables 
was oversimplified; the nonlinear terms in the model 
describe cables that behave perfectly linearly when in 
tension (regardless of the size of the oscillation) and that 
can lose tension completely. Moreover, the parameter 
values for which they could induce the desired phenomena 
were physically unreasonable. 
 
 
The McKenna’s Mathematical Model 
 
In (McKenna, 1999), the author considered a horizontal 
cross section of the centre span of a suspension bridge 
and proposed an ordinary differential equation model for 
the torsional motion of the cross section. Using physical 
constants from the engineers' reports of the Tacoma 
Narrows collapse, he investigated this model numerically. 
In the paper, the author formulated a mechanical model for 
a beam oscillating torsionally about equilibrium, and 
suspended at both or ends by cables. He showed how the 
“small-angle” linearization can remove a large class of 
large-amplitude non-linear solutions that can be sustained 



050 Glo. Adv. Res. J. Eng. Technol. Innov. 
 
 
 

 
 

 
 
 
by extremely small periodic forcing terms  

To model the motion of a suspension bridge, McKenna 
considered the horizontal cross section of the suspension 
bridge as a beam (rod) of length 2l  and mass m  
suspended by non-linear cables, 

( )y t  denote the downward distance of the centre of 
gravity of the rod from the unloaded state and  

( )t  denote the angle of the rod from horizontal at time t 
The uncoupled differential equation derived by the author 

in (McKenna, 1999) for the torsional and vertical motion of 
a beam assuming that the vertical cables never lose 
tension was given as. 

1
6 cos sin ( )K f t
m

        

                                                                            
overstretched. Motivated by (McKenna and O’Tuama, 

2001) and (McKenna and Moore, 2002), Ben-Gal and 
Moore proposed the equation of the smoothed non-linear 
cable force F. as 

( 1)
Ky
mgF mg e           2.3                                                                                     

The corresponding differential equation is given as 

( 1) sin( )
Ky
mgy g e t

m m
             

   
                  2.4                                                          

Where y is downwards displacement of the mass from 
the equilibrium point,  

g is acceleration due to gravity,  
  is damping constant,  
  and   are the amplitude and frequency of forcing 

term and 
K  is the spring constant of the nonlinear cable-like 

springs 

They contrast the multiplicity, bifurcation, and stability of 
periodic solutions for a piecewise linear and smooth non-
linear restoring force. The authors conclude that while 
many of the qualitative properties are the same for the two 
models, the nature of the secondary bifurcations (period-
doubling and quadrupling) differs significantly. 
 
 
An Alternative Mathematical Model 
 
A more complex model as compared to the model 
suggested by McKenna (McKenna, 1999) is found in 
(Tajcová, 1997). In his paper, the author proposed two 
mathematical models describing a dynamical behaviour of 
suspension bridges such as Tacoma Narrows Bridge. The 
author’s attention was concentrated on their analysis 
concerning especially the existence of a unique solution. 
In the first and simpler model proposed by Tajcová, the 
construction holding the cable stays was taken as a solid 
and immovable object. Then he described the behaviour of 
the suspension bridge by a vibrating beam with simply 
supported ends. The suspension bridge is subjected to the 
gravitation force, to the external periodic force (e.g. due to 
the wind) and in an opposite direction to the restoring force 
of the cable stays hanging on the solid construction. The 
model illustrated in figure. 2.1 shows the bending beam 
with simply supported ends, held by nonlinear cables, 
which are fixed on an immovable construction. 
In this model the displacement ( , )u x t  of this beam was 
described by non-linear partial differential equation:  
 

2 4

2 4

( , ) ( , ) ( , ) ( , ) ( ) ( , )u x t u x t u x tm EI b ku x t W x f x t
t x t

  
    

  
   2.5                  

Figure 2.1. A simple model of a suspension bridge proposed by Tajcová 

A more complicated model proposed by Tajcová 
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With  the boundary conditions 

2 2

2 2

(0, ) ( , )(0, ) ( , ) 0

( , 2 ) ( , ), , (0, )

u t u L tu t u L t
x x

u x t u x t t x L

 
   

 
    

    2.6                                          

In the other and more complicated model proposed by 
Tajcová, the construction holding the cable stays was not 
taken as a solid and immovable object but rather as a 
vibrating string, coupled with the beam of the roadbed by 
non linear cable stays. With the boundary conditions. 

For this model the displacement ( , )u x t  of the beam and 
( , )v x t of that of vibrating string was given by the author as 

a coupled non-linear partial differential equation: 
2 4

2 4

2 2

1 1 1 12 2

( , ) ( , ) ( , ) ( ) ( ) ( , )

( , ) ( , ) ( , ) ( ) ( ) ( , )

u x t u x t u x tm EI b k u v W x f x t
t x t

v x t v x t v x tm T b k u v W x f x t
t x t









  
     

  
  

     
  

   2.7                        

With  the boundary conditions 
2 2

2 2

(0, ) ( , )(0, ) ( , ) (0, ) ( , ) 0u t u L tu t u L t v t v L t
x x

 
     

 
    2.8                                  

In equations 2.5, 2.6, 2.7 and 2.8 m and m1 mass per 
unit length of bridge and main cable respectively, 

E         Young’s modulus,  
I       Moment of inertia of cross section, 
b and b1      damping coefficient of bridge deck and 

main cable respectively, 
k         stiffness of cables (spring constant), 
W and W1 weight per unit length of the bridge and 

main cable respectively, 
L      length of the centre-span of the bridge, 
T      inner tension of main cable, 

f  and 1f  external time-periodic forcing term (due to 
wind) on bridge and main cable respectively. 

