m Seminar for

Applied

Eidgenodssische Technische Hochschule Ziirich .
& Mathematics

Swiss Federal Institute of Technology Zurich

A mild It6 formula for SPDEs

G. Da Prato and A. Jentzen and M. Rockner

Research Report No. 2013-46
November 2013

Seminar fur Angewandte Mathematik
Eidgendssische Technische Hochschule
CH-8092 Zirich
Switzerland




A mild Ito formula for SPDESs

Giuseppe Da Prato!, Arnulf Jentzen? and Michael Rockner?

!Scuola Normale Superiore di Pisa, 56126 Pisa, Italy, e-mail: g.daprato@sns.it

2Program in Applied and Computational Mathematics, Princeton University,
Princeton, NJ 08544-1000, USA, e-mail: ajentzen@math.princeton.edu

3Faculty of Mathematics, Bielefeld University, 33501 Bielefeld, Germany,
e-mail: roeckner@math.uni-bielefeld.de; Department of Mathematics and
Statistics, Purdue University, West Lafayette, IN 47907-2067, USA,

e-mail: roeckner@math.purdue.edu

September 12, 2012

Abstract

This article introduces a certain class of stochastic processes, which we suggest to call mild Itd processes,
and a new - somehow mild - It6 type formula for such processes. Examples of mild It6 processes are mild
solutions of stochastic partial differential equations (SPDEs) and their numerical approximation processes.
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1 Introduction

The following setting is considered in this introductory section. Let (H, |||, () g), (U |llly,(,)y) and
(Vi [Illy 5 (-»-)y) be separable real Hilbert spaces, let (€2, F,P) be a probability space with a normal filtration
(Ft)tefo,00)» 1et (Wi)iejo,00) be a cylindrical standard (F)ie[o,00)-Wiener process on U, let A: D(A) C H — H
be a generator of an analytic semigroup and let o € (-1,0], 8 € (—%,0]7 n € [0,00) be real numbers such
that n — A is bijective and positive. Moreover, to simplify the notation define ||v|| g, := ||[(n — A)"v||g for all
ve H :=D(n—A)")and all r € R and let F: H — H, and B: H — HS(U, Hg) be globally Lipschitz
continuous functions and let X: [0,00) x Q@ — H be an adapted stochastic process with continuous sample
paths satisfying sup,c( 4 E[[| Xs||5;] < oo and

t t
X, :eAth—i—/ eA(t_s)F(Xs)ds—i—/ A=) B(X,) dW, (1)
0 0



P-a.s. for all ¢,p € [0,00). The stochastic process X : [0,00) x Q@ — H is thus a mild solution of the stochastic
partial differential equation (SPDE) (1) (SPDEs have been extremely intensively studied in the last decades;
see, e.g., the books [95, 21, 35, 22, 12, 19, 96, 14, 89, 61, 47] and lecture notes [105, 57, 67, 90, 1, 24, 40] and
the references therein). A simple example of this framework is the following setting: If H = U = L?((0,1),R)
is the Hilbert space of equivalence classes of Lebesgue square integrable functions, if A: D(A) C H — H is
the Laplacian with Dirichlet boundary conditions on (0,1) and if (F(v))(z) = f(z,v(z)) and (B(v)u)(z) =
f(z,v(x)) - u(x) for all z € (0,1), u,v € H where f,b: (0,1) x R — R are continuously differentiable functions
with globally bounded derivatives, then the above framework is fulfilled with a« =7 =0 and g € (—%, —i) and
(1) reduces to the SPDE

4X,(2) = [ £ Xulw) + Flw, Xolw))] dit + bla, X,(2)) Wi () 2)

with X;(0) = X;(1) =0 for € (0,1) and ¢ € [0,00). Further examples of the above described framework and
existence and uniqueness results for (1) can, e.g., be found in Da Prato & Zabczyk [21, 22], Brzezniak [8] (see
Theorem 4.3 in [8]), Van Neerven, Veraar & Weis [103] (see Theorem 6.2 and Section 10 in [103]) and in the
references therein.

Our aim is to derive an Ito type formula for the solution process X of the SPDE (1). Let us briefly review
some related It6 type formula results from the literature. First, note that if @« = 8 = 0 and if the mild solution
process X of the SPDE (1) is also a D(A)-valued strong solution of the SPDE (1), then the standard It6 formula
(see Ito [48]) in infinite dimensions can be applied to X. More precisely, in that case, Theorem 2.4 in Brzezniak,
Van Neerven, Veraar & Weis [9] implies

P(X0) = p(Xy,) + / S (Xa) [AX, + F(X.)] ds + / R
L 0 3)
t3 Z/ ¢"(Xs)(B(Xs)g5, B(Xs)g;) ds

jeg/to

P-a.s. for all tg,t € [0,00) with ¢y < ¢ and all twice continuously Fréchet differentiable functions ¢ € C?(H, V)
where J is a set and (g;)jey C U is an arbitrary orthonormal basis of U. The case where X is not D(A)-valued
and thus not a strong solution of (1) is more subtle. There are a few results in the literature in this direction.
First, in the case « > —1 and 8 = 0 (i.e., B maps from H to HS(U, H)), in the case where A: D(A) C H — H
is self-adjoined and in the case of the special test function ¢(v) = ||v||% for all v € H, (3) can be generalized
and then reads as

t t t
Il = 12Xl +2 [ (X AX) s +2 [ (X PO g ds 42 [ (0 BOX) AW,
to to to (4)
¢ 2
+ | 1BX)wsw,m) ds

to

P-a.s. for all g, t € [0, 00) with ¢y < t; see Pardoux’s pioneering work [85, 86, 87] and see, e.g., also [68, 38, 39, 88,
83, 91, 90] for generalizations and reviews of this It formula for the squared norm (the above mentioned results
from the literature consider slightly different frameworks and, in particular, often allow A to be nonlinear too).
Note that in that case X enjoys values in Hy /s = D((n — A)'/2) (see Theorem 4.2 in Kruse & Larsson [66))
and therefore, the integral fot (X5, AX )y ds = 77f0t 1 X, |13 ds — fot |(n — A)2 X,||% ds in (4) is well defined.
Formula (4) is a crucial ingredient in the variational approach for SPDEs (see the monographs [87, 68, 95, 90]).
Formula (4) is an It6 formula for possibly non-strong solutions of SPDEs in the case of the special test function
H||§{ There are also a few results in the literature which establish It6 type formulas for possible non-strong
solutions of SPDEs for more general test functions than the squared norm ||H§J, see [88, 110, 33, 69, 72, 70]. In
Theorem 5.1 in Pardoux [88], formula (4) is generalized to a special class of test functions which have similar
topological properties as the function ||Hi1 In Zambotti [110], the standard Itd formula is applied to regularized
versions of the solution process of the stochastic heat equation with additive noise and then the limit of these
regularized It6 formulas is made sense through a suitable renormalization term that appears in the resulting
formula. In Gradinaru, Nourdin & Tindel [33], Malliavin calculus and a Skorokhod integral is used to prove an
It6 type formula for the solution of the stochastic heat equation with additive noise (see also Leon & Tindel [72]
for a related It6 formula result for the stochastic heat equation with additive fractional noise). In Lanconelli [69],
a Wick product is used to formulate an It6 type formula for the solution process of the stochastic heat equation
with additive noise and the relation between the formulas in [110, 33] is analyzed (see Section 3 in [69] and



see also Lanconelli [70] for some consequences of this Wick produckt Itd type formula for the stochastic heat
equation with additive noise).

In general it is not clear how and whether (3) can be generalized to the case where X : [0,00) x Q — H is
not a D(A)-valued strong solution of (1). This article suggests a different approach for deriving an Ité formula
for solutions of (1). We do not aim for a suitable generalization of (3) to the case of non-strong solutions but
instead we suggest a somehow different It6 type formula for (1) which naturally holds for (1) in its full generality
for all smooth test functions. More precisely, we establish in Corollary 2 in Subsection 3.2 below the identity

t t
o(Xy) = (et X, ) + / ' (AT X)) A P(X,) ds + / ¢ (A9 X)) A B(X,) dW,

to to
1 t
+ 5 Z / (,DH(EA(t_S)XS) (eA(t_s)B(Xs)gj7 eA(t—s)B(XS)gj) ds
jeg ’to

(5)

P-a.s. for all tp,¢ € [0,00) with to < ¢ and all ¢ € Ur<min(a+1ﬂ+1/2)02(Hr,V) D C2%(H,V). Corollary 2 also
ensures that all terms in (5) are well defined (see (50)—(52) in Subsection 3.2). In the case of (2), natural
examples for the test functions ¢ € Ur<min(a+1’5+1/2)02 (H,,V) in (5) are Nemytskii operators and nonlinear
integral operators such as H, > v fol Y(z,v(z))dx € R for any 0 < r < min(a + 1,8 + 1/2) and any
sufficiently regular function v: (0,1) x R — R. In the special case ¢ =idy: H 3 v+— v € H =V, equation (5)
reduces to the variant of constants formula (1) and in that sense, (5) is somehow a mild Ité formula. In the
deterministic case B = 0, equation (5) is somehow a mild chain rule; see Example 2 in Section 2.2 below for
more details. The identity (5) can be generalized to a much larger class of stochastic processes than solution
processes of the SPDE (1). To be more precise, in Definition 1 in Subsection 2.1 a class of stochastic processes
which exhibit a similar algebraic structure as (1) is introduced and referred as mild Ité processes. Examples of
mild It processes are solution processes of SPDEs such as (1) (see Subsection 3.2) as well as their numerical
approximation processes (see Subsection 3.3). The identity (5) is then a special case of equation (22) in
Theorem 1 below in which a mild It6 formula for mild It6 processes is established.

Let us outline how (5) and Theorem 1 respectively are established. A central idea in the proof of (5)
is to consider a suitable transformation of the solution process X: [0,00) x Q@ — H of the SPDE (1). The
transformed stochastic process is then a standard Itd process to which the standard It6 formula (see (3)) can be
applied. Relating then the transformed stochastic process in an appropriate way to the original solution process
X: [0,00) x Q2 — H of the SPDE (1) finally results in the mild Ité formula (5). Two types of transformations are
well suited for this job. One possibility is, roughly speaking, to multiply the solution process X of the SPDE (1)
by e=4t, t € [0,00), where e~4* ¢ € [0,00), has to be understood in an appropriate large Hilbert space (see
Subsection 2.2 below for details). In that sense the transformed stochastic process becomes rougher than the
solution process X of the SPDE (1). This transformation has been suggested in Teichmann [101] and Filipovié,
Tappe & Teichmann [31] (see also Hausenblas & Seidler [45, 46]). The other possible transformation goes into
the other direction and, roughly speaking, consists of multiplying the solution process X of the SPDE (1) by
ATt t € [0,T), for some large value T € (0,00). This transformation is based on an idea in Conus &
Dalang [16] and Conus [15] (see also Debussche & Printems [27], Lindner & Schilling [73] and Kovécs, Larsson
& Lindgren [62]). The second transformation, which makes the transformed process smoother than the solution
process X of the SPDE (1), turns out to be more flexible and allows us to prove Theorem 1 in its full generality.
For more details on the proofs of (5) and Theorem 1 respectively, the reader is referred to Subsection 2.2 below.

In the remainder of this introductory section, a few consequences of the mild Ito formula (5) and its gen-
eralization in Theorem 1 are illustrated. For this let X*: [0,00) x Q@ — H, x € H, be a family of adapted
stochastic processes with continuous sample paths satisfying X; = e4tx + fot A=) P(X?)ds + fot B(X7T)dWs,
P-a.s. for all ¢t € [0,00) and all € H (see, e.g., Theorem 4.3 in Brzezniak [8] or Theorem 6.2 in Van Neerven,
Veraar & Weis [103] for the up to indistinguishability unqiue existence of such processes). Then for every
r € (—oo,min(a + 1,8+ 1/2)) and every at most polynomially growing continuous function ¢ € C(H,,V)
define the continuous function uy,: [0,00) x H, — V through u,(t,z) := E[¢(X})] for all (t,2) € [0,00) x H,.
Under the assumption that = f = 0 and that F' and B are three times continuously Fréchet differentiable
with globally bounded derivatives, the functions u,: [0,00) x H — V, ¢: H — V twice continuous Fréchet
differentiable with globally bounded derivatives, are strict solutions of the infinite dimensional Kolmogorov
partial differential equation (PDE) 2u,(t,z) = (Luy)(t, ) with u,(0,2) = ¢(z) for (¢, z) € (0,00) x H; where
L: C*(H,V)— C(Hy,V) is defined through

(L¢)() = 5Tr((B@)) ¢() B@)) + ¢/ (a) [ Az + F(x)] (©)

for all x € Hy = D(A) and all ¢ € C?(H,V) (see Theorem 7.5.1 in Da Prato & Zabczyk [30]). Infinite



dimensional Kolmogorov equation have been intensively investigated in the last two decades (see, e.g., the
monographs [78, 13, 23, 19] and articles [109, 93, 94, 20] and the references mentioned therein). We prove here
that the functions wu,,: [0,00) x H — V, ¢ sufficiently smooth, also solve another kind of Kolmogorov equation.
More precisely, from (5) we derive in Subsection 3.2.2 below (see (70)) the identity

uy(t,x) = ples) —l—/o ur, () (8,x)ds (7)

for all (¢t,x) € (0,00)x H and all p € Ur<min(a+175+1/2)02 (H,, V) with at most polynomially growing derivatives
where L1 Upcmin(a+1,841/2) C?*(H,,V) — C(H,V), t € (0,00), is a family of bounded linear operators defined
through

(Lig) (@) = 5T ((MB)) ¢ (eMa) MB()) + ¢/ (M) M F () (8)

for all z € H, ¢ € UT<min(a+1ﬁ+1/2)C2(HT,V), t € (0,00). Equation (7) is somehow a mild Kolmogorov
backward equation. From (7) we derive new regularity properties of solutions of second-order PDEs in Hilbert
spaces. More precisely, using (7) we establish in Theorem 2 below the existence of real numbers c¢; ,, 4.7 € [0, 00),
d,p,q, T € [0,00), such that the regularity estimate

|lug (L, )], 5
sup < cspqr - el 9)
mem( 1+ |l )2 7 !

1
e @) 23 o, v

holds for all t € (0,7, p € C*(H,,V) with sup,cp el
P x P

1,8+ %)) where

< 00, ¢,6,T € [0,00), p € [0, min(c +

||<P||t,q =
At ¢
[(e?ta)|| mino=p0
@ +/ (t =)™ =" sup
(L + 12llmy) ° o

At lalm,)e < % t,q,0 € [0,00), p € [0,min(a + 1,3 + l)) and where

Ki: C(Hy,V) — C(H,V), t € (0,00), is defined through (K;¢)(z) = ¢(eAtx) for all z € H, t € (0,00). The
constants ¢ p.q.7, 0,p,¢,T € [0,00), appearing in (9) are described explicitly in Theorem 2 below. Next a
direct consequence of the regularity estimate (9) is presented. For this let (C%ip(H, R), H”cg () be the

I (Kt@)/(x)”L(Ha,V) |(Kep) () HL@)(HB,V) ds (10)
(1 + |, ) Y (1 + 2] m,)"

reHs

for all ¢ € C*(H,,V) with SUD,ep,

real Banach space of all twice continuously differentiable globally Lipschitz continuous real valued functions on
H with globally Lipschitz continuous derivatives (see (42) in Subsection 3.1 for details). Moreover, for every
t € (0,00) let (Gi(H,R),|llg,(zrr)) be the completion of the normed real vector space (C%ip(H R), || ||0’0)

Then consider the mapping Z: {u: B(H) — [0,1] probability measure: [ |[z|/ g u(dz) < oo} — (CF,,(H,R))’

given by (Z(u))(¢) = [(x) u(dx) for all ¢ € C7, (H,R) and all probability measures u: B(H) — [0,1] with
[ |l e ,u(dx) < 00. Lemma 6 below proves that 7 is injective, that is, Z embeds the probability measures with
finite first absolute moments into linear forms on C%ZP(H ,R). Next note that Z(Px,) € (C%Zp( R))’ for all
t € [0,00) where Px,[A] = P[X; € A] for all A € B(H), t € [0,00) are the probability measures of the solution
process Xy, t € [0,00), of the SPDE (1). From (9) we then infer for every t € (0, 00) that Z(Px,) € (Csz( R))
is not only in (C’%ip(H, R))’ but in the smaller space (G;(H,R)) too (the embedding (G:(H,R))" C (Csz(Ha R))

continuously is proved in Lemma 5 below). We thus have established more regularity of the probability measures
Px,, t € (0,00), of the solution process of the SPDE (1).

