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Space weather modeling
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Supersonic solar wind constantly bombarding Earth

Solar wind ≡ stream of energetic charged particles from Sun

Earth’s magnetic field =⇒ sets up magnetosphere, bow shock, . . .

Solar flares can create geomagnetic storms, which can affect space satellites

Challenge: accurately predicting space weather in real time
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Collisionless magnetic reconnection
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Magnetic field lines from different magnetic domains are spliced to one another

Creates rapid outflows away from reconnection point

Outflows have important affect on space weather, can affect satellites, . . .

Can happen both on the dayside as well as in the magnetotail
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Collisionless magnetic reconnection
B1 = A,y and B2 =−A,x

Starting point: oppositely directed field lines are driven towards each other

Field lines merge at the so-called X-point

Lower energy state: change topology of field lines

Results in large energy release in the form of oppositely directed jets
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Hierarchy of plasma models
Particles→ kinetic→ hybrid kinetic/fluid→ fluid

1 Full particle description: computationally intractable

2 Kinetic description:

Fully Lagrangian description via macro-particles

Particle-in-cell description

Semi-Lagrangian description

Eulerian description

3 Hybrid description: ion particles, electron fluid

4 Fluid description:

High-moment approximation (moment-closure)

5-moment approximation (Euler equations)

Hall MHD (quasi-neutrality =⇒ single-fluid system)

MHD (ideal Ohm’s law)
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Mathematical models

Two species models: (1 ion, 1 electron)
Vlasov-Maxwell model:

∂fs
∂t

+ v ·∇xfs +
qs

ms
(E + v×B) ·∇vfs = 0,

∂

∂t

[
B
E

]
+ ∇×

[
E
−c2B

]
=

[
0
−c2J

]
,

∇ ·B = 0, ∇ ·E = c2
σ,

σ = ∑
s

qs

ms

∫
fs dv, J = ∑

s

qs

ms

∫
vfs dv

Two-fluid 10-moment model (Generalized Euler-Maxwell): ρs
ρsus
Es

=
∫  1

v
1
2 vv

 fs dv
{

closure: Q≡ 0

}

fs
(
t,x,v

)
=

ρ

2+d
2

s

(2π)
d
2
√

detPs

exp
[
−ρs

2
(v−us)T P−1

s (v−us)
]

J.A. Rossmanith | ISU 11/46



Reconnection GEM Problem Moments vs. Multiphysics Vlasov-Poisson Mixed Solver Conclusions

Mathematical models

(cont’d) Two-fluid 10-moment model

∂

∂t

 ρs
ρsus
Es

+ ∇ ·

 ρsus
ρsusus +Ps

3Sym(usEs)−2ρsususus

=

 0
qs
ms

ρs (Es + us×B)

2Sym
(

qs
ms

ρsusE +Es×B
)
 ,

∂

∂t

[
B
E

]
+ ∇×

[
E
−c2B

]
=

[
0
−c2J

]
,

∇ ·B = 0, ∇ ·E = c2
σ,

σ = ∑
s

qs

ms
ρs, J = ∑

s

qs

ms
ρsus

Two-fluid 5-moment model (Euler-Maxwell): ρs
ρsus
Es

=
∫  1

v
1
2‖v‖

2

 fs dv
{

closure: P≡ 1
3

trace(P)I
}
,

fs
(
t,x,v

)
=

ρ

2+d
2

s

(2πps)
d
2

exp

[
− ρs

2ps
(v−us)T (v−us)

]
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Mathematical models

(cont’d) Two-fluid 5-moment model

∂

∂t

 ρs
ρsus
Es

+ ∇ ·

 ρsus
ρsusus + psI
us (Es + ps)

