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SUMMARY 
 

A method for soil-structure interaction analysis considering non-linearity in the vast extent of foundation 
soil is proposed. Semi-infinite domain is mapped into finite domain. The resulting equations are solved 
with the two-step Lax-Wendoroff schemes. Non-linearity can be taken into account in the entire semi-
infinite domain. The dynamic responses of soil-structure system are computed with small and extensive 
mesh models, and good agreements are obtained between the results of two models. It is shown that the 
dynamic response analysis of dam-reservoir-foundation system considering crack generation is effectively 
conducted by combining FEM with the proposed method.  
 

INTRODUCTION 
 
During severe earthquakes, nonlinear response of soil is observed in the extensive area. In the soil-
structure interaction analysis, therefore, non-linearity in the response should be taken into account not 
only for the structure and soil near the structures but also for far field.  There are two methods to deal with 
nonlinear soil structure interaction problems [1]. One is the direct method in which soil is modeled up to 
an artificial boundary. Since the boundary simulates the infinite extent of soil only approximately, the 
boundary should not be placed near the structure, leading to large degrees of freedoms. The other method 
is sub-structure method. In the substructure method, structure and near by soil with irregular geometry, 
material heterogeneity, and nonlinear behaviors are located in one substructure, and unbounded soil with 
regular geometry and linear material properties is analyzed in other substructure. In that case, non-linearity 
should be restricted near the structure. Here, a method for treating non-linearity in the vast extent of 
foundation soil is proposed. A special finite difference method is developed for nonlinear dynamic 
response analysis of semi-infinite foundation soil. At first, semi-infinite domain is mapped into finite 
domain using special mapping. Then, the resulting equations are solved with the two-step Lax-Wendoroff 
schemes on a uniform mesh of finite differences. Material non-linearity can be taken into account in the 
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entire semi-infinite domain. This is the extension of the method, which mapping infinite domain, into 
finite domain described in [2][3][4], to nonlinear problem. 
 
 

Methods 
 
Shrinking mapping for hyperbolic problems 
For 0l > , L l> ,and 0p > , a non-negative, smooth function, ( )a ξ , ( , )J L Lξ ∈ = − is taken, which satisfies: 
 { }( ) 1 ,a for I I lξ ξξ ξ ξ ξ= ∈ = ≤  (1) 

 { }0 ( ) 1 ,a for J J l Lξ ξ ξ ξ′ ′< < ∈ = < <  (2) 

 1( ) 0( ) inpa L the neighbourhood of Lξ ξ ξ+= − =  (3) 

and a nonlinear mapping, G: ( )0 /T Tx d aξξ → = ∫  is defined. The mapping, G, maps J to 1 ( , ) ,R = −∞ ∞ one-
to-one and onto such that it maps Iξ to { }xI x x l= ≤  isometrically, and J ′ (finite interval) to an infinite 
interval, { }R x l x′ = < < ∞ ; the latter can be stated that J ′ expands to R′ by G, or alternatively, R′ shrinks 
to J ′ by the inverse mapping, [ ]1

G xξ −= (Shrinking mapping). This mapping. [ ]x G ξ=  is used for the 
transformation of the coordinate variables ‘shrink Consider the following first-order, scalar hyperbolic 
problem for ( , )u u x t= : 
 1/ / 0, 0u t c u x x R and t∂ ∂ + ∂ ∂ = ∈ >  (4a) 

 1
0( , 0) ( ) ( ) ,u x u x ini t ial condi t ion x R= ∈  (4b) 

where 0 ( )u x is assumed to vanish at infinity. By replacing x with [ ]G ξ , a problem for ( , ),tυ ξ  equivalent to 
Equation.(4) is obtained, such that  
 / ( ) / 0, 0t ca x J and tυ ξ υ ξ∂ ∂ + ∂ ∂ = ∈ >  
 0( , 0) ( ) , Jυ ξ υ ξ ξ= ∈ (initial condition) (5)
 ( , ) 0,t Lυ ξ ξ= = ± (boundary condition) 

