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Abstract  
Microchannel heat sink design consists in an innovative technology which has been studied as alternative to 
increase cooling efficiency of small electronic devices, such as high-power LEDs (Light Emitting Diodes), and 
high-end microprocessors of CPUs. As time passes, these electronic devices become smaller and more powerful, 
and as consequently, they dissipate a large amount of heat which requires very efficient cooling systems. In order 
to achieve an optimized heat sink design, its cooling systems must have high efficient fluid flow channels, by 
minimizing pressure drops along its extension, and providing the largest amount of heat dissipation possible. 
Microchannels constructed on a conductive body allow us to obtain an efficient heat sink design having better 
thermal dissipation with small mass and volume, and large convective heat transfer coefficient, and, thus, suitable 
for cooling compact areas of small electronic devices. Thus, the main objective of this work is the study of a 
methodology for microchannel  heat sink design through the application of the Topology Optimization Method, 
which allows the distribution of a limited amount of material, inside a given design domain, in order to obtain an 
optimized system design. This method combines the Finite Element Method (FEM) and Sequential Linear 
Programming (SLP) to find, systematically, an optimized layout design for microchannels in heat sinks. 
Essentially, the topology optimization problem applied to channel fluid flow consists of determining which points 
of a given design domain (small heat sink) should be fluid, and which points should be solid to satisfy a 
multi-objective function that maximizes the heat dissipation, with minimum pressure drop. In this multi-physics 
analysis, channel fluid flow operates at low Reynolds number, thus, the Stokes flow equations are considered. 
Some results are shown to illustrate the methodology, and computational simulations of some optimized channel 
layouts are employed to validate the implemented topology optimization algorithm. 
Keywords: microchannels, topology optimization, finite element, fluid flow, heat transfer. 
 
1. Introduction 
Microchannel heat sink is an innovative technology which has been long studied as alternative to increase cooling 
efficiency of small electronic devices, which do not have large areas for heat exchanging. This technology was 
introduced by Tuckerman and Pease [1] who performed experiments on silicon based microchannel heat sink for 
electronic cooling. Microchannels constructed on a conductivity body can provide large convective heat transfer 
coefficient, and small mass and volume for heat sink designs, which makes it very suitable for cooling compact 
electronics devices such as high-end microprocessors applied to general computation. The microprocessors 
dissipate a large amount of heat, and need very efficient dissipation system to avoid malfunction or even product 
damage. As long as these microprocessors become more powerful and smaller, the need of efficiency in heat 
dissipation is even more highlighted. Heat sink design for high-power LED’s (Light Emitting Diodes) should also 
be other great potential application of this technology. This kind of LED is characterized by a high luminosity that 
yields a high heat generation, which it is only removed by an efficient heat sink [2]. 
In fluid flow systems, one important matter is power dissipation along channels which leads to a pressure drop, 
compromising their correct operation and their efficiency. Especially in small scale applications, such as 
micro-channel devices, which operate under low pressure conditions, the fluid flow can be greatly influenced and 
compromised by any pressure drop. 
In order to achieve a better heat sink design, it is crucial that these cooling systems have a very efficient fluid flow 
channel, minimizing pressure drops along its extension, and consequently allowing an efficient full capacity 
operation. This kind of application is directly affected by the channel performance. 
In the past decades, many studies have been conducted, in order to achieve fluid flow channels with better 
configuration for minimizing power dissipation. These studies take advantage of numerical methods application to 
analyze the fluid behavior, allowing the study of more complex cases. The basis of numerical studies on channel 
flow optimization was given by Pironneau [3], who conducted a shape optimization analysis in airfoils and other 
devices, such as diffusers. In its studies he applied the shape optimization process to obtain minimum drag profiles 
and minimum pressure drop diffusers. Other studies in this field were conducted later by Mohammadi and 
Pironneau [4]. 
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The main objective of this work is to present a methodology for obtaining optimal microchannel layouts applied to 
a heat sink design using Topology Optimization Method. Later in the 90’s, there has been a great development of 
the Topology Optimization Method, which essentially distributes limited amount of material inside a design 
domain to optimize a cost function requirement, satisfying some specified constraints [5]. First, Topology 
Optimization Method was developed for structural analysis field [6]. Nowadays, it has been applied by several 
researches in other field applications, such as Borrvall and Petersson [7] who use this method for fluid flow 
problems field. In this case, instead of controlling only solid material and void regions, as often performed for 
structural analysis field, the interest is focused on distributing liquid and solid materials, and then, creating 
optimized fluid flow systems. 
One of the great advantages of the Topology Optimization Method is the possibility for analyzing a much wider 
range of solutions, due to the “free” material distribution method. By applying this method, ones can achieve an 
optimal solution with no need of proposing a “pre-structured” initial guess, which tends to limit the final solution, 
by directing the optimization process. This issue may be a problem in parametric and shape optimization, where a 
preliminary solution model must be stated. Thus, “not-so-intuitive” solution can be recovered, as can be seen in 
reference [7], where it is concluded that for longer domains, the pressure drop on a “single-merged” channel is 
lower than a “double-way” separated channel, which is not an intuitive solution. Lately, other studies in this field 
have been conducted, such as [8, 9, 10, 11]. 
The methodology proposed in this work is presented in the next sections. Section 2 describes the fundamental 
theory. Section 3 presents the Finite Element (FE) model. Section 4 shows an overview of the optimization 
procedures. Section 5 details the results obtained at this moment. Finally, in Section 6 some discussion about 
obtained results and conclusion are given. 
 