Another application of the regularity estimate (9) and the mild Kolmogorov backward equation (7) is the
analysis of continuity properties of solutions of second-order PDEs in Hilbert spaces (see, e.g., the books
[78, 13, 23, 19]). More precisely, Corollary 7 in Section 3.2.3 below proves that there exist real number ¢, 5,7 €
[0,00), 7,8, p, T € [0, 00), such that

Cr,5,p,T (1+”$1H§-15+H$2”i15) H‘P|\c%7,p(Hp,v)

||ug0(t1) xl) - ug)(t27$2)|‘v S ‘min(tl7t2)‘max(r+p76,0) ) :| |:|t1 - t2|'r‘ + ||x1 - x2||H5 (11)

for all t1,ty € (0,T], 1,72 € D((—A)°), p € ClLip(Hp, V), m € 0,1+ a—p)N[0,1428—2p), §,T € [0,00),
p € [0,min(a + 1, 34 1)). Inequality (11) thus proves Holder continuity of the solutions uy: [0,00) x H =V,



p € C’%ip(H ,V), of second-order Kolmogorov PDEs in infinite dimensions. In particular, in the case of the
example SPDE (2), inequality (11) ensures that

t|" [|Elp(X —Elp(X,
tl,tQG[O,T] |t1 - t2|7’
t1<t2

for all ¢ € C},(H,V), T € (0,00) and all 7 € [0, 3). Results in the literature imply that (12) holds for all

r € [0, i] More formally, in the case of the SPDE (2), we get from the global Lipschitz continuity of ¢ that

ap L [Elp(Xe)] —Ele(Xn)]lly _ sup le@—elv sup [t E(I1Xe, = Xeallm] | _
t1,t2€[0,T] [t1 —to| T ayen eyl t1,t2€[0,T] [ty — ta|"
t1<to TFY t1<t2

(13)

for all p € C7,,(H,V), T € (0,00) and all 7 € [0, 1] where the second factor on the right hand side of (13) is finite
due to Theorem 6.3 in Van Neerven, Veraar & Weiss [103] for the case r € [0, 1) and due to Corollaries A.16 and
A.35 in [51] for the case r = 1 (see also Brzezniak [8], Kruse & Larsson [66], Van Neerven, Veraar & Weiss [104]
for related results). This shows that regularity results in the literature ensure that (12) holds for all r € [0, i]
Up to our best knowledge, this is the first result in the literature which establishes that (12) also holds in the
regime r € (1, 3).

A further application of the regularity estimate (9) and the mild Kolmogorov backward equation (7) is the
weak approximation of SPDEs. Let us illstrate this in the case of spectral Galerkin projections for the example
SPDE (2). More precisely, in the case of the SPDE (2), Corollary 8 in Section 3.2.3 implies that there exist real

numbers C,.r € [0,00), r,T € [0,00), such that

Crrlelles iy
B Lo (xr)] - Elp(Py(X0)] ], € ———CsttV)

for all N € N, T € (0,00), ¢ € C},,(H,V) and all r € [0,1) where Py € L(H), N € N, are spectral Galerkin

projections defined by (Pyv)(z) := ZnN:1 2sin(nnx) fol v(y) sin(nmy) dy for all z € (0,1), v € H = L*((0,1),R)
and all N € N. Inequality (14) and Corollary 8 respectively are a straightforward consequence of the regularity
estimate (9) (see Section 3.2.3 for details). In the case of the stochastic heat equation with additive noise
f(z,y) = 0 and b(z,y) = 1 for all z € (0,1), y € R in (1), inequality (14) follows for all r € [0,1) from the
results in [27, 73, 62, 63] (see also [43, 25, 32, 44, 26, 7, 65] for further numerical weak approximation results
for SPDEs). In addition, in the general setting of the SPDE (1), it is well know that inequality (14) holds for
all r € [0, %} Indeed, in that case, we get from the global Lipschitz continuity of ¢ that

[E[o(X7)] = Ele(Pn(Xe)]lly < leles, v EIIT = Py)Xrln]

Illes oy EUX Tl (15)
< Welleg, oy ELIX el I = Pr)n = )7 4 < =252 < o

forall N € N, T € (0,00) and all ¢ € C’%ip(H, V') where finiteness of IE[HXT||H1/4] for all T' € (0, 00) follows,
e.g., from Lemma A.23 and Corollary A.37 in [51] (see also Kruse & Larsson [66] and Van Neerven, Veraar &
Weiss [104] and the references therein for similar results). This shows that regularity results from the literature
ensure that (14) holds for all 7 € [0, 3]. The present article proves that (14) also holds for all r € [0,1). Observe
that (14) estimates the weak approximation error of spatial spectral Galerkin projections only instead of more
complicated spatial approximations (see also Corollary 8 in Section 3.2.3 below for a generalization of (14)) and
also the time interval and the noise are not discretized in (14). We believe that the mild Kolmogorov backward
equation (7) can also be used to solve these more complicated weak numerical approximation problems for
SPDEs and plan to develop these results in a future publication.

Another application of the mild It6 formula (5) and the mild Kolmogorov backward equation (7) respectively
are the derivation of strong and weak stochastic Taylor expansions of solutions of SPDEs. Details can be found
in Subsection 3.2.4 below. These Taylor expansions can then be used to derive higher order numerical schemes
for SPDEs. In Subsection 3.3.2 below this is illustrated in the case of Milstein scheme for SPDEs.

(14)
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2 Mild stochastic calculus

Throughout this section assume that the following setting is fulfilled. Let I C [0,00) be a closed and convex
subset of [p, o) with nonempty interior, let (€2, F,IP) be a probability space with a normal filtration (F¢)ser
and let (H, () g, I1lg), (H.Cha. a), (H, ¢y ) and (U, ()¢, |I]ly) be separable R-Hilbert
spaces with H ¢ H C H continuously and densely. In addition, let @Q: U — U be a bounded nonnegative
symmetric linear operator and let (WW;),.; be a cylindrical Q-Wiener process with respect to (F;)¢cr. Moreover,
by (Uo,<~,~>UO , ||||UO) the R-Hilbert space with Uy = QY2(U) and |lully, = ||Q~Y?(u)|v for all u € Uy is
denoted (see, for example, Proposition 2.5.2 in Prévot & Rockner [90]). Here and below S™1:im(S) c U — U
denotes the pseudo inverse of a bounded linear operator S: U — U € L(U) (see, e.g., Appendix C in [90]).
In addition, let 7,: L(ﬁ,H) — He L(L(ﬁ,ﬁ),ﬁ), v € H, be a family of bounded linear operators defined
through i, A = Av for all A € L(H,H) and all v € H. Then by S(H, H) := o( Upeir i Y(B(H))) =o({i;'(A) C
L(H,H): v e H,A e B(H)}) the strong sigma algebra on L(H, H) is denoted (see, for instance, Section 1.2
in Da Prato & Zabczyk [21]). Finally, let £ C I? be a set defined through / := {(t1,t2) € I?: t; < t5} and let
7 € I be defined throught 7 := inf(I).

2.1 Mild stochastic processes

Definition 1 (Mild It6 process). Let S: / — L(H,H) be a B(£)/S(H, H)-measurable ‘mapping satisfying
Sty 455t ,ts = Sty,t for all t1,ta,t3 € T with ¢t < ty < t3. Additionally, let Y: I xQ — H and Z: 1 x Q —
HS(Uy, H) be two predictable stochastic processes with f: 155, Ys|| 7 ds < oo P-a.s. and f: ||SsthSHiIS(UO ) ds <

o0 P-a.s. for all t € I. Then a predictable stochastic process X : I x Q — H satisfying
t t
X = ST,t X:+ / Ss,t Y ds + / Ss,t ZsdW (16)

P-a.s. for allt € IN(7,00) is called a mild Ito process (with semigroup S, mild drift Y and mild diffusion Z ).

Note that if (H, (-,-) 7, |l z) = (H, (-, i, |I-| ) and if the semigroup S: £ — L(H) satisfies Sy, 4, = I for
all (t1,t2) € £, then the mild Itd process (16) is nothing else but a standard Itd process. (Throughout this
article the terminology “standard It6 process” instead of simply “Ito6 process” is used in order to distinguish
more clearly from the above notion of a mild It6 process.) Every standard It6 process is thus a mild 1td process
too. However, a mild Itd process is, in general, not a standard It6 process (see Section 3 for some examples).
The concept of a mild It0 process in Definition 1 thus generalizes the concept of a standard Itd process. In
concrete examples of mild Itd processes it will be crucial that the semigroup S: Z — L(ﬂ JH ) in Definition 1
depends explicitly on both variables ¢; and to with (¢1,¢2) € £ instead of on t3 — t; only (see Subsection 3.3
for details). The assumptions f: 1S6,:Ys|| 7 ds < oo P-a.s. and f: HSS,tZS”iIS(UO,H) ds < oo P-as. forallt € I'in
Definition 1 ensure that both the deterministic and the stochastic integral in (16) are well defined. In the next
step an immediate consequence of Definition 1 is presented.

Proposition 1. Let X: Ix — Hbea mild It6 process with semigroup S: £ — L(H7 lfl), mild drift Y : IxQ —
H and mild diffusion Z: 1 x Q — HS(Uy, H). Then

to 2
Xt2 = Stl,tz th =+ / Ss,tg Ys dS + / 557,52 Zs dWé (17)
t1 t1

P-a.s. for all t,to € T with t1 < ts.



Proposition 1 follows directly from Theorem 1 below. Obviously, equation (17) in Proposition 1 generalizes
equation (16) in the definition of a mild It6 process. Let us complete this subsection on mild It6 processes with
the notion of a certain subclass of mild It6 processes.

Definition 2 (Mild martingale). A mild It6 process X: 1 x Q — H with semigroup S: £ — L(ﬁ,ﬁ), mild
drift Y: I x Q — H and mild diffusion Z: T x Q — HS(Uy, H) satisfying E[[| X¢|| 7] < oo for all t € I is called
a mild martingale (with respect to the filtration Fi,t € I, and with respect to the semigroup S) if

E[Xt2 |]:t1] = St1,t2 X, (18)

P-a.s. for all t,ts € T with t1 < ts.

Proposition 2 (Stochastic convolutions). Let X: T x Q — H be a mild It process with semigroup S: £ —
L(H, H), mild drift Y : Ix Q — H and mild diffusion Z: 1 x Q — HS(Uy, H) satisfying IE[HXtH%I] < oo for all
t el If]P’[Yt = O] =1 for allt € I, then X is a mild martingale with respect to the filtration F¢, t € I, and
with respect to the semigroup S.

Proof of Propostion 2. Propostion 1 yields

ta
Xt2 - St17t2 th + Ss,tQ Zs dWS (19)

t1

P-a.s. for all ¢1,t2 € I with ¢; < t3. Equation (19) and the assumption IE[HXtH%] < oo for all t € I imply
equation (18). The proof of Proposition 2 is thus completed. O

2.2 Mild Ito formula

Let J be aset and let g; € Uy, j € J, be an arbitrary orthonormal basis of the R-Hilbert space (UO, (5, s H||U0)
For an R-vector space (V,[[l,,) and a function ¢ € CH*(T x H,V) we denote by d1p € C(I x H,V),
Do € C(I x H,L(H,V)) and 93¢ € C(I x H,L®(H,V)) the partial Fréchet derivatives of ¢ given by
2 ~
(O1p)(t, ) = (22)(t,2), (D2p)(t,x) = (42)(t,2) and (83¢)(t,z) = (%5)(t,x) for all t € [ and all z € H.
Theorem 1 (Mild It6 formula). Let X: I x Q — H be a mild Ité process with semigroup S: Z — L(H, H),

mild drift Y : 1 x Q — H and mild diffusion Z: 1 x Q — HS(Uy, H) and let (V, (., v L) be a separable
R-Hilbert space. Then

t

IP’[ 1(929) (5. St X) St Vally, + 11(020) (5, S X0) St Zel 250y b < oo] _1, (20)
to
t

P[ 1@ )6, Xl + 1080) 5. St X e vy 150 Zel s iy 45 < oo] 1 (21)
to

and

t

t
ot X) = lto, Sty Xen) + / (910) (5, S Xs) ds + / (20)(5, S04 X,) Se.0 Y ds
to to

22)
t 1 t (
b [ @005 X) Sua ZudWt 5 3 [ (005,51 Xe) (Sui gy, Sus Zogs) ds

to jeg vt
P-a.s. for all to,t € T with tg <t and all o € CY2(I x H,V).

Note that (20) and (21) ensure that the possibly infinite sum and all integrals in (22) are well defined.
Indeed, equation (21) implies

t
3 / 1(@20)(5, S0y X) (Sus Zags, 5o Zogy)| |, ds

jeg vt
t
2
< / @005 SeaXoll oy (X, I1SueZegily ) ds (23)

t
2
= /t |‘(8§‘p)<37SSJXS)HLM(H,V) HSS7tZS||HS(U0aH) ds < 00
0
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P-a.s. for all to,t € T with tq < t and all ¢ € C*2(I x H, V). Moreover, note that the mild It6 formula (22) is
independent of the particular choice of the orthonormal basis g; € Uy, j € J, of Up.

In the next step a certain flow property of the mild It6 formula (22) is observed. To be more precise, the
mild Tt6 formula (22) on the time interval [f, ] applied to the test function ¢(s,v), s € [£,t], v € H, reads as

t

t
o(t. X)) = (i, 57, X;) + / (@195, S Xe) s+ [ (0)(5,501X.) Sus e ds
t
¢ (24)
/(aw)(s SetXs) Set Zg dW, 4 = Z/ (820)(5, S50 Xs) (Ss.0Z59j, Ss.1Zsg;) ds
t IS

P-a.s. for all #,¢ € T with £ < ¢ and all p € C*2(I x H,V). Moreover, observe that the mild Ito formula (22) on
the time interval [to, ] applied to the test function (s, S; 4v), s € [to, t], v € H, reads as

£ £
o(£,5;,X;) = lto, St x Xrg) + / (O10) (5, 801 Xo) ds + / (D20)(5, Su X,) Su Yo ds
to tO

; i (25)
t 1 t
+ / (020)(s, 85,4 Xs) Sst Zs AW, + ) Z / (D30)(s, Ss4Xs) (95,2595, S50 2s9;) ds

B to

to

P-a.s. for all tg,%,t € T with tg < <t and all p € CV2(I x H,V). Putting (25) into (24) then results in the
mild It6 formula (22) on the time interval [to, ] for ¢, € I with ¢ < t. If the test function (¢(t,)),cy ,eqr €
C™2(I x H,V) in the mild It6 formula (22) does not depend on ¢ € I, then the mild It6 formula in Theorem 1
reads as follows.

