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Abstract

A uniform water or feed consumption pattern is required for assessment of changes in pig
health and well-being. Water consumption rate was measured and monitored continuously
in pigs from 4 to 11 weeks of age. The study comprised three herds and 18 batches of
pigs each with 400-900 animals. The management system was “all-in all-out”. Water con-
sumption was measured electronically and data were transferred to a computer for time
series analysis. Management interferences such as change of diet and treatment of pigs
were recorded daily in a log book. The results indicated that water consumption was asso-
ciated with a distinct circadian rhythm. Water consumption rate peaked between 4 and 6
pm and was lowest between 3 and 5 am regardless of herd and housing system. The cir-
cadian pattern persisted throughout the growing period while total water consumption rate
increased.

The pigs showed a very stable diurnal drinking pattern as long as they were healthy
whereas the pattern often changed when the pigs were affected by a disease.

A method using a state-space model in conjunction with a Cusum control chart is pre-
sented as a tool for on-line monitoring of young pigs, based on the water consumption.
By an example it is shown that an outbreak of a disease (diarrhea) can be detected by the
monitoring method approximately one day before physical signs are seen on the pigs.
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1 Introduction

Management decisions while taking care of pigs are frequently based on subjec-
tive judgments. Normally, such decisions derive from a combination of information
sources including visual observations of pigs (e.g. aggression) and pens (e.g. signs
of diarrhea), or other senses (e.g. temperature) as well as results from monthly or
quarterly performance records.

Outbreak of a disease such as diarrhea often spreads fast within a group of pigs, and
if it is not detected and treated immediately the outcome might be losses in terms
of reduced growth rate and increased mortality. Similarly, poor feed quality might
result in lower growth rate and poor feed conversion.

Because of the general trend towards larger herds and more animals managed per
person there is little time available for observing individual animals in weaning
and finishing units. Formerly, when daily caretaking was associated with manual
feeding and mucking out more time was spent among the animals, which increased
the chance of detecting outbreak of disease or other problems.

Modern pig housing includes fully slatted flooring, automatic climate control, and
automatic feeding and watering, which allow the caretaker to manage a large num-
ber of animals. Theoretically, labour saving equipment should increase time avail-
able for inspection and supervision of animals. However, in commercial practice
improved technology has meant that time spent on manual labour has been con-
verted to more animals managed per person. According to data from the Danish
Agricultural Advisory Service, the average labour input being only 10-12 min per
finishing pig produced. Therefore, it is important that time available for inspection
is devoted to those animals that are at risk of being infected with disease or exposed
to stressors. The problem is to determine the risk level or health status of various
groups of pigs. Of course, the manager might have some prior knowledge, i.e. for
instance, that certain disease outbreaks appear at a given stage of the production
period. However, it must be assumed that some kind of guidance might be helpful
as to where to concentrate management efforts. Thus, it has been suggested that
automatic monitoring systems and use of time series analysis might be promising
management tools (Frost et al., 1997; Bird and Crabtree, 2000; Bird et al., 2001).
Yet, surprisingly few attempts have been made in terms of using such methods in
modern pig production.

There is general agreement that animal well-being might be measured indirectly
using indicators such as animal behaviour (Smidt, 1983). Changes in eating and
drinking patterns are usually the first visual signs that pigs are experiencing en-
vironmental stress. Eating patterns in pigs have been reported in several studies
(Slader and Gregory, 1988; Nienaber et al., 1991; Xin and DeShazer, 1992; Young
and Lawrence, 1994; Hyun et al., 1997). A common finding was that the eating pat-



tern is characterized by a distinct diurnal rhythm. Bigelow and Houpt (1988) have
shown that pigs’ drinking behaviour is closely correlated to their feed consumption
which leads to the hypothesis that changes in pig health that affect feed intake also
impinge on water intake and thus drinking behaviour. This leads to the idea of us-
ing statistical quality control for monitoring the pigs’ water consumption in order
to detect when they change their behaviour.