=

 0
qs
ms

ρs (E + us×B)
qs
ms

ρsus ·E

 ,
∂

∂t

[
B
E

]
+ ∇×

[
E
−c2B

]
=

[
0
−c2J

]
,

∇ ·B = 0, ∇ ·E = c2
σ,

σ = ∑
s

qs

ms
ρs, J = ∑

s

qs

ms
ρsus

MHD models

Quasi-neutrality =⇒ ρ = ρi + ρe, u =
ρi ui + ρeue

ρi + ρe
, p = pi + pe

c→ ∞ =⇒ ∇×B = J
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Mathematical models

Generalized Ohm’s law:

E = B×u (Ohm’s law)

+ηJ (resistivity)

+
(

mi−me
ρ

)
J×B (Hall term)

+ 1
ρ

∇(mepi −mi pe) (pressure term)

+ mi me
ρ

{
∂t J + ∇ ·

(
uJ + Ju + me−mi

ρ
JJ
)}

(inertial term)

(cont’d) Resistive MHD model

∂

∂t


ρ

ρu
E
B

+ ∇ ·


ρu

ρuu +
(
p + 1

2‖B‖
2
)
I−BB

u
(
E + p + 1

2‖B‖
2
)
−B(u ·B)

uB−Bu

=


0
0

η∇ · [B× (∇×B)]
η4B


∇ ·B = 0
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Fast magnetic reconnection
GEM challenge problem

A brief history

Ideal MHD does not support magnetic reconnection

Resistive MHD allows for slow magnetic reconnection

[Birn et al., 2001]: Geospace Environment Modeling (GEM) challenge problem

[Shay et al., 2001]: need ∂J
∂t , ∇ ·P, or ηJ in Ohm’s law to start

Rate is independent of starting mechanism, important term is Hall: ∼ J×B

[Bessho and Bhattacharjee, 2007]: in pair plasma important term is ∼ ∇ ·P
[Lazarian et al, 2012]: fast reconnection in resistive MHD via turbulence

Reconnection rate vs. solution structure

Rate of magnetic reconnection is robust to many different models

Hall MHD, various 2-fluid models, MHD with turbulence: all show similar rates

Kinetic simulations show certain pressure tensor structure

Our goal: higher moment models to match kinetic solution structures
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GEM: Resistive MHD (η = 5×10−3)
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GEM: 2-fluid 5-moment (mi/me = 25)
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GEM: 10 and 20-moment with relaxation
[Johnson, 2011]

BGK Relaxation in higher-moment equations:

ρ,t + ∇ · (ρu) = 0

(ρu),t + ∇ · (ρuu +P) = 0

E,t + ∇ · (3uE−2ρuuu +Q) =
1
ε

(pI−P)

F,t + ∇ ·
(

4uF−6uuE+ 3ρuuuu +
3PP

ρ

)
=−1

ε
Q

Chapman-Enskog expansion:

(ρu),t + ∇ · (ρuu + pI) = ε∇
2u + O

(
ε

2)
10-moment with relaxation: we now have physical viscosity, not just numerical

For a range of ε: 0 < ε� 1, we get fast reconnection

Furthermore, we can reproduce off-diagonal pressure from kinetic models

20-moment with relaxation: we now have non-zero heat flux
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GEM: 10-moment with relaxation (mi/me = 25)
[Johnson, 2011]

Conclusion: qualitative agreement

Missing ingredient: heat flux =⇒ need to go to higher moment models
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GEM: 20-moment with relaxation (mi/me = 25)
[Johnson, in prep]

Conclusion: better qualitative agreement

Missing ingredient: non-zero kurtosis: K = R− 3PP
ρ
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Moments vs. Multiphysics

Summary of higher-moment approach:

Can get good qualitative agreement on GEM challenge problem

Need to artificially introduce collisions (kinetic system is collisionless)

Simulations are challenging due to density and pressure positivity violations

May need very large number of moments in very rarefied regimes

Other micro-scale phenomena may not be well-captured (open problem)

Multiphysics approach (i.e., domain decomposition):

Use low-moment fluid solver where possible

Use kinetic solver where necessary

Challenge #1: how to communicate between different solvers

Challenge #2: how to adaptively choose regions (a posteriori error estimates)

