
A Model of Stateful Firewalls and its Properties

Mohamed G. Gouda and Alex X. Liu1

Department of Computer Sciences,
The University of Texas at Austin,
Austin, Texas 78712-1188, U.S.A.

Email: {gouda, alex}@cs.utexas.edu

Abstract

We propose the first model of stateful firewalls. In this
model, each stateful firewall has a variable set called the
state of the firewall, which is used to store some packets
that the firewall has accepted previously and needs to re-
member in the near future. Each stateful firewall consists of
two sections: a stateful section and a stateless section. Upon
receiving a packet, the firewall processes it in two steps. In
the first step, the firewall augments the packet with an ad-
ditional field called the tag, and uses the stateful section to
compute the value of this field according to the current state
of the firewall. In the second step, the firewall compares
the packet together with its tag value against a sequence of
rules in the stateless section to identify the first rule that the
packet matches: the decision of this rule determines the fate
of the packet. Our model of stateful firewalls has several
favorable properties. First, despite its simplicity, it can ex-
press a variety of state tracking functionalities. Second, it
allows us to inherit the rich results in stateless firewall de-
sign and analysis. Third, it provides backward compatibil-
ity such that a stateless firewall can also be specified using
our model. This paper goes beyond proposing this state-
ful firewall model itself. A significant portion of this paper
is devoted to analyzing the properties of stateful firewalls
that are specified using our model. We outline a method for
verifying whether a firewall is truly stateful. The method
is based on the three properties of firewalls: conforming,
grounded, and proper. We show that if a firewall satisfies
these three properties, then the firewall is truly stateful.

1 Introduction

Serving as the first line of defense against unauthorized
and potentially malicious traffic, firewalls have been widely

1Alex X. Liu is the corresponding author of this paper.

deployed in most businesses and institutions for securing
private networks. A firewall is placed at the point of entry
between a private network and the outside Internet so that
all incoming and outgoing packets have to pass through it.
The function of a firewall is to map each incoming or out-
going packet to one of a set of predefined decisions, such as
accept or discard. Based on how a decision is made for ev-
ery packet, firewalls are categorized into stateless firewalls
and stateful firewalls. If a firewall decides the fate of every
packet solely by examining the packet itself, then the fire-
wall is called a stateless firewall. If a firewall decides the
fate of some packets not only by examining the packet it-
self but also by examining the packets that the firewall has
accepted previously, then the firewall is called a stateful fire-
wall. Using a stateful firewall to protect a private network,
one can achieve finer access control by tracking the commu-
nication state between the private network and the outside
Internet. For example, a stateful firewall can refuse to ac-
cept any packet from a remote host to a local host unless the
local host has previously sent a packet to the remote host.

Although a variety of stateful firewall products have
been available and deployed on the Internet for some time,
such as Cisco PIX Firewalls [4], Cisco Reflexive ACLs [5],
CheckPoint FireWall-1 [3] and Netfilter/IPTables [13], no
model for specifying stateful firewalls exists. The lack of
such a model constitutes a significant impediment for fur-
ther development of stateful firewall technologies. First,
without a model, it is difficult to conduct research on state-
ful firewalls. This explains why so little research on state-
ful firewalls has been done so far. In contrast, benefit-
ing from the well-established rule based model of stateless
firewalls, the research results for stateless firewalls have
been numerous. People have known how to design state-
less firewalls [2, 7, 8, 10] and how to analyze stateless fire-
walls [1, 6, 9, 11, 12, 16]. But the question of how to design
and analyze stateful firewalls remains unanswered. Second,
because there is no specification model for stateful firewalls,
in existing stateful firewall products, state tracking func-

tionalities have been hard coded and different vendors hard
code different state tracking functionalities. For example,
the Cisco PIX Firewalls do not track the state for ICMP
packets. Consequently, it is hard for the administrator of
such a firewall to track the Ping [14] protocol. Last, without
a specification model, it is difficult to analyze the properties
of stateful firewalls. For example, it is difficult to analyze
the properties of existing stateful firewalls because some of
the functions of these firewalls are hard coded while others
are specified by their administrators. All in all, a specifica-
tion model for stateful firewalls is greatly needed.

In this paper, we propose the first stateful firewall model.
In our firewall model, each firewall has a variable set called
the state of the firewall, which is used to store some pack-
ets that the firewall has accepted previously and needs to
remember in the near future. Each firewall consists of two
sections: a stateful section and a stateless section. Each sec-
tion consists of a sequence of rules. For every packet, the
stateful section is used to check whether the state has a pre-
vious packet that may affect the fate of the current packet.
To store this checking result, we assume that each packet
has an additional field called the tag. The stateless section
is used to decide the fate of each packet based on the infor-
mation in the packet itself and its tag value.

Our stateful firewall model has the following favorable
properties. First, it can express a variety of state tracking
functionalities. Using a set of packets to record communi-
cation state provides a great deal of flexibility in expressing
state tracking functionalities since the state of a communi-
cation protocol is characterized by packets. In a sense, our
stateful firewall model captures the essence of communica-
tion states. Second, because we separate a firewall into a
stateful section and a stateless section, we can inherit the
existing rich results in designing and analyzing stateless
firewalls because a stateless section alone is in fact a full-
fledged stateless firewall. Third, our model is simple, easy
to use, easy to understand, and easy to implement. Last, our
model is a generalization of the current stateless firewall
model. Although our model is intended to specify stateful
firewalls, it can also be used to specify stateless firewalls,
simply by leaving the stateful section empty and keeping
the state empty.