, where [ ]( , ) ( , )t u G tυ ξ ξ=  and [ ]0 0( ) ( ) .v u Gξ ξ=  
Equation (5) can be solved numerically at discrete times, ,nt t= using an appropriate finite difference 
scheme for hyperbolic problems of the first order, such as Friedrichs’ scheme or Lax-Wendroff’s scheme, 
on equally spaced mesh points, ,jξ  of width ,h  over the closed interval, [ ], .L L−  Let hv  denote this 
solution. Then  hv ( , )j

ntξ  must be a numerical solution to equation (4) at [ ] ,
j j

x G ξ= .nt t= An important 
point is that mapping back from ξ to x is not actually needed for the mesh points inside ,Iξ because of the 
property of identity mapping of G. The ‘shrink-mapped’ region J ′ can be viewed as if it absorbs waves 
emitted into it.  
The extension to problems in n coordinate variables ( 1, . . . )kx k n= can be made by replacing each kx with 

[ ]kG ξ ; this is equivalent to replacing / kx∂ ∂ with ( ) /k ka ξ ξ∂ ∂ . The proof of convergence has been shown 
in [5]. for certain different schemes, when used to solve the ‘shrink-mapped’ version of a general class of 
hyperbolic systems of the fi;rst order 
 
Application to nonlinear foundation soil 
Two dimensional momentum equations of foundation soil is given below 

 
2 2

2 2
,x z

U x W

t x z t x z

σ τ σ
ρ ρ

∂ ∂ ∂ ∂ ∂ ∂
= + = +

∂ ∂ ∂ ∂ ∂ ∂
 (6) 

, where ρ is density,U and W are horizontal and vertical displacement, and xσ , zσ ,τ are stress tensor 
components. Constitutive equations can be given as follows. 

 ( 2 ) , , ( 2 )x zu w u w u w

t x z t z x t x z

σ στλ µ λ µ λ λ µ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂⎧ ⎫= + + = + = + +⎨ ⎬∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭
 (7) 

, where u and w are horizontal and vertical components of velocities and, λ  and µ are instantaneous 
Lamb’s constants. These equations are transformed into first order equations as follows.  



 x z

u u u
A A

t x z

∂ ∂ ∂= +
∂ ∂ ∂

r r r

 (8) 

, where ( , , , , )T
zu u w xσ τ σ=r

, and xA  and zA are given below 
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The following shrink mapping is introduced  

 
' '

' '
'0

( ) ,
( )

x dx
x G x x Lx

a x
= ≡ ≤∫   

 
' '

' '
'0

( ) , 0
( )

z dz
z H z Lz z

b z
= ≡ − ≤ ≤∫  (10) 

, where 
 ' '( ) ,a x x x= ≤ l１ (isometric) 

 ' ' 2 '( ) 1 1/ 2( ) , 1/ 2( )a x x x x x Lx x= − − < ≤ +l l l  (shrink) 

 ' ' 2 '( ) 1 / 2( ) ,1 / 2( )a x Lx x Lx x x Lx= − + < ≤l  (shrink) (11) 

 ' '( ) ,b z z z= ≤ l１ (isometric) 

 ' ' 2 '( ) 1 1 / 2( ) , 1 / 2( )b z z z z z Lz z= − − < ≤ +l l l  (shrink) 

 ' ' 2 '( ) 1/ 2( ) ,1 / 2( )b z Lz z Lz z z Lz= − + < ≤l  (shrink) (12) 

The equations of motion are expressed as follows 

 Bx Bz
t x z

υ υ υ′ ′ ′∂ ∂ ∂= +
′ ′∂ ∂ ∂

r r r

 (13) 