Many options for models, coupling mechanisms, numerical methods, . . .
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State-of-the-art: Hall MHD + IPIC
[Daldorff, Tóth, Gombosi, Lapenta, Amaya, Markidis, & Brackbill 2014]

Whistler wave example: Implicit PIC code region embedded in Hall MHD model

Restriction (PIC 7→ Hall MHD): modified Ohm’s law

Prolongation (Hall MHD 7→ PIC): boundary conditions of PIC region

Disadvantage #1: consistency problems between models (quasineutrality)

Disadvantage #2: PIC introduces statistical noise
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Vlasov-Poisson system
Electrostatic approximation

Some simplifying assumptions:

1 Two species: ions (+) & electrons (−)

2 Slow moving charges =⇒ electrostatics

3 Track electrons, assume fixed background ions

Electrons are described by a probability density function:

f (t,x,v) : R+×Rd ×Rd → R

Moments of f (t,x,v) correspond to various physical observables:

ρ(t,x) :=
∫

f dv, ρu(t,x) :=
∫

v f dv, E(t,x) :=
1
2

∫
‖v‖2 f dv

The Vlasov-Poisson system:

f,t + v ·∇xf −E ·∇vf = 0,

E =−∇xφ, −∇
2
xφ = ρ0−ρ(t,x)
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Vlasov-Poisson system
Properties

Characteristics (Vlasov is an advection equation in phase space):

(X(t;x,v,s) , V(t;x,v,s)) =⇒ dX
dt

= V(t),
dV
dt

=−E(t,X(t)) ,

f (t,x,v) = f0 (X(0; t,x,v) , V(0; t,x,v))

Maximum principle:
0≤ min

(x,v)
f0 (x,v)≤ f (t,x,v)≤max

(x,v)
f0 (x,v)

Conserved functional:
d
dt

∫
x

∫
v

G(f )dvdx = 0 =⇒ Lp norm: G(f ) = |f |p, entropy: G(f ) =−f lnf

Conservation laws:

Mass: ρ,t + ∇x · (ρu) = 0,
d
dt

∫
x

ρdx = 0

Momentum: (ρu),t + ∇x · (ρuu +P) =−ρE,
d
dt

∫
x

ρudx = 0

Total energy:

(
E +

1
2
‖E‖2

)
,t

+ ∇x ·F = 0,
d
dt

∫
x

(
E +

1
2
‖E‖2

)
dx = 0
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Mixed Fluid-Kinetic Solver

1+1 Vlasov-Poisson:

f,t + vf,x −Ef,v = 0, E,x = ρ0−ρ(t,x)

Kinetic solver

Operator-split semi-Lagrangian DG scheme (dogpack-code.org)

In current experiments: global kinetic solver

Work in progress: local kinetic solver

Fluid solver

Standard RKDG scheme (dogpack-code.org)

Solve the “20”-moment model of [Groth, Gombosi, Roe, & Brown, 1994, 2003]

Coupling

Kinetic 7→ fluid: correct moment-closure

Fluid 7→ kinetic: quadrature-based moment-closure reconstructions

Why couple fluid back to kinetic? keep model consistency
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Gaussian-based moment closure
[Groth, Gombosi, Roe, & Brown, 1994, 2003]

Knock-out missing moments by pretending they come from a Gaussian

20−moment : R ← 3PP/ρ (Kurtosis: K = R−3PP/ρ≡ 0)

35−moment : S ← 10ρPQ

Example: 20-moments in 1D (reduces to only 4 moments):

q =


ρ

ρu
p + ρu2

q + 3pu + ρu3

 and f (q) =


ρu

p + ρu2

q + 3pu + ρu3

3p2

ρ
+ 4qu + 6pu2 + ρu4 + (K = 0)


Four eigenvalues of flux Jacobian:

λ = u + s
√

p
ρ
, s4−6s2−4sh + 3 = 0, h :=

q
p

√
ρ

p

Advantage: no direct moment inversion

Disadvantage: limited hyperbolicity: |h|<
√√

8−2≈ 0.9102
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1D quadrature-based moment-closure
Basic idea [Rodney Fox (ISU) et al]