This paper goes beyond proposing the stateful firewall
model itself. A significant portion of this paper is devoted to
analyzing the properties of stateful firewalls that are spec-
ified using our model. We outline a method for verifying
that a firewall is truly stateful. The method is based on three
properties of firewalls: conforming, grounded, and proper.
We show that if a firewall satisfies these three properties,
then the firewall is truly stateful.

The rest of this paper proceeds as follows. In Section
2, we introduce the syntax and semantics of our firewall
model. In Section 3, we give two examples of stateful fire-

walls that are specified using our model. In Section 4, we
discuss how to remove packets that are no longer needed
from the state of a firewall. In Section 5, we study the issues
related to firewall states. In Section 6, we present a method
for verifying that a firewall is truly stateful. In Section 7,
we give concluding remarks.

For simplicity, in the rest of this paper, we use “firewall”
to mean “stateful firewall” unless otherwise specified.

2 Firewall Model

In this section, we introduce our firewall model through
an example of a simple firewall that resides on the gateway
router depicted in Figure 1. This router has two interfaces:
interface 0, which connects the router to the outside Inter-
net, and interface 1, which connects the router to a private
network.

C ISC OS Y ST EM S

 0 1
Internet

Mail Server
(IP: 192.1.2.3) Host 1 Host 2

Firewall
(Gateway Router)

A private network

Figure 1. A firewall for a private network

This firewall tracks the Ping protocol (Packet Internet
Groper Protocol) [14] to counter “smurf” attacks. The Ping
protocol is used by a host to determine whether another host
is up. When a host A wants to test whether a host B is up,
A sends to B a series of ICMP (Internet Control Message
Protocol) ping (i.e., echo request) packets. All of these ping
packets have the same ID but different sequence numbers.
When B receives from A a ping packet with ID x and se-
quence number y, B sends back to A a pong (i.e., echo
reply) packet with the same ID x and the same sequence
number y. The “smurf” attack, a type of Denial of Service
attack, works as follows. An attacker sends a ping packet,
whose source IP address has been forged to be the IP ad-
dress of a victim host, to the broadcast address of a subnet-
work. Subsequently, every host on the subnetwork will send
a pong packet to the victim host.

One way to counter “smurf” attacks for a private network
is to use a firewall to discard every incoming pong packet
unless the packet corresponds to a previous ping packet sent
from the private network. Suppose that we want to config-
ure the firewall in Figure 1 in such a fashion. When a pong
packet arrives, the firewall needs to check whether it has

2

Stateful Section:
R1 : I ∈ {0} ∧ P ∈ {icmp} ∧ T ∈ {pong} ∧ S = D′ ∧ D = S′ ∧ ID = ID ′ ∧ SN = SN ′ → tag := 1

Stateless Section:
r1 : I ∈ {1} ∧ P ∈ {icmp}∧T ∈ {ping}∧tag ∈ all → accept ; insert

r2 : I ∈ {1} ∧ P ∈ all ∧T ∈ all ∧tag ∈ all → accept

r3 : I ∈ {0} ∧ P ∈ {icmp}∧T ∈ {pong}∧tag ∈ {1}→ accept

r4 : I ∈ {0} ∧ P ∈ {icmp}∧T ∈ {pong}∧tag ∈ {0}→ discard

r5 : I ∈ {0} ∧ P ∈ all ∧T ∈ all ∧tag ∈ all → accept

Figure 2. Tracking the Ping protocol

seen the corresponding ping packet. This requires the fire-
wall to remember the ping packets sent from the private net-
work to the outside. In our firewall model, each firewall has
a variable set called the state. The state of a firewall con-
tains the packets that the firewall has accepted previously
and needs to remember in the near future. In this firewall
example, we store in the state of the firewall the ping pack-
ets that are sent from the private network to the outside In-
ternet.

In our firewall model, each firewall consists of two sec-
tions: a stateful section and a stateless section. The stateful
section is used to check each packet against the state. The
stateless section is used to decide the fate of a packet af-
ter the packet has been checked against the state. To store
the checking result of the stateful section for each packet,
we assume that each packet has an additional field called
the tag. The value of the tag field of a packet is an integer,
whose initial value is zero. The domain of this tag field de-
pends on how many possible tag values that a firewall needs.
In the above firewall example, when a packet arrives, if it is
a pong packet and its corresponding ping packet is in the
state, then the tag field of the packet is assigned 1; other-
wise the tag field of the packet retains the initial value of
0. Therefore, the domain of the tag field in this example is
[0, 1].

We define a packet over the fields F1, · · · , Fd to be a d-
tuple (p1, · · · , pd) where each pi is in the domain D(Fi)
of field Fi, and each D(Fi) is an interval of nonnegative
integers. For example, the domain of the source address in
an IP packet is [0, 232).

The stateful section of a firewall consists a sequence of
rules where each rule is called a stateful rule. A stateful rule
is of the form

P (F1, · · · , Fd, F
′

1
, · · · , F ′

d, tag
′) → tag := x

where P (F1, · · · , Fd, F
′

1
, · · · , F ′

d, tag
′) is a predicate over

F1, · · · , Fd, F
′

1
, · · · , F ′

d, tag
′. A packet (p1, · · · , pd)

matches the above rule iff (if and only if) there exists a
packet (p′

1
, · · · , p′d) with tag value t′ in the state of the

firewall such that P (p1, · · · , pd, p
′

1
, · · · , p′d, t

′) is true. The
meaning of this stateful rule is as follows. Given a packet p

such that p matches this stateful rule (but p does not match
any other stateful rules listed before this rule), the tag value
of this packet p is changed from its initial value 0 to the new
value x.