In the paper (Tajcová, 1997), the author used the same 
non-linear springs assumption for the cable stays (hangers) 
as proposed in (Lazer and McKenna, 1990). That is the 
cable stays are considered as one-sided springs, obeying 
Hooke’s law, with a restoring force proportional to 
displacement when stretched and with no restoring force 
when compressed. Thus if an unloaded cable is expanded 
downward by a distance u  from the unloaded state, the 
cable should have a resisting force ku  in other words, 
ku  if u  is positive, and 0 if u  is negative. 

Finally Tajcová presented his own results concerning 
existence and uniqueness of time-periodic solutions of two 

chosen models. He used two different approaches; the first 
one was based on the Banach contraction theorem which 
needs some restrictions on the bridge parameters. The 
second approach works in relatively greater generality but 
with an additional assumption of sufficiently small external 
forces. One conclusion the author arrives at, consistent 
with the conclusion of other researches was that 
strengthening the cable stays (hangers), which means 
increasing the spring constant k, can paradoxically lead to 
the destruction of the bridge. That is in some range of k 
values the more flexible the cable stays are, the better the 
bridge response to oscillations (large amplitude oscillations 
settle down more quickly) 

Research in the area of mathematical modeling of 
suspension bridges started by Lazer and McKenna is still 
continuing with researchers constantly providing interesting 
and useful results. 
 
 
PROPOSED MODEL 
 
The derivation of the system of second order differential 
equation governing the vertical and torsional oscillations of 
a suspension bridge is under study. The equations with the 
necessary engineering constants were used in (McKenna, 
1999) to explain the probable cause of collapse of the 
Tacoma Narrows Suspension Bridge. Herein, this 
differential equations is applied to model the vertical and 
torsional oscillations of the Adomi Bridge. Numerical 
methods specifically the fourth order Runge-Kutta method 
is employed to solve the equations, hence the formulation 
of this method (Runge-Kutta) is presented. This is done 
indirectly by the use of “Matlab “simulink” which is 
imbedded in “Matlab” a computer software program. The 
chapters end with an overview of the capabilities of 
“Matlab” and “Matlab simulink”. 
 
 
The Model OF Cross Section OF Bridge’s Span 
 
We first develop the differential equation governing the 
vertical and torsional oscillations of the horizontal cross 
section of the centre span of a suspension bridge. 

We treat the centre span of the bridge as a beam of 
length L  and width 2l  suspended by cables  

(see figure 3.1).                             
To model the motion of a horizontal cross section of the 

beam, we treat it as a rod of length 2l  and mass m  
suspended by cables. Let  

 

                              Figure 3.1.  A simple model of suspension bridge 
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( )y t  denote the downward distance of the centre of 
gravity of the rod from the unloaded state  

( )t  denote the angle of the rod from horizontal at time 
t  (see figure 3 2) 

We will assume that the cables do not resist 
compression, but resist elongation according to Hooke's 
Law with spring constant K ; i.e., the force exerted by the 
cable is proportional to the elongation in the cable with 
proportionality constant K . In Figure 3.2 we see that the 
extension in the right hand cable is ( sin )y l   hence the 
force exerted by the right hand cable is 

( sin ), sin 0
( sin )

0, sin 0

K y l y l
K y l

y l

 





      
  

     3.1                                         

 
 
Where max( ,0)v v   
Similarly the force exerted by the left hand cable is  
 

( sin ), sin 0
( sin )

0, sin 0

K y l y l
K y l

y l

 





     
  

   3.2                                                    

The derivation is as follows; the potential energy ( . )P E  
of a spring with spring constant k  stretched a distance x  
from equilibrium position is given by 

  21.
2

P E kxdx kx                   3.3                                                                                    

Thus total potential energy ( . )TP E  of right and left hand 
cable (figure 3.2) will be given by 

    2 21. ( sin ) ( sin )
2TP E K y l y l            3.4                                                

The potential energy . RP E  due to weight of rod with 
mass m  displaced downwards from equilibrium by 
distance y is given by 

. RP E mgy                               
where g  is acceleration due to gravity 

Therefore total potential energy of model . MP E is given 
by 

  2 2
. ( sin ) ( sin )

2M
KP E y l y l mgy               3.5                                 

Now we proceed to find the total kinetic energy . MK E  of 
model. For the vertical oscillatory motion the kinetic energy 

. RK E of the centre of mass of the rod is given by 

21.
2RK E my    

where y is the velocity of the centre of mass of rod. 