Statistical quality control methods are quite commonly used in the manufactur-
ing industry (see e.g. Montgomery (1996)), but more rarely in animal husbandry.
However, a few examples exist, e.g. monitoring daily milk yields in dairy cows
(Van Bebber et al., 1999), detection of oestrus and disease in dairy cattle based on
time series analysis (de Mol et al., 1999); detection of changes in feed consumption
in broilers (Roush et al., 1992) and detection of changes in daily milk production
in cows (Thysen, 1992). Common for all these monitoring systems are that they: 1)
incorporate an automatic method for collection of production traits, and 2) include
an adequate model for analysis of the collected data.

Modern computer technology has extended the possibilities of real-time monitoring
at the farm level. Process computers, known from factory automation, used together
with electronic water flow-meters can easily be set up at farm level to provide real-
time data of water consumption on a PC. The real challenge lies in processing
the recorded data in order to achieve as much information as possible. Monitoring
production traits is often difficult because of random as well as more systematic
variation in responses, which may complicate the interpretation of data.

The basic problem is to detect change-points in a sequence of discrete sums of
water consumption. There is much literature on change-point problems, see e.g.
Christensen and Rudemo (1996) and Csorgdé and Horvath (1988) for discussion
of different methods. In our case the change-point problem is complicated by the
dynamic aspects of data. The time series exhibit varying diurnal patterns as well as
unpredictable growth rates in the overall level and there is very little, if any, prior
information at the beginning of a time series.

The objective of this paper is to develop a method for monitoring the condition
of young pigs by measuring their water intake at a real-time basis. The method
combines Bayesian modelling with a traditional statistical quality control model,
namely the Cusum control chart. A similar approach is seen in Iwersen (1997). The
method is intended to be used as part of a computer-based monitoring system ! for
pig farms.

1 The FarmWatch™ system.



Table 1

Production conditions were almost identical on farm A and farm B, with relatively small
pens and slatted floors, whereas farm C had much larger pens with deep litter. There were
twice as many pigs per drinking bowl on farm C as compared to farms A and B.

Farm A Farm B Farm C
Pens per section 12 24 4
Pigs per pen 35 30 250
Number of sections in study 2 1 1
Flooring Partly slatted Partly slatted  Deep litter
Feeding system Tube feeder = Tube feeder Tube feeder
Feeding regimen Ad lib Ad lib Ad lib
Pigs per drinking bowl 17 15 30

2 Materials

Water consumption was measured in 18 batches of 4-wk- to 11-wk-old pigs on
three commercial farms. One of the farms participated with 2 sections whereas
the others participated with one section each. Each batch of pigs originated from
the same weaning. Pigs were housed in rooms comprising 400-900 animals, which
were managed all in all out. On all three farms, pigs were fed a standard cereal-soy
diet according to Danish feeding standards, and in all cased, water was provided by
automatic drinking bowls. Production conditions are shown in Table 1.

Electronic water flow-meters were installed in four weaning sections for measure-
ments of water disappearance, as illustrated in Figure 1.

Water consumption was recorded at 2 min intervals as whole litres consumed. All
data were logged every two minutes and stored in a local process computer. Every
24 hours data were transmitted to a central database by means of a modem link.
In addition, the farm staff recorded any action such as treatment of sick animals,
change of feed, removal of dead animals, etc., in a log book.

Electronic recording and log book data were arranged batchwise. A single data
set contained about 36000 observations and 50 log book pages. Due to technical
problems only 12 time series out of 18 batches were complete.

Water consumption in a batch of 300-900 pigs can be regarded as a continuous
process, but for practical reasons the flow has been measured in discrete intervals.

An example of the 2 minute sums of water consumption for a batch of 350 pigs 29
days after weaning is shown in Figure 2. The figure reflects the fact that the water
consumption is measured as the number of whole litres consumed in a period of
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Fig. 1. Water and feed disappearance, temperature and relative humidity were monitored
electronically. Data were transferred to a computer database for processing. In this study
only data on water consumption was used.
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Fig. 2. An example of 2-minute observations of the water consumption for a group of 350
pigs, 29 days after weaning.

2 minutes. The density of the points in the plot indicates a non-constant drinking
behaviour during the day.