The stateless section of a firewall also consists a se-
quence of rules where each rule is called a stateless rule.
A stateless rule is of the form

F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd ∧ tag ∈ St → 〈decision〉

where each Si is a nonempty subset of the domain of Fi

for 0 ≤ i ≤ d, and St is a nonempty subset of the do-
main of the tag field, and the 〈decision〉 is “accept”, or
“accept ; insert”, or “discard”. For each i (1 ≤ i ≤ d),
if Si = D(Fi), we can replace Fi ∈ Si by Fi ∈ all , or
remove the conjunct Fi ∈ D(Fi) from the rule. A packet
(p1, · · · , pd) with tag value t matches the above rule iff the
condition p1 ∈ S1∧· · ·∧pd ∈ Sd∧t ∈ St holds. The mean-
ing of this stateless rule is as follows. Given a packet p such
that p matches this stateless rule (but p does not match any
other stateless rules listed before this rule), the decision for
this packet is executed. If the decision is “accept”, then
the packet p is allowed to proceed to its destination. If the
decision is “accept ; insert”, then the packet p is allowed
to proceed to its destination and additionally packet p (to-
gether with its tag value) is inserted into the state of the
firewall. If the decision is “discard”, then the packet p is
discarded by the firewall.

In the firewall example in Figure 1, we assume that each
packet has the following seven fields. For simplicity, in this
paper we assume that each packet has a field containing the
identification of the network interface on which a packet
arrives. Figure 2 shows this firewall specified using our
model.

name meaning domain
I Interface [0, 1]

S Source IP address [0, 232)

D Destination IP address [0, 232)

P Protocol Type {tcp, udp, icmp}

T echo packet type {ping , pong}

ID echo packet ID [0, 216)

SN echo packet sequence number [0, 216)

3

In this firewall example, the stateful section consists of
one rule: I ∈ {0} ∧ P ∈ {icmp} ∧ T ∈ {pong} ∧ S =
D′ ∧ D = S′ ∧ ID = ID ′ ∧ SN = SN ′ → tag := 1. The
meaning of this rule is as follows: if a packet p is an incom-
ing pong packet (indicated by I ∈ {0}∧P ∈ {icmp}∧T ∈
{pong}), and there exists a packet p′ in the state such that
the following four conditions hold:

1. the source address of p equals the destination address
of p′ (denoted S = D′),

2. the destination address of p equals the source address
of p′ (denoted D = S′),

3. the ID of p equals the ID of p′ (denoted ID = ID ′),

4. the sequence number of p equals the sequence number
of p′ (denoted SN = SN ′),

then the tag field of packet p is assigned 1; otherwise the tag
field of packet p retains its initial value 0. In this firewall
example, the stateless section consists of five rules whose
function is to map every packet with a certain tag value to
one of predefined decisions. Note that the meaning of the
rule r1 is as follows. Given a packet over the seven fields
(namely I, S, D, P, T, ID, SN), if the packet matches rule r1,
then the firewall allows this packet to proceed to its desti-
nation and additionally the packet (which is a tuple over the
seven fields) together with its tag value is inserted into the
state of the firewall.

Note that when a firewall inserts a packet (p1, · · · , pd)
with a tag value into the state of the firewall, the firewall
may not need to insert all the d fields of the packet. For
example, considering the above firewall example in Figure
2, its stateful section consists of one rule I ∈ {0} ∧ P ∈
{icmp} ∧ T ∈ {pong} ∧ S = D′ ∧ D = S′ ∧ ID =
ID ′∧SN = SN ′ → tag := 1. This rule only examines four
fields of the packets in the state: S, D, ID and SN. Therefore,
instead of inserting a packet of all the seven fields (namely I,
S, D, P, T, ID, SN) together with the tag value of the packet
into the state, we only need to insert a tuple over the above
four fields of S, D, ID and SN.

Two stateless rules conflict iff there exists at least one
packet that matches both rules and the two rules have dif-
ferent decisions. For example, rule r1 and rule r2 in the
stateless section of the firewall in Figure 2 conflict. Two
stateful rules conflict iff in a reachable state of the firewall
there exists at least one packet that matches both rules and
the two rules have different decisions. In our firewall model,
for both the stateful section and the stateless section, we
follow the convention that stateless firewalls use to resolve
conflicts: a packet is mapped to the decision of the first rule
that the packet matches.

A set of rules is comprehensive iff for any packet there is
at least one rule in the set that the packet matches. The set

of all the rules in the stateless section of a firewall must be
comprehensive because each packet needs to be mapped to
a decision. Note that the set of all the rules in the stateful
section of a firewall does not need to be comprehensive.
This is because the function of a stateful section is to assign
nonzero values to the tag fields of some packets, but not all
packets.

Given a packet to a firewall specified using our model,
Figure 3 describes how the firewall processes this packet.

Step 1. Checking in the stateful section:
If P (F1, · · · , Fd, F

′

1
, · · · , F ′

d, tag
′) → tag := x

is the first stateful rule that the given packet matches
then the tag of the packet is assigned value x;
else the tag of the packet retains value 0.

Step 2. Checking in the stateless section:
If F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd ∧ tag ∈ St → 〈decision〉
is the first stateless rule that the given packet matches
then the 〈decision〉 is executed for the packet.