2. Fundamental Theory 
The fundamental theory is given by the constitutive equations for Newtonian fluid flow, based on the well-known 
Navier-Stokes equations, given by: 

 p
t

ρ ∂⎛ ⎞ μ+ ⋅∇ = −∇ + Δ +⎜ ⎟∂⎝ ⎠

u u u u f   (1) 

 ( ) 0
t
ρ ρ∂
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where ρ is the fluid specific mass, μ is the fluid viscosity, u is the velocity vector, p is the pressure and f is the body 
load. Equation (1) refers to the conservation of momentum, and equation (2) refers to conservation of mass, or 
continuity equation. 
In this work, the Navier-Stokes equations are simplified to a linear form [7], considering a steady-state, 
incompressible fluid flow (Newtonian fluid) at low Reynolds, where the viscous effects overlap the inertia effects, 
obtaining the following Stokes flow equations: 

pμ− Δ +∇ =u f              (3)  
0∇⋅ =u              (4)  

Equation (3) dictates the fluid flow, coupled with equation (4) that acts similar to a constraint in the velocity field 
to ensure the incompressibility condition.  
Besides the fluid flow in free regions of the domain, it is necessary to model the solid region behavior. This 
problem is solved by combining the standard Stokes flow equation with a contribution from a porous medium 
flow, known as Darcy flow, given by [7, 8, 10]:  

( fp )κ ρ
μ

= − ∇ −u b             (5) 

0∇⋅ =u  
where κ is the porous media permeability. 
The main idea is to apply the Stokes equations to model the fluid flow behavior, and to control the velocity field in 
solid regions through the Darcy equation, by assuming it to be a porous medium with nearly-zero flow 
permeability. 
The combination of equations (3) and (5) results in the Brinkman’s equation form, given by: 

pμ αΔ + =∇ −u u f             (6) 
0∇⋅ =u  

where α is the fluid inverse permeability. 
In equation (6), it is included a penalization term controlled by α, which is the inverse permeability of the porous 
medium region, and penalizes the velocity, enforcing a very small flow in solid regions. This approach allows the 
optimization to work with a continuum variation on the liquid-solid model, which is relevant during the 
optimization phase, discussed ahead in this manuscript.  
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Additionally to the fluid movement equations, the convection-diffusion heat transfer governing equation is: 
( ) 2

f p fc T k Tρ Q⋅∇ = ∇ +u            (7) 
where T is the temperature, Q is the heat generation. ρf, cp, and kf represent the fluid density, the specific heat, and 
the thermal conductivity, respectively. In the energy equation (7) steady state flow is considered. 
 
3. Finite Element Modeling 
The finite element method (FEM) is applied to solve the equations presented in the previous section. The design 
domain is divided by using rectangular bilinear elements, which have four nodes for velocity field and one node for 
pressure field. Although it is recognized as a not full-stable element according to the LBB or 
div-stability-condition [12], the adopted element has shown a good accuracy for velocity field calculation, with 
expected spurious oscillation in the pressure field caused by the velocity and pressure fields coupling, which in this 
particular application do not affect the results decisively [7]. 
By applying the FEM to Brinkman’s equation, and writing it to the discrete matrix form, the following equation 
system is obtained [13]:  

T⎡ ⎤ ⎧ ⎫ ⎧ ⎫−
=⎢ ⎥ ⎨ ⎬ ⎨ ⎬

⎢ ⎥ ⎩ ⎭ ⎩ ⎭⎣ ⎦

u fK G
p 0-G 0

            (8) 

where K is the velocity stiffness matrix and G represents the divergent operator, u and p are the nodal velocity and 
nodal pressure distribution respectively, and f is the nodal body load component. By solving the system presented 
in equation (8), considering a correct set of boundary conditions, the velocity and pressure fields can be 
determined. 
 
4. Topology Optimization Problem 
The topology optimization method [5] is applied to make each of finite elements of the discretized domain to 
assume either fluid or solid material, according to the material model. In this work, topology optimization problem 
is solved by using the sequential linear programming [14]. 
The material model combines the characteristics of both materials (solid and fluid), and allows defining which 
kind of material is placed on each element of the discretized domain. This is controlled by the design variable ρ, in 
such way that for ρ=0 one retains a solid material, and for ρ=1 one retains a fluid material, characterizing a discrete 
0-1 problem. Although there is not physical application for intermediate values of ρ and as it is not desirable to 
have them at the final design, it is very common to work with a continuous problem, allowing ρ to assume these 
intermediate values, preventing well known solution problems in the discrete model [5].  
The Brinkman’s equation (6), describes the material model, where the inverse permeability (α) is a continuous 
function of the design variable ρ. The material model is the same applied by Borrvall and Petersson [7] and later by 
Gersborg-Hansen [8], in which for solid elements the combined porous medium model predominates, with 
permeability controlled by the design variable ρ, such as for a full solid element (ρ→1), the velocity is nearly zero 
(u→0).  
The total potential power evaluated at the solution obtained by the FEM analysis is adopted as objective function 
for the topology optimization problem. Considering a common case, where there are no body forces over the fluid 
domain, the total potential power represents the power dissipation on the fluid in the design domain, given by: 

