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PREFACE

This report presents results of a theoretizul study which evaluates
the response of hardened underground ’acilities in rock to dynamically
applied loads produced by explosions. This research was conducted by
personnel of the Phenomenology and Effects Division ‘PED) of the Weapons
Effects Laboratory (WEL), U. S. Army Engineer Waterway. Experiment Sta-
tion (WES), during the period January 1975-January 1976.

The primary analytical development and preparation of the initial
draft report were sponsored by the Def'ense Nuclear Agency under Subtask
J3LCAXSX311, "Underground Structures Studies," under the guidance of
Dr. Kent Goering. Final report preparation and additional analytical
work including investigations of backpacking and unloading and subse-
quent reloading were sponsored by the Office, Chief of Engineers, under
Project LATc2T19ATLO/AL/01T, "Stability of Deep Underground Structures
in Rock," which was monitored by Mr. D. S. Reynolds.

This report was written by Mcssrs. J. L. Drake and J. R. Britt,
PED, under the general supervision of Mr. L. F. Ingram, Chief, PED, and
Mr. W. J. Flathau, Chief, WEL.

COL G. H. Hilt, CE, and COL J. L. Cannon, CE, were Directors of WES

during the preparation and publication of this report. Mr., F. R. Brown

was Technical Lirector.
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CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI)
UNITS OF MEASUREMENT

U. S. customary units of measurement used in this report can be con-

verted to metrie (SI) units as follows:

Multiply By To CObtain
mils 0.00254 centimetres
inches 2.5k centimetres
pounds (force) per 6.89k4757 kilopascals
square inch
kilobars 100.06 megapascals
inches per second 2.5k centimetres per second
per second per second
degrees (angle) 0.01745329 radians




A METHOD FOR DESIGNING DEEP UNDERGROUND
STRUCTURES SUBJECTED TO DYNAMIC LOADS

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Design of superhard underground facilities to resist the shock
levels induced by nuclear weapons must take full advantage of the
strength of the surrounding rock. Survival at levels in excess of
2 kbarsl has been demonstrated by cxperiments in an idealized hard rock
medium. In principle, additional hardness can be achieved by placing
the facility deep enough to attentuate the shock to levels that can be
resisted by structural hardening procedures.

Static methods are now being used for design of hardened underground
facilities. Perhaps the best analytical procedurz is that outlined by
N. M. Newmark (Reference 1) wherein rock and liner systems are treated
as elastoplastic materiais that obey a general form of the Mohr-Coulomb
failure criterion. Incompressible plastic strains and axially symmetric
stresses are assumed. This analysis proceeds from the interior of the
lining-nedium system where the circumferential strain and radial stress
are known, and successively works the solution outward by matching
stresses and displacements across liner Junctions and finally the rock-
liner interface to obtain the free-field conditions in the rock. Simi-
larly, it is possible to work frem known conditions on any interior ele-
ment inward or outward, but not from the free-field stress situation.

A. J. Hendron, Jr., and A. K. Aiyer (Reference 2) have extended
Newmark's static analysis to include dilatancy of the Mohr-Coulomb mate-
rial at feilure. These authors report, however, that the increase in

volume predicted by their thenry is too large compared with experimental

! A table of factors for converting U. S. customary units of measurement
to metric (SI) units is presented on page 3.
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evidence in real rocks. They claim that values of radial displacement

calculated by their theory are a conservative upper bound. On the other

hand, Newmark's analysis, which neglects any volume change due to the
plastic strains at failure, predicts radial displacements that are tco
small and should be used as a lower bound.

Sophisticated computer codes are available that can account for the

complex interactions of the structural elements under dynamic loading.