Figure 3. Processing a given packet

By separating a firewall into a stateful section and a state-
less section, we can inherit existing research results of state-
less firewalls because a stateless section alone is in fact a
full-fledged stateless firewall. For example, existing state-
less firewall design methods [2,7,8,8], and stateless firewall
analysis methods [1,6,9,11,12,16], are still applicable to the
design and analysis of a stateless section. In addition, ex-
isting packet classification algorithms for stateless firewalls
can still be used to map a packet with a certain tag value to
the first rule that the packet matches in the stateless section.

3 Firewall Examples

In this section, we show two more examples of stateful
firewalls.

3.1 Example I: Tracking Outgoing Packets

Suppose that the requirements for the firewall in Figure
1 are as follows:

1. Any packet from the outside malicious domain
192.168.0.0/16 should be discarded.

2. The mail server, with IP address 192.1.2.3, should be
able to send and receive emails, but non-email traffic
is not allowed to proceed to the mail server.

4

Stateful Section:
R1 :I ∈ {0} ∧ S = D′ ∧ D = S′ ∧ SP = DP ′ ∧ DP = SP ′ ∧ P = P ′ → tag := 1

Stateless Section:
r1 : I ∈ {1} ∧ S ∈ {192.1.2.3} ∧D ∈ all ∧DP ∈ all ∧P ∈ all ∧tag ∈ all → accept

r2 : I ∈ {1} ∧ S ∈ all ∧D ∈ all ∧DP ∈ all ∧P ∈ all ∧tag ∈ all → accept ; insert

r3 : I ∈ {0} ∧ S ∈ [192.168.0.0, 192.168.255.255]∧D ∈ all ∧DP ∈ all ∧P ∈ all ∧tag ∈ all → discard

r4 : I ∈ {0} ∧ S ∈ all ∧D ∈ {192.1.2.3}∧DP ∈ {25}∧P ∈ {tcp}∧tag ∈ all → accept

r5 : I ∈ {0} ∧ S ∈ all ∧D ∈ {192.1.2.3}∧DP ∈ all ∧P ∈ all ∧tag ∈ all → discard

r6 : I ∈ {0} ∧ S ∈ all ∧D ∈ all ∧DP ∈ all ∧P ∈ all ∧tag ∈ {1}→ accept

r7 : I ∈ {0} ∧ S ∈ all ∧D ∈ all ∧DP ∈ all ∧P ∈ all ∧tag ∈ {0}→ discard

Figure 4. Tracking outgoing packets

3. Any packet from a remote host to a local host, which
is not the mail server, is discarded unless the local host
has already sent a packet to the remote host earlier. In
other words, the communication between a local host
and a remote host can only be initiated by the local
host.

In this example, we assume that each packet has six
fields. Four of them have been discussed earlier: I (inter-
face), S (source IP address), D (destination IP address), and
P (protocol type). The remaining two are as follows:

name meaning domain
SP Source Port [0, 216)
DP Destination Port [0, 216)

Figure 4 shows the specification of this firewall. Its state-
ful section consists of one rule I ∈ {0} ∧ S = D′ ∧ D =
S′ ∧ SP = DP ′ ∧ DP = SP ′ ∧ P = P ′ → tag := 1. The
meaning of this rule is as follows: if a packet p is an incom-
ing packet (denoted I ∈ {0}), and there exists a packet p′

in the state such that the following five conditions hold:

1. the source address of p equals the destination address
of p′ (denoted S = D′),

2. the destination address of p equals the source address
of p′ (denoted D = S′),

3. the source port number of p equals the destination port
number of p′ (denoted SP = DP ′),

4. the destination port number of p equals the source port
number of p′ (denoted DP = SP ′),

5. the protocol type of p equals that of p′ (denoted P =
P ′),

then the tag field of packet p is assigned 1; otherwise the tag
field of packet p retains value 0.

The stateless section of this firewall consists of seven
rules from r1 to r7. Note that the meaning of rule r2 is as
follows. Any outgoing packet from a local host other than

the mail server is allowed to proceed to its destination, and
additionally this packet, which is a tuple of the six fields
(namely I, S, D, P, SP, DP), together with its tag value, is
inserted into the state of the firewall. Since the stateful sec-
tion of this firewall only examines the five fields (namely S,
D, P, SP, and DP) of the packets in the state of this firewall,
we only need to insert these five fields of a packet into the
state.

3.2 Example II: Tracking FTP Ptotocol

In this section, we show an example of a firewall that
tracks the FTP protocol. File Transfer Protocol (FTP) [15]
is an application protocol that is used to transfer files be-
tween two hosts. We assume that the firewall in Figure 1 al-
lows any local host to initiate an FTP connection to a remote
host, but any remote host cannot initiate an FTP connection
to a local host. For simplicity, we assume that non-FTP
traffic is discarded.

What complicates the tracking of FTP is its dual-
connection feature. FTP uses two TCP connections to trans-
fer files between two hosts: a control connection and a data
connection. When a client wants to connect to a remote
FTP server, the client uses one of its available port num-
bers, say x, to connect to the server on the well-known port
21. This connection, between the client’s port x and the
server’s port 21, is called the control connection. FTP uses
the control connection to transfer FTP commands such as
CWD (change working directory) and PORT (specify the
port number that the client will use for the data connection).
After this control connection is built between the client and
the server, the client sends a PORT command with a value
y, where y is an available port on the client, to the server
via this control connection. After this PORT command is
received, the server uses its well-known port 20 to connect
back to the port y of the client. This connection, between
the client’s port y and the server’s port 20, is called the data
connection. Note that the control connection is initiated by
the FTP client and the data connection is initiated by the
FTP server. This dual-connection feature of the FTP proto-