The primary aim of the data recording was to investigate whether the pigs’ drinking
pattern can be used as an indicator of their health condition. The first requirement
is that data somehow repeat themselves, that is, we should be able to formulate a
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Fig. 3. The 2-minute observations, shown in Figure 2, are aggregated to 60-minutes sums.

well-founded expectation for each observation. From Figure 2 it is obvious that the
2 minute sums contain a lot of random noise. To diminish the effect of the ran-
dom noise, and to make data easier to handle, the 2 minute registrations have been
aggregated. Aggregation implies loss of information so it is desirable not to aggre-
gate data to much. An evaluation of 20 minutes, 1 h and 4 h summation intervals
revealed that a 1 h interval provided the best compromise between being able to
handle data in a model and not losing too much information. The 1-hour sums of
water consumption show a much more stable pattern (Figure 3). The drinking pat-
terns of the young pigs were almost identical in all four sections (and thus also all
three farms), despite the fact that there were considerable differences in the hous-
ing systems as shown in Table 1. The recorded data can be characterized by the
following properties (Madsen et al., 2005):

e The level of water consumption increases as the pigs grow.

e The daily drinking pattern is stable in a normal situation.

e Data contain some random noise because of biological variation and measure-
ment errors.

A monitoring method designed to fit the characteristics of the water consumption
data will be presented in the following section.

3 Method

In the 1920s, Walter Shewhart developed a number of business production analysis
techniques, which were designed to detect changes in the quality of the output from
continuous production processes (see Montgomery, 1996, Chapter 4). Statistical
Process Control (SPC), or quality control, is widely used in many industries to
facilitate objective evaluation of business operations and production processes. SPC
is used to monitor the level of a production trait, and to give a notification when the
level changes beyond some predefined limit. The basic control charts are designed



to monitor a process that is expected to be constant, although it allows for some
random fluctuation. Monitoring the water intake of growing pigs is somehow more
complicated since the expected level of the process is not at all constant.

Consider the water intake as a stochastic observable process that we want to mon-
itor. We do have some idea of how the observable process will evolve as the water
intake is basically an effect of the latent physiological processes in the pigs. As de-
scribed in Section 2, the dynamic nature of the recorded data on water consumption
does not conform to the "constant process" assumptions on which the control charts
are based. Therefore the time series of water consumption needs to be transformed
somehow to fit into the SPC framework. Another problem is that the observed time
series contains some random noise, as described in Section 2.

Data are modeled by means of a Dynamic Linear Model (DLM), which is well
suited to model the dynamic/cyclic evolution in data, described in Madsen et al.
(2005). The model is defined by superposition of a linear growth model and a cyclic
model with period 24 (24 hourly sums), where the cyclic model itself is also con-
structed by several sub models. By using this principle, it is possible to split the
fitted model up into a level component and a cyclic component, as it will be shown
in Section 4.3.

Usually, the DLLM is used as a tool for making forecasts, based on prior knowledge
including former observations. In this framework, the DLM is used to make a pre-
diction of the water consumption one step ahead in time as described in detail by
Madsen et al. (2005). The difference between the one step forecast at time ¢ — 1
and the observation Y; is then used as a measure of the deviation from the "normal”
level of water consumption. The deviation or forecast error can be considered as
an independent random error term with zero mean as long as the process model is
valid. If, on the other hand, the pigs change their drinking behaviour, data will no
longer conform to the model predictions, and the numerical value of the forecast
errors will increase. For details about how to calculate the forecast, reference is
made to West and Harrison (1997, pp 103-104).

For practical purposes, one has to distinguish between deviations from the normal
drinking behaviour caused by a change in the growth rate of the pigs, and deviations
caused by a disease that implies increased/decreased water consumption. The latter
is illustrated in figure 4, which shows the sum of standardized forecast errors from
the DLM, based on a batch of weaners having had a serious outbreak of diarrhea
within the first 20 days after weaning. The outbreak was detected on day 11 when
all the pigs were treated with antibiotics for a period of 5 days. It clearly appears
from the figure that the sum of forecast errors increases radically 1-2 days before
the disease is detected, indicating a systematic deviation between data and model.
This pattern has been found in almost all of the time series where outbreak of
diarrhea has been reported.
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Fig. 4. (a) A sequence of one-hour sums of water consumption for a group of weaners.
Outbreak of diarrhea is detected by the caretaker at the end of day 11, but increasing water
intake was evident already on day 9. (b) Sum of standardized forecast errors from the DLM.