Assume that distribution is a finite sum of Dirac-deltas:

f (t,x ,v) =
N

∑
k=1

ωk (t,x)δ(v−µk (t,x))

NOTE: This is reminiscent of PIC, except physical space is left continuous

NOTE: Similar to discrete vel models, except each x has different velocities

To find weights and abscissas, match first 2N moments:∫
∞

−∞

f dv = M0 =
N

∑
k=1

ωk ,
∫

∞

−∞

v f dv = M1 =
N

∑
k=1

ωk µk , . . .

∫
∞

−∞

v2N−1 f dv = M2N−1 =
N

∑
k=1

ωk µ2N−1
k

Closure:

M2N =
N

∑
k=1

ωk µ2N
k

Using GQ can reformulate this as a root finding problem for an N th degree poly
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1D quadrature-based moment-closure
Basic idea [Rodney Fox (ISU) et al]

Quadrature points & weights:∫
∞

−∞

g(v)w(v)dv ≈
N

∑
k=1

ωk g (µk )

Weight function satisfies∫
∞

−∞

vk w(v)dv = Mk for k = 0,1,2,3, . . .

If we make exact for g(v) = 1, v , v2, . . . we arrive at moment-closure eqns

Can solve these equations by constructing orthogonal polynomials:

〈g,h〉w :=
∫

∞

−∞

g(v)h(v)w(v)dv

e.g., up to second order:

ψ
(0)(v) = 1, ψ

(1)(v) = v−u,

ψ
(2)(v) = 3ρpv2− (6ρpu + 3ρq)v +

(
3ρpu2−3p2 + 3uρq

)
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1D quadrature-based moment-closure
M4 closure (N = 2)

M4 closure model:
ρ

ρu
ρu2 + p

ρu3 + 3pu + q


,t

+


ρu

ρu2 + p
ρu3 + 3pu + q

ρu4 + 6pu2 + 4uq + q2

p + p2

ρ


,x

= 0

Hyperbolic structure:

Eigenvalues (each has algebraic multiplicity 2, geometric multiplicity 1):

µ1 = λ
(1) = λ

(2) = u +
q
2p
−

√
p
ρ

+

(
q
2p

)2

µ2 = λ
(3) = λ

(4) = u +
q
2p

+

√
p
ρ

+

(
q
2p

)2

Weak hyperbolicity with 2 linearly degenerate waves

Delta shocks form for generic initial data
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1D quadrature-based moment-closure
Bi-Gaussian ansatz [Chalons, Fox, & Massot, 2010]

f (t,x ,v) =
ω1√
2πσ

e−
(v−µ1)

2

2σ +
ω2√
2πσ

e−
(v−µ2)

2

2σ

Moment-closure equations (ρσ = p (1−α)):

ω1µ0
1 +ω2µ0

2 = ρ, ω1µ1
1 +ω2µ1

2 = ρu, ω1µ2
1 +ω2µ2

2 = ρu2 +αp,

ω1µ3
1 +ω2µ3

2 = ρu3 +3αpu+q, ω1µ4
1 +ω2µ4

2 = ρu4 +6αpu2 +4qu+ r +
3p2(α2−1)

ρ
,

Riemann solution:

J.A. Rossmanith | ISU 35/46



Reconnection GEM Problem Moments vs. Multiphysics Vlasov-Poisson Mixed Solver Conclusions

Moment-realizability condition
Bi-Gaussian distribution [Chalons, Fox, & Massot, 2010]

Theorem (Moment-realizability condition for the bi-Gaussian distribution)

Assume that the primitive variables satisfy the following conditions:

0 < ρ, 0 < p,
p3 + ρq2

ρp
≤ r , If q = 0:

p2

ρ
≤ r ≤ 3p2

ρ

1 If q 6= 0 then ∃! α ∈ (0,1] that satisfies the following cubic polynomial:

P (α) = 2p3
α

3 +
(
ρr −3p2)pα−ρq2 = 0.