5

Stateful Section:
R1 : I ∈ {0} ∧ SP ∈ {21} ∧ P ∈ {tcp} ∧ S = D′ ∧ D = S′ ∧ DP = SP ′ ∧ DP ′ ∈ {21} → tag := 1
R2 : I ∈ {0} ∧ SP ∈ {20} ∧ P ∈ {tcp} ∧ S = D′ ∧ D = S′ ∧ T ′ = 1 ∧ DP = A′ ∧ DP ′ ∈ {21}→ tag := 1
R3 : I ∈ {1} ∧ DP ∈ {20} ∧ P ∈ {tcp} ∧ S = D′ ∧ D = S′ ∧ SP = DP ′ ∧ SP ′ ∈ {20} → tag := 1

Stateless Section:
r1 : I ∈ {1} ∧ SP ∈ all ∧ DP ∈ {21} ∧ P ∈ {tcp} ∧ tag ∈ all → accept ; insert

r2 : I ∈ {1} ∧ SP ∈ all ∧ DP ∈ {20} ∧ P ∈ {tcp} ∧ tag ∈ {1}→ accept

r3 : I ∈ {1} ∧ SP ∈ all ∧ DP ∈ all ∧ P ∈ all ∧ tag ∈ all → discard

r4 : I ∈ {0} ∧ SP ∈ {20}∧ DP ∈ all ∧ P ∈ {tcp} ∧ tag ∈ {1}→ accept ; insert

r5 : I ∈ {0} ∧ SP ∈ {21}∧ DP ∈ all ∧ P ∈ {tcp} ∧ tag ∈ {1}→ accept

r6 : I ∈ {0} ∧ SP ∈ all ∧ DP ∈ all ∧ P ∈ all ∧ tag ∈ all → discard

Figure 5. Tracking the FTP protocol

col is illustrated in Figure 6.

iMac

Figure 6. FTP Ptotocol

This firewall is specified in Figure 5. In this example, we
assume that each packet has eight fields. Six of them have
been discussed earlier: I (interface), S (source IP address),
D (destination IP address), P (protocol type), SP (source
port) and DP (destination port). The remaining two are as
follows:

name meaning domain
T Application Type [0, 1]
A Application Data [0, 216)

For a packet, if the value of its field T is 1, then the value of
its field A is the port number of a port command; otherwise
field A contains another FTP control command.

In this example, the firewall only possibly accepts the
following four types of packets: outgoing TCP packets to
port 21, incoming TCP packets from port 21, incoming TCP
packets from port 20, and outgoing TCP packets to port 20.
Next we discuss each of these four types of packets.

1. Outgoing TCP packets to port 21: Any packet p of this
type is accepted and inserted into the state. See rule r1

in Figure 5.

2. Incoming TCP packets from port 21: A packet p of
this type is accepted iff there exists a packet p′ in the
state such that p’s source IP address equals p′’s desti-
nation IP address, p’s destination IP address equals p′’s

source IP address, p’s destination port number equals
p′’s source port number, and p′’s destination port num-
ber is 21. See the three rules r1, R1, and r5 in Figure
5.

3. Incoming TCP packets from port 20: A packet p of
this type is accepted iff there exists a packet p′ in the
state such that p’s source IP address equals p′’s des-
tination IP address, p’s destination IP address equals
p′’s source IP address, p′’s destination port number is
21, p′ contains a PORT command and p’s destination
port equals the port number in this PORT command of
p′. See the three rules r1, R2, and r4 in Figure 5.

4. Outgoing TCP packets to port 20: A packet p of this
type is accepted iff there exists a packet p′ in the state
such that p’s source IP address equals p′’s destina-
tion IP address, p’s destination IP address equals p′’s
source IP address, p’s source port number equals p′’s
destination port number, and p′’s source port number
is 20. See the three rules r4, R3, and r2 in Figure 5.

4 Removing Packets from Firewall State

After a packet is inserted into the state of a firewall, the
packet should be removed when it is no longer needed, oth-
erwise security could be breached. We show this point by
the firewall example in Figure 2 that tracks the Ping proto-
col. Suppose a local host named A sends a ping packet to
a remote host named B. According to the specification of
this firewall in Figure 2, this ping packet is inserted into the
state of this firewall. When the corresponding pong packet
comes back from host B, it is accepted by the firewall be-
cause of the stored ping packet, and additionally this stored
ping packet should be removed from the state of the fire-
wall. Otherwise, an attacker could replay the pong packet
for an unlimited number of times and each of the replayed
pong packets would be incorrectly allowed to proceed to the
victim host A.

6

Stateful Section:
R1 : I ∈ {0} ∧ P ∈ {icmp} ∧ T ∈ {pong} ∧ S = D′ ∧ D = S′ ∧ ID = ID ′ ∧ SN = SN ′ → tag := 1

Stateless Section:
r1 : I ∈ {1} ∧ P ∈ {icmp}∧T ∈ {ping}∧tag ∈ all → accept ; insert(10)
r2 : I ∈ {1} ∧ P ∈ all ∧T ∈ all ∧tag ∈ all → accept

r3 : I ∈ {0} ∧ P ∈ {icmp}∧T ∈ {pong}∧tag ∈ {1}→ accept ; remove

r4 : I ∈ {0} ∧ P ∈ {icmp}∧T ∈ {pong}∧tag ∈ {0}→ discard

r5 : I ∈ {0} ∧ P ∈ all ∧T ∈ all ∧tag ∈ all → accept

Figure 7. Tracking the Ping protocol (with packets removal)