The monitoring concept described below is based on a DLM used in conjunction
with a cumulative-sum or Cusum control chart. The idea is to make a forecast at
each time ¢ of the level of the next observation at time ¢ + 1, based on all the former
observations Yy, . .., Y;. Then the Cusum control chart is applied to detect when the
time series of forecast errors deviates from the zero level.

3.1 Cusum charts

The cumulative-sum (or Cusum) control chart directly incorporates all the infor-
mation in a sequence of sample values. The Cusum can be used to detect when a
process deviates from a given target value. If the forecast f; from the DLM is the
target for a process mean, the cumulative-sum control chart is formed by plotting
the quantity

)

Si=> (Y= fo) )

t=1
against the sample number 7 (Montgomery, 1996).

If the process remains in control, the cumulative sum S; should fluctuate stochasti-
cally around zero. However, if the underlying mean of the process changes, either
upwards or downwards, it will affect the cumulative sum in a positive or negative
direction. Therefore, if a trend develops in S; it should be considered evidence that
the process mean has shifted. The key issue of the Cusum technique is to detect
when the sum S; starts to drift. Two representations of the Cusum have been con-
sidered, the tabular Cusum and the V-mask form of the Cusum. The tabular Cusum
(Montgomery, 1996) is calculated as separate upper and lower one-sided Cusums.
The tabular upper Cusum works by accumulating deviations from zero that are
above the target, and the lower Cusum accumulates the deviations that are below
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Fig. 5. The cumulative-sum control chart. (a) The V mask and scaling. (b) The cumulative—
sum control chart in operation.

the target. When the sum of accumulated deviations exceeds a given threshold the
process is said to be out of control.

The V-mask version of the Cusum (see e.g. Barnard (1959)) is based on the princi-
ples shown in Figure 5. The decision procedure consists of placing the V-mask on
the cumulative-sum control chart with the point O on the last value of S;. If all the
previous cumulative sums, S7, S, . .., S;_1 lie within the two arms of the V-mask,
the process is considered to be in control. But if the sum .S; at any time lies outside
the arms of the V-mask the process is considered to be out of control.

Both methods have been considered and despite the fact that Montgomery (1996)
advises not to use the V-mask Cusum for quality engineering use, the method has
been chosen for our monitoring purpose. For the practitioner it is important to be
able to distinguish between a drift in the sum of forecast errors caused simply by
the pigs growing, and a shift caused by a sudden problem such as outbreak of a
disease. This can, to some extent, be seen as long vs. short term control. In Section
3.1.1 it is mentioned how one can distinguish between long and short term with the
V-mask version of the Cusum.

See e.g. Page (1954), Johnson and Leone (1974) and Lucas (1976) for a further
description of the Cusum control charts.

3.1.1 Design of the V-mask

The V-mask can be defined by the lead distance d, the distance between the origin
and the vertex (i.e. the intersection of the two “arms” of the mask), as shown in
Figure 5 (a) and the angle ¢/ defined as half of the angle formed by the V-mask
arms. The setting of the lead distance can be interpreted as the model’s sensitivity



to short term changes while the angle of the arms determines how much (long term)
drift can be accepted.

This way of specifying the Cusum is used by, e.g. Johnson and Leone (1974) and
Montgomery (1996). The latter suggests choosing

_ 2y f

d= () In(~—>) @)
and

V= tan‘1($4> 3)

where « is the probability of incorrectly concluding that a shift has occurred (a
false alarm), (5 is the advertised probability of failing to detect a shift, and A is the
shift that it is desired to detect. The term § = % is the magnitude of the standard
deviation shift that we wish to detect where o is deviation of the process, in this
case, the forecast error produced by the DLM . Montgomery (1996) recommends
that A lie between o and 20.