From this α we can uniquely obtain the quadrature abscissas and weights.

2 If q = 0 and p2

ρ
≤ r < 3p2

ρ
then ∃! α ∈ (0,1] such that α =

√
3p2−ρr

2p2 . The
quadrature abscissas and weights are again unique.

3 If q = 0 and r = 3p2

ρ
, then α = 0. This case corresponds to a single Gaussian

distribution. In this case we lose uniqueness of the quadrature abscissas and
weights.
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1D quadrature-based moment-closure
Bi-B-spline ansatz [Cheng and R, 2013]

f (t,x ,v) = ω1B0
σ (v−µ1) + ω2B0

σ (v−µ2) , B0
σ(v) =

{
2
σ

(
2v +

√
σ
)

if −
√

σ≤ 2v ≤ 0
2
σ

(√
σ−2v

)
if 0≤ 2v ≤

√
σ

Moment-closure equations (ρσ = 24p (1−α)):

ω1µ0
1 +ω2µ0

2 = ρ, ω1µ1
1 +ω2µ1

2 = ρu, ω1µ2
1 +ω2µ2

2 = ρu2 +αp,

ω1µ3
1 +ω2µ3

2 = ρu3 +3αpu+q, ω1µ4
1 +ω2µ4

2 = ρu4 +4qu+6αpu2 + r +
6p2

5ρ
(3α+2)(α−1)

Riemann solution:
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Kinetic model 7→ fluid model
Restriction

Strategy:

Evolve the kinetic equation from t = tn to t = tn + ∆t

From kinetic solution create kurtosis interpolant on [tn, tn + ∆t]:

e.g., K̃(t,x)
∣∣∣
Ti×[tn,tn+1]

:=

(
tn+1− t

)
∆t

M

∑
`=1

K̃n (`)
i ϕ

(`)+
(t− tn)

∆t

M

∑
`=1

K̃n+1(`)
i ϕ

(`)

Solve corrected (restriction) “20-moment” fluid eqn from t = tn to t = tn + ∆t

Correct kinetic soln to match first few moments of fluid soln (prolongation)
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Fluid model 7→ kinetic model
Prolongation

At t = tn+1 compute from f (tn+1,x ,v):

M̃0, M̃1, M̃2, M̃3, M̃4

Compute a reconstruction of this data (using bi-B-spline fluid moment closure)

gn+1(x ,v) := F
(
v ;M̃0, . . . ,M̃4

)
∆f n+1(x ,v) := f

(
tn+1,x ,v

)
−gn+1(x ,v)

At t = tn+1 compute from fluid model:

M0, M1, M2, M3, M4

Compute a reconstruction of this data (using bi-B-spline fluid moment closure)

hn+1(x ,v) := F (v ;M0, . . . ,M4)

Replace gn+1(x ,v) by hn+1(x ,v):

f
(
tn+1,x ,v

)
← hn+1(x ,v) + ∆f n+1(x ,v)
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Two-stream instability
Bi-B-spline prolongation
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Two-stream instability
Bi-B-spline prolongation (red: fluid, blue: kinetic)
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Conclusions & future work

Multi-moment fluid models for GEM challenge

5-moment: correct reconnection rate, relies on numerical diffusion

10- and 20-moment: qualitatively correct pressure tensor

10- and 20-moment: need relaxation terms to get physically correct results

Want to explore multi-physics (i.e., domain decomposition) approaches

Quadrature-Based Moment-Closure Models

Moment-closure problem: assume a distribution, moment inversion

Quadrature-based moment-closure allows for non-zero heat flux

Quadrature via Dirac delta, Gaussians, B-splines

Mixed fluid/kinetic solvers (multiscale solvers)

Restriction: Kinetic-to-fluid mapping via temporal interpolation

Prolongation: Fluid-to-kinetic via reconstruction using moment-closures

Future work: Problems where kinetic solver is not needed globally
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