Corollary 1. Let X: IxQ — H be a mild It6 process with semigroup S: £ — L(H7 f{), mild drift Y : TxQ — H
and mild diffusion Z: 1 x Q — HS(Uy, H) and let (V,(-,-)y,,|||ly/) be a separable R-Hilbert space. Then

t
P [ 165X Yally + 16 (500 X)Su 2y d5 < 0] =1, (26)
to
t
| [ 16 (et Xl 18002 By iy s < o0 = 1 (27)
to

and

t t
(p(Xt) = @(Sto,tXto) + / L)Dl(Ss,t)(s) Ss,t Y:G dS + / @l(ss,th) Ss,t Zs dWs

t() t()

+ = Z / 5 tX 5 tngj7 Ss,tngj) dS (28)
JGJ

P-a.s. for all to,t € I with tg <t and all ¢ € C*(H,V).

Let us illustrate Theorem 1 and Corollary 1 by two simple examples. The first one is a mild version of the
stochastic integration by parts formula (see, e.g., Corollary 2.6 in [9]).

Example 1 (Mild stochastic integration by parts). Let (H, (-,);, || ”H) (7'2, (-, >H ), (g )
U, g Iollyg) and (Vo (Y4 N1-lly) be separable R-Hilbert spaces with H C H C H continuously and densely,
let X:1xQ — H be a mild Ito process with semigroup S: £ — L(H H) mild drift Y: T x Q — H and mild
diffusion Z: 1 x Q — HS(Up, H) and let X: I x Q — H be a mild It6 process with semigroup S: £ — L(H, M),
mild drift Y: I x Q — H and mild diffusion Z: 1T x Q — HS(Uy,H). Corollary 1 then shows

t

¢
<P(Xt7?(t) = @(Sto,tXt,Sto,tXt) +/ <P(Ss,tYs,Ss,th) ds —|—/ @(Ss,tXst,tys) ds (29)

to to

t
+/ @(Ss,tZs(’)vss,th) dWs +/ (Ss thaSs tZ dW + Z / s tngjv s tngj) ds

to to ]ej

P-a.s. for all to,t € T with ty <t and all bounded bilinear mappings ¢: H x H — V.



Example 2 (Mild chain rule). Let S: Z — L(H,H) be an B(Z)/S(I:I,H):measumble mapping satisfying
St 455t ts = Sty,ts for all ty,ta,ts € T with t; < ta < t3 and let : 1 — H and y: I — H be two Borel
measurable functions with f: 1Ss,eysll g ds < o0 and ¢ = Sr 12, + f: Sstysds for all t € I. Corollary 1 then
shows .
Plo0) = P(Stp 1) + | ¢(Sus) Suavads (30)
to
for all to,t € T with ty < t and all ¢ € C*(H,V). Equation (30) is somehow a mild chain rule for the mild
process x: 1 — H.

Let us now concentrate on proofs of the mild It6 formula (22). A central difficulty in order to establish
an It6 formula for the stochastic process X: I x Q — H is that this stochastic process is, in general, not a
standard It6 process to which the standard It6 formula (see, e.g., Theorem 4.17 in Section 4.5 in Da Prato &
Zabcezyk [21]) could be applied. (Here and below the terminology “standard It6 formula” instead of simply “Itd
formula” is used in order to distinguish more clearly from the above mild It6 formula.) The stochastic process
X:1IxQ — H is, in general, not a standard Itd process since it satisfies the It6-Volterra type equation (16)
in which the integrand processes Ss;Ys, s € [1,t], and S5 Zs, s € [7,t], depend explicitly on ¢ € I too (this
was the reason for introducing the notion of a mild Ité process; see Definition 1). Below we present two proofs
which overcome this difficulty and which establish the mild It6 formula (22). Both proofs consider appropriate
transformations of the mild It6 process X : Ix 2 — H. The transformed stochastic processes are then standard
1t6 processes to which the standard It6 formula can be applied. Relating then the transformed stochastic
processes in a suitable way to the original mild It6 process X: I x Q — H finally results in the mild Ito
formula (22). The main difference of the two proofs is the type of transformation applied to the mild It process
X:IxQ—H.

The first proof makes use of a transformation in Teichmann [101] and Filipovié, Tappe & Teichmann [31]
(see equations (1.3) and (1.4) in Teichmann [101] and Section 8 in Filipovié, Tappe & Teichmann [31] and see
also Hausenblas & Seidler [45, 46]). The first proof does not show Theorem 1 in the general case but in the case
in which the semigroup of the mild It6 process is pseudo-contractive (see below for the precise description of the
used assumptions). Under this additional assumption, the semigroup (St, ¢,)t,.t,)e~ on the Hilbert space H
can be dilated to a group (U;):cr on a larger Hilbert space (see, e.g., Szokefalvi-Nagy [98, 99] and Theorem 1.81
in Szokefalvi-Nagy & Foias [100] for the so-called dilations of the unitary theorem). On this larger Hilbert space,
the mild It6 process (16) can be transformed into a standard Ité process by — roughly speaking — multiplying
with U_; for t € I. Next the standard It6 formula can be applied to the transformed standard Itd process.
Relating this transformed standard It6 process then in a suitable way to the original mild Ito process finally
results in the mild It6 formula (22).

The second proof establishes Theorem 1 in the general case. It makes use of an idea in Conus & Dalang [16]
and Conus [15] (see Section 6 in Conus & Dalang [16] and equations (1.7) and (7.6) in Conus [15] and see also
Section 3 in Debussche & Printems [27], Theorem 4 in Lindner & Schilling [73] and Theorem 3.1 in Kovécs,
Larsson & Lindgren [62]) and exploits a more elementary transformation. Roughly speaking, the mild It
process X : I x Q — H is transformed in the second proof by multiplying with Sy for t € [1,T) with a fixed
T € I (compare that the transformation in first proof is based on multiplying with the group at the negative
time value —t). Since T'—t > 0, the transformed process of the H-valued process X : T x Q — H enjoys values
in H too (this is in contrast to the first proof where the transformed process of X : I x Q — H takes values in a
larger Hilbert space in which H is continuously embedded). Nonetheless, as in the first proof, the transformed
stochastic process is a standard It6 process to which the standard It6 formula can be applied. Relating the
transformed standard Itd process in a suitable way to the original mild It6 process then again results in the
mild 1t6 formula (22).

Both proofs thus essentially consist of three steps: a transformation, an application of the standard Ito
formula and the use of a suitable relation of the transformed standard Itd process and the original mild 1t6
process. The second proof also uses the following simple result.

Lemma 1. Let Y, Z: I x Q — [0,00) be two product measurable stochastic processes with IP[Yt = Zt] =1 for
all t € T and with IP’[I]I Y,ds < oo] =1. Then P[f]l Zeds < oo] =1.

The proof of Lemma 1 is clear and therefore omitted. Instead the first proof of Theorem 1 in the special
case of a pseudo-contractive semigroup is now presented.

Proof. Proof of Theorem 1 in the case where the partial Fréchet derivatives Ovp, 02 and D2¢ of ¢ are
globally bounded, where Y: 1 x Q — H and Z:1x Q — HS(Ug, H) have continuous sample paths, where
H, s Hlag) = H g g) = H G gy Il g), where Uy € L(H), t € [0,00), is a strongly continuous



pseudo-contractive semigroup on H and where Stite = Ultg—ty) € L(f{) for all (t1,t2) € £. First, observe that,
under these additional assumptions, (20) and (21) are obviously fulfilled. Moreover, due to Proposition 8.7 in
[31], there exists a separable R-Hilbert space (H, (-, )4, ||-|l,) with H € H and ||v 7z = ||v];, for all v € H and
a strongly continuous group U; € L(H), t € R, such that

Ui(v) = P(Us(v)) 31)

for all v € H € H and all t € [0,00) where P: H — H is the orthogonal projection from H to H. In this
first proof the mild It6 process X: I x Q — H is now transformed into a standard Ito process by - roughly
speaking - multiplying with ¢/_; for ¢t € I. In a more concrete setting this transformation has been proposed in
Teichmann [101] and Filipovié, Tappe & Teichmann [31]; see equations (1.3) and (1.4) in Teichmann [101] and
Section 8 in Filipovié, Tappe & Teichmann [31] and see also Hausenblas & Seidler [45, 46]. Let us now go into
details. Let X : T x  — H be the up to indistinguishability unique adapted stochastic process with continuous
sample paths satisfying

t t
Xt:XTJr/ Z/LSYSds—&—/ U_y Zy AW, (32)

P-a.s. for all ¢ € T (Transformation; see also equation (1.4) in [101] and equation (8.6) in [31]). Next observe
that the identity X, = P(Uy(X;)) P-a.s. (see also Theorem 8.8 in [31]) and the standard It6 formula in infinite
dimensions (see Theorem 2.4 in BrzeZniak, Van Neerven, Veraar & Weis [9]) applied to the test function
<p(s,P(Z/lt(v)))7 s € [to,t], v € H, give

o(t, X;) = o(t, P(U(Xy))) = p(to, P(U(Xe,))) Jr/t (019) (s, P(U(X5))) ds

+/ (82@)(87P(Ut(Xs)))Pu(t—s)Y;ds—"_/ (82@)(87P(ut(Xs)))Pu(t—s) Zs dWs (33)

to tO

1 ¢ _
t3 Z/ (039) (s, P(U(X))) (PUp—5) 295, PU—s) Zsg;) ds
jeg ’to

P-a.s. for all to,t € I with tg < t and all ¢ € CH2(T x H, V) (Application of the standard Ité formula). Next
note that equation (31) gives

P(U(X.)) = P(U(X,)) + / P Uy Vo du+ / P Uy Zo AWV,
I et / St Yo du + / St Zo dW,, (34)
= Ss,t (S‘r,s X, + / Su,s Y, du + / Su,s Zu qu) = Ss,t X

P-a.s. for all s,¢ € T with s < t (Relation of the transformed standard It6 process X:IxQ — H and the
original mild It6 process X: I x Q — H). Using (31) and (34) in (33) finally shows (22). The proof is thus
completed. ]

In the next step the proof of Theorem 1 in the general case is given. Above an outline of this second proof
is given.

Proof of Theorem 1. In this second proof the time variable ¢ € I within the integrand processes in (16) is fixed
and then, the standard It6 formula is applied to the resulting standard It6 process. In a more concrete setting
this trick has been proposed in Conus & Dalang [16] and Conus [15]; see Section 6 in Conus & Dalang [16] and
equations (1.7) and (7.6) in Conus [15] and see also Section 5 in Lindner & Schilling [73] and Section 3 in Kovacs,
Larsson & Lindgren [62]. Another related result can be found in Section 3 in Debussche & Printemps [27]. Let
us now go into details. Let X*: [r,t] x Q — H, t € 1N (7,00), be a family of adapted stochastic processes with
continuous sample paths given by

X; = 57—7,5 XT + / Ssﬂg }/S ds + / Ss,t ZS dWS (35)

P-a.s. for all w € [r,t] and all t € TN (r,00) (Transformation; see also Section 6 in [16], Section 7 in [15],
Section 5 in [73] and Section 3 in [62]). Note that the assumptions P[f: [Ss,¢Ysll 7 ds < oo] = 1 and
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]P’[f: H557tZS||2HS(U0,H) ds < 0o] =1 for all t € I (see Definition 1) ensure that X*: [r,#] xQ — H, t € IN(7, 00),
in (35) are indeed well defined adapted stochasvtic processes with continuous sample paths. In the next step thve
continuity of the partial derivatives of ¢: I x H — V, the continuity of the sample paths of X*: [1,t] x Q@ — H
and again the assumptions ]P’[ff [|Ss,¢Ys| 7 ds < oo] =1 and ]P’[f: ”SSJZS”;S(UO,H) ds < oo] = 1 in Definition 1
imply

t
IP{ [ 10205 XS0y + 0205 XS0l 5 < oo] 1 (36)
to

and
t
P[/t H(alw)(&Xﬁ)Hv + H(8§<P)(57X;)HL(2)(JELV) HSs,tZSHijs(UU,]I[) ds < OO} =1 (37)
0

for all tg € [r,t], t € 1N (7,00) and all ¢ € C2(I x H,V). Moreover, the identity X; = X! P-a.s. and the
standard It formula (see Theorem 2.4 in Brzezniak, Van Neerven, Veraar & Weis [9]) give

t t
o(t, X1) = p(t, K1) = b0, XL) + / (Orp) (s, K1) ds + / (O2) (5, X1) S Y ds

to tO

(38)

t ~ 1 t ~
+ / (52@)(8, X;) Sst Zs dWs + ) Z / (63%0)(37 X;) (Ss,t Zs gj, St Zs gj) ds
to jeg /to

P-a.s. for all to,t € I with to < t and all ¢ € CV2(I x H,V) (Application of the standard It6 formula; see also
Section 6 in [16], equations (1.7) and (7.6) in [15], Theorem 4 in [73] and Theorem 3.1 in [62]). Equation (38) is
an expansion formula for the stochastic processes p(t, X;), t € IN (7, 00), for p € C2(I x H,V). Nevertheless,
this formula seems to be of limited use since the integrands in (38) contain the transformed stochastic processes
Xt s € [to,t], to,t €I, ty < t, instead of the mild It6 process X, the mild drift Y, and the mild diffusion Z,

for s € [to, ], to,t € I, ty < t, only. However, a key observation here is to exploit the elementary identity

X; = S‘r,t XT + / Su,t Yu du + / Su,t Z“ qu
T ; T < (39)
= Vst (ST,S X+ / Su,s Y, du + / Su,s Zy, qu) = Ss,t X

P-a.s. for all s,t € [ with s < ¢ in equation (38) (Relation of the transformed standard It6 processes X*: [r,t] x
Q — H, t € 1IN (1,00), and the original mild It6 process X : I x © — H). This enables us to obtain a closed
formula for the stochastic processes ¢(t, X;), t € 1N (7, 00), for ¢ € C2(I x H, V). More precisely, (39), (36),
(37) and Lemma 1 imply (20) and (21). Putting (39) into (38) then gives (22). The proof of Theorem 1 is thus
completed. O

Let us close this section on mild stochastic calculus with a remark on possible generalizations.

Remark 1. Note that here mild Ito processes, mild drifts and mild diffusions with values in separable Hilbert
spaces are considered. Instead one could develop the above notions and the above mild Ité formula for stochastic
processes with values in an appropriate class of possibly non-separable Banach spaces too. Indeed, the standard
Ité formula also holds for stochastic processes with values in UMD Banach spaces (see Theorem 2.4 in Brzezniak,
Van Neerven, Veraar & Weis [9]). Details on the stochastic integration in UMD Banach spaces can be found
in Van Neerven, Veraar & Weis [102, 103] and in the references therein. Another possible generalization is to
consider more general integrators than the cylindrical Wiener process (Wy)ien. This leads to the concept of a
mild semimartingale instead of a mild Ité process in Definition 1. In particular, the fourth integral in the mild
Ité formula (22) then needs to be replaced by an integral involving the quadratic variation of the driving noise
process.

3 Stochastic partial differential equations (SPDEs)

3.1 Setting and assumptions

Throughout this section suppose that the following setting and the following assumptions are fulfilled. Let
T € (0,00) be a real number, let (2, F,P) be a probability space with a normal filtration (F3)c[0,00) and let
(H, ) g )y (U Ge s Hllg) and (Vo (- <)y |I-|l,) be separable R-Hilbert spaces. In addition, let Q: U —
U be a bounded nonnegative symmetric linear operator and let (W;);c0,00) be a cylindrical Q-Wiener process
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with respect to (F)ie[0,00). Moreover, by (UO, (s Il ||U0) the separable R-Hilbert space with Uy = Q/2(U)
and ||ully, = [|Q~Y?(u)||y for all u € Uy is denoted.

Assumption 1 (Linear operator A). Let A: D(A) C H — H be a generator of a strongly continuous analytic
semigroup et € L(H), t € [0, 00).