The formula for finding the kinetic energy . TK E  about 
the centroid of the rod due to the torsional oscillatory 
(rotational) motion is derived from first principles as; 

 2 21.
6TK E ml    

where   is the angular velocity  
To prove the formula for . TK E  consider an infinitesimal 

part of the rod with mass dm at a distance r  from the 
centre of rod as shown in figure 3.3. 

The kinetic energy . dmK E  of mass dm is given by  

21. ( )
2dmK E dm r  ,  

r  is linear velocity v of infinitesimal part dm. The mass 
of rod is m and length 2l, thus  

 

Figure 3.2. A horizontal cross section of suspension bridge 

Figure 3.3  Rod representing cross section of bridge 

-l l r 
2l 

dm 
dr 



 
 
 
 

2
mdm dr
l


 

Substituting this in . dmK E  and integrating over limit

 ,l l  we have 
2

2 2 21.
4 6

l

T l

mK E r dr ml
l





 


    

Thus total Kinetic energy of system will be given by  
2 2 21 1. . .

2 6M R TK E K E K E my ml            3.6                                                      

Now we form the Lagrangian L 
. .M ML K E P E   

 2 22 2 21 1 ( sin ) ( sin )
2 6 2

KL my ml y l y l mgy               
       3.7            

According to the principle of least action, the motion of 
the beam obeys the Euler-Lagrange equations, 

0d L L
dt  

       
   and     0d L L

dt y y
  

         
 3.8                                

We proceed by evaluating the required derivatives 
needed in the Euler-Lagrange equations, 

2

2

3

3

L ml

d L ml
dt












    









 

cos ( sin ) ( sin )L Kl y l y l  


       
 

Thus    0d L L
dt  

       
          becomes 

2

cos ( sin ) ( sin )
3

ml Kl y l y l
        


   3.9                                                      

Similarly we evaluate 
L my
y

d L my
dt y






 
  







 

( sin ) ( sin )L K y l y l mg
y

          
 

Thus  0d L L
dt y y
  

    
                 

becomes 
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( sin ) ( sin )my K y l y l mg               3.10                                                  

Simplifying and adding damping terms 1   and 2 y   to 
equations (3.9) and (3.10) respectively, as well as external 
forcing function ( )f t  to equation (3.9) we get the following 
system of coupled second order differential equations 

 

1

2

3 cos ( sin ) ( sin ) ( )

( sin ) ( sin )

K y l y l f t
ml

Ky y l y l y g
m

    

  

 

 

         
 
 
 

         

 

 

   3.11                  

 
Assuming that the cables never lose tension,  
we have sin 0y l    and hence  

 sin siny l y l    .  
Thus, the equations (3.11) become uncoupled and the 

torsional and vertical motion satisfy 

1
6 cos sin ( )K f t
m

                   3.12                                                                  

2
2Kyy y g
m

                              3.13                                                                             

Equations 3.12 and 3.13 were used in (McKenna, 1999) 
to explain the cause of collapse of the Tacoma Narrows 
suspension bridge. 

Equation 3.13 model the vertical oscillatory motion and is 
simply the equation for a damped, forced, linear harmonic 
oscillator and the behaviour of its solutions is well known 
(Blanchard, Devaney and Hall, 2006). The equation for the 
torsional motion is a damped, forced, pendulum equation, 
which is known to possess chaotic solutions (Blanchard, 
Devaney and Hall, 2006). McKenna approximated periodic 
solutions of (3.12) in (McKenna, 1999). In this dissertation 
we investigate numerically the bifurcation properties of 
these periodic solutions. 
 
 
Fourth (4th) Order Runge-kutta Method 
 
The fourth order Runge-Kutta method (RK4) is the most 
widely used numerical method for solving ordinary 
differential equation (ODE). RK4 belongs to the family of 
explicit Runge-Kutta method.  
Let an initial value problem (IVP) be specified as follows 
 

( , ),y f t y  0 0( )y t y        3.14                                                                             
The explicit Runge-Kutta method is then given by 

1
1

s

n n i i
i

y y h b k


                      3.15                                                                    
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Where

1

2 2 21 1

3 3 31 1 32 2

1 1 2 2 , 1 1

( , ),

( , ),

( , ),

( , ),

n n

n n

n n

s n s n s s s s s

k f t y

k f t c h y a hk

k f t c h y a hk a hk

k f t c h y a hk a hk a hk 



  

   

     





                                         

3.16 
s - The number of stages. 
h  - The step size 

(1 ), ( 1,2, , )ij ia j i s b i s    
 

and ( 2,3, , )ic i s 

are coefficients to be specified for a particular Runge – 
Kunta (RK) order and chosen so as to minimize local 
truncation error (LTE). The LTE, of an RK method is 
defined to be the difference between the exact and the 
numerical solution of the IVP at time 1nt t  . These data 
are conveniently displayed in a tableau known as the 
Butcher array shown in table 3.1. 

2 21

3 31 3,2

,1 ,2 , 1

1 2 1

0 0 0 0
0 0

0 0
0s s s s s

s s

c a
c a a

c a a a
b b b b









 

  





 

For explicit RK method the following conditions are 
imposed in specifying the coefficients. 