Since the model forecast errors are used as an indicator of model collapse and the
control facility, the Cusum, is designed to monitor on a fixed scale, it is important
that a forecast error of a given numerical size indicates the same degree of insta-
bility in the health condition of the pigs. In weaner production, the average daily
water consumption per pig increases from approx. 1 litre to 4 litres per day dur-
ing the 50 days’ production period, implying that the average level of the recorded
water consumption data increases by a factor of 4. A logical consequence is that a
deviation in water consumption at the beginning and at the end of the period, which
is identical on a relative scale, will deviate numerically by a factor of 4. Another
problem is that there are large differences in the number of animals contributing
to the recorded sum of water consumption differs a lot among different housing
systems.

Since the variance of the forecast error is expected to vary considerably, the de-
sign of the V-mask is complicated. To overcome this problem it seems obvious to
transform the forecast errors to a relative scale, which can be done simply by using
standardized instead of absolute errors. The standardized forecast error has expec-
tation 0 and, of course, variance 1, which simplifies the scale factor A to lie in the
interval 1 — 2. The specific values of the parameters A, o and 5 depend on how
much the accumulated forecast error should deviate from zero before one can say
that there is a problem with the pigs’ health condition. This issue is considered in
section 4.
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4 Illustration

In the preceding section the focus has been on the theoretical structure of the model.
In this section, the model’s ability to give warnings in critical situations is illustrated
by a data set from one of the farms that joined the experiment. The data set was
chosen for the following reasons

The time series is complete, i.e. there are no missing values.

It contains a sequence where outbreak of diarrhea has been detected.
It contains a sequence where the pigs have been stressed.

It contains a sequence where the pigs have been without feed.

Data were recorded from a batch containing 405 piglets, starting on the day of
weaning (the average age was 28 days). The data recording continued until the
piglets left the production unit after 50 days.

4.1 Setup of the V-mask

As described in Section 3.1.1, the sensitivity of the Cusum depends on the size
of the shift in forecast error that it is desired to detect (deviation from zero), the
advertised probability of incorrectly concluding that a shift has occurred and the
probability of failing to detect a shift. The more sensitive we want the model to be,
the higher is the risk of getting a false alarm. We decided to accept 1 % probability
for false alarms and 1 % probability for failing to detect a shift. As mentioned in
Section 3.1.1 the scale factor A is expected to lie in the interval 1 — 2. The choice
of A has an influence on the slope of the arms in the V-mask and thereby on the
sensitivity of the Cusum (higher values of A narrow the gap of the V-mask). The
initial analysis was carried out with the following setup:

The probability of incorrectly concluding that a shift has occurred, o = 0.01.
The probability of failing to detect a shift, 3 = 0.01.

The shift that it is desired to detect, A = 1.5.

The scale factor A = 1.

With § = % = L5 = 1.5, the lead distance is

2 1-B 2 1-001,
d= o) = (2 mE =00 4o @
and A
P = tan_l(ﬂ) = = tan_l(m) = 36.9° (5)

These values are rounded to d = 4 and ¢ = 37°.
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4.2 Setup of the DLM

Some aspects of the DLM have to be considered. In Madsen et al. (2005) the op-
timization of model settings was performed on the basis of one particular data set
which was chosen as representative for the recorded time series. It was discussed
how many harmonic components should contribute to the cyclic part of the model
and it was found that a model with 3 harmonics performed best. The optimal set-
tings of the discount factors were o7 = 0.98 and dg = 0.97 (the discount factors
express the rate of decay of information).

To review the robustness of these optimal settings, the optimization procedures de-
scribed in Madsen et al. (2005) have been applied to the 12 complete time series
described in Section 2. Almost all the time series contained sequences with abnor-
mal data due to different causes, for instance data set no 9 has a 20-hour sequence
with observations 4 times as high as usual because of a leak in the water pipe.
Most of the other irregularities were caused by changing conditions for the pigs,
e.g. gastro-intestinal disorders, blockage of feeders, movement of pigs or tail-biting
(such events were recorded by the staff in the log book).