Let n € [0, 00) be a nonnegative real number such that o(A4) C {A € C: Re(\) < n} where 0(A4) C C denotes
as usual the spectrum of the linear operator A: D(A) C H — H. Such a real number exists since A is assumed
to be a generator of a strongly continuous semigroup (see Assumption 1). By H,. := D((n — A)") equipped with
the norm |[v]|; := [|(n — A)"v||y for all v € H, and all r € R, the R-Hilbert spaces of domains of fractional
powers of the linear operator n — A: D(A) C H — H are denoted (see, e.g., Subsection 11.4.2 in Renardy &
Roggers [92]).

Assumption 2 (Drift term F). Let o,y € R be real numbers with v — o < 1 and let F': H, — H, be globally
Lipschitz continuous.

Assumption 3 (Diffusion term B). Let 3 € R be a real number with v — 8 <  and let B: Hy, — HS(Uy, Hg)
be globally Lipschitz continuous.

Assumption 4 (Initial value §). Letp € [2,00) be a real number and let £: Q — H., be an Fo /B (H.)-measurable
mapping with IE[||§||}I’{7] < o0.

Furthermore, similar as in Section 2, let £ C [0,T]? be defined through Z := {(t1,t2) € [0,T]%: t1 < t2}.
In addition to the above assumptions, the following notations will be used in the remainder of this article.
For two R-Banach spaces (V1,][ly,) and (Va,][|;,) and real numbers n € {0,1,2,...} and ¢ € [0,00) define
[0l £ (v4,v) = lIvlly, for every v € Vi, define

HQPHG,L(V Va) Z ||(p(z) HL() vove + Sup |\<P(")(U)||L<n>(v1.,vz) € [0, o] (40)
L) v (1 +[Jvllv,)*

||80(n)(’0) - SO(n) (W)l
lelleipg+r va,va) * *Z“W( Mo s,y + sup ( o

(1+ max([[oflvy., [lwllv, ) flo = wlly,

) €[0,00]  (41)

=0 v,weEV]
and
- i o™ (0) — ™ (w)[| powy (v WV
lelley, @rva = e v, + D 1D e v, 20 102y + SUD CL¥) ) e [0, o)
i=1 v,weV] ||U - w”Vl

vEW

(42)
for every ¢ € C™(V1,V2), define GZ(Vl,VQ) = {p € C"(V1, Va): ||30|G1L(V17V2) < oo}, define Llp"“(Vl,Vg)
= {p € C"(V1,V2): l@llLipn+1 (v v,y < 00} and define CF;,(V1,V2) := {p € C"(V1,V2): [lellcp, (vive) < o0}

Lip

G (Vi) = ||‘P||Lip;n(V1,V2) for every ¢ € C™(V1,Vz2) and every m € N. Let us collect a few

and note that ||¢|
simple properties of the defined objects. More precisely, observe that

n—1 .
||%0||Gn (V1,Va) = Zi:o ||<P(Z)(0)HL<0(V1,V2) + ||<P(n)||Gg(V1,V2)

Iellcs, ., i) < Mellanr vy < lellag e,

(43)
(44)

1™ ()1 (v1,v2) < Nellamvare (L+ [lollvy) T (45)
@0y — (46)

1™ () = ™ (W)l Lo vy vy < NPl v, vy (1 +max((lollvy, [lwllv)) wllv,

for all v,w € Vi, o € C"(V1,V2), k € {0,1,...,n},n € {0,1,...}, g € [0,00) and all R-Banach spaces (V1, [y, )
and (Va,|-[ly,). Moreover, note for all n € {0,1,2,...}, ¢ € [0,00) and all R-Banach spaces (V1, |[ly,)

and (Va,|-[|y,) that the pairs (G} (Vi,Va), H||G7 (VaVa)): (Lipi ™ (Vi, Va), |- Iipr+(va,vs)) and (CL;,(V1, Va),
I|- |C,L Vl,Vz)) are R-Banach spaces with G"‘H(Vl,Vg) C L1p”+1(V1,V2) C Gy1(V1,V2) continuously. More

functlon spaces of similar type can be found in Dérsek & Teichmann [29].
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3.2 Solution processes of SPDEs

The following proposition shows that the setting in Section 3.1 ensures that the SPDE (47) below admits an
up to modifications unique mild solution process. It is similar to special cases of Theorem 4.3 in Brzezniak [8]
and Theorem 6.2 in Van Neerven, Veraar & Weis [103]. Its proof is clear and therefore omitted.

Proposition 3. Assume that the setting in Section 3.1 is fulfilled. Then there exists an up to modifications
unique predictable stochastic process X : [0,T] x Q — H~, which fulfills supyc(o 1| ]E[”Xt”Z}?—]’J < 0o and

t t
X, =eMte+ /0 A=) P(X,) ds + /0 A=) B(X,) dW, (47)

P-a.s. for allt € [0,T]. In addition, we have X € Nyg(—oo C™O—1/2((0,T], LP (% H,)).

Proposition 3, in particular, ensures that the mild solution process X : [0,T] x Q — H., of the SPDE (47) is
a mild It6 process with semigroup e(t2—1) ¢ L(Hpin(a,8.4), Hy), (t1,t2) € £, with mild drift

F(Xt)7 te [OvT]v (48)
and with mild diffusion
B(X:), t €[0,T). (49)

This fact now enables us to apply the mild It6 formula (22) to the solution process X of the SPDE (47). To
this end let J be a set and let g; € Up, j € J, be an arbitrary orthonormal basis of the R-Hilbert space
(Uos (5 )y » Il )+ A direct consequence of Theorem 1 and Corollary 1 is the next corollary.

Corollary 2 (A new - somehow mild - 1t6 formula for solutions of SPDEs). Assume that the setting in Sec-
tion 3.1 is fulfilled. Then

¢
IP’|: HSO/(BA(t—s)XS) eA(th)F(XS)HV ds < oo:| =1, (50)
to
[/ H‘p A(t—s) A= S)B S)HiIS(UO,V) ds < oo] =1, (51)
P[/t HSO//(GA(t_S)XS)HL(Z)(HT,V) HeA(t_S)B(XS)Hf’iS(UO,HT) ds < oo] =1 (52)
9

and

t
P(X0) = (A1 X, ) + / (A9 X,) A9 P(X,) ds

to

t
+ / ' (A X ) A B(X,) dW, (53)

to

+= Z/ (M0 X,) (A0 B(X, ) g5, M0 B(X,)g; ) ds
JGJ

P-a.s. for all to,t € [0,T] with to < t, all p € C*(H,,V) and all r € (—oo, min(a + 1,8 + %))

First, observe that the possibly infinite sum and all integrals in (53) are well defined due to (50)—(52). Next
define mappings Ko: Urer C(H, V) = UperC(H,, V) and K;: Uper C(H,, V) = C(Hpin(a,p,4), V), t € (0,00),
through Ky(¢) := ¢ and

(Kep) (@) = p(e'x) (54)
for all x € Hpin(a,,9), ¢ € UrerC(H,, V) and all t € (0,00). Note that K;, o Ky, = Ky 4y, for all 1,85 €
[0,00). In addition, define linear operators L(%): C’Q(Hmin(aﬁﬁ), V) — C(H,,V) and LW CY(H, min(8,y)s V) =
C(H,,V) through

(L) (z) = ¢'( Z ¢"(x)(B(x)g;, B(x)g;)
2 e (55)

= ¢/(@)F(@) + %Tr((Bw:))*so“(x) B(x))
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forallz € H., ¢ € C*(Hypin(a,5,7), V) and through (LM g)(z) := ¢/ (z) B(z) forallz € H,y7 ¢ € C*(Hpin(g): V).
Furthermore, define mappings L,EO): Urer C*(H,,V) — C(H,,V), t € (0,00), and Lt : Uper CHH,, V) —
C(H,,HS5(Uy,V)), t € (0,00), through L{” () := LO(K,(p)) for all ¢ € U,crC2(H,,V) and through
Lgl)( ) := LW (Ky(p)) for all p € U,egC*(H,, V). Note that these definitions imply

(L 0) (x) = ¢ (M) e F (2 Z ¢ (e*x) (e B(x)g;, e B(x)g;)
JEJ (56)

1 *
= ¢/ (eMz) e F(z) + §Tr((eAtB(x)) ¢ (eMx) eAtB(;U)>
for all z € H,, ¢ € U,erC?(H,, V), t € (0,00) and

(L) (@) = ¢ (') e B(x) (57)
for all x € H., p € UperC(H,, V), t € (0,00). The mild It6 formula (53) can thus be written as

t
(p(Xt):(p(eA(t—to)Xto)-‘,-/ (ngls)go)(Xs)ds+/t (LE? o®) (Xs) dW

t() (0]

= (K—to)9) (Xsy) + / (L 9) (Xa) ds + / (L @) (Xo) W, (58)

t t
= (K(1-10)9) (Xe,) + / (LOKg9)(X,)ds + / (LD K y9) (Xs) AW,

to to

P-a.s. for all to,t € [0,T] with ¢y < ¢ and all ¢ € Ur<min(a+1“3+%)c2(H”‘7 V). Moreover, taking expectations on
both side of (58) gives

B[0(X)] = [ (Ko 9)(Xe)] + [ B[ o) x)] ds
o (59)
= E[(K(Fto)@)(Xto)} +/ E[(L(O)K(tfs)@) (Xs)} ds

to

for all to,t € [0,T] with ¢o < t and all ¢ € Ur<min(a+17ﬁ+%)G8(Hr,V). Based on (59) a mild Kolmogorov
backward equation is derived in Subsection 3.2.2 below. Other kinds of It6 type formulas for solutions of
SPDEs can be found in [14, 21, 33, 38, 39, 68, 69, 70, 72, 83, 85, 83, 90, 91, 110]. In the next step Corollary 2
is illustrated by two simple examples.

Example 3 (Identity). Assume that the setting in Section 3.1 is fulfilled, let V- = H,, let [[v|l, = [[v]ly for

allv e Hy and let w: Hy, — H., be the identity on Hy, i.e., p(v) = v for allv € H,. The mild It6 formula (53)
in Corollary 2 then reduces to

t t
X, =eAltx, 4 / A R(X,) ds + / A=) B(X,) dW, (60)

to tO
P-a.s. for all to,t € [0,T) with to < t. This is nothing else but the mild formulation of the SPDE (47). In this
sense, the formula (53) is somehow a mild Ité formula for SPDEs.

Example 4 (Squared norm). Assume that the setting in Section 3.1 is fulfilled, let V =R, |lv|\, = |v| for all

v eV =R, assume min(a+ 1,5+ 3) > 0 and let p: H — V be given by p(v) = ||v||§{ for allv e H. The mild
Ité formula (53) in Corollary 2 then reduces to

t
1XlI2 = (e X, || + 2/ <eA(t_s)Xs, eA(t_S)F(XS)>H ds
: - : 2 (61)
+2/ <€A(t—5)XS7eA(t_S)B(Xs)dWs>H —l—/t ”eA(t_S)B(XS)HHS(UO,H) ds
0

to

P-a.s. for all to,t € [0, T] with ty < t (see also Example 1 above). We refer to [38, 39, 68, 83, 85, 90, 91] for
other Ito type formulas with the particular test function o(v) = Hv||H, veH. If Xo =0 and F(v) =0 for all
v € H in addition to the above assumptions, then (61) simplifies to

t t
2 —s —s s 2
1Xelly =2 /0 <ef“<t X, e >B<Xs>dWS>H+ /O e BX) s 011y 98 (62)
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P-a.s. for allt € [0,T] and this, in particular, gives

t
B[l :/O E[ [ B s | 45 (63)

for allt € [0,T]. Clearly, equation (63) is nothing else but a special case of Itd’s isometry.

3.2.1 SPDEs with time dependent coefficients

In addition to the setting in Section 3.1 assume in this subsection that F': [0,00) x H., — H, and B: [0,00) x
H, — HS(Uy, Hg) are two globally Lipschitz continuous mappings. Then there exists an up to modifications
unique predictable stochastic process X : [0,00) x @ — H, € C([0, 00), LP(Q; H,,)) which fulfills

t t

X, = et +/ AP (s, X,) ds +/ A=) B(s, X,) dW, (64)
0 0

P-a.s. for all ¢t € [0,00). Next define mappings Lg?t): Urer C%(H,,V) — C(H,,V), s,t € [0,00), s < ¢, and

LY): Uper CM(H,, V) = C(H,, V), s,t € [0,00), s < t, through

- 1 . -
(L)) (2) == ¢ (A9 A F(s,2) + 5 2 @€ (A B(s, 2)g;, e B(s, 2)g;)  (65)
jeT

for all z € H, ¢ € UperC?(H,, V) and all s,t € [0,00) with s < ¢ and through
(LL9) (@) = (A7) A=) B(s, ) (66)

for all x € H., p € UperC'(H,,V) and all s,t € [0,00) with s < ¢. Corollary 1 then implies

t t

D) = (Kima ) (Xeg) + [ (L)X ds+ [ (L) (K.) aw, (67)
to to

for all ¢g,t € [0,00) with o < ¢ and all p € UT<min(a+1,ﬁ+%)C2(H7’7 V). The mild It6 formula (67) is nothing

else but the counterpart of (53) for SPDEs with time dependent coefficients.

3.2.2 Mild Kolmogorov backward equation for SPDEs

Based on (59) a mild Kolmogorov backward equation is derived in this subsection. Proposition 3 implies the
existence of predictable stochastic processes X*: [0,00) x Q — H, € Ngep1,00)C([0,00), LY(Q; H.,)), x € H,,
such that

¢ t

X2 =efMr 4 / A= (XY ds + / A=) B(X2) dW, (68)
0 0

P-a.s. for all t € [0,00) and all z € H,. Proposition 3 also implies that P[XJ € H,| = 1 for all ¢ € (0,00)

and all r € (—oo,min(a+ 1,8+ 3)). Then define mappings P;: Uge(o,00) Ure(foc’min(aJrl”BJr%))GS(HT7V) —

UqG[O,OO)Ure(foo,min(aJrl,BJr%))GS(H?”V V)7 te [07 OO)? through PU(SD) = for all 2 S qu[O,Oo)Ure(foo,min(aJrl,,BJr%))

and through P;(¢) € Ugepo,00)Gy(Hy, V) and

(Pip) (@) = E[p(X])] (69)

for all z € Hy, ¢ € Uge(0,00)Ure(—oo,min(a+1,8+1)) and all ¢ € (0,00). Note that P, (G2(H,,V)) C GY(H,,V) for
all t € (0,00), r € (—oo, min(aw + 1, 8+ 3)) and all g € [0,00). The next lemma collect a few simple properties
of the linear operators Py, t € [0, 00).

Lemma 2 (Properties of P, t € [0,00)). Assume that the setting in Section 3.1 is fulfilled. Then P €
L(GS(HV, V) and SUPefo,4] HPSHL(G‘;(HV,V)) < oo for allt,q € [0,00) and it holds for every q € [0,00) that the
function [0,00) 3 ¢ — Py € L(Lip}(H,,V),G0, | (H,,V)) is locally 5-Hélder continuous.
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The proof of Lemma 2 is a straightforward consequence of inequality (46) and is therefore omitted. Next
the mild It6 formula in (58) implies

(Pip)@) = B[ (Kuma9) (O55)] + [ B[ 0)(xD)] ds
(P K 1)9) @) + /t (PLY o) (@) ds (70)

t
= (P K(—to)9) () + / (P L(O)K(t,s)go) (z)ds
to
for all tg,t € [0,00) with tg < ¢, z € Hy and all ¢ € Uge[0,00)YUre(—
will use (70) to study regularity properties of solutions of SPDEs. In this regularity analysis we also use the
following two lemmas.