0ija    for all j i  

1

, 2 :
s

i ij
j

c a i s


  and   

1

1
s

j
j

b


  

RK4 is a four-stage RK method. The most popular of all RK 
methods (of any stage number) is the four-stage, fourth 
order method with corresponding Butcher array shown in 
table 3.2. Table 3.2: The Butcher array for the classic four-
stage, fourth-order method 

1 1
2 2

1 1
2 2

1 1 1 1
6 3 3 6

0 0 0 0 0

0 0 0

0 0 0

1 0 0 1 0

 

 
Thus equivalently, the RK4 method for the IVP specified 

in equation 3.14 will be given by the following equations: 
1

1 1 2 3 46

1

( 2 2 )n n

n n

y y h k k k k

t t h





    

          3.17

 

 
 
 
                                                                          
Where 1ny  is the RK4 approximation of 1( )ny t  and 
 

1

1 1
2 12 2

1 1
3 22 2

4 3

( , )

( , )

( , )

( , )

n n

n n

n n

n n

k f t y

k f t h y hk

k f t h y hk

k f t h y hk



  

  

  

              3.18                                                                        

 
Thus, the subsequent value (yn + 1) is determined by the 

current value (yn) plus the product of the size of the interval 
(h) and an estimated slope. The slope is a weighted 
average of slopes: 
 k1 is the slope at the start of the interval; 
 k2 is the slope at the midpoint of the interval, using 

slope k1 to determine the value of y at the point tn + h / 2 
using Euler's method; 
 k3 is again the slope at the midpoint, but now using 

the slope k2 to determine the y-value; 
 k4 is the slope at the end of the interval, with its y-

value determined using k3. 
In averaging the four slopes, greater weight is given to 

the slopes at the midpoint: 
1

1 2 3 46 ( 2 2 )slope k k k k     
The RK4 method is a fourth-order method, meaning that 

the error per step is on the order of h5, while the total 
accumulated error has order h4. The above formulae are 
valid for both scalar- and vector-valued functions (i.e., y 
can be a vector and f an operator). The fourth-order 
Runge–Kutta scheme requires four function evaluations per 
time step. However, it also has superior stability as well as 
excellent accuracy properties. These characteristics, 
together with its ease of programming, have made the 
fourth-order RK one of the most popular schemes for the 
solution of ordinary and partial differential equations. A 
straightforward implementation of RK4 method applied to a 
system of ODE is as follows: 

We wish to solve the system of differential equations 
 

 

1
1 1 2

2
2 1 2

1 2

( , , , , )

( , , , , )

( , , , , )

n

n

n
n n

dy f x y y y
dx
dy f x y y y
dx

dy f x y y y
dx















 

 
The pseudo-code is given by: 
x - scalar; y, k1, k2, k3, k4, slope are vectors; n number 

of equations; h is step size. 
On exit, both x and y are updated for the next station in 

marching. 
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Model Parameters for Adomi Bridge 
 
The data required for modeling the oscillations of the 
Adomi Bridge is the physical properties of the materials 
which were used in constructing the Bridge. Also necessary 
is the detailed geometric configuration of the Bridge. The 
following information was gathered from a comprehensive 
engineering report (Scott and Adams, 1958) on the Adomi 
Bridge. 
 The bridge is a two hinged latticed steel arched 

structure of 805 feet clear span, bearing on concrete 
abutments founded on rock on each bank of the river. The 
arch is of crescent form. 
 The deck is suspended from the arch at 35 feet 

intervals by 2¼ inch high tensile steel cables, the cables 
consist of 127 wires, 0.164 inches diameter with a breaking 
stress of 100-110 tons/square inch before galvanizing 
 The deck is of composite reinforced concrete and 

steel construction. The deck slab is made up of 23 
reinforced concrete panels each 35 feet giving a total 
length of 805 feet. 
 The carriageway has a width of 22 feet surfaced 

with a coat of mastic asphalt 1 inch thick. On each side are 
cantilevered footways of 4 feet 9inches wide. The footways 
have natural concrete finish with wooden floats, and 
protected by galvanized steel handrails with teak capping. 
 The arch itself is 40 feet wide overall. The rise of 

the lower chord is 158 feet 6 inches above the hinges, and 
the overall depth of the truss is 32 feet at the centre. 
 Weight of steel in main span is 880 tons, this is 

made up of 580 tons for the arch steel work and 300 tons 
for the deck steelwork. The total volume of concrete of the 
entire deck is 520 cubic yards (400 m3) 

Figure 4.1 shows the mathematical model of the vertical 
and torsional motion of a cross section of the Adomi 
Bridge. The differential equations modeling the torsional 
and vertical motion of a suspension bridge was proposed 
by    McKenna  (1999)     and    derived   in   Chapter  3  as; 

1
6 cos sin ( )K f t
m

        

        4.1
                                                                     

2
2Kyy y g
m

                                                    4.2                                                                                       

The parameters needed are m, mass per unit length of 
the bridge deck. For the Adomi Bridge, this is evaluated as 
(from Engineering details of Bridge above). 