AT T R T

Gene *al stress-strain relationships that closely model the real material
behavior in both the elastic anrd inelastic regions can be used in thete
types of codes. However, these procedures are stili too complex and

time-consuming to be useful for design but should be useful for final

analysis after a preliminary design has been proposed.
Treating the dynamic load as an equivalent static load is accept-

able for use in structural design methods. In the case of normal struc-

|

tural elements (columns, beams, etc.), the equivaleunt static loading may
be determined from a dynamic response chart for various ratios of the
duration of loading to the natural period of the structure. For rock
tunnel and liner systems the natural period is not easily defined with-

out a dynamic analysis of the entire system. Z

1.2 OBJECTIVE |

The goal of this report is to develop solutions for a class of dy-
namic problems that have direct bearing on design considerations for
deep underground facilities in rock. Specifically, an extension of the

static methods outlined by Newmark to accommodate dynamic loads is sought. 3

)

1.3 APPROACH

S st

This report describes solutions to a class of G;aamic elastoplastic

Aoty

problems that model some of the salient features of the response of
hardened underground facilities in rock. The theoretical model consists
of multilayered concentric cylinders of elastoplastic materiels with
time-dependent loads applied to the exterior boundary. Each element in
the cross section is assumed to be incompressible and its yield governed

by a Mohr-Coulomb failure criterion. The number of elemerts within the




cross section is not limited. Solutions of the theoretical model are

cast in the general form normally used in structural dynamics:

Mass x Acceleration = External applied load - Internal resistance

The resulting equations can be quickly and inexpensively evaluated on a
digital computer.

To extend the range of validity of this exact theory, a first-order
correction factor was developed to account for the compressibility of the
materials, and a simple method to treat backpacked stiructures was intro-
duced. The theory was then verified by comparing calculated values with
experimental measurements from small-scale static and explosively driven

tunnel collapse studies.
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CHAPTER 2

THEORY
2.1 PROBLEM FORMULATION

The rock and liner system is modeled as multilayered concentric
cylinders of elastoplastic materials in plane strain (see Figure 2.1).
An arbitrary time-dependent pressure is applied to the outer boundary,
and an arbitrary pressure, also time-dependent if desired, is applied to
the internal boundary. It 1s assumed that the materials in the cross
section are incompressible in both the elastic and the plastic states.
{As discussed in Section 2.3, a first-order compressibility correction
is easily incorporated.) With these assumptions, the effects of mate-

1 rial compaction and stress wave interaction within the cross section are
neglected, thereby greatly simplifying the analysis. The number of ma-
terial layers in this analysis is unlimited.

2.1.1 Field Eauations. Iquations requiring equilibrium and conser-

vation of mass are basic to any analytical study of structural response.
Solutions to these equations are valid in both the elastic and plastic

states of the material.

The equation of moticn in polar coordinates is as fOllOWSZl
. . A
aoi oi - o; 3'ui
=p (i =1,2,...,m) (2.1)
or r i at2

i = radial stress component

r = radial coordinate

é = tangential stress component
Py = mass density

u% = radial displacement component

t = time

For convenience, symbols and unusual abbreviations are listed and dee-
fined in the Notation (Appendix A).

T

k3
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¢ = ANGLE OF INTERNAL FRICTION

|
|

Figure 2.1 Ceometry of rock-liner system.




subscript or superscript referring to a component material in
the cross section

=
1]

m number ot materials in the cross section

This equation can be solved when relationships between stresses and dis-

placements (constitutive laws) are given. In the plastic state an addi-

T T—rr

tional equation given by the yield criterion relating the radial and
tangential stresses is necessary for a complete solution.

Incompressibility requires the conservation of mass to be

=L & ;5 =0 (i =1,2,...,m) (2.2)

i uted (2.3)

c
]

vhere Ui(t) is a general function of time tc be determined from the
boundary conditions. It is evident from Equation 2.3 that if the dis-
placement field is continuous between component materials, Ui(t) must
3 be the same for all materials. Thus, the superscript 1 1is dropped

such that

t) = W (L) =...5 Uit) (2.4)