(a+1,8+1)- In the next subsection we

0o, min

Lemma 3 (Estimates for K;, t € (0,00)). Assume that the setting in Section 3.1 is fulfilled. Then the function
(0,00) 2t — K; € L(Lipgﬂ(Hm,V), Z;H(HTZ,V)) is continuous for every ri,m9 € R, ¢ € [0,00), n €
{0,1,...} and it holds that K; € L(Lipy(H,,,V), Lipy(H,,,V)) and that

1K (po)lcocrr,, vy < max(L el 5, g ) l@ollcec,, v, (71)
1(Eeo1) llag e, neavyy < max(L €7 ) e e e, i) 194 lao Lo, vy (72)
I(Kep2)"llGo L a,,v)) < max(1, ||€AtH%(H)) [T lezllco (Lo (. v)) (73)

for all po € C(H,,,V), p1 € C*(H,,V), p2 € C*(H,,V), g€[0,00), n €N, 1,750 € R and all t € (0,00).
Lemma 4 (Estimates for L(O)). Assume that the setting in Section 3.1 is fulfilled. Then it holds that L(®) ¢
L(Gg (Hmin(a7ﬂ77)7 V)? G2+2 (H’W V))) tha’t L(O) € L(LipZ(Hmin((x7ﬁ7'y); V), Lip;_‘_Q(ny, V)) and that
HL(O)(‘P)HG2+2(HT,V)
< Fllao e, oy 1€ G0, oy na vy + 3 IBIE0 o, 1500, 1,0 197 o, L (1.1 (74)
< maX(HFHGg(HTﬂa)a ”BHZ“I’(H,‘,HS(UO,HB))) (H<PI||G3+1(HT,L(HWV)) + H(p//HGg(Hr,L(z)(Hﬁ,V)))
for allr € [y,00), p € CQ(Hmin(aﬁﬁ), V) and all g € [0, 00).

The proofs of Lemma 3 and Lemma 4 are straightforward and therefore omitted. The proof of Lemma 3
makes use of inequality (46) above. The next corollary follows from Lemmas 2—4.

Corollary 3. Assume that the setting in Section 3.1 is fulfilled. Then the function (to,t) > s+ P, LOK, , €
L(Lip}(H-,V),G0,3(H,,V)) is continuous and satisfies ftto || Ps L(O)Kt—s||L(Lipg(H—y,V)vangs(H'y,V)) ds < oo for
every to,t € [0,00) with tg <t and every q € [0, 00).
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Proof of Corollary 8. The triangle inequality implies that

|P.LO K, — P, LOK,_,, HL(L%(HWWGO (H, V)

q+3
S ||PsL(O)Kt—s - PsL(O)Kt—SO HL(Lipg(H,y,V),Gg_'_:;(H—y,V))

0 0
+ HPSL( )thso - PSoL( )Kt*SO||L(Lipg(Hw,V),GngS(HW,V))

0
< 1Psllzigo, ycm,v)) 1Lt )||L(G‘§+1(Hmin(aﬁ_ﬁ)7V),G‘2+3(H~,,V))

: Hths - thso||L(Lipg(HW,V),Gngl(Hman(a,/a,w),V))

_ (0) , .
+ [P = Pa HL(Lz‘péH(Hv,V),GS+3<H~,V)) LM 2 Ly Bl .09 V) B2y (V)

B e—sollL(Lips (71,,V), Lin? (Hasina 5.1 0V)) (75)

) .
< l|L IE(G2, | (Hanin (.20 V) GOy (Ho V) e ||Pu||L(Gg+3(H7,V>>]

<oo due to Lemmas 4 and 2

’ HKt_S - Kt—SO ||L(Lipg(H’yvV)7G(21+1(Hmin(a,ﬁ,'y)wV))

0
+ {”L( L L3 Blino iy V)i sy (Hy V)~ Bt L (L (L V), L (st .0y V)

<oo due to Lemmas 4 and 3

MPs = PoollLiwipy, o (1,,v).69, 4 (1,.V))

for all sg, s € (to,1), g € [0,00) and tg, t € [0, 00) with ¢y < ¢t. Combining (75) with Lemma 2 and Lemma 3 shows
that the function (to,t) 3 s — Py LOK,_, € L(Lip3(H,,V),GY, 5(H,,V)) is continuous for every to,t € [0,00)
with to < t and every g € [0,00). Combining this with Lemmas 2—4 completes the proof of Corollary 3. O

In the following we reformulate (70) in a suitable abstract way by using Corollary 3. More precisely,
combining Corollary 3 with equation (70) shows that

Pue) = P (K- (0)) + [ PALEL (0)) ds
o (76)
= Py, (K(t—10) (%)) +/ Py(LO(K—s(p))) ds

to

in G2+3(H7,V) for all tg,t € [0,00) with o < ¢t, p € Lipg(H,y,V) and all ¢ € [0,00) where the integrals in
(76) are Bochner integrals in R-Banach space Gg 13(H,,V). According to Corollary 3, these Bochner integrals
are indeed well defined. We would like to add to the mild Kolmogorov backward equation (76) that the mild
Kolmogorov operators LEO), t € (0,00), appearing in (76) do, in general, not commute with the semigroup
operators P, t € [0,00), i.e, we do, in general, not have that (PtLgO))(gp) = (LgO)Pt)(go) for all s,¢ € (0,00)
and all ¢ € G3(H.,,V). This is in contrast to the standard Kolmogorov backward equation where the semi-
group and the Kolmogorov operator do commute (see, e.g., Section 8.1 in Oeksendal [84]). In the next step
let Ky L(G3 (Hmin(a,p,0): V), G3(Hy, V) = L(Lip§(H,,V),G3(H,,V)), t € (0,00), let Ko: L(G(H,,V)) —
L(Lip§(H,,V),G4(H,,V)) and let L: L(G§(H,,V)) = L(GI(Hwmin(a.p,4), V), G3(H,,V)) be bounded linear
operators defined through

(Ki®)(p) := ®(K:(p)) (77)

for all ¢ € (0,00), ¢ € Lip3(H,,V) and all ® € L(G3(Humin(a,5,4), V) GS(H,,V)), through (Ko®)(p) := ®(p
for all p € Lip3(H,,V) and all ® € L(G3(H,,V)) and through

~—~

(L2) () = 2(LV()) (78)

for all ¢ € Gf(Humin(a,p,4) and all ® € L(G§(H,,V)). Lemmas 3 and 4 ensure that K, ¢ € [0,00), and L are
indeed well defined bounded linear operators. The next corollary follows from Lemmas 2—4.

Corollary 4. Assume that the setting in Section 3.1 is fulfilled. Then the function (to,t) 3 s — Ki—s(L(Ps)) €
L(Lip3(H,,V),G3(H,,V)) is continuous and satisfies ftto ICe—s (LP) L(Lipg (,,v),69(H,,vy) ds < 00 for every
to,t € [0,00) with tg < t.
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Proof of Corollary 4. Note that the triangle inequality implies that

HICt—S(E(PS)) = Ki—so (L:(PSO))HL(LipS(HW,V),Gg(H«,,V))
< H’Ct—s(£<PS)) - K:t_SO(C(PS))HL(Lipg(HW,V),Gg(H.Y,V))
+ H’Ct—so (E(PS)) —Ki—so (ﬁ(PSO))HL(Lipg(HW,V),Gg(HW,V))

< [Ko—s = ’Ct—so”L(L(G%(Hmm,ﬁ,w),V),GQ(HW,V>>7L<Lip8(Hw,V>,G8<HV,V>))

: ||£||L(L(Gg(H’Y’V))vL(G%(Hmin(a,B,’y)7V)7Gg(H’va))) ' u:}iop,f] ||Pu||L(Gg(H’Y’V)) (79)

<oo due to Lemma 4
<oo due to Lemma 2

+ sup 1Kt —s0 ('C((I)))”L(Lipg(H,Y,V),Gg(HV,V)) ||Ps — P, HL(Lip%(H,WV),Gg(HH,,V))
PEL(G(H,,V))

Hq)”L(Lip%(HW,V),Gg(H,Y,V)) <1

<oo due to Lemmas 3 and 4

for all sq,s € (to,t) and all tg,t € [0,00) with ¢ < ¢t. Combining (79) with Lemma 3 and Lemma 2 completes
the proof of Corollary 4. O

We now use Corollary 4 to reformulate equation (76). More precisely, combining Corollary 4, equation (76),
definition (78) and definition (77) shows that

t
P = K(t7t0)<Pto) + / K(t,s) (E(Ps)) ds (80)
to

in L(Lip3(H,,V),GY(H.,,V)) for all ty,t € [0,00) with ty < ¢ and this, in particular, implies that

P = Ku(Po) + /0 Koo (L(P)) ds (81)

in L(Lip3(H,,V),G4(H,,V)) for all ¢t € [0,00) where the integrals in (80) and (81) are understood to be
Bochner integrals in L(G3(H,,V),GY(H,,V)). According to Corollary 4, these Bochner integrals are indeed
well defined. Equation (81) and equation (80) are somehow mild Kolmogorov backward equations for the P,
t € [0,00), (see (69)) associated to the SPDE (68).

3.2.3 Weak regularity for solutions of SPDEs

Another consequence of the mild It6 formula (53) is to study weak regularity of solutions of SPDEs. To be
more precise, in this subsection regularity of the probability measures Px,, t € (0,T], of the solution process
Xi, t € [0,T], of the SPDE (47) are studied by using the mild Kolmogorov backward equation (70) above.
Below (see the illustrations below Lemma 6) we also describe in more detail what we understand by regularity
of a probability measure. While strong regularity of solutions of SPDEs have been intensively analyzed in the
literature (see, e.g., Da Prato & Zabczyk [21, 22], Brzezniak [8], Brzezniak, Van Neerven, Veraar & Weis [9],
Van Neerven, Veraar & Weis [102, 103, 104], Jentzen & Rockner [56], Kruse & Larsson [66] and the references
therein), weak regularity for solutions of SPDESs seem to be much less investigated.

Let us now go into details. An important ingredient in our analysis on weak regularity of solutions of SPDEs
are the following mappings. Let ||||f§ 1 G2(H,, V) = [0,00), t € (0,00), g € [0,00), 0 € (p—1,00), pe R, be a
family of functions defined through

5,
lellg (82)

t
min(5d—p,0
= 1Ke(@lcg, v + / (t =)™ (1Y o, a1, a1 vy) + 1 Ks9) g, o a1, vy ) s

q+1

for all t € (0,00), ¢ € GZ(H,,V), d € (p—1,00), ¢ € [0,00) and all p € R. Please note that the integrand in
(82) is indeed Borel measurable in s € [0, 00) since H,, is separable for every p € R. The next lemma collects

some properties of the functions H||fg : G2(H,,V) = [0,00), t € (0,00), g € [0,00), 6 € (p—1,00), p € R.
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Lemma 5 (Properties of |- ||f € (0,00), ¢ € [0,00), 0 € (p—1,00), p € R). Assume that the setting in
Section 3.1 is fulfilled and let ||- ||t g, t € (0,00), g€ [0,00), 6 € (p—1,00), p €R, be defined through (82). Then

(g+2
lell2? < llellsa,.v) <max(1 et )

t (83)
1 min(d—p,0 s :
+max(1, ||ef4t||<g1;)>)/0 (t — s)min@=r )[HeA ||L<HQ,HP>+He"“H%mB,H,J)] ds) < 00

Jorallp € GE(H,, V), g € [0,00), t € (0,00), 6 € (p—1,00), p € (—oo,min(a+1,5+ 3 )) and it holds for every
€ (0,00), 4 € [0,00), p € (~o0, min(a-+1, 8+ 1), & € (p—1,00) that the mapping |-  G(H,, V) =+ [0, 00)
is a norm on G2(H,,V).

Proof of Lemma 5. Combining (71)—(73), (43) and (44) shows (83) Next observe for every ¢t € (0,00), q €
[0,00), p € (—oo,min(a + 1,8 + 3)) and every § € (p — 1,00) p : G2(H,, V) — [0,00) is a semi-norm
on G2(H,,V). In addition, note for every p,d € R, ¢ € [0,00), t € (0 o0) and every ¢ € GI(H,,V) that if
1K (@)llGocrs, vy = 0, then sup,ecar gy l9(@)|lv = 0. The fact that for every p,d € R the set e*(Hs) is dense
in H, therefore shows for every ¢ € (0,00), ¢ € [0,00), p € (—oo, min(a+ 1,3 + 3)) and every § € (p — 1,00)
that ||- ||6 ?: G2(H,, V) — [0,00) is indeed a norm on Gz(H,, V). The proof of Lemma 5 is thus completed. [

In the next step we denote for every ¢t € (0,00), ¢ € [0,00), p € (—oo,min(a + 1,8+ 1)), § € (p —
5
1,00) by (677 (H,, V),
( f;(H V), ||||f';) for t € (0,00), ¢ € [0,00), 6 € (p— 1,00) and p € (—oo,min(e + 1,3 + 3)) are thus
R-Banach spaces.

f;g’) the completion of the normed R-vector space (G2(H,,V), H||fg) The pairs

Theorem 2 (Weak regularity for P, t € (0,00)). Assume that the setting in Section 3.1 is fulfilled. Then
P e L(gtq 2(H,, V), GY(Hs,V)) and

H‘PtHL( 2,8 Q(HP,V) GO(Ho,V)) (84)

< maX(L I Fllco s, m.) ||B||2G(1’(HP,HS(UO,H¢3))> max (1» S?Opt) {smax(p_[s’o)||Ps||L(G2(H,,,V),G9I(H5,V))}> < oo
se (0,

for all t € (0,00), § € [y,00) N (p —1,00), q € [2,00) and all p € [y,min(a+ 1,8+ 3)).
Proof of Theorem 2. Equation (70) implies

1 Pe(o)llGo s, v
< | Ke(@)llcocrs, vy

t
+ < sup) |:5max<p6’0)||PS|L(Gg(Hp,V),Gg(H(;,V)):|> </0 (t B S)—maX(P—&O) HLgO) (‘P)HGS(H;):V) d5>

s€(0,t (85)

< max (1, Stlp) [sma"(’ké’o)||Ps||L(G3(HP,V),G3(H57V))}
s€(0,t

t
min(d—p,0
: <||Kt(90)||G2(Ha,V) + /0 (t = 8)™ PO LOK, (0)lao v ds)
for all t € (0,00), ¢ € Gg(HmV), b € [y,00)N(p—1,00), ¢ € [2,00) and all p € [y,min(e + 1,8 + %))
Inequality (85) and Lemma 4 then complete the proof of Theorem 2. O

Below we illustrate Theorem 2 through some consequences. To do so, we need the following elementary
lemma for probability measures on separable Hilbert spaces.