A new command, “remove”, is used to remove the
packets that are no longer needed from the state of a
firewall. Therefore, there are two more possible deci-
sions that a stateless rule may use: “accept ; remove” and
“accept ; insert ; remove”, in addition to the three decisions
(namely “accept”, “accept ; insert”, and “discard”) that we
have seen earlier. The meaning of a stateless rule with de-
cision “accept ; remove” is as follows. Given a packet p,
if p matches this rule (but p does not match any stateless
rule listed before this rule), then p is accepted. Moreover,
if the state has a packet p′ such that p satisfies the predi-
cate of the first stateful rule that p matches using p′, then
packet p′ is removed from the state. Similarly for the mean-
ing of a rule with decision “accept ; insert ; remove”. Con-
sider the example of the firewall in Figure 2 that tracks the
Ping protocol. When a ping packet is sent from a local host
to a remote host, the ping packet is inserted into the state
of the firewall by the stateless rule r1 : I ∈ {1} ∧ P ∈
{icmp}∧T ∈ {ping}∧tag ∈ all → accept ; insert . When
the corresponding pong packet comes back from the remote
host, it is accepted by the stateless rule r3 and it should also
trigger the removal of the stored ping packet. Therefore, a
“remove” command should be added to rule r3. In other
words, rule r3 should be I ∈ {0} ∧ P ∈ {icmp} ∧ T ∈
{pong} ∧ tag ∈ {1} → accept ; remove .

Usually the packet that initiates the “conversation” be-
tween two hosts is stored in the state of a firewall, and the
packet that terminates the “conversation” triggers the re-
moval of the stored packet. Examples of the packets that
can initiate a conversation are ping packets and TCP SYN
packets. Examples of the packets that can terminate a con-
versation are pong packets and TCP FIN packets.

To remove the packets that are no longer needed in the
state of a firewall, we cannot only rely on some packets to
trigger the removal for two reasons. First, these triggering
packets may get lost on their way. Second, the processes
that are supposed to send triggering packets may abnor-
mally terminate before sending out the triggering packets.
In either case, the packets that should be removed still re-
main in the state. To deal with these two cases, when a
packet is inserted into the state of a firewall, it is assigned a
TTL (Time To Live) value. The TTL value of every packet

in the state decreases as time goes by. When the TTL value
of a packet expires, the packet is automatically removed
from the state.

Different packets may need different TTL values. There-
fore, the “insert” command has a parameter t, which is
the TTL value for the packet to be inserted into the state
of a firewall. The meaning of a stateless rule with decision
“accept ; insert(t)” is as follows. Given a packet p such that
p matches this rule (but p does not match any stateless rule
listed before this rule), provided that p is not an element of
the state, then p is inserted into the state with TTL value t.
On the other hand, if p already exists in the state, then the
TTL value of p in the state is reassigned the value t.

Figure 7 shows the complete firewall for tracking the
Ping protocol after we incorporate the TTL extension to the
“insert” command in rule r1 and add the “remove” com-
mand to rule r3. In this example, the TTL value in the
“insert” command is 10 seconds.

5 Firewall States

Recall that each firewall has a variable set named the
state of the firewall. Initially, the state of a firewall is empty.
The transition between two states of a firewall is illustrated
in Figure 8.

current firewall state next firewall state

discard a packet accept a packet with
insertion or removal

accept a packet without
insertion or removal

Figure 8. Firewall state transition

A history of a firewall is a finite sequence
S.1, p.1, S.2, p.2, · · · , S.n such that the following three
conditions hold.

i. Each S.i is a state of the firewall. Note that S.1 is the
initial state of the firewall, which is an empty set.

7

ii. Each p.i is a packet.

iii. For every i (1 ≤ i < n), if the firewall is in state S.i
and receives packet p.i, then the firewall accepts p.i
and the state of the firewall becomes S.(i + 1).

Note that in a firewall history, S.1, p.1, S.2, p.2, · · · , S.n,
for every i (1 ≤ i < n), we have

S.i 6= S.(i + 1) if in state S.i, p.i is accepted, and
p.i is inserted into the state or p.i
triggers the removal of an packet;

S.i = S.(i + 1) otherwise

A state of a firewall is called a reachable state iff the
state is in a history of the firewall.

5.1 Truly Stateful and Truly Stateless Firewalls

Before we define truly stateful firewalls, we first define
two important concepts associated with each firewall: the
accepted set and the acceptable set.

A packet is called an accepted packet of a firewall iff the
packet can be accepted in every reachable state of the fire-
wall. The set of all accepted packets of a firewall is called
the accepted set of the firewall. For a firewall f , we use f.a
to denote its accepted set.

A packet is called an acceptable packet of a firewall iff
the packet can be accepted in some (possibly every) reach-
able state of the firewall. The set of all acceptable packets
of a firewall is called the acceptable set of the firewall. For
a firewall f , we use f.b to denote its acceptable set.

Note that a stateless firewall can also be specified using
our model. When we specify a stateless firewall, we leave
the stateful section empty and specify no “insert” command
in any rule in the stateless section. In this case, the state
of the firewall remains empty and the firewall is therefore
stateless. For a stateless firewall f , we use f.a to denote the
set of all accepted packets of f and use f.b to denote the set
of all acceptable packets of f . From the definition of state-
ful firewalls and stateless firewalls, we have the following
theorem:

Theorem 1 Let f be a firewall.

i. f.a is a subset of f.b (f.a ⊆ f.b)

ii. If f is stateless, then f.a = f.b.