Table 2 shows the results of MSE (mean square error) calculations using the DLM’s
with linear growth and a cyclic sub model containing from 3 to 9 harmonic compo-
nents (MSE-calculations were made with models containing from 1 to 12 harmonic
components). The different models always contain harmonics with the highest pos-
sible period, so for instance, in the DLM containing 3 harmonic components, the
harmonics have periods 24, 12, and 8 respectively. It appears that for 7 of the time
series the DLM with 4 harmonic components is the one that provides the lowest
value of MSE. It should be noted that the 4 time series needing more than 4 har-
monic components to describe the diurnal drinking pattern are all recorded during
the winter, whereas the other 8 series are recorded in the summer. This could indi-
cate that the characteristics of pigs’ drinking behaviour might depend on the time of
year, although further research is needed before any conclusions can be drawn on
that issue. For the rest of the analysis we will use the model containing 4 harmonic
components.

The optimal settings of the two discount factors were determined by minimizing
MSE for each data set and each model in the same way as described in Madsen et al.
(2005). The discount factor for the trend sub model, d, varies in the interval from
0.88 to 0.98, whereas the discount factor for the cyclic sub model, dg, varies from
0.94 to 0.98. These levels are in good agreement with Madsen et al. (2005), where
it is shown by an example that the predictive performance of the DLM is more sen-
sitive to changes in dg than it is to changes in 0. The data sets with low estimates
of o7 and dg are typically the ones with many irregular sequences, which appears
from the relatively high MSE-values. Low values for the discount factors increase
the system variance, W, which implies that the model becomes more adaptive to

12



Table 2

Mean square error, MSE, values, from DLMs with 3-9 harmonic components, calculated for
the 12 time series. For 7 of the series, the model with 4 harmonics provides the lowest value
of MSE. High level of MSE values is caused by unpredictable time series. The extreme
values from data set number 9 are due to a 20-hour sequence with observations that were 4
times higher than normal because of a leak in the water pipe.

Optimal
Data set Number of harmonics discount factors

3 4 5 6 7 8 9 or s

1 127 100 97 95 99 102 106 0.91 0.98
2 142 131 105 98 97 95 98 0.96 0.97
3 118 106 109 114 118 124 135 0.88 0.96
4 115 72 66 47 48 51 59 0.98 0.97
5 40 40 41 41 42 43 44 0.98 0.97
6 135 130 134 141 148 155 164 0.89 0.94
7 789 742 703 715 720 734 747 0.93 0.95
8 581 569 570 582 603 622 646 0.93 0.95
9 2280 2228 2333 2440 2549 2689 2843 0.88 0.94
10 447 445 446 464 483 508 534 0.89 0.94
11 406 358 369 387 406 425 444 0.88 0.95
12 547 543 547 561 579 603 628 0.92 0.95

abrupt changes in data. Especially low values of 47 make the model fit sudden level
changes. But since we want the model to reflect level changes in data by forecast
errors, the response obtained with low values of dr is not desirable. Therefore the
settings 07 = 0.98 and dg = 0.97, found on the regular data set (number 5 in Table
2), are recommended for practical use.

In Madsen et al. (2005), the inclusion of a quadratic growth term in the DLM was
discussed. The quadratic model was shown to be much more adaptable to changes
in the level of water consumption as compared to the model with only a linear
growth term. It seems obvious that the quadratic growth model is the optimal choice
if one wants to use the model for accurate step ahead predictions, no matter how the
drinking pattern evolves. But when the DLM is used in the context of a monitoring
system for detection of deviations from the normal behaviour, it should not adapt
to sudden changes in growth rate, i.e. it is the deviation between data and model
predictions that is of interest. The problem is illustrated in the following example:
A sequence of water consumption data with changing pattern on day 9 (caused by

13
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Fig. 6. Observations (connected with a solid line) and one-hour forecasts from the DLM
with only linear growth between time steps (model with 12 harmonics). The model is rather
slow in adapting to the new pattern, which was caused by an outbreak of diarrhea resulting
in irregular drinking behaviour is well reflected in the sum of forecast errors.
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Fig. 7. Observations (connected with a solid line) and one-hour forecasts from the DLM
with quadratic growth between time steps (model with 12 harmonics). The model adapts
quickly to the new pattern, and the increased water intake is not reflected as clearly as with
the linear growth model.

outbreak of diarrhea), is evaluated by the model with only linear growth (Figure
6) and by the model containing a quadratic growth term (Figure 7). Both models
contain all 12 harmonics.