3 2.1.2 Material Models. Stress-strain relationships for an incom-

pr:ssible elastic medium in plane strain can be written as

] o1 = S1 + ZC.c1
b r lr
] i i i
3 = :
] 0g =S+ 2 e,
o =S (2.5)

ix ]

where

)
S = mean normal stress

E Gi s shear modulus
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i - :

er = radial strain component

i . g

ee = tangential strain component
i .

oz = axial stress component

and the mean normal stress is given by

aui
Ei Byl U(t)
r ar 2
: r
N y(e)
i_ r_ Ut
9= r 2 (2.5)

where the radial displacement given by Equation 2.3 is substituted into
the strain definitions. Because U(t) is independent of the state of
the material, it is evident that Equetions 2.6 are valid in both the
elastic and plastic regions.

Stress-strain relations in the plastic region are implied and de-
fined by the condition of incompressibility and from the form of the
yield law. A Mohr-Coulomb yield criterion assumed for all the component

materials is given as

where

$. - 1 + sin Qi
2

N, = tan2 (!450 *—1 = T

i 1 - sin oi
and a, is the cohesion and oi is the angle of internal friction.
The assumption of incompressibility is not strictly compatible with this
yierd criterion except for ¢, =0 (von Mises yield criteria) unless a
nonassociative flow rule is assumed. Mohr-Coulomb materials dilate

while undergoing failusce; however, neglecting this effect is not

10
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expected to affect the results greatly, and simplifies the solution.

2.1.3. Boundary Conditions. Stresses and displacements are assumed

to be continuous across the various internal boundaries between mate-
rials. Further, dynamic pressures are applied at the exterior and in-
terior boundaries. The external pressure was assumed to be much greater
than the interior pressure, causing the deformation to be inward. These

boundary conditions can be expressed as

1
= - t =
o. po(,) at r r
i+l
9% = 9%
at r = r, (1 = 1:2;eu3m=1)
. . i+l
i_ i+l
u_ =u
r r
" = -p(t) at r=r (2.8)
r m+l

where
po(t) = internal pressure (compressive)
r, = intericr boundary of the ith material layer
p(t) = external pressure-time history (compressive)

all of which are depicted in Figure 2.1.
Additional internzl bour.ary conditions may occur if any of the com-
ponent materials are partially elastic and partially plastic. Across

this elastic-plastic boundary
i i
o =0 =fo_ -0
( d 6)elastic ( r 6)plustic

i .
and the normal stressec cr are continuous,

2.2 PRCBLEM SOLUTICHNS

Solutions tc the equation of motion (Equation 2.1) are possible
from the displacement solution (Equation 2.3) and either the stress-
strain relations in the elastic region (Eguation 2.5) or the yield
criterion (Equation 2.7) in the plastic region.

2.2.) rlastic Region. In the elastic regicn, the following

11
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equation is obtained from the elastic stress-strain relations and from

Equations 2.6:

U(t)

2
o8

i i
0. -0g = -hGi

Substituting this expression into the equation of motion (Equation 2.1)

gives

i
A (103 B FRTIEY
ar 4T3 T T2
r dt
with the solution
2
. 2 2G, [r,
oy e Yeuwf Ty, e (2.9)
r i r, 2 2 r i
i dt ri

where Ci is a constant indeperdent of r to be determined from bound-
ary conditions. From this result and Equations 2.5 and 2.6 the mean

normal stress S1 is given by

.. 26\ 2
st = o; + [ =2 (_1> u(t) (2.10)

)
Fas

v, r
1

2.2.2 Plastic Region. An expression for the stress difference

(0; - o;) in the plastic region is given by the yield cordition (Equa-

tion 2.7). Substituting this relationship into the equation of mction

{Equation 2.1) yields

30i oi %
r 5 g d"U(t).I
7t (- = nde [Tl 20y
dt J
with the solution
i dzU(t) 1 r Ni-l r Ni-l
= —_—] » a o - (i . P
9% 7Y% e LRVER e Ni) t (ri> + & r. (2.11)