(300 400*2.5 6.705*0.025*245.36*2.5 2*1.45*0.02*245.36*2.5)/245.36
5.862 / 5862 / 6,000 /

m
m tons m kg m kg m
   
  

  

This value of m fairly compares with bigger suspension 
bridges as listed in (Tajcová, 1997); Tacoma – 8,500 kg/m, 
Golden Gate – 31,000 kg/m, Bronx-Whitestone – 16,000 
kg/m.  

The real value of the stiffness of the cable stays k in our 
mathematical model cannot be easily determined. Based 
on observations during the collapse of the Tacoma Bridge, 
the value of K for the Bridge was approximated as 1,000 
kg/s2 per foot (0.3m).Thus stiffness 1 23,333K kgm s  for 
the Tacoma Bridge. In this thesis we will investigate the 
mathematical model with vastly varying value of the 
stiffness K (between 1,000 and 300,000 kgm-1s-2). 

The damping coefficients 1 and 2  also are not easily 
determined, again for the Tacoma Bridge a value of 0.01 
was used in (McKenna, 1999), we also use same value of 
0.01 

In modeling the collapse of the Tacoma Bridge, the 
forcing function ( )f t  was assumed to be sinusoidal with 
constant amplitude   of form ( ) sinf t t  , the value of 
  was chosen between 1.2 to 1.6, this was based on the 
fact that the frequency of motion of the bridge before the 
collapse was about 12 to 14 cycles per minute. The value 
of   specified between 0.02 - 0.06 was so chosen, in order 
to induce oscillations of three degrees near equilibrium in 
the linear model (McKenna, 1999).   In  this  thesis  we  use  

Figure 4.1: Mathematical model of cross section of Adomi Bridge 

H=
48
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similar values for the forcing term as used for modeling the 
Tacoma Bridge. We also investigate the Adomi Bridge 
responses to different forcing term like periodic impulsive 
force, periodic random forces and the combination of these. 
 
 
NUMERICAL EXPERIMENTS 

 
Firstly we consider the vertical motion of the bridge which 

is the familiar forced harmonic oscillator. 

2 2
2 2Ky Kyy y g y y g
m m

                                                                      

4.3 
This is standard second order linear ordinary differential 

equation; with a known analytical solution: 

    2 2 28 81 12
2 22 2cos sin

2

t
k k

m m
mgy e A t B t

K


 



    

                                  4.4 
The constants A and B are determined by the initial 

conditions (initial displacement and initial velocity of the 
mass). Due to the presence of damping (i.e., because of 

the 
2

2
t

e


term), we point out that  

( )
2
mgy t

K
  as t  . 

 
Therefore the long term response of this system is 

independent of the initial conditions and is driven entirely 
by the external forcing. 

As we know the damping coefficient 2 is usually small 
(in our model we have settled on a value of 0.01) so the 
square of it can be neglected as compared to the value of 
8K

m  hence equation 4.4 simplifies to 

 

    2 2 22 cos sin
2

t
k k

m m
mgy e A t B t

K


  

   4.5
 

    2 2 22 cos sin
2

t
k k

m m
mgy e A t B t

K


                                                            

4.5 
Given assuming that 

K=3000 

 
 0.005 cos sin 10ty e A t B t                                                                              

4.6 
Considering initial condition of (0) 14, (0) 0y y  , we 

have 4, 0.02A B  . Final solution is thus:  

 0.005( ) 4cos 0.02sin 10ty t e t t    

An initial condition of (0) 10, (0) 0y y  , yields 
0, 0A B  which corresponds to equilibrium position of 

the bridge deck under its own weight. In this case equation 
is simply: 

( ) 10y t  . 
The original differential equation for the vertical motion 

after substituting parameters in equation 4.3 becomes 
0.01 10y y y                                                                                                 

4.7 
Further on we use the MATLAB SIMULINK to simulate 

the numerical solution of the differential equation and 
compare it with the analytical solution to determine the 
accuracy of the numerical method. 

Figure 4.2 shows the SIMULINK scheme and the 
numerical solution of the differential equation in form a 
graph of y (vertical displacement) against t (time), for t up 
to 1500 seconds. In table 4.1, we present the values of the 
solution of the differential equation analytically (in closed 
form) and numerically by SIMULINK over time ranging from 
t=0 to t =6000 at varying intervals. A comparison of the 
values shows very little error which confirms the accuracy 
of the chosen algorithm in the SIMULINK scheme as well 
as the scheme itself for the solution of the equation. 
The time taken to solve the equation on 64 bit core 2 duo 
laptop with 4gb of memory for a time up to t=6000 was 10  

Figure 4.2: SIMULINK Scheme for vertical motion and the bridge 
response, y (0) =14 

2 0.01, 6000, 10m g   
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Table 4.1. Vertical motion results; numerical and analytical solution 
 

 
 

 
 
seconds, which for all purpose can be deemed to be fast 
enough. 