Lemma 6 (An embedding for probability measures). Let (H, |||, {(-,-) ) and (V. |||y, (-s)y) be separable
real Hilbert spaces with V # {0} and let puy, pip - B(H) — [0,1] be two probability measures with [ p(x) py(dz) =
fH p(z) ua(dx) for all infinitely often Fréchet differentiable functions ¢: H — V with compact support. Then

H1 = Ha2.
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Proof of Lemma 6. First of all, we denote throughout this proof for every x € H and every r € (0,00) by
B (z):={y € H: |z —yl|/y <r} the ball in H on = with radius . Next let v € V be a vector which satisfies
lvolly, = 1. Such a vector does indeed since we assumed that V' # {0}. Furthermore, let ¢: R — [0,1], k € N,
be a sequence of infinitely often differentiable functions with ¢ (x) = 1 for all z € [-1,1] and all £k € N and
with ¢y (z) = 0 for all z € (—o0,—1— 1)U (1 + #,00) and all k € N. Moreover, let N € N, let 21,...,ax € H
and let r1,...,ry € (0,00). In the next step we define a sequence ¢i: H — V, k € N, of functions by

= v Hwk(”mf;!ﬂ) (86)

for all x € H and all k € N. Note for every k € N that ¢y is infinitely often Fréchet differentiable with a
compact support. Therefore, we obtain

/ o0 () ja(da) = / k() p2(de) (87)
H H

for all k& € N. In the next step observe that px(z) = vy for all z € NY_; B, (v,) and all k& € N, that
SUPLen SUPep [lox(2)|l,, < 1 and that

hm or(z) = (88)

— 00

1 :xen B, (v,)
0 :azeH\ (N, B, (v))

for all x € H. Combining this and (87) with Lebesgue’s theorem on dominated convergence then proves that
pa (N By, (z)) = p2(NAy By, (2,)). Combining this, the fact that the set

UnmeN {ﬁ%lesm(ym) CH:s1,...,8m €(0,00),y1,...,Yym € H} (89)

is a N-stable generator of the Borel sigma-algebra B(H) and the uniqueness theorem for measures (see, e.g.,
Lemma 1.42 in Klenke [58]) then completes the proof of Lemma 6. O

Let us now illustrate Theorem 2 by a simple application. First, we denote by Gg(H.,, ]R)’ := L(G3(H,,R),R)
and gfo (Hy,R) = L(g2 (H,,R),R) for t € (0,00) the topological dual spaces of G&(H.,, R) and gfo (Hy,R)
for t € (0, oo) respectively. Moreover we denote by My (H,) the set of all probability measures 7% B( ) —
[0 1] Wthh satlsfy fH HJUHH p(dz) < oo and we consider the mapping Z: My (H,) — G§(H,,R)' given by

fH dx) for all p € G3(H.,,R) and all p € Ms(H.,,). Lemma 6 then proves that Z is injective

and through I we can thus identify the probability measures My (H.,,) with finite second moment as a subset
of linear forms in Gg(H.,,R)’. Next note that Proposition 3 proves that the probability measure Py, of the
solution process of the SPDE (47) at every time ¢t € (0,7 has a finite second moment and is thus in Ms(H,).
Hence, the linear form Z(Px,) = [, ( ", ) dPx, € G3(H,,R) corresponding to the probability measure Py, of

the solution of the SPDE ( ) at time t € (0,7] is in G%(H,Y7 V)'. In addition, observe that Theorem 2, in
particular, implies that | ", (1) dPx, € Qt o (H,,V) for all t € (0,T]. Moreover, note that Lemma 5 implies
that Qt J(H,, V) C G§(H,,V) continuously for all ¢ € (0,00). Theorem 2 thus proves for every ¢ € (0,7
that Z(Px,) = fH )dPx, does not only lie in GZ(H.,, V)" but also in the smaller space gt o (Hy, V) too. In

this sense Theorem 2 proves more regularity of the probability measures Px,, t € (0,7, of the solution of the
SPDE (47). It thus establishes “weak regularity” for the solution of the SPDE (47). In the remainder of this
subsection some further consequences of Theorem 2 are derived.

Corollary 5. Assume that the setting in Section 5.1 is fulfilled, assume o < vy, assume B < v, let p €
[v,min(a+1, 8+ 3)) be a real number, let (H,(-,-) ||l z) be a separable R-Hilbert space, let R, Re L(H, H),

let p € Csz(Ha V) and let ¢: H, — H be given by (z) = p(Rx) — ¢(Rx) for all x € H,. Then

1P:(¥) | go(rs,v)

Smax(l,F||G?<Hp,Ha>v|B“éff(Hp,sto,Hﬁ)))max<1’ sup [Sma"(“‘5’0)IPs||L<Gg(Hp,V>,Gg(Hs,V>>})

s€(0,t)
° (90)
max(t, 1) - m 0) |1 As
© —————||R— R - sup sup (s ax(u,0)1 o As , u)
lielles, »(AV) ymax(r+p=5.0) | ety Le[p—é,l]u[o,l]se(o,t] e e s

1
~ 2 min(d—p, min(a—p,28—2p)—r
LR e, iy + IR L, i) (1 +/0 (1 — 5)min(0=p0) glmin(a—p,26-20) ]ds) < 00
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for allt € (0,00), q € [3,00), d € [y,00) and all r € [0, min(l + o — p, 1+ 28 — 2p)). In particular, we have

tmax(rtp=00) || (@) — P, (@(S(-))) lag s,
sup sup sup 3 <
vecz, (1, v)\{0} seL(t,) te©.1) \ 1T = Sllrcm, m,) L+ 1817 g ) llelloz

Lip Lip

(91)
(H,.V)

for all 6 € [y,00) and all v € [0,min(l 4+ a — p, 1+ 28 — 2p)).

Proof of Corollary 5. Throughout this the proof the real numbers x,.; € [1,00), r € [0,00), ¢t € (0,00), defined
by

Kpg:= Sup sup (smax(“’o)HeAs||L(H7Hu)) < 00 (92)
ue[—r,1] s€(0,t]

for all r € [0,00) are used. The quantities x,;, r € [0,00), t € (0,00), are indeed finite since e4?, t € [0, 00), is
an analytic semigroup. The estimate

e Lt ) = | ir r,_0y) < Fmax(a—b,oye €™ (93)

for all ¢ € (0,00) and all a,b € R with b — a < 1 then shows

1K) oo s, vy < 1€ oo (i, e vy 1R = Bll o,y e g o

D, min(d—r (94)
< ||S0||c%ip(ﬁ,v) IR — R”L(Hmﬁ) Kmax(5—r,0),t t (6-r.0)
and
H(Kt¢)/“G271(Hp,L(HQ7V))
< qup NP READ) = (R a)) Ry, v
= -1
e, (1+ flallm,) "
+ o IR = R 1, 1)
I¥I) (g—1) 95
e€H, (L4 lzla,) (95)
< ||<P”||Loo(g,L<2>(g,v)) HR”L(H,),I:I) IR — R“L(HT,I:I) ||6AtHL(Ha,Hp) ||3At||L(H,,,HT)
(ko))
+ ||<p/||L°°(I§(,L(I§I,V)) R — R||L(HT,£1) ||6At|\L(Ha,HT)
~————
<k, tla=")
and
1K) o, (o, L (k5,0
H (@”(ReAtx) — @”(ée‘“x)) (Retv, Retw) ||V
< sup sup @2
w€H, o, =lwls, =1 (1+ |l a,)
¢ (Retz)((R — R)e?tv, ReAtw
can | (R~ Ry met ),
e€Hp |[v]ry=llw]| s, =1 (1+ || a,)
¢"(Re?tz) (ReAtv, (R — R)e?tw)
+ sup sup H =) HV (96)
e€H, ||l my=llwllm,=1 (1 + [|]a,)
" (z) — 90”(?/)HL<2>(1€1 V) 7
< | sup. T IRI 51,y 1R = Bl 1y e N a1, ez,
z,yeH €L Yllg
TH#y S(Ho,t)st(zﬁ’p’”

10" gt ity VRl oty ity + VRN oty 1B = Rl oo, 1y €™ eats ) e ngars i)

<(ko,e)?t(28=p=m)
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for all ¢ € [3,00), t € (0,T], § € [y,00) and all r € [p,min(l + a, 1+ 28 — p)). Combining (94)—(96) implies

5 ~ 3 ~ 2
||7/’||t,§_2 = “@|‘C%ip(H,V) IR — RHL(HT,H) [“max(é—no),t] [1 + \|R||L(Hp,ﬁ) + ||R||L(pr1)}

t
. (tmin(5r,0) +/ (t _ S)min((sfp,()) max(s(af’f‘)’ 8(2571)*7‘)) ds)
0

~ 3 ~ 2 —p—a
< H@HCfiP(H,V) IR = RllLq,. i [Fmax(s—r0.e] " [1+ HR”L(HP,H) + ||RHL(H,,,H)] max(l’t‘gﬂ 8 l)

1 . (97)
. (tmin(é—r,o) + t[min(é—p,O)+min(a,2ﬂ—p)+1—r} / (1 _ S)mln(éfpﬁ) Smin(a—r,?ﬂ—p—r) dS)
0

~ 3 ~ 2
< ||%0||cgip(1§r,v> IR = Rl o, 1) [Fmaxs—r0)]” L+ IRl par, iy + 1Bl Lo, ir)]” max(t, 1)

1
. tmin(é—r,O) (1 +/ (1 _ S>min(6—p,0) Smin(a—r,Qﬁ—p—r) dS)
0

for all t € (0,7], g € [3,00), § € [y,00) and all r € [p,min(1 + «,1 + 28 — p)). Next observe that Theorem 2
implies that

1P g,y < max (11 Fllagrn, s VB e, o500, )
(98)

max — 67
~max<1, sup {s (e 6’0)”Ps||L(G2(H,,,V),Gg(H5,V))}> NlEs s
s€(0,t

for all t € (0,7, ¢ € [3,00) and all § € [y,00). Combining (97) and (98) then shows (90). Inequality (90)
implies (91). This completes the proof of Corollary 5. O

In the remainder of this subsection, Corollary 5 is illustrated by three simple consequences (Corollary 6,
Corollary 7 and Corollary 8). Corollary 6 follows immediately from inequality (91) in Corollary 5 and its proof
is therefore omitted.

Corollary 6 (Spatial weak semigroup regularity). Assume that the setting in Section 3.1 is fulfilled and assume
a<~vyandp <. Then

sup sup  sup

tmax(p—5+r,0) P(K _ P N
( | Pt (Kn(p)) t(‘P)”Gs(Hg,V) < o0 (99)
©ECE,;, (H,,V)\{0} t€(0,T] hE(0,T]

hllelles

2 ip (V)

forall§ € [y,00), r € [0,1+a—p)N[0,1428—2p) and all p € [y, +1) N[y, B+ 3). In particular, if the real
number p € [2,00) in Assumption 4 satisfies p > 3, then

v B[] - Bl | _
llellez, (a,v)

Lip

sup sup  sup
©€CT;, (Hy, V)\{0} t€[0, 7] he(0,T]

(100)

forallr€[0,1+a—~)N[0,1+25—2y).

Corollary 7 (Temporal weak regularity). Assume that the setting in Section 3.1 is fulfilled and assume o <
and B <. Then

|ty [mex(p=oFr0) || Py, — Pulloiez, m,.v).69(m5.v)
sup < 00 (101)
t1,t2€(0,T] [ta —t1|"
t1 <tz

foralld € [y,00), r €0, 1+a—p)N[0,1+28—2p) and allp € [y,a+1)N[y, B+ %) In particular, if the real
number p € [2,00) in Assumption 4 satisfies p > 3, then

t1|" |E|p(X —E|p(X
PECE, (Hyp VN (0} . £2€[0.T] lt2 = ta|" llellez, (v
t1F£ta

forallr €[0,1+a—~)N[0,1+25—2y).
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Proof of Corollary 7. First, define real numbers ¢, 5, € [0,00), r € [0,1+a —p)N[0,1+25 —2p), § € [y,00),
p€lya+1)n{y, B+ 1), through

Cpor = sup sup  sup (103)

tmaxte=0 0 || Py (K () — Po(@)ll g as.v)
<0
©eCT,, (H,,V)\{0} t€(0,T] he(0,T]

hllelles

Lip(Hprv)

for all 7 € [0,1+a —p)N[0,1+28—2p), § € [y,00) and all p € [y,a+1) N[y, B+ 3). Corollary 6 shows that
these real numbers are indeed finite. In the next step we combine (70) and the definition of ¢, 5, € [0,00) to
obtain that

[t "XPmH O || (P o) (2) — (P o) (@)l

ta — t1|"
max(p—8-+r max(p—d+r, (0)
< |t1| (p=6+n0) H(Pt1K(t2—t1)(p)(‘r) - (Ptﬁ@)(x)nv + /t2 o (p=d4.0) ||(P3 L(tQ_S)gO)(JZ)HV ds
- ta — t1]" t ta —t1]"
ta | smx=00)||(P,LE) o) (w)]v (104)
3 S T (ta—s)
< epor [0+ el lellog o + 0+ [ | e gy | 4
1
3
< cpor [1+ l2llms " lellez, v

+(1+7)
te(0,T] s€(0,t)

sup  sup gmax(p=3,0) 14 _ gmax(p—c,2p—28) P, L((i) o) (@)||v
t—s

for all t1,t2 € (0,T] with ¢4 <t2, z € Hs, 7 € [0,14+a—p)N[0,1+25—2p), 6 € [y,00), ¢ € C%ip(Hp,V) and
all p € [y,a+1) N[y, 8+ 3). Furthermore, observe that Lemma 4 shows that

max(p— max(p—a,2p— 0
sz)p)[s (=00 (1 — )<= =20 PO, () g, v |
se€(0,t

meeme L, (e)

< sup {smax(”_‘s’o)||Ps||L(G§(Hp,V),Gg(H5,V)) (t—s) ||G8(H5,V)}

s€(0,t)
< l i smaX(p5’0)|PS”L(Gg(Hp’V)ng(Hé’V))‘| max (|| Fllg e, 1), 1B, mswo. ma)
se(0,
: l S‘(tp)smax(pfa’%*w) <||(Kssﬁ)/HGg(Hp,L(HQ,V)) + ”(KSW)””G({(H,,,L(Q)(HB,V)))‘|
se(0,t
< l S;(ljpT] Smax(p5’0)Ps||L(Gg(Hp,V),Gg(H5,V))] maX(HF”G?(Hp,HQ)a HBH?;Q(HP,HS(UO,HB)))
se(0,
s (105)
-max| 1, sup [e™||7 g
s€1[0,T
. [ s(u(L)pT] gmax(p—a,2p=25) (||€ASHL(Ha,Hp) ||<P/||Gg(Hp,L(Hp,V)) + ||eAs||%(H5,HP) ‘P//|G?(HP,L<2>(HWV)))]
se(0,
<

l SgépT] gmax(p=3,0) PS|L(G§(HP,V),Gg(H5,V))1 max (|| Fllaoa, ) | BlGo i, mrswo.m,)))
se (0,

- max <17 SEPT] |6A8||2L(H)> (”‘leGg(Hp,L(HP,V)) + ||<P”||G?(Hp»L<2>(Hva)))
se|0,

. [ sup gmax(p—a,2p—28) maX(HeAS”L(H(,,Hp)a ”eAS”QL(Hg,Hp))
s€(0,7]

for all t € (0,T], 6 € [y,00), ¢ € G}(H,,V) and all p € [y, + 1) N [y,B + 3). Combining (104) and (105)
completes the proof of Corollary 7. O
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Corollary 8 (Galerkin approximations). Assume that the setting in Section 3.1 is fulfilled, assume o < and
B<, letpey,a+1)N[y,B+3) and § € [y,00) be real numbers and let Py € L(H,), N € N, be a sequence
of bounded linear operators with sup ey | PnlL(m,) < oo. Then

tmax(p=0+r.0) || Py (o) — Pi(o(Pn ()l g rs.v)
< 00
I = Pnlleca, . m) lellez, ,.v)

Lip

(106)

sup sup sup
@ECE,, (H,,V)\{0} NENt€(0,T]

forallr € [0,1+a—p)N[0,1+28—2p). In particular, if (A\n)nen C (0,00) is a non-decreasing sequence of
real numbers, if (€,)nen C H is an orthonormal basis of H with D(A) = {v € H: Y>> [An[?| (en,v) g |* < o0}
and Av =377 =X\, (en, V) e, for allv e D(A), if p=~=0 and p > 3 and if Py(v) = Zi:;l (en, V) g €n for

n=1_

allve H, N € N, then

tmax(rfts,O) P, P Pn(-
sup sup sup | t(SO_) t (o ( N()))||G§(H5,V) < (107)
©€C3,, (HV)\{0} NEN t€(0,T] An) 7" llellez, vy
and
t" | Elp(Xy)| — E|{o(Pyn(X
ap sup sup [ IEPC] Bl ) os)
0E€C3,, (HV)\{0} NENtE(0,7] ) lelles, vy

forallr €[0,14+a)N0,1+20).