The linear model is rather slow in adapting to the new pattern. The effect of the
slow response is that the irregular drinking behaviour is well reflected in the sum of
forecast errors. The quadratic model, on the other hand, adapts quickly to the new
pattern, and the increased water intake is not reflected as clearly as with the linear
growth model, therefore, the linear growth model is preferred since the purpose of
monitoring is to detect changes in the drinking pattern.
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4.3 Application of the model

With the setup described above, the Cusum has been applied to the series of forecast
errors from the DLM. Each time an out-of-control alarm is issued, the sum is reset
to zero.

100 -
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Fig. 8. Sum of forecast errors. An alarm is issued because of deviating drinking pattern
at point (A). Outbreak of diarrhea is detected and treated at point (B). Under the circum-
stances, the sum would have been reset to zero at point (A), but for illustration of the course
it been omitted.

Figure 8 shows a sequence of forecast errors from a batch of piglets with an out-
break of diarrhea. When the V-mask is applied to the sum of forecast errors, it
reaches the threshold where the process is considered out of control at the point
that corresponds to 11 pm on day 9 after weaning (the resetting to zero is not
shown in the figure). The disease was detected by the caretaker at 8 am on day
11 (the caretaker did not have access to the monitoring system). In this case, the
monitoring method provided information of the disease 33 hours before it was ac-
tually detected. Of course, since there was no visual inspection of the pigs between
4 o’clock in the afternoon and 8 o’clock the next morning, visual symptoms of the
disease could have been present somewhere in that time interval. But evidently,
symptoms were not present at 4 pm on day 10 and it can thereby be concluded that
the monitoring system, in this case, reacted at least 17 hours before visual symp-
toms occurred.

Another example (Figure 9) shows the level component from the DLM for a 48-
day production period of piglets. The vertical bars indicate the alarms issued by
the monitoring system. The alarms on day 4 and day 9 are caused by an outbreak
of diarrhea. The huge deviations in the level of water consumption around day 39
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Fig. 9. The alarms from the Cusum are shown as bars together with the level component
from the DLM. The alarms on day 4 and day 9 are caused by an outbreak of diarrhea. The
huge deviations in the level of water consumption around day 39 and day 40 are due to a
12-hour stop in the automatic feeders, whereas there is no explanation of the alarm on day
41. On day 44, formic acid was added to the drinking water, and finally on day 48, the pigs
were taken out of the compartment.

and day 40 are due to a 12-hour stop in the automatic feeders, whereas there is no
explanation of the alarm on day 41 (unless it is a delayed consequence of the feed
stop). On day 44, formic acid was added to the drinking water, and finally on day
48, the pigs were taken out of the compartment.

5 Discussion

Although this study is only based on 12 time series, it strongly indicates that moni-
toring young pigs’ drinking behaviour can provide useful information for managing
the production as suggested by Bird and Crabtree (2000). The method for monitor-
ing the drinking behaviour of young pigs, based on a combination of a dynamic
linear model and a Cusum control chart, has proved to be a useful tool in detection
of diseases and other production related problems that affect the pigs’ water intake.

The approach has been to pose a model that fits the normal pattern of growing
pigs and then to detect when data depart from the model. The method gives sim-
ple information: alarm/no-alarm at each time step, combined with the information
on whether the alarm is caused by an increase or a decrease in the observed time
series. An alarm does not give information on which problem caused the deviating
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drinking behavior, but in combination with the caretaker’s knowledge of the prob-
lems that are common at a given stage of the pigs’ life cycle, he should often be
able to point out the possible causes. If, for instance, it is usual in a given herd to
see outbreaks of diarrhea occurring 3-7 days after weaning and there is an alarm
for increasing water consumption on day 5, it is likely that treatment should be
considered.