,  where  
 ( , , , , ) , ( ) ( ( ) , ( )) , ( ) ( ( ), ( ) )t

x zu w Bx a x Ax G x H z Bz b x Az G x H zυ σ τ σ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= = =r

 
and , , , ,x zu w σ τ σ′ ′ ′ ′ ′  are velocities and stress tensor components in transformed coordinates. Equation 13 is 
solved with a product-type formula of a one-dimensional Lax-Wendroff scheme on uniform mesh of finite 
differences. The difference solution, υ′r  at time 1nt + is obtained from υ′r at nt by: 
 x zL Lυ υ′ ′=r r  (14) 
, where xL and zL , respectively, are the two step Lax-Wendoroff difference operators to solve the one  
dimensional problem / ( ) /xv t B x v x∂ ∂ = ∂ ∂ and / ( ) /zv t B z v z∂ ∂ = ∂ ∂ .The following is the explicit formula for 
integration:  
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, where t∆ , h are time increment and mesh width, respectively, and super scripts and sub scripts indicate 
time points and grid points, respectively. 
Vertically propagating incident waves are solved as in the following. It is assumed that Soil is linear 
beyond 0k  meshes from the surfaces, and that the response is given by superposition of the incident wave 
propagating upward and reflected wave going downward. The incident wave is assumed to be uniform in 
horizontal direction. Variables with subscript I correspond to incident wave.  Variables computed are total 
for 0k k< , while variables corresponding to downward wave only are calculated for 0k k≥ . The resulting 
finite difference equations for 0

1
2k k= − are given as: 
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and for 0k k=  
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Hybrid Finite Element and finite difference scheme 
 FEM is suited for dealing with the irregularities of geometry and heterogeneity of materials.  Dynamic 
soil-structure problem may be treated well by hybrid method, in which structure and near by portion of 
soil is analyzed by FEM, while finite difference method is applied to far field. As a specimen problem, 
two-dimensional dam-foundation soil reservoir system illustrated in Fig.1 is considered. Zone1 is the near 
field zone, which covers the dam and its near-by portion of water and foundation soil. Zone 2 covers the 
far field portion of foundation soil and zone 3 the far field portion of reservoir water. Zone 1 and zone 2, 
as well as zone 1 and zone 3, overlap by one mesh width.  In zone 3, the shrink-mapped hyperbolic system 
equivalent to the wave equation for velocity potential is solved using finite differences. The system is 
given by: 
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,  where / , /t xφ φ ξ φ= ∂ ∂ = ∂ ∂& ,and / yς φ= ∂ ∂ . 
Time integration is made in the same way as in Zone 2. In zone 1,finite element modeling using 
isoparametric elements is applied. Crack generation and extension is analyzed as follows. 
(1) Crack is generated at upstream or downstream face of the dam, if the primary principal stress at a 
Gauss point in a element along the upstream, or downstream face exceeds the tensile strength of concrete. 
The boundary between the elements nearest to the Gauss point is separated. 
(2) When a crack extends, dependent energy release should exceed the energy required for extension of 
crack.  
(3) Opening and closure of a crack are simulated by inserting a joint element automatically in the crack. 
The joint element is 6 nodes element using 3 points Newton Cotes integration. The stiffness normal to or 
tangential to the crack changes according to the crack opening displacement at each integration point. If 
the opening displacement is within a threshold value, the tangential and normal stiffness are SN1, and 
SS2, respectively, while the opening displacement is greater than the threshold value, the stiffness are 
SN2,and SS2, where SN1>>SN2 and SS1>>SS2. 
 