12




Note that
z n,
lim 1 r 5 B
—<—- -l=-ln<—>
n,+> o n, |{r. r
b i o1
Ny
lin <§_> _—
n,+ o 7 -
i i
where n, = Ni -1 . Thus, in the limit as Ni + 1 or ¢i + 0 , the ex-

pressions for the elastic stress distribution (Equation 2.9) and plastic
distributions (Equation 2.11) bear similar terms for the inertial con-
tribution and for the arbitrary constant Ci 3

2.2.23 Generalized Stress Distribution. Since each material is al-

lowed to be elastic or plastic or even partially yielded, the number of
stress combinations required to solve the boundary conditions for the
constant Ci is m2 for m materials in the cross section. This sit-
uation can be avoided by writing a more general stress distribution which
can be used in both the elastic and plastic regions. This generalized

stress distribution is expressed in operator form as

n, 5 - 2
SRR o1 173 N i i\ L O
r n.j\r. 2 2 \r

i i dt ri
2q; - ny . 0y
- —N(, + 1) (——) - 1]+ C(——) (2.12)

n, i r, ilr

i i i

where
2 sin ¢,

S T e %

and again noting

: i
linm 1 |/r (r )
=l/=- -1l = 1n {—
->
G Ee oy (fi) Ty

In the elastic state it is necessary to define ng =qq = 0 for Equa-

tion 2.12 to be valid. The plastic state requires Gi = 0 to obtain the

13




correct stresses. Using Equation 2.12 in the boundary conditions will
yield a generalized form for the constant Ci which is valid in either
the elastic or plastic state and which correctly accounts for the states
of all m elements.

2.2.4 Stress Solution. Substituting Equation 2.12 into the boundary

conditions expressed by Equations 2.8 gives the following recurrence

formulas for Ci

2G
Cl = —po(t) + ;é—-U
1
n
i 2
Pilffin P s T i 2G4 4,Y
C. = -] — - ——|——] U + ———
i+l n, r. 2 2 \r. 2
i i dt T i+l T,
i i+l
n, n
2q r * T, '
i i+l i+l
- N Y -1 + ¢ (2.13)

Completing this solution and continuing the recurrence out to r = LY

gives the following formula:

o o i 2
o= <L> s (?’) My g s
! n I\ 4 i dt

1k




r where

B ot
P, = p,(t) I—I ( 1;;1) (2.15)

and

; d . )
2 M(;t—2> = Po(t) - p(t)|- (KU - Y) (2.16)

where
M =M = effective mass
P =P = effective interior pressure
K= Km s effective elastic stiffness

Y = Ym = effective rigid plastic collapse pressure cf the m

materials
i
The symbol }z denotes a sum of terms with J =1 to J =i , and
J=1
i
]-I denotes a product of terms with k= J +1 to k=1.
k=j+l

Equations 2.14-2,16 alcng with the yield condition (Equation 2.T)

completely describe the stresses and motions of the rock-liner system

15




under dynamic loading. The differential Equation 2.16 is of the same

form as that used in structural dynamics:

Mass x Acceleration = External applied

load - Internal resistance

In this case, the internal load-resistance function is R=KU -Y .
Note that initially Y = 0 and the resistance is dve to the elastic
stiffness K . As the external applied load increases, elements begin to
fail, effectively increasing Y as K decreases until the applied load
is such that the entire section fails, the full value of Y 1is reached,
and K =0,

2.2.5 Elastic-Plastic Boundaries. Solutions expressed by LEqua-
tions 2.1 and 2.16 are valid for all load conditions in both the elas-

tic and plastic ranges as long as the deformations are inward; however,
these equations alone are not sufficient to describe the stresses and
motions of the rock-liner system. Yield conditions must be used along
with these equations to determine the elastic-plastic state of the
system.