A firewall f is truly stateful iff f.a is a proper subset
of f.b; i.e., f.a ⊂ f.b. A firewall f is truly stateless
iff f.a = f.b. Clearly, a stateless firewall is truly state-
less, but a stateful firewall can either be truly stateful or be
truly stateless. A stateful firewall that is truly stateless can
be simplified, without changing its function, by making its

stateful section empty and removing the “insert” command
from every rule in its stateless section.

As an example, consider the firewall in Figure 9(a). This
firewall accepts each packet where S ∈ {0} and D ∈ {1}
in each reachable state, and discards all other packets in
each reachable state. Thus, this firewall is truly stateless
(although it is syntactically stateful). Therefore, this fire-
wall can be simplified as shown in Figure 9(b).

Stateful Section:
R1 : S = D′ ∧ D = S′ → tag := 1

Stateless Section:
r1 : S ∈ {0} ∧ D ∈ {1} ∧ tag ∈ all→ accept ; insert

r2 : S ∈ all ∧ D ∈ all ∧ tag ∈ all→ discard

(a)

Stateful Section:
Stateless Section:
r1 :S ∈ {0} ∧ D ∈ {1} ∧ tag ∈ all→ accept

r2 :S ∈ all ∧ D ∈ all ∧ tag ∈ all→ discard

(b)

Figure 9. A truly stateless firewall and its sim-
plified version

5.2 Stateless Derivatives

It is important that if a firewall designer designs a stateful
firewall f , then he should verify that f is truly stateful. This
is because if f is truly stateless, then f can be simplified into
a stateless firewall. In this section, we identify a sufficient
condition for verifying that a firewall is truly stateful. But
first we introduce the concept of a stateless derivative of a
firewall.

The stateless derivative of a firewall f is the firewall ob-
tained after making the stateful section of f empty and re-
moving the “insert” command from every rule in the state-
less section of f . For example, Figure 9(b) shows the state-
less derivative of the firewall in Figure 9(a).

The relationship between a firewall and its stateless
derivative is stated in the following theorem, whose proof
is presented in the appendix.

Theorem 2 Let f be a firewall and g be its stateless deriva-
tive,

i. f.a ⊆ g.a

ii. g.a = g.b

iii. g.b ⊆ f.b

8

Recall that a firewall f is truly stateful iff f.a ⊂ f.b.
By Theorem 2, one way to prove that a firewall f , whose
stateless derivative is denoted g, is truly stateful is to prove
that the following two conditions hold:

i. f.a = g.a;

ii. g.b ⊂ f.b

We call firewalls that satisfy the first condition conforming
firewalls; and call firewalls that satisfy the second condition
proper firewalls.

6 Firewall Properties

In this section, we discuss how to verify that a firewall is
conforming or proper.

6.1 Conforming Firewalls

Before we give a theorem on how to verify that a firewall
is conforming, we need to introduce the two concepts of
complementary rules and accepting rules.

Let rule r, that appears in the stateless section of some
firewall, be of the form

F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd ∧ tag ∈ St → 〈decision〉

Rule r is complementary iff the set St does not contain the
value 0. Rule r is accepting iff the 〈decision〉 of r contains
the command “accept”.

The following theorem can be used to verify that a fire-
wall is conforming. The proof of this theorem is presented
in the appendix.

Theorem 3 A firewall f is conforming if every comple-
mentary rule in the stateless section of f is accepting.

As an example, we use Theorem 3 to prove that the fire-
wall in Figure 2 is conforming as follows. This firewall
has only one complementary rule, which is rule r3 : I ∈
{0} ∧ P ∈ {icmp} ∧ T ∈ {pong} ∧ tag ∈ {1} → accept .
And rule r3 is an accepting rule. Therefore, this firewall is
conforming.

6.2 Proper Firewalls

Based on our experience in designing firewalls, most
firewalls are conforming. By Theorem 2, a conforming fire-
wall is truly stateful iff it is proper. Next we discuss how to
verify that a firewall is proper.

A firewall is proper iff its acceptable set is a proper su-
perset of the acceptable set of its stateless derivative. For
a firewall to be proper, we first need to make sure that its
state does not remain empty forever. We call such firewalls

grounded. More precisely, grounded firewalls are defined
as follows.

Let f be a firewall whose stateless section consists of n
rules r1, r2, · · · , rn:

r1 : P1 → 〈decision1〉

r2 : P2 → 〈decision2〉

· · ·

rn : Pn → 〈decisionn〉

A rule rk, where 1 ≤ k ≤ n, is called a ground rule iff the
following three conditions hold:

i. rk is non-complementary;

ii. 〈decisionk〉 is “accept ; insert” or “accept ; insert ;
remove”;

iii. ∼ P1∧ ∼ P2 ∧ · · · ∧ ∼ Pk−1 ∧ Pk is satisfiable by at
least one packet.

A firewall is grounded iff it has a ground rule.
A ground rule of a grounded firewall guarantees that in

the initial state of the firewall, there exists at least one packet
that can be accepted and inserted into the state of the fire-
wall.

To test whether a firewall is grounded, we can go through
each rule and test whether it is a ground rule according
to the above definition. Once we find a ground rule in a
firewall, we know that the firewall is grounded. For ex-
ample, consider the firewall in Figure 4. The second rule
in the stateless section of this firewall is a ground rule
because (1) it is non-complementary; (2) its decision is
“accept ; insert”; and (3) ∼ P1∧P2 is satisfiable. Note that
∼ P1 ∧P2 = I ∈ {1}∧S ∈ [0, α−1]∪ [α+1, 232)∧D ∈
all ∧DP ∈ all ∧P ∈ all ∧ tag ∈ all , where α denotes the
integer formed by the four bytes of the IP address 192.1.2.3.
Therefore, this firewall is grounded.