 
 
 
 



 

Fig.1 Hybrid Model 
 

NUMERICAL EXAMPLE 1 
 
 
Two-dimensional problems of semi-infinite foundation soil are solved with the proposed method. The 
model in the transformed domain is shown in Fig.2 and 3. IEND and KEND are total numbers of meshes 
in horizontal and vertical directions. IABSL, IABSR, and KABSB are numbers of meshes for shrink 
mapping. In these examples, IABSL, IABSR, and KABSB are fixed to be 10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At first, linear problems are solved. Material properties of soil are assume to be ρ=1, λ=15000, µ=10000. 
The mesh width 1h = and time increment ∆t= 0.002 are adopted. Figure 4 shows the equivalent stiffness 
for a uniform harmonic loadings obtained by the proposed method and the theoretical values using the 
method of Fourier transforms, given in Hanada[6]. Good agreements are obtained between theoretical and 
calculated results using small models (IEND=31,KEND=21,KSHB=IABSL=IABSR=10). Then, transient 
responses of foundation soil to surface loadings ( )f t , i.e. Lamb’s problem, are calculated by proposed 

method, and compared with theoretical values. Ricker wavelet
2 2

2 2( ) (1 2 ) / 2 ,tf t t e αα α π−= − ( 2 )α π=  is 
applied horizontally on the surface of the ground, and out of plane velocity of the ground is compared with 
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Fig.2 Ground model in transformed infinite domain 
 

Fig. ３  :  Model in transformed 
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theoretical results in Fig.5. Good agreement is obtained.  Fig.6 and Fig7 shows the responses to vertical 
Ricker wavelet on the ground surface calculated by proposed method and FEM with conventional 
boundary conditions, i.e., displacement normal to the boundary is fixed, with different mesh extent. The 
results of proposed method are independent of the mesh extent, while the results of FEM with 
conventional boundary condition depends on the extent of meshes due to the existence of reflective 
waves. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 f= k /π

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2

Ref (t hoory)

Inf (t hoory)

Ref (computed)

Inf (computed)

ωa/Vs 

 
Fig. 4-: Equivalent stiffness of semi -infinite body for uniform 
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Fig. 5 Comparison of the results of proposed and Lamb’s theory. 

(horizontal velocity response mesh 231*121) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next, vertically propagating incident wave is applied to the nonlinear ground. The horizontal velocity of 
incident wave is given by 

0
0 . 5(1 c os (2 / ) ) ,t Tπ−  where the period 

0
0 .2T = , and the duration time is equal 

to the period. The relationship between shear stress and shear strain is assumed to be 
2 4

0 1 2
1 ,( )τ µ µ γ µ γ γ= + +  where γ is shear strain. The bulk modulus and density of soil is set to be the same as 

these of the linear models.  In addition, 7×7meshes are used to represent base (see Fig. 3), where the 
density and stiffness are assumed to be twice as much as those of the soil.  The responses of the linear and 

 

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

0.5 1 1.5 2 2.5 3

20 from center(250*100)

40 from center(250*100)

60 from center(250*100)

80 from center(250*100)

20 from center(500*200)

40 from center(500*200)

60 from center(500*200)

80 from center(500*200)

Vz

t  
Fig.6 Comparison of the results of proposed method with 
different mesh. (Vertical velocity response) 
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Fig.7 Comparison of the results of FEM with different 
mesh. (Vertical velocity response) 
 



nonlinear models (
1 2

1 0 0 0 0µ µ= = ) with different mesh are shown in Fig. 8 and 9.  Nonlinear response 
calculated with small model (31×31) or large model (231×131) coincide with each other.  
 
Linear and non-linear responses of base-soil mode1 shown in Fig.3 are computed again Wen’s general 
nonlinear hysteretic model is adopted for nonlinear constitutive model of soil, with 1 00,α β= =  and 