TΦ = U K U              (9) 
where U represents the nodal velocity field vector and K is the velocity stiffness matrix. Equation (9) has the same 
form of the well-known mean-compliance used very often in structural optimization [5], and may represent the 
mean pressure drop over the channel. The goal is to minimize power dissipation, and consequently to minimize the 
pressure drop. 
Thus, the topology optimization problem is stated for the fluid flow channel optimization, in a discrete form, as: 

minimize: TΦ =
ρ

U K U  

 such as: 
T⎡ ⎤ ⎧ ⎫ ⎧ ⎫−

=⎢ ⎥ ⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎩ ⎭ ⎩ ⎭⎣ ⎦
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i i
1

ρ ; 0 ρ 1
N

i

V
=

         (10)
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A volume fraction constraint (V) is adopted in the optimization problem. The volume fraction is the ratio of fluid 
material volume over the whole domain volume. 
For controlling the design heat transfer, another objective function must be stated. The chosen cost function 
utilizes the temperature distribution, obtained from the energy equation (7), to evaluate the system heat transfer 
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performance. It has also the same discrete form as the mean-compliance problem, as follows: 

t
TΓ = T K T            (11) 

where T is the thermal field distribution and Kt is the thermal stiffness matrix. 
These two optimization problems (to minimize the pressure drop and to maximize heat transfer) are evaluated 
through a multi-objective function which allows the design process to give priority to one of them, or treat both 
equally, as follows: 

( ) ( )log logu wΨ = Φ + Γ           (12) 
where u and w are weighting factors.   
The sensitivity analysis is performed by calculating the gradients of mean-compliances Φ and Γ in the objective 
function of equation (12) in relation to the design variables [5]. 
 
5. Heat sink design 
Here, topology optimization problem shown before is applied to a heat sink design. Essentially, optimization 
process is carried out to achieve a channel with both low pressure drop and high heat transfer attributes, increasing 
a heat sink device. 
The design domain of the heat sink is shown in figure 1. This domain has one inlet and two outlet regions, with 
direction defined as follows in figure 1. At the inlet region, fluid velocity is set to a constant value equal to 0.01m/s 
and fixed temperature of 20 oC. The pressure at outlet regions is set to zero, acting similar to a sink. A uniform heat 
source (1 W/m2) is distributed along the whole domain. All external walls of the domain are prescribed as non-slip 
adiabatic boundaries. For this example, thermodynamic constants of water (fluid material) and Aluminum (solid 
material) are considered. 
The results presented in figure 2 are obtained for a domain discretized by 40x40 elements. White regions represent 
fluid material and black regions represent solid regions. This test shows how the optimization problem is stated 
and illustrates also the weighting factors (u and w) influence over the solution. Figure 3 shows the temperature 
distribution and the heat flux for the obtained channel configuration shown in figure 2b. 
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Figure 1 – Heat sink design domain 
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Figure 2 – Heat sink optimization results: (a) u larger than w (fluid flow priority); (b) equal priority for u and w; (c) 

w larger than u (heat transfer priority). 
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Figure 3 – (a) Temperature distribution; and (b) heat flux for configuration shown in the figure 2b. 

 
6. Discussion and conclusion 
The application of the topology optimization in fluid mechanics and heat transfer is practical and it allows the 
systematic design of fluid flow channels. This approach could be used for more efficient microchannel heat sink 
design, which has a lot of possible applications. An example of application of the combined fluid flow and heat 
transfer characteristics for channel design is shown. This example illustrates the viability of applying the topology 
optimization process to achieve a channel design combining these two distinct characteristics (fluid flow and heat 
transfer) at the same time.  
Weighting factors (u and w) which allows to control tuning for fluid flow or heat transfer behavior has been 
performed and it is noticed its influence over the results. As there is a tradeoff between fluid flow layout that 
maximize the heat transfer, the algorithm tries to increasing the heat exchanging area by introducing some small 
channels around the principal (major) channel, as can seen in figure 2. According some tests, it is also verified that 
the implemented topology optimization algorithm is mesh-independent [7], even with no applied filtering 
technique. 
The application of combined Stokes-Darcy flow equations has been shown very efficient within the topology 
optimization algorithm. Although it has certain limitations, as it is a linear approach of the full Navier-Stokes 
equations, and suitable only for low Reynolds fluid flow, this model is applicable for many different problems, 
from bend-pipes and diffusers to more complex cases.  
As conclusion, authors consider the application of the topology optimization in fluid flow channel design a very 
promising field. Thus, experimental characterization and manufacturing prototypes of some microchannel heat 
sink configurations will be executed as next steps of this work, in order to validate the results obtained through 
implemented optimization algorithm. 
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