Corollary 8 follows directly from Corollary 5 and its proof is therefore omitted. Corollary 8 is a certain
spatial weak numerical approximation result for SPDEs. Further weak numerical approximation results for
SPDEs can be found in [43, 25, 27, 32, 44, 73, 26, 62, 63, 7, 65].

3.2.4 Stochastic Taylor expansions for solutions of SPDEs

A further application of the mild It formula (53) is the derivation of stochastic Taylor expansions for solutions
of stochastic partial differential equations. In Kloeden & Platen [59] stochastic Taylor expansions are derived
for solutions of finite dimensional stochastic ordinary differential equations by an iterated application of the
standard It6 formula. Clearly, this strategy can not be accomplished in the infinite dimensional SPDE setting
since the standard It6 formula can, in general, not be applied to the solution process of an SPDE. However,
by using the mild It6 formula (53) instead of the standard It6 formula, this approach can be generalized to
solutions of SPDEs in a straightforward way. The main difference to the finite dimensional setting in Kloeden
& Platen [59] is that the linear operators L,EO), t € (0,7T], and Lgl), t € (0,77, in (55) and (57) here depend
explicitly on the time variable ¢ € (0,7] too (compare (55) and (57) here with (1.13) and (1.14) in Chapter 5
in [59]; see also Theorem 3 and Theorem 4 below for more details). Similar and related stochastic Taylor
expansions for SPDEs can be found in Buckdahn & Ma [11], Bayer & Teichmann [4], Conus [15], Jentzen &
Kloeden [54], Buckdahn, Bulla & Ma [10] and Jentzen [49].

For formulating the stochastic Taylor expansions below some notations are introduced (see also Chapter 5 in
[59]). By M := {0}U(U3Z,{0,1}™) the set of multi-indices is denoted. Moreover, define two functions |-| : M —
{0,1,2,...} and —(-): M\{0} — M by [0] := 0, by |(a1,a2,...,a,)| := n and by —(a1,as,...,q,) =
(a2,as,...,ay) for all ai,as,...,a, € {0,1} and all n € N. Thus note that |af > 1 and ay,..., a4 € {0,1}
for all « € A\{0}. Furthermore, a finite nonempty subset A C M of M is called hierarchical set if —a € A for
all a € A\{0}. Next define a function B: P(M) — P(M) by B(A) := {a € M\A: —«a € A} for all A C M.
Finally, let W°: [0,7] — R be a function and let (th)te[O,T] be a cylindrical @Q-Wiener process defined by
WO(t) :=t and W} :== W, for all t € [0, T]. Using this notation the mild It6 formula (58) can be written as

1 t ) ,
H(X)) = (A=t X, ) 4 Z/ (L @) (Xs) AW (109)
i=0 /%o

P-a.s. for all to,t € [0,T] with ty <t and all ¢ € C*(H,, V). Moreover, for two normed R-vector spaces and
n€{0,1,2,...} we define C(V1, V2) == { € C"(V1, V2): [l Lo (vi,va) + 2ope 195 | o (vr L0 (v1,1)) < 001,
Cy(V1, V2) i= CP(V4, Vo) and Cg°(V1, Va) = NkenCr(V1, V). We are now ready to present the stochastic Taylor
expansions based on the mild It6 formula (109).

24



Theorem 3 (Strong stochastic Taylor expansions). Assume that the setting in Section 3.1 is fulfilled, assume
FeCpe(Hy, Hy), assume B € Cp°(H.,, HS(Uy, Hg)) and let ¢ € Cy°(H,, V). Then

P(Xy) = @)X, ) (110)

Slal 52

(1) (ajaj-1) (¥a]) A(s1—t « « A

// /t (L) oy L) LD Q) (A X ) AW d W WSS
acA 0

a0
Slal
(ee1) (o —1) ()a)) e « Y|
- Z // / L(§2 51)° L(S\ I =8]al- 1)L(t ‘?law)(p)(Xsl)dWﬁl AW - dWs, ]
a€B(A)

for all to,t € [0,T) with to <t and all hierarchical sets A C M.

Proof of Theorem 3. Theorem 3 immediately follows from an iterated application of the mild Ité formula (109).
O

The term ¢ (eA¢10)X, ) + D acdazo- - t € [to,T], on the left hand side of (110) is referred as strong
stochastic Taylor approzimation (or truncated strong stochastic Taylor expansion) of ¢(X}), t € [to,T], corre-
sponding to the hierarchical set A C M for ¢ty € [0,7]. The expression ZQEB(A) ..., t € [to, T], on the left
hand side of (110) is called remainder term of the strong stochastic Taylor expansions of ¢(X;), ¢t € [to, T,
corresponding to the hierarchical set A C M for t € [0,T]. Next observe that, in the case H = R? with d € N
and A = 0, Theorem 3 essentially reduces to Theorem 5.5.1 in Kloeden & Platen [59]. Let us also add the
following remark on possible generalizations of Theorem 3.

Remark 2. The assumption in Theorem 8 that F', B and ¢ are infinitely often Fréchet differentiable can be
relazed. To be more precise, to obtain (110) for a given hierarchical set A C M, it is sufficient to assume
that F € Cy(Hy, Hy) is maXqep(A),a, =0 min {2k — 2 — Zf 11 otk e {l,.. o} oanp = .. = e = 1}-
times, that B € Cy(H, HS(Uy, Hpg)) is maxqecpa)(2|af — 2 — Z‘al ! i)ftzmes and that ¢ € Cy(H,,V) is
max,ep(4)(2]a| — Zﬁll a;)—times continuously Fréchet differentiable with globally bounded Fréchet derivatives.

Moreover, the boundedness assumptions on F,B and ¢ and its derivatives can be reduced if p € [2,00) in
Assumption 4 is assumed to be sufficiently large.

In the next step Theorem 3 is illustrated with two possible examples. First, in the case of the hierarchical
set A = {0}, equation (110) reduces to (109), i.e., we have

o(Xy) = p(eAltt0) X, ) —|—Z/ L(t S)<p (Xs) dW! (111)

strong stochastic Taylor
approximation corresponding
to the hierarchical set A={0}

remainder term corresponding
to the hierarchical set A={0}

P-a.s. for all to,t € [0,7] with to < ¢ and all ¢ € Cp°(H,,V). Second, in the case of the hierarchical set
A ={0,(1)}, equation (110) simplifies to

t
o(Xy) = p(eA0) X, ) + / (AT X, ) A5 B(eAL—0) X, ) W,

to

strong stochastic Taylor approximation corresponding to A={0,(1)}

+/ ( (19 (X d3+// (L L) ) (Xu) dud WV, (112)
t

remainder term corresponding to A={0,(1)}

P-a.s. for all tg,t € [0,T] with o <t and all ¢ € Cy°(H,,V). After having presented strong stochastic Taylor
expansions in Theorem 3, we now formula the corresponding weak stochastic Taylor expansions based on the
mild It6 formula (109).
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Theorem 4 (Weak stochastic Taylor expansions). Assume that the setting in Section 3.1 is fulfilled, let n € N,
assume F € C,E2n_2)(Hﬂ,, H,), assume B € C’,EQH_Q)(H%HS(UO7 Hg)) and let o € C¥"(H,,V). Then

E[o(Xy)] =E[e (BA(tftO)Xto)}

n—1 t Sk So
(0) (0) (0) s1—
+Z/to /to /to ]E[(L(Sz_sl)...L(Sk_skil)L(t_Sk)sp)(eA( t@XtO)}dslds?...dsk
k=1

t Sn S2
0 0 0
+// / E[(Lgsi_sl)...Lgsi_s%l)Lgt)_SW)@)(Xsl)} dsy ds; ... ds, (113)
to Jto to

for all to,t € [0,T] with ty < t.

Proof of Theorem 4. Equation (113) immediately follows by taking expectations on both sides of equation (110)
with the hierarchical set A = {a € M: |a| <n, Zgl a; = 0}. O

Using definition (69), the weak stochastic Taylor expansions in Theorem 4 can also be written in the following
form.

Corollary 9. Assume that the setting in Section 3.1 is fulfilled, let n € N, assume F € CZSQn_Q)(H,Y,Ha),
assume B € CéQ"_Q)(H,y, HS(Uy, Hg)) and let o € C#"(H,,V). Then

(PtSD) () = (K#P) (x)
n—1 t Sk S2
(0) (0) (0)
+Z/O/O /0 (Ko Lo oy Loy L, #) (@) dsy dss .. dsy, (114)
k=1

t Sn 82
+/O/O /0 (P L o L LY @) (@) dsdss .. ds,

for all x € H, and all t € [0, 00).

3.2.5 Further mild It6 formulas for solutions of SPDEs

This subsection presents two slightly different variants (Corollary 10 and Proposition 4) of the mild It formula
in Corollary 2. Both variants assume that the test function ¢ in Corollary 2 fulfills additional regularity. The
first variant (see Corollary 10 below) is a direct consequence of Corollary 2.

Corollary 10 (Another - somehow mild - It6 type formula for solutions of SPDEs). Assume that the setting
in Section 3.1 is fulfilled. Then

t
]P)|: HSOI((I+ eA(tfto) o €A(t78))Xt0)

to

|[AeAt) X, ||, ds < oo| =1 (115)

oo, v | I,

and

t
o(Xy) = o(Xyy) + / @ (I + 0710 — A=) X, YA A=) X, ds
to
t

t
+/ (X IR (X,) ds + / @ (eI X,) MO B(X,) dW, (116)

to to

1 ¢
+3 3 [ XA B gy NI B )gy)
jeg to

P-a.s. for all to,t € [0,T) with to <t, ¢ € C*(H,,V) and all r € (—o0,7).
Proof of Corollary 10. Let r € (—oc,v) be a fixed real number and define a family X*:t: [tg, ] x Q — H,,

(to,t) € £, of adapted stochastic processes with continuous sample paths by

Xt = X, + / At X, ds = X, + e (eA(“ftO) — I) Xz,
to (117)
_ (I+ pAlt—to) _ eA(t—u)) X,
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for all u € [to,t] and all ¢y, t € [0,T] with to < ¢. The fundamental theorem of calculus then implies

t
p(eAl=t) X, ) = @(Xto —|—/ AeM=9) X, dS) = (X"

tot (118)
(X)) +/ o (X10t) A A9 X, ds

to
for all tg,t € [0, 7] with to <t and all p € C?(H,.,V). Combining (118) and Corollary 10 then completes the
proof of Corollary 2. 0

Observe that equations (50)—(52) and equation (115) ensure that all deterministic and stochastic integrals
in (116) are well defined.

Proposition 4 (A further - somehow mild - It6 type formula for solutions of SPDEs). Assume that the setting
in Section 3.1 is fulfilled. Then

Pu: I/ (X + 20X, = Xe) || 1,y A€M X, || ds < OO} 1, (119)
IPM: i (Xo + €A (X = Xi) || 1, 0 12 F (XD ds < OO} _q, (120)
P{/t: ¢ (s, + AEI(X, — X,,)) 6A(t—s)B(Xs)||ZS(UO’V) ds < OO] _1 a21)
L[ 1 (X + A= X im0 |4 B syt < 0] =1 122

and

t
QP(Xt) _ QP(XtU) +/ SDI(XtU + eA(t—s)(XS _ Xto)) [A eA(t—s)X't0 + eA(t—s)F(XS)] ds

to

t
+ / ¢ (X + e (X, — X)) A0 B(X,) dW, (123)
to

1 t
+5 > /t ¢ (X + 20X — X)) (A B(X,) g5, AT B(X,)g;) ds
JeEJ 0

P-a.s. for all to,t € [0,T] with to < t, ¢ € C*(H,,V) and all r € (—00,7).

Proof of Proposition 4. First, observe that the well known identity ety = v + fg Ae?syds for all v € H, and
all t € [0, 00) shows

t t
X, =Xy, + / [AeA(t*S)XtO +eA<t*S>F(XS)} ds + / A=) B(X,) dW, (124)

to to

P-a.s. for all to,t € [0,T] with t; < t. In the next step let r € (—o0,7) be a fixed real number and let
Xtot: [tg,t] x Q — H,, (to,t) € Z, be a family of adapted stochastic processes with continuous sample paths
given by
Xt = X, + / [A A= X, +eA<t—S>F(XS)] ds + / A=) B(X,) dW,
) u ! ’ (125)
= X, + et x, — AW X, 4 / eI P(X,) ds + / A B(X,) dW,

to t(J

P-a.s. for all u € [tg,t] and all tg,t € [0, T] with tg < t (see also (35) above). The standard It6 formula in infinite
dimensions (see Theorem 2.4 in Brzezniak, Van Neerven, Veraar & Weis [9]) then gives

@(Xio’t) _ (p()—qtg,t) +/ SO/(X?)J,) {AeA(t_S) X, +6A(t_S)F(Xs):| ds

to

+ [ Rm ACIBx) (126)



P-a.s. for all u € [tg,t], to,t € [0, T] with ty <t and all ¢ € C?(H,., V). This, in particular, shows

t
P = o(X0) = p(Xs,) + [ /(T[40 X, 4 AIF(X,)] s

to

t
+ / ¢/ (XLt e B(X,) AW (127)

to

1 b
£33 [ ) (A BX)g eI B(X)g ) ds
JeEJ = "0

P-a.s. for all ¢y, t € [0,T] with ¢ty <t and all p € C?(H,., V) (see also (38) above). Putting the identity

Xt =X, + / [AeA(t_“)Xto+eA(t_“)F(Xu)} ds + / AW B(X,) dW,

to to
S
= X, + A=) / [AeACTX,, + AT R(X,)] ds (128)
to
+ A=) / eATIB(X,) AW, = Xy, + M0 (X — Xy)
to

P-a.s. for all s € [to, T] and all ¢y, t € [0,T] with ¢ty <t (see also (39) above) into (127) finally shows (123). The
proof of Proposition 4 is thus completed. O

Note that equations (119)—(122) imply that all deterministic and stochastic integrals in (123) are well defined.
Finally, observe that the It6 type formulas in Corollary 10 and Proposition 4 can be generalized to the more
general case of mild Itd processes (or mild semimartingales, cf. Remark 1) if additional assumptions on the
semigroup are fulfilled.

3.3 Numerical approximations processes for SPDEs

This subsection demonstrates how different types of numerical approximation processes for SPDEs can be
formulated as mild It6 processes. To this end the following notation is used. Let ||y : [0,7] — [0,T], N € N,
be a sequence of mappings given by

[t = max(s e {0, %, 3, ST T s <) (129)

for all t € [0,7] and all N € N. Both Euler (see Subsection 3.3.1) and Milstein (see Subsection 3.3.2) type
approximations for SPDEs are formulated as mild It6 processes. We begin with Euler type approximations for
SPDEs in Subsection 3.3.1.

3.3.1 Euler type approximations for SPDESs

It is illustrated here how exponential Euler approximations, accelerated exponential Euler approximations,
linear implicit Euler approximations and linear implicit Crank-Nicolson approximations can be formulated as
mild It6 processes.