For further verification Figure 4.3 show the SIMULINK 
scheme and the graph of y plotted against t for initial  
condition y(0)=10 and yꞌ(0)=0. As expected the solution 
yields exactly y(t)=10. 
 
 
Torsional Motion 
 
Now we consider the torsional motion of the bridge which is 
a non-linear second order differential equation of the form; 

1 1
6 6cos sin ( ) cos sin ( )K Kf t f t
m m

                     4.8                  

 
Assuming we consider only small values of θ (an 
assumption engineers make for the motion of a bridge), 
then we can linearize equation 4.8 and rewrite it as 

1
6 ( )K f t
m

                                                                                 

4.9 
Once again a forced harmonic oscillator with analytical 

solution of form 
 

Time Numerical Solution 
SIMULINK 

Analytical 
Solution(Closed form) Absolute relative error 

0 14.00000000 14.00000000 0.00000000 
0.1 13.98002332 13.98002282 0.00000004 
0.2 13.92031940 13.92031742 0.00000014 
0.3 13.82152421 13.82151978 0.00000032 
0.4 13.68466343 13.68465566 0.00000057 
0.5 13.51114191 13.51112995 0.00000089 
0.6 13.30272920 13.30271230 0.00000127 
0.7 13.06154150 13.06151901 0.00000172 
0.8 12.79002026 12.78999164 0.00000224 
0.9 12.49090737 12.49087223 0.00000281 
1 12.16721756 12.16717563 0.00000345 
2 8.37007107 8.36998057 0.00001081 
3 6.10178894 6.10176667 0.00000365 
4 7.42221424 7.42236122 0.00001980 
5 11.08769484 11.08792920 0.00002114 
6 13.72166444 13.72174871 0.00000614 
7 12.92479517 12.92457620 0.00001694 
8 9.46021205 9.45983172 0.00004021 
9 6.52390816 6.52372674 0.00002781 
10 6.79679825 6.79705211 0.00003735 
20 11.49433323 11.49351302 0.00007136 
30 10.51277827 10.51405368 0.00012131 
40 7.82926076 7.82803014 0.00015721 
50 13.00144605 13.00197844 0.00004095 
60 7.17257393 7.17322426 0.00009066 

Figure 4.3: SIMULINK Scheme for vertical motion and the 
bridge response y (0) =10 
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Table 4.2. Trial torsional motion results; numerical and analytical solution 
 

Time Numerical Solution 
SIMULINK 

Analytical Solution (Closed 
form) 

Absolute relative 
error 

0 1.20000000 1.20000000 0.00000000 
0.1 1.20001083 1.20001082 0.00000001 
0.2 1.20008636 1.20008633 0.00000002 
0.3 1.20029012 1.20029007 0.00000004 
0.4 1.20068341 1.20068333 0.00000007 
0.5 1.20132429 1.20132418 0.00000010 
1 1.20992871 1.20992835 0.00000030 
2 1.26132722 1.26132643 0.00000062 
3 1.33440468 1.33440403 0.00000048 
4 1.37705822 1.37705808 0.00000010 
5 1.38120925 1.38120927 0.00000001 
10 1.55357913 1.55357914 0.00000001 
20 1.87466908 1.87466910 0.00000001 
30 2.16844823 2.16844832 0.00000004 
40 2.43900148 2.43900142 0.00000003 
50 2.68914931 2.68914928 0.00000001 
100 3.65891689 3.65891735 0.00000013 
200 4.50561804 4.50561635 0.00000037 
400 5.00521705 5.00521440 0.00000053 
1000 5.06296764 5.06296848 0.00000017 
1200 5.01717679 5.01717563 0.00000023 
1500 5.02259121 5.02258948 0.00000034 
1800 5.03252323 5.03252001 0.00000064 

 

 

    1 2 224 241 12
1 12 2( ) cos sin ( )

t
k k

pm mt e A t B t t


   


        4.10                       

Where ( )p t  is the particular solution dependent on 

forcing function ( )f t . 
A and B are constants determined by initial conditions 
(0) and (0) . 
If the forcing function is assumed to be sinusoidal with 

small amplitude then no matter the initial conditions, the 
long-term behavior of this liberalized system will be 
sinusoidal with small amplitude signifying stability of the 
model and hence the stability of the suspension bridge 
regardless of the initial conditions. 

We now proceed to investigate numerically the response 
of the non-linear system (equation 4.8), substituting 

1 0.01, 6000m    in equation yields 

0.01 0.001 cos sin ( )K f t                  4.1   

 
                                                              

Numerical result for torsional motion 
 

In the mathematical model investigated by McKenna 
(1999) the forcing term was restricted to a sinusoidal form 

( ) sinf t t  which understandably does not accurately 
depict the nature of the forces acting the bridge. The forces 
acting on the bridge is of varying (random) nature and 
includes forces due to wind, earthquakes, hurricanes, 
dynamic impacts loads from vehicles etc. In this thesis, 
apart from the sinusoidal forcing term, additional forcing 
term from a signal generator (SG) and pulse generator 
(PG) available in the SIMULINK program are considered. 
These forces though periodic are more realistic and can 
simulate some of the actual forces acting on the bridge. 
Figure 4.6, figure 4.7 and figure 4.8 shows respectively the 
nature of the force SG, PG and the sum of the two referred 
to as forcing function (FF). FF is feed into the system after 
multiplication   by   the   factor   in   X   factor   block   (see 