Wnen the deformation is inward, yielding in each of the component
materials begins at the interior boundary and progresses outward until
the entire element is fully plastic. This behavior can be used to
simplify the analysis as follows. Divide each component material into
two parts, the inner portion with only plastic properties and the outer
shell with elastic properties. With this definition the m materials

are divided into two m layers where

i
= 0 for even values of i
44
G, =0 for odd values of i (2.17)
and Tl for odd values of i 1is the elastic-plastic interface. A
material is fully elastic when Tiel =ry for odd values of i and

16
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a materiel is fully plastic when Tin =Tim for odd values of 1 .
for odd

Using these definitions, the elastic-plastic boundary, Tin
values of 1 , can be calculated from the yield conditions.
Continuity of stresses across the elastic-plastic interface

requires that

i+l i+l _ /i i _
(or - oe > = (or - oe) at r = ri+1 for odd values of 1

Using Equations 2.5 and 2.6 in the elastic range and Equation 2.7 in the

plastic region gives

2
LG r .
i+l i - 1 =
S U= -n,o.. + 2qi\,ni +1 at r = rin
ry i+l

for odd values of 1

Substituting in this result the solution for radial stresses (Equa-
!

/r. and i = odd

tion 2.14) yields the expression for r, i

+1

2 Ny

WAL Dike) 4y
- b U =stSs (p; + oM N
ri i+l i dt

d2U
= - - -— .18)
#ng(K g0 - Yy - Pogoy) - 29y Ny F I+ ey Y. e dej
For n, = 0 this equation reduces to the simple form
2
r -2G, .U
i+l _ i+l
( T, ) = -——-:}5— (2.19)
1474

Note that for the Mohr-Coulomb failure criterion, inertial mass x

acceleratior. terms appear in the condition for dynamic failure. Until

the time at which the maximum inward particle velocity is reached, when

dQU/dt2 < 0 , the inertial forces tend to strengthen the section ;ausing
/

2]
T’y to be less than its static value. However, when 4°U/dt”™ > 0 ,

17
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these forces cause the plastic boundary to grow cutward more rapidly

than under static load.

2.3 A FIRST-ORDER COMPRESSIBILITY CORRECTION

For static loading and elastic response the ratio of the compres-~

sible to the incompressible radial displacements is (Reference 3)

uc 2 r

— =1+ (1 - 2v)r

Yy r r2( - D.)
172\ = Py

2
= bE

2Py = Py

vhere v 1is Poisson's ratio of the material, ry and p, sare the in-~

side radius and applied lca . respectively, and r, and p, are the
outside radius and applied icad, respectively. For most tunnel liners
being considered, 12 = 0 (atmospheric pressure) so that pl/p2 is

very small. Expanding the expression for uc/ui evaluated at r = r

1
in powera of ;‘l/p2 gives
u (r;) V] o /)
cl a1+ @a-20){1+1-(2 :E: L
u, (r,) r p
i"1 2 2
n=1
For pl/p2 = 0 this expression becomes
u (r))
e 2(1 - v) (2.20)
S el

When 12} is zero, this ratio is exact for the static elastic case.
Experience indicates that this is also a reasonably accurate, first-order
correction factor for the dynamic displacements of an elastic-plastic
rock~-tunnel liner system. 1In this application an average value of the
Poisson's ratics of the component materials should be used. Typically,

v for common rock and liner materials ranges from about 0.2 to 0.3, and
uc(rl)/ui(rl) ranges from 1.6 to 1.4. Average values of v = 0.25 and

uc(rl)/ui(rl) = 1.5 are adequate for most calculations.

18




2.4 A SUMMARY OF THE CALCULATIONAL METHOD

Equations 2.18 or 2.19 together with the equaztion of motion, 2.16,
can be solved for U(t) by a numerical integration such as the Runge-
Kutta mc.hod. Then using Equation 2.6 and the compressibility correc-
tion, Equation 2,20, the radial displacement can be determined. The
radial stress component is given by Equations 2.14 and 2.15; then with
the mean normal stress Si given in Equation 2.10, the other stress
components are given in Equations 2.5 and 2.7. Thus, these relations
provide & complete description of the stresses and motions of the rock-

liner system in a form suitable for fast computer calculations.