Exponential Euler approximations for SPDEs Let YV:[0,7] x Q — H,, N € N, be a sequence of
predictable stochastic processes given by

t t
vy :eAt£+/ eA(FLSJN)F(YLJZJN)“*'/ AL BV Y aw,

sIn
e 0 . (130)
_ eAt£+/ eA(t—s) eA(s—\_sJN) F(YL];IJN) dS—l—/ eA(t—s) eA(s—LsJN) B<YLJS\JIJN) AW,
0 0

P-a.s. for all ¢ € [0,7] and all N € N. Observe that for each N € N the stochastic process Y: [0,T] x Q — H,
is a mild Itd process with semigroup eA2=%) € L(Hin(a,5,4): Hy), (t1,t2) € Z, with mild drift

AN RV L), te(0,T], (131)
and with mild diffusion
AN B(YVY L), te[0,T) (132)
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Proposition 1 hence shows

t t
YtN:eAmm)ytéer/ eA(thSJN)F(YLIXJN)dS_i_/ ALl By Y aw, (133)

to tO
P-a.s. for all to,t € [0,T] with ¢y < ¢ and from (133) we conclude

()T (nt )T
N N

Y +/ AN F(Y) ds +/ AN B(YD) dw,
N nT N nT N

N (134)
B(Y% ) dWs>

A

2|5

N
Y(n+1)T =€
N

2

(ntH)T
N

N

6A

2|3

(Y%+N~F(Y%)+

nT
N

P-a.s. for all n € {0,1,...,N —1} and all N € N. The mild It6 processes YV, N € N, are thus nothing
else but appropriate time continuous interpolations of exponential Euler approximations (a.k.a. splitting-up
approximations or exponential integrator approximations; see, e.g., [37, 74, 17, 77] and the references therein).
Note that the mild drift (131) and the mild diffusion (132) of the exponential Euler approximations (134) contain
the correction term eA(~L1U~) ¢ € [0,T], when compared to the mild drift (48) and the mild diffusion (49) of
the exact solution of the SPDE (47).

Accelerated exponential Euler approximations for SPDEs This paragraph demonstrates that acceler-
ated exponential Euler approximations can be written as mild Itd processes. Let YV : [0,T] x Q — H,, NecN,
be a sequence of predictable stochastic processes given by

t t
vy :eAt§+/0 eA(t_S)F(YL];’JN)ds—i—/O A BV ) AW (135)

P-a.s. for all t € [0,7] and all N € N. Note that for each N € N the stochastic process Y: [0,T] x Q — H, is
a mild It6 process with semigroup eA(f2=t1) ¢ L(Hpin(a,8,7), Hy), (t1,t2) € £, with mild drift

F(YLJ;]N), t 0,71, (136)
and with mild diffusion 5
B(Y},), telo,T]. (137)
Proposition 1 therefore gives
t t
N A(t— N A(t—s N A(t—s N
YN = eAltmto) y +/t eAlt )F(YLSJN)CLH—/t M) B(YR ) AW, (138)
0 0

P-a.s. for all tg,t € [0, T] with g <t and this implies

T (n+1)T
N

~ ~ N ~ n ~
YN, e =eAF VY (/ eAs ds) FOYY) +/ AT =0) (VL) dw, (139)
N N 0 N

nT N
N

P-a.s. for all n € {0,1,...,N — 1} and all N € N. In particular, in the case of additive noise, i.e., B(v) = B(0)
for all v € H.,, equation (139) reduces to

(n+)T
N

VN e =N VY + ( / es ds> F(YY) + / AR =2) B(0) dw, (140)
0 N

nT
N

P-a.s. for all n € {0,1,...,N — 1} and all N € N. The mild Ité processes YN, N € N, are thus nothing else
but appropriate time continuous interpolations of the numerical approximations in [53] in the case of additive
noise (see (3.3) in [53]) and in [49] in the general case (see (21) and (50) in [49]).

Note that the mild drift (136) and the diffusion (137) of the approximation processes (135) do not contain
the correction term eA*~L4IN) '+ € [0, 7], in mild drift (131) and the mild diffusion (132) of the exponential Euler
approximations (130). The approximation processes (135) thus seem to be more close to the exact solution (47)
than the exponential Euler approximations (130) (compare the mild drifts (136), (131), (48) and the mild
diffusions (137), (132), (49)). Indeed, under suitable assumptions, it has been shown (see [53, 55] for details)
that YN, N € N, converges to X significantly faster than Y, N € N. This motivates to call approximations of
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the form (139) and (140) as accelerated exponential Euler approzimations. The crucial point in the accelerated
exponential Euler approximations is that they contain the stochastic integrals

(n+1)T

N n ~
A=) BV ) dw, (141)
nT N
N
for n € {0,1,...,N —1} and N € N in the scheme instead of simply increments of driving noise process.

This enables them to converge, under suitable assumptions, significantly faster to X than schemes using only
increments of the driving noise process such as (134). In addition, in the case of additive noise, the stochastic
integrals (141) in (140) depends linearly on the cylindrical Wiener process Wi, t € [0, 7] and are easy to simulate.
Therefore, the accelerated exponential Euler approximations (140) can in the case of additive noise be simulated
quite efficiently (see Section 3 in [53] and, particularly, see Figure 2 in [55] for details). Further investigations
and related results on approximation methods that make use of stochastic integrals of the form (141) can, e.g.,
be found in [53, 52, 75, 76, 28, 55, 50, 79, 108].

Linear implicit Euler approximations for SPDEs Next it is shown that linear implicit Euler approxi-
mations can be formulated as mild Ito processes. For this we assume 1 = 0 in the following in order to avoid
trivial complications. Moreover, let S™V: / — L(H,), N € N, be a sequence of mappings given by

SN = (1= At = 1)) ) (T = Atz = Lt2]w) )‘1(1 _ %A)Ww—wm%

for all t1,t5 € [0,7] with t; < to and all N € N. Moreover, let YV: [0,7T] x @ — H.,, N € N, be a sequence of
predictable stochastic processes given by YV = ¢ and

(142)

t t
= [ S0, OB st [ SN, BORY)
§+/ SN (- A(s— Ls)w)) RV, ds (143)
/s (1= A(s— [s]n)) " B(VY,,) W,

P-a.s. for all t € (0, 7] and all N € N. Observe that for each N € N the stochastic process YV: [0,T] x Q — H,,
is a mild It6 process with semigroup SV, with mild drift

Looo)(t = [tIn) (T = A(t—|t]n)) " F(Y),), teloT], (144)
and with mild diffusion
Loyt = [tIn) (T=A(t—[t]n)) " B(Y],),  telo,T] (145)

Proposition 1 therefore implies

(n+1)T
N

nT
N

_ -1
Yéthl)T = ( - %A) (Y,LT +% F(Y,LT) +/ B(Y. ,LT) dW) (146)

P-a.s. for all n € {0,1,...,N — 1} and all N € N. This shows that the stochastic processes YN N €N, are
nothing else but appropriate time continuous interpolations of linear implicit Euler approximations (see, e.g.,
[36, 41, 42, 106, 82, 81, 64, 18] and the references therein) for the SPDE (47). Note that the semigroups (142) of
the linear implicit Euler approximations (143) depend explicitly on both variables t; and to with 0 < ¢; <t <T
instead of on the difference t5 — t; only although the semigroup e??, ¢t € [0,T], of the underlying SPDE (47)
depends on one variable only.

Linear implicit Crank-Nicolson approximations for SPDEs Finally, in this paragraph it is demon-
strated that linear implicit Crank-Nicolson approximations can be formulated as mild It6 processes too. As in
the case of the linear implicit Euler approximations we assume 77 = 0 in the following in order to avoid trivial
complications. Let SN/ L(H,), N € N, be a sequence of mappings given by

N
T

SN 1= (1 - A=l (1 A(tz—gzm)fl(]_ %A)(“”N“M) (147)
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for all t1,t, € [0,T] with t; < ¢y and all N € N. Moreover, let Y~: [0,7] x Q — H,, N € N, be a sequence of
predictable stochastic processes given by Yo = ¢ and

t t
=Séf’t§+/0 Sliiw s (%AYL@YJN +F(Y3,) d8+/0 Slua B, ) dWs
t
éﬂ£+/0 SN, (I—A<H;JN>> ( AYLSJNJFF(YLSJN))ds (148)
oy =i\ " (YN
S—|Ss
+/0 sx, (I—A ; N) B(YY,)dW,

P-a.s. for all t € (0,7] and all N € N. Observe for every N € N that the stochastic process Y : [0, T] x Q — H,
is a mild It6 process with semigroup SN , with mild drift

_1 " R
Loeoy(t = Lt)n) (1= AS4) ™ (BaVE 4 P(RY,)). e 0.7), (149)
and with mild diffusion
-1 .
Lo.00)( — ] ) (I - A%) B(Y}Y,). t € 0,T]. (150)

Proposition 1 hence gives

(n+1)T
N

=

P = (1 &4) <(I+;VA) oy L (A%H/W

nT
N T
N

B( A%) dWS> (151)

P-a.s. for all n € {0,1,...,N — 1} and all N € N. This shows that the stochastic processes YN N € N, are
nothing else but appropriate time continuous interpolations of linear implicit Crank-Nicolson approximations
(see, e.g., [97, 106, 6] and the references therein) for the SPDE (47).

3.3.2 Milstein type approximations for SPDEs

The stochastic Taylor expansions in Subsection 3.2.4 can be used to derive higher order numerical approximation
methods for SPDEs. In the sequel this is illustrated for Milstein type approximations for SPDEs (see [34, 60,
80, 71, 56, 3, 2, 107, 5]). For these derivations we assume that the diffusion term B: H, — HS(Uy, Hp) is twice
continuously Fréchet differentiable with globally bounded derivatives and that 8 = 7. First note, in view of the
mild It6 formula (58), that equation (47) can also be written as

Xy = Al x, / (L ,)id) (X.) ds + /t (L) )id) (X.) AW, (152)

P-a.s. for all to,t € [0,7] with to < t where id = idg, : H, — H, is the identity on H,. Next the mild It6
formula (58) is applied to the test function (LEt) S)1d) (x) € HS(Uy, Hg), x € H,, to obtain

0
(L) ,)id) (X.)
= (L{}) i) (At X @O L a)(x,)d @ LYy aw, (155)
= ( (t=s)! ) (e to) + to( (s—u) L (t=s)! ) (X.) du + ( (s—u) L (t=s)! ) (Xy) dW,
P-a.s. for all tg,s,t € [0,T] with tg < s < t. Putting (153) into (152) then gives
t
X, = A=t x, +/ (LE? oid) (X, )ds+/ (LEQ Jid) (A0 X, ) d,
t s
- / / (L ) id) (X)) dudW, + / / (L0 L) id) (X)) dW, dW, (154)
to Jto

t
A(tfto)X +/ A(tfs)F( s)d5+/ A(t— s)B( (S*tO)XtO)qu

to

t s
/ / (L L) id) (X) dudW, + / / A= B (A0 X)) AT B(X,) dW, W
to

to Jto
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P-a.s. for all tg,t € [0,7] with ¢y < ¢. The identity (154) corresponds to the strong stochastic Taylor ex-
pansion in Theorem 3 which is described by the hierarchical set A = {0, (1)}; see Subsection 3.2.4 for de-
tails. Using the approximations e ~ I and X445 ~ Xy, for small h € [0,7] and omitting the integral

fto fto ( (S 0 (t 9 1d)( w) dudWy in (154) then results in the approximation

¢ t
X, mettto) x, 4 / AP (X)) ds + / e B(Xy,) W,

to to

t s
+ / / A=) B (X)) e B(X,, ) dW,, dW, (155)
to Jto

t t s
~ eAlt—to) <Xt0 + F(Xy,) - (t—to) + / B(X,) dW, + / / B'(Xy,) B(X1,) dW, dWs>
to Jto

to

for to,t € [0,T] with small ¢t — ¢y > 0. The approximation (155) can then be used to define exponential Milstein
approximations for SPDEs (see equations (156) and (159) below for details).

In the following it is demonstrated how different types of Milstein approximations for SPDEs can be formu-
lated as mild It6 processes. To this end we assume in the remainder of this subsection that B: H.,, — HS(Uy, Hg)
in Assumption 3 is once continuously Fréchet differentiable and that 8 = ~.

Exponential Milstein approximations for SPDEs This paragraph formulates exponential Milstein ap-
proximations as mild It6 processes. To be more precise, let ZV: [0,T] x Q — H,, N € N, be a sequence of
predictable stochastic processes given by

ZtN:eAtﬁ—i-/ A=l Pz, )ds+/ A=l B(Z[ ) AW,

t S
+/ Alt=Lslw) B (ZN )(/ B(Z LSJN)dW)dWS
0 lsln

P-a.s. for all t € [0,7] and all N € N. Note for every N € N that the stochastic process ZV: [0,T] x Q — H,,
is a mild It processes with semigroup e*(2=%) € L(H,pin(a.5,1): Hy), (t1,t2) € £, with mild drift

(156)

AN B (2 ), teo,T), (157)

and with mild diffusion

A=t n) <B(Zﬁjw)+3( e )</th ( e )dW)) t €[0,7). (158)

Proposition 1 hence yields

(n+1)T
T N

ZNr = A (ZZYT +—-F(ZY) +/ B(ZY:) dw,

N N N N

nT N
N

)</NT B(z}y) qu> dWS>

P-a.s. for alln € {0,1,...,N — 1} and all N € N. The mild It6 processes ZV¥, N € N, are thus nothing else but
appropriate time continuous interpolations of exponential Milstein approximations (see [80, 56, 2]).

(ntnT (159)
N

+ / B(z

nT

3
SE

Linear implicit Euler-Milstein approximations for SPDEs In this paragraph linear implicit Euler-
Milstein approximations are formulated as mild It processes. Let ZV: [0,T] x Q — H,, N €N, be a sequence
of predictable stochastic processes given by Z} = ¢ and

50t5+/ YL F(ZN ds+/ S B(ZY)) aw,

/SLSJNv (ZMN)</H (ZLsJN)qu)dW.s
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P-a.s. for all t € (0,T] and all N € N (see (142) for the definition of the mappings SV : 2 — L(H,), N € N).
Observe for every N € N that the stochastic process ZV: [0, 7] x Q — H, is a mild It6 process with semigroup
SN with mild drift

L(0,00) (t = [t)v) [t F(Z])4), t€[0,T], (161)

and with mild diffusion

1(0,00) (t = [t]v) S} n .t (B(ZuJN)JrB'(ZmN)(/M B(Z mN)dW>> te[0,T]. (162)

Proposition 1 hence gives

(n+1)T
-1/ _ T _ N
Zhr = (1-%4) (ZfiT + P (23 +/qu B(Z}Yy) dW,
N

(163)

(n+1)T

¥ /” wp( [ o)) dWs>

N
2|

nl

P-a.s. for alln € {0,1,...,N — 1} and all N € N. The mild It6 processes ZV¥, N € N, are thus nothing else but
appropriate time continuous interpolations of linear implicit Euler-Milstein approximations (see [60, 80, 2, 5]).

Linear implicit Crank-Nicolson-Milstein Milstein approximations for SPDEs Finally, let ZN. : [0, T %
Q — H,, N € N, be a sequence of predictable stochastic processes given by ZN = ¢ and

t
50t5+/ STt AZ@JNJFF(ZfZJN))dH/O Slana B(Z[4) ) dWs

+/O Sf\S[JNvt B/(ZgJN)</LsJNB( Lsln )dW ) dWs

P-a.s. for all t € (0, 7] and all N € N (see (147) for the definition the mappings SV : / — L(H,), N € N) and
note for each NV € N that the stochastic process ZN. [0,T] x & — H, is a mild It6 processes with semigroup
SN, with mild drift

(164)

10,000 (t — [t] )Smm(%AYﬁﬂN+F(Yffm))a teo,T], (165)
and with mild diffusion
t
L(o,00) (t = [t]N) S{i) s (B(ZﬁJNMBf(ngN)(/M B(Z ﬁJN)dW)> te[0,7]. (166)
N

Proposition 1 therefore shows

Ll = (I - %A)A ((1 + lNA) 2% + % F(2)
(167)

(n+1)T (n+1)T

+/ ’ B(Z %)dW-F/ ’ B'(z )(/STB( T;VT)dW)dWs>

=

nT

N

=

P-a.s. for all n € {0,1,...,N — 1} and all N € N. The mild Itd processes ZN N e N, are thus nothing else
but appropriate time continuous interpolations of linear implicit Crank-Nicolson-Milstein approximations for
SPDEs (see [80, 2]).
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