 

 

 

Figure 4.4: SIMULINK Scheme for torsional motion of bridge deck 
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SIMULINK scheme in figure 4.4) 

In this section we perform numerical experiment by using 
the SIMULINK scheme in figure 4.4, we vary the K values 
which corresponds to changing the stiffness of the cable 
stays. We also use different values for the X factor block 
which correspond to varying the forcing function acting on 
the bridge. The forcing function in McKenna (1999) which is 

( ) 0.05sin1.3f t t  is left unaltered throughout the whole 
set of experiment. All the simulations are performed for the 
period t=0 to t =3600 secs  
 Experiment 4.1: K=1,000 , X factor = 0. This 

corresponds to stiffness of cable stays equals 1,000 kgm-

1s-2 and ( ) 0.05sin1.3f t t  as the  only  forcing  function  

 

Figure 4.5. Torsional motion; Bridge response for K=0, f(t)=0.05sin1.3t and 
Phase portrait 

 

Figure 4.6: Signal generator; generates random periodic forces, amplitude = 
0.025, frequency = 1.0 rad/sec 

 

Figure 4.7. Pulse generator; generates random impulse forces, amplitude = 
0.10, period = 60 seconds, pulse width = 3seconds 
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acting on the system. The results of this experiments is 
shown in figure 4.9, which is a graph of torsional angle 
(angle of rotation of the deck) in radians to time t in 
seconds. Figure 4.10 is a phase portrait which is a plot of 
angular velocity ( ) against torsional angle ( )   

The plot in figure 4.9 indicates that, the amplitude of the 
oscillations of the bridge subsides, the peak value of 
torsional angle in the region close to of the end of the 
period (3600 seconds) is about 0.07 radians (4 degrees). 
The phase portrait of the system shown in figure 4.10 is 
that of a spiral sink. Here we observe that the long term 
behaviour of the bridge as stable. 

Experiment 4.2: K=2,400 , X factor = 0. This experiment 
corresponds to the system used to model the Tacoma 
Bridge collapse in McKenna (1999). The plot of torsional 
angle against t is shown in figure 4.11 and the phase 
portrait in figure 4.12 

The plot in figure 4.11 indicates that, the amplitude of the 
oscillations of the bridge is sustained, the peak value of 
torsional angle in the region close to of the end of the 
period (3600 seconds) is about 0.8 radians (45 degrees). 
The phase portrait of the system shown in figure 4.12 is 
that of a Limit cycle. Here we observe the long term 
behaviour of the bridge as Unstable, which leads to 
ultimate failure (collapse).This was how Lazer and  

 

Figure 4.8: Combination of the Pulse generator and Signal 
generator 

 

Figure 4.9: Experiment 4.1; Bridge response (Stable) 



 
 
 
 
McKenna explained the reason for the collapse of the 
Tacoma Bridge. 

Experiment 4.3: K=100,000, X factor = 0. This 
experiment is equivalent to modeling the oscillations of a 
stiff bridge for example the Adomi Bridge. The plot of 
torsional angle against t is shown in figure 4.13 and the 
phase portrait in figure 4.14 The plot in figure 4.13 indicates 
that, the amplitude of the oscillations of the bridge rapidly 
subsides, the peak value of torsional angle in the region 
close to of the end of the period (3600 seconds) is about 
0.0005 radians (0.03 degrees). The phase portrait of the 
system shown in figure 4.14 is that of a spiral sink. Here we 
observe that the long term behaviour of the bridge as very 
stable. 

From the results of the three experiments, it can be seen 
that with only a sinusoidal forcing term acting on the bridge, 
a cable stay with K=1000 is stable and will withstand the 
initial large torsional angle, whilst that with K=2400 is 
unstable and will collapse. This is an unexpected result and 
is a kind of paradox. Such a result led Lazer, McKenna and 
other researchers to conclude that making the cable stay of 
suspension bridges stiffer does not always make it less 
prone to large oscillations. 
 Using the SIMULINK scheme in figure 4.4, 

additional numerical experiments are conducted (K 
between 1,000 and 300,000, X factor between 0 and 50) 
results of which are not included in this thesis. Conclusions 
drawn from these numerical experiments. 
 