2.9 TREATMENT OF BACKPACKED STRUCTURES

Backpacking is commonly a crushable material, such as foamed con-
crete, placed between the rock and the tunnel liner to absorb the large
strains suffered by the rocit and, consequently, to isolate the liner
from excessive damage. The simplest treatment of backpacking is the
hydrostatic model, which neglects the sheur strength of the material,
Thus the pressures at the inside and outside of the backpacking are the
sume. Experimental pressure-volumetric strain curves can be used in
this model to calculate the pressure on the rock and liner, A simple
iterative process can be set up which links the radial displacement of
the liner to the displacement of the rock us w function of voiume changes
in the backpacking. OSince the present analysis allows a time-varying
interior pressure po(t) , the calculational method is easily adupted
for computuations using this hydrostautic model o! backpucking. The eom=-
puter ¢ode presently in use at the U, U, Army Engineer Wuterwuys Experi-
ment Otation includes this option.

For rree-rield stresses in the rock which are essentiully arisyme
metric (uniform radinl load), the hydrostutic model provides an uceurate
description of’ the baekpacking collupse. The effect of shear strength
of the backpuacking on rock-liner displacements is neglipibly =mall in
this case.

ror the biaxial free-field stresses in which the dirference between

the vertical and horizontal normal stress components is lurge compared
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with the collapse strength of the backpacking, the hydrostatic model of
collapse of the backpacking is no longer valid for relatively large rock
deformations. Since the material canrnot flow to equalize the stresses,
ovaling of the backpacking results, transmitting highly nonuniform radial

loads to the liner which may collapse prematurely.

2.6 DISCUSSION OF UNLOADING

The present analysis is limited to monotonically increasing dis-
placements. In the case of small plastic strains, unload and & subse-
quent reload may take place elastically which can be treated simply
within the present analysis. For von Mises materials in static loading,
Prager and Hodge (Reference 3) give equations for both elastic and plas-
tic unload. The plastic unload of a Mohr-Coulomb material may be treated
in a similar manner; but the analysis is more complex than the von Mises
case, as the authors of the present report have found in a thorough study
of this process. In the present study it was ciscovered that the Mohr-
Coulom™ plastic unloading often involves further yielding of the material
even as the inward displacement decreases. The manner and extent of this
unload yielding depend primarily on (1) the amount ¢f plastic deformation
in the material at the end of the load phase and (2) the confining pres-
sure at the interior of the layer of material. The resulting equations
are mathematically too cumbersome to be included in the analysis of this
report. The experience gained in *his study indicates thut elastic un-
load is often a good first approximation for the purposes of this report,
but an accurate theorerical decceription of repeatei inelastic loading
and unloading o1 Mohr=Coulomb materials must be more rigorous and will

require fusther theoretical work.
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CHAPTER 3

EVALUATION OF THE THEORY

3.1 COMPARISON OF CALCULATIONS WITH EXPERIMENTAL EVIDENCE

Calculations were made for small-scale tests conducted by the
Stanford Research Institute (SRI) (Reference 4) to evaluate the theory
of this report. 1In these experiments explosives were used in a spe-
cially designed device to produce axially symmetric loads. Displace=-
ments as a function of time were measured using the "light ring" tech-
nique which ~onsists of photographing the motion of the inner pipe wall
by means of a bright ring of light transmitted through a transparent
flexible plastic tube glued to the pipe wall. The targets considered
for calculation were 3-inch-OD tubes of "super lean grout" (SLG) lined
with 4 10-mil-thick pipe of Type 347 stainless steel. The material
properties used in the calculations are given in Table 3.1.

Figure 3.1 chows data from two shots with 80 grams of explosive.
The estimated free-field pressure pulse obtained from calibration tests
is also shown in the figure. Calculated curves are for Poisson's ratio,
v=20,25, 0,28, and 0.5 , where 0.38 was the value of v calculated
from ultrasonic velocity measurements in SLG given in Reference 5.
There is good agreement between the theory and experiment. igure 3.2
presents measurements from three shots with estimated free-field pres-
sure pulses as shown. Here the calculated values are close to the ex-
perimental points, but the agreement is not as good as in Figure 3.1.