1n = Wen[7]. Non-dimensional values of mass density, Lame’s constants are, 0 1,ρ = . 0 10 0 0 0,λ =  
and 0 1 0 00 0µ = , respectively,  Fig.10 shows  non-linear stress-strain relationships of soil subjected to  
vertically propagating half cycle of sinusoidal shear wave with velocity amplitude of 1.0 and period of 1.0. 
The incident wave is applied 20 meshes below the surface. The responses of the base model of Fig.3 to 
the incident wave are computed with different meshes (IEND=51 and kend=70, IEND=231 and 
KEND=121, and IEND=431 and KEND=221), and results with linear soil model are shown in Fig.11. The 
base is 6 meshes wide and 4 meshes deep, and assumed to be linear with the density and the stiffness 6 
times as much as those of linear soil. The computed responses are not dependent on the extent of meshes. 
Fig.12 shows the results with non-linear soil model. The amplitudes of the responses are smaller, and 
phase delays are larger than the corresponding results with linear soil. Again, the results are virtually the 
same, irrespective of extent of meshes. The responses of the base embedded in nonlinear soil of 20 
meshes wide and 20 meshes deep, are computed, and shown in Fig.13.  The non-linear soil is surrounded 
by linear soil of different extent of meshes (IEND=231 and KEND=121, and IEND=431 and 
KEND=221). The responses are equal to neither those of linear model nor those of nonlinear model. This 
implies that analytical results with non-linearity restricted to nearby portion of structures may be different 
from full nonlinear model when extensive foundation soils become nonlinear. 
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Fig. 9: Response of horizontal velocity to  
incident wave(nonlinear model, meshes231*131) 
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Fig. 8: Response of horizontal velocity to  
incident wave(nonlinear model,meshes31*31) 
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Fig.10 Shear stress-strain relationship. 

(nonlinear model, mesh51*70) 
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Fig. 11 Response of horizontal velocity to  
incident wave (linear model) 
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Fig.12 Response of horizontal velocity to   
 incident wave.  (nonlinear model) 
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Fig.13 Response of horizontal velocity to 
incident wave. (linear and nonlinear model) 

 



 
Numerical example 2 

 
   

The earthquake responses of a dam-foundation rock-reservoir water system are computed by hybrid finite 
element-shrink mapped finite difference method. The dam is 100 m high, and the mesh for FEM is shown 
in Fig.17. Some of material properties are shown in Table 1.  Tensile strength of dam concrete is assumed 

to be 6 22.0 10 N/m× , and fracture energy 3000N/m. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Table.1 Material Properties 

 
The responses of the system to 1995 Kobe earthquake shown in Fig.15 are computed. The acceleration 
responses of dam crest are given in Fig.16 and Fig.17.  It is shown in Fig.16 that the response of the dam 
with reservoir water full is greater, and dominant period is longer compared to those with empty reservoir. 
Fig.17 shows the difference due to the consideration of crack. The response becomes larger and impulsive 
accelerations are generated due to opening and closure of cracks 

D am
R e se rvo ir

F o u n d atio n

 

 Density 
(kg/m3) 

Young's 
Modulus 
(N/m2) 

Poisson's 
Ratio 

Lame's 
Constant 

(N/m2) 

Lame's 
Constant 

(N/m2) 

P Wave 
velocity 
(m/s) 

rock 2.2×103 2.0×1010 0.3 1.154×1010 7.692×109 3498 

concrete 2.4×103 3.0×1010 0.2 8.33×109 1.25×1010 3726 

Fig.14. Mesh of Dam-Reservoir Water-Foundation Rock System for FEM 



 

Fig.15 Earthquake Wave (1995 Kobe) 

 
 

Fig.16 Acceleration Response of Dam Crest (with and without Reservoir Water) 
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(b) Without Reservoir Water
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Fig.17 Acceleration Response of Dam Crest (with and without Consideration of Crack) 
 

CONCLUSIONS 
 

A special finite element method is developed for the non-linear analysis of semi-infinite foundation soil. 
Computed results are compared with theoretical ones for linear problem and, good agreements are 
obtained.  By numerical examples using small meshes and extensive meshes for nonlinear problems, it is 
demonstrated that semi-infinite non-linear soil can be effectively treated with small number of meshes. 
The dynamic response analysis of dam-reservoir-foundation system considering crack generation is 
effectively conducted by combining FEM with the proposed method.  
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