 
ADOMI BRIDGE RESULTS 
 
As stated earlier on, Adomi Bridge is not truly a suspension 
bridge in a traditional sense. This is because the cable 
stays are connected to a rigid steel truss arches instead of 
being connected to another “vibrating flexible” main cable. 
This makes the Bridge very rigid and as a result, there are 
no noticeable oscillations under normal operating 
conditions. The cable stays of the Bridge are subjected to 
only small deformations, thus Hooke’s law is applicable, 
and a good estimate of the stiffness of the cable stay is 
given by 

AEK
ld


 

α is coefficient that account for cable fatigue and 
imperfections (0.5) 

A is effective cross sectional area of cable stay,  
E is Young modulus of material used for the cable stay 

(steel -2 x1011 Nm-2) and  
l is length of the cable. (48.2 m) 
d is the spacing between the cable stays (10.7 m) 
For the Adomi Bridge, the value of K evaluated this way 

gives approximately 
K ≈ 300,000 kgm-1s-2  
For such values of K, and an X factor value set at 50, the 

response of the Bridge is similar to figure 4.13 of 
experiment 4.3. This indicates that, the Adomi Bridge is not  
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affected by large torsional oscillations and any initial 
oscillation started under any condition will quickly subside. 
 
 
CONCLUSIONS AND RECOMMENDATIONS 
 
From the various numerical experiments performed using 
the SIMULINK scheme in chapter 4, it was observed that, 
at a constant mass m of the deck of the bridge, if other 
small random or impulsive forcing terms are considered in 
addition to the sinusoidal force, then increasing the 
stiffness K of the cable stays of the suspension bridge 
always results in a more stable response to the initial 
torsional angle. This is a likely result, so we conclude that, 
it is certainly incorrect to consider only a sinusoidal forcing 
term as in the mathematical  model of Lazer – McKenna 
which led to some paradoxical results discussed in chapter 
4. 

Keeping in mind that the magnitude of the non-linear 
term (sin cos  ) in the equation for the torsional motion 

(equation 4.1) is proportional to K
m  (the ratio of the 

cable’s spring constant (stiffness) to the mass of the 
roadbed). We expect then that by increasing m at a fixed 
value of K, we reduce the effect of the nonlinearity and 
therefore better control the oscillation of the roadbed. 

We conclude that for steel arched-suspension bridge 
similar to the Adomi Bridge, their rigidity makes them 
withstand any form of large amplitude oscillations. 

A major inadequacy of the dissertation is the inherent 
over simplification of the model adopted to represent the 
suspension bridge. Only a typical cross section at the 
centre of the Bridge’s span is taken into account for the 
derivation of the system of non-linear differential equations.  

We recommend a more accurate model which should 
take into consideration the full length of the Bridge. This will 
result in a system of non-linear partial differential equation 
as the model instead of the current system of non-linear 
ordinary differential equation. 
 
 
REFERENCES 
 
Amann OH, von Kármán T, Woodruff GB (1941). The Failure of the 

Tacoma Narrows Bridge, Federal Works Agency,Washington, 1941 
Bates M, Donohoe S (2010). "Tacoma Narrows Bridge," Student Projects 

in Differential Equations, 
http://online.redwoods.edu/instruct/darnold/DEProj/-
sp03/seanmatt/paper.pdf. Accessed on 20th  September  2010,   14:57:55 

Beer FP,  Johnston ER,  (2004). Clausen, Vector Mechanics for 
Engineers: Dynamics. 7 ed. (New York, NY: McGraw-Hill, 2004). 

Berkovits JP, Drábek H, Leinfelder V, Mustonen G, Tajcová (Provide 
year): Time-periodic oscillations in suspension bridges: existence of 
unique solutions. Nonlinear Analysis, Theory, Methods & Applications. 

Betounes D (2010). Differential Equations: Theory and Applications, DOI 
10.1007/978-1-4419-1163-6_1, © Springer Science + Business Media, 
LLC 2010 

Chen Y, McKenna PJ (1999). Traveling waves in a nonlinearly suspended 
beam: some computational results and four open questions. 
Localization and solitary waves in solid mechanics, 379-388, Adv. Ser. 
Nonlinear Dy-nam., 12, World Sci. Publishing, River Edge, NJ, 1999. 

 



062 Glo. Adv. Res. J. Eng. Technol. Innov. 
 
 
 
Choi QH, Choi K, Jung T (1996). The existence of solutions of a nonlinear 

suspension bridge equation. Bull. Korean Math. Soc. 33 (1996), 503-
512. 

Coddington EA,  Levinson N (1955). Theory of Ordinary Differential 
Equations. McGraw-Hill, New York, 1955. 

Doole SH, Hogan SJ (2000). Non-linear dynamics of the extended Lazer-
McKenna bridge oscillation model,   Dynamics and Stability of Systems, 
15 (2000) 43-58. 

Dormand  JR, Prince PJ (1980). A family of embedded Runge-Kutta 
formulae, Journal of Computational and Applied Mathematics 6 (1): 19–
26 

 
 
 

 
 
 
 
Logan JD (2011).. A First Course in Differential Equations, Undergraduate 

Texts in Mathematics, DOI 10.1007/978-1-4419-7592-8_1, © Springer 
Science+Business Media, LLC 2011 

McKenna PJ (2002). and Moore, K. S. The global structure of periodic 
solutions to a suspension bridge mechanical model. IMA J. Appl. Math. 
67 (2002), no. 5, 459-478. 

Zill DG (2005). A First Course in Differential Equations with Modeling 
Applications. 8 ed. (Taunton, MA: Thomson Brooks/Cole, 2005). 

 
 
 
 
 

 
 