An additional check of the theory can be obtained by noting that
the internal resistance R = KU - Y 1is the static stress-strain curve.
Thus data from static or quasi-static tects can be used to evaluate this
important part of the dynamic equation of motion (Equation 2.16). Fig-
ure 3.3 shows static calculations compared w. h measurcments obtained

by SRI.1 In this test a hydrostatic lcad was ©vplied to a sample of

. Letter of 10 Jun 1975 from T. C. Kennedy, Stanferd Research Institute,
Menlo Park, Calif., to J. Drake, Weapons Effectc Laboratory, U. S.
Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
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Figure 3,1 Calculated displacement-time curves compared with

measurements with 80-gram charges (from Reference L),
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Figure 3.3 Computed and measured static tunnel

closure versus pressure.
WES 6B rock simulant containing a 0.625-inch-ID tunnel lined with a
0.025-inch-thick mild steel tube. The material properties used in the
calculation are given in Table 3.1. The displacement or tunnel closure
is expressed as a percentage of the inside diameter D of the tunnel.
The calculated unloud curves assumed elastic behavior. Again, there is

good agreement between theory and experiment.

3.2 CONCLUSIONS

An analysis has be=en presented which extends the static methods
catlined by Newmark (Referesnce 1) to accommodate dynamic loads. Compari-
sons of calculations with experimental data have demonstrated that the
analysis will predict satisfactorily the time-displacement curve in uni-

form radial load for materials which can bz modeled as elastic-plastic
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media having a Mohr-Coulomb or von Mises yield criterion. The analysis
given in this report is in a form which allows quick, inexpensive pre-
liminary design calculations for deep underground structures.

Users of the theory must be warned, however, that the analysis
will not predict accurately displacements for biaxial loads where the
vertical and horizontel normal stress components are significantly dif-
ferent or where a large amount of oveling of the tunnel liner may be
expected. In this case the theory will provide a conservative lower
bound estimate of the deformation. At present, a design method for
biaxial loading is not available in a relatively simple form comparable
with the analysis procedure outlined in this report. Work in this area
is needed.

The present anelysis is limited to monctonically increasing dis-
placements. In the case of small plastic strains, unload and a subse-
quer‘ relcad may take place elastically. This process can be treated

imply within the present uanalysis.
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TABLE 3.1 MATERIAL PROPERTIES USED IN THE CALCULATIONS

Shear Angle of Density op

Modulus G : Cohesion g vI?te?nal lO-h psi
Poisson's 3 Friction ¢ 5
Material 10 psi Ratio v 107 psi degrees in./sec
Super lean 0.058 0.38 0.016 On T 15,65
grout
347 stainless 11.2 0.3 20 0 7.5
steel
WES 6B rock 0.48 0.25 1.7 30 -
simulant

Mild dteel 12 0.3 20 0 -
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APPENDIX A: NOTATION

An integration constant in the radial stress solution
Shear modulus

A subscript or superscript referring to a component material
in the cross section

Effective elastic stiffness
Number of materials in the cross section
Effective mass
N, -1
i
(1 + sin ¢i)/1 - sin ¢i)

Exterior pressure-time history (compressive)
Interior pressure (compressive)

Effective interior pressure in equation of motion

Inside and outside applied load, respectively
Cohesion

Radial coordinate

Interior boundary of the ith material layer
Inside and outside radii, respectively
Internal resistance

Mean normal stress

Tine

Ratio of the compressible to the iricompressible radial
displacements

Radial and tangential displacement ccmponents, respectively
Displacement potential

Effective rigid plastic collapse pressure of the m
materials

Radial and tangential strain components, respectively
Poisson's ratio

Density

Radial, tangential, and axial stress components, respectively

Angle of internal fricticn
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