Other approaches for detection of changes in the drinking behaviour could have
been chosen. Thysen (1992) modeled the level of somatic cell count in milk by
using a multi-state dynamic linear model. The model had three possible states: nor-
mal level, an outlier, or a change of level. For each time step, the probability was
calculated for the three models and systematic changes in level were indicated by
high probability on the level shift model. The multi-state approach is not straight-
forward in our case since the deviation from the normal model cannot be described
only by one single (level shift) model. Deviations can be caused by changes in the
diurnal pattern with a steady overall level or by changes in the level with steady di-
urnal pattern. Sometimes changes are seen as increased water consumption at night
but unchanged consumption during the day. As a consequence, a multi-state model
would have to contain a number of competing submodels and they would all have
to be quantified in terms of their specific way of deviating from the normal model.
The multi-state model might, on the other hand, give more detailed information on
the kind of changes in the pigs’ behaviour when there is a problem.

Indoor temperature was recorded as supplementary registrations for all the time
series, to estimate the effect of high temperature on water consumption. But the
temperature never exceeded 28 C within the period of data recording, and below
that temperature there was no effect on the drinking behaviour. However, it is likely
that temperatures above 28-30 C will have some effect on the drinking pattern, and
if that is the case, the effect should be incorporated as a regression effect in the
dynamic linear model.

The specification of prior distributions is necessary to initialize the model. If there
is no information available except the time series itself, the model can be initialized
by means of reference analysis. Reference analysis uses the first observations of
the series in question to estimate the parameters. For practical purposes the method
uses an observation for each of the model parameters (including V') to obtain a fully
specified joint posterior distribution of the parameters. During the reference analy-
sis, it is assumed that the system variance is zero (i.e. W; = 0), non-zero matrices
would allow for change, which cannot be estimated since any changes in a param-
eter is impossible to detect before an estimate of the parameter exists. A detailed
description of the estimation method can be found in West and Harrison (1997) pp
128-136. The use of dynamic linear models with "batch-specific" parameters, ini-
tialized by reference analysis, makes it possible to formulate a general model that
applies for all batches even though there are differences in the daily drinking pat-
tern. The only task is to determine the number of harmonic components that should
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be included in the model and the setting of the discount factors. A model with 12
harmonics contains enough parameters to describe any diurnal pattern, but if the
structure of a specific drinking pattern can be described with less harmonics, the
spare ones only provide unnecessary noise in the model. It has been shown that the
optimal model for 8 of the 12 time series contained 4 or less harmonics, but general
recommendations on this issue should be based on more data than were available
for this study.

It should be noted that the data sets contain several sequences with deviating drink-
ing behaviour for which there are no explanation, i.e. nothing is reported in the log
book. This should not, however, be regarded as poor performance by the model, but
rather as an indication of the fact that the pigs have been affected by a kind of stres-
sor that has not been observed by the caretaker. The exact number of such alarms
without explanation will depend on the settings of the V-mask. In other words, if
the manager thinks that the system issues too many alarms, the settings may be
adjusted.

The described model for monitoring the behaviour of pigs produced in "all-in-
all-out" operations seems to have great potential for practical implementation. A
warning system monitoring each batch at farm level would improve the caretaker’s
opportunity to concentrate the efforts on those housing units where the pigs show
deviating behaviour. The possibility of detecting outbreak of diseases like diarrhea
before any visual signs are seen gives potential for reduced use of medicine as well
as improved productivity.

6 Conclusion

The present study indicates that pigs’ water consumption is characterized by a dis-
tinct circadian pattern, which is a prerequisite for utilizing drinking behaviour for
detection of production and health in growing pigs.

The system for monitoring the drinking behaviour of young pigs based on a com-
bination of a dynamic linear model and a Cusum control chart has proven to be a
useful tool in modelling water consumption rate in pigs including forecasts of al-
tered water intake. The method utilizes the fact that pigs’ diurnal drinking pattern is
stable as long as they are healthy while they often change their drinking behaviour
when they are affected by a disease or a stressor. Information of this kind might
alert the caretaker that intervention is needed in a specific pig building for preven-
tion of diseases and stressors. No systematic investigation has been conducted to
identify what diseases lead to changes in the pattern of water consumption, but an
example has shown that an outbreak of a diarrhea can be detected by the method
approximately one day before physical signs are seen on the pigs.
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