For a grounded firewall to be proper, we need to show
that there exists at least one packet, denoted p, such that
(1) p is discarded by the stateless derivative of the firewall,
(2) p can be accepted by the firewall in some state. As an
example, we show how to verify that a grounded firewall is
proper by examining the firewall example in Figure 2 as fol-
lows. For this firewall, we assume that each packet consists
of the fields of I, S, D, P, T, ID, and SN. Consider the two
packets p′ and p in the following table. It is straightforward
to verify that packet p is discarded by the stateless deriva-
tive of this firewall (because of rule r4). At any state of this
firewall, p′ is accepted and inserted into the state because
of rule r1. Because of the stateful rule R1 and the stateless
rule r3, as long as p′ is in the state, packet p is accepted.
Therefore, this firewall is proper.

I S D P T ID SN
p′

1 192.1.2.4 192.32.1.2 icmp ping 10 200
p 0 192.32.1.2 192.1.2.4 icmp pong 10 200

9

7 Conclusions and Future Work

We consider our paper to be the first step in designing
and analyzing stateful firewalls. Our contributions in this
paper are two-fold. First, we propose the first model for
specifying stateful firewalls, which henceforth opens doors
to new research on stateful firewalls. Our model of stateful
firewalls has several favorable properties. It is simple but
can express a variety of state tracking functionalities. It al-
lows us to inherit the rich results in stateless firewall design
and analysis. Moreover, it provides backward compatibility
such that a stateless firewall can also be specified using our
model. Second, we present methods for analyzing stateful
firewalls that are specified using our model. We outline a
method for verifying whether a firewall is truly stateful.

Several issues related to our stateful firewall model are
left for future work, for example, how to efficiently imple-
ment this model and how to use it to analyze other proper-
ties of stateful firewalls.

References

[1] E. Al-Shaer and H. Hamed. Discovery of policy anoma-
lies in distributed firewalls. In IEEE INFOCOM’04, pages
2605–2616, March 2004.

[2] Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool. Firmato:
A novel firewall management toolkit. Technical Report
EES2003-1, Dept. of Electrical Engineering Systems, Tel
Aviv University, 2003.

[3] CheckPoint FireWall-1. http://www.checkpoint.com/. Date
of access: March 25, 2005.

[4] Cisco PIX Firewalls. http://www.cisco.com/. Date of access:
March 25, 2005.

[5] Cisco Reflexive ACLs. http://www.cisco.com/. Date of ac-
cess: March 25, 2005.

[6] M. Frantzen, F. Kerschbaum, E. Schultz, and S. Fahmy. A
framework for understanding vulnerabilities in firewalls us-
ing a dataflow model of firewall internals. Computers and
Security, 20(3):263–270, 2001.

[7] M. G. Gouda and A. X. Liu. Firewall design: consis-
tency, completeness and compactness. In Proc. of the 24th
IEEE International Conference on Distributed Computing
Systems (ICDCS’04), pages 320–327.

[8] J. D. Guttman. Filtering postures: Local enforcement for
global policies. In Proc. of IEEE Symp. on Security and
Privacy, pages 120–129, 1997.

[9] S. Kamara, S. Fahmy, E. Schultz, F. Kerschbaum, and
M. Frantzen. Analysis of vulnerabilities in internet firewalls.
Computers and Security, 22(3):214–232, 2003.

[10] A. X. Liu and M. G. Gouda. Diverse firewall design. In Proc.
of the International Conference on Dependable Systems and
Networks (DSN’04), pages 595–604, June 2004.

[11] A. X. Liu, M. G. Gouda, H. H. Ma, and A. H. Ngu. Fire-
wall queries. In Proc. of the 8th International Conference
on Principles of Distributed Systems (OPODIS-04), pages
124–139, December 2004.

[12] A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall analy-
sis engine. In Proc. of IEEE Symp. on Security and Privacy,
pages 177–187, 2000.

[13] Netfilter/IPTables. http://www.netfilter.org/. Date of access:
March 25, 2005.

[14] J. Postel. Internet control message protocol. RFC 792, 1981.
[15] J. Postel and J. Reynolds. File transfer protocol. RFC 959,

1985.
[16] A. Wool. Architecting the lumeta firewall analyzer. In Proc.

of the 10th USENIX Security Symposium, pages 85–97, Au-
gust 2001.

Appendix

A Proof of Theorem 2

Proof of i: This assertion holds because f.a is the set of
all the packets where each packet can be accepted in every
reachable state of f and g.a is the set of all the packets that
can be accepted in the initial state of f .

Proof of ii: Note that g is a stateless firewall. By
Theorem 1, this assertion holds.

Proof of iii: This assertion holds because g.b is the set of
all the packets that can be accepted in the initial state of f ,
and f.a is the set of all the packets where each packet can
be accepted in some reachable state of f .

B Proof of Theorem 3

Given a firewall f and its stateless derivative g, we know
f.a ⊆ g.a according to Theorem 2. Next we prove that if
every complementary rule of f is accepting, then g.a ⊆ f.a.
For any packet p ∈ g.a, there is an accepting rule r whose
predicate is of the form

F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd ∧ tag ∈ St

such that 0 ∈ St, and the packet p with tag value being 0
matches r but does not match any rule listed above r. Be-
cause every complementary rule is an accepting rule, every
packet with a certain tag value that satisfies

F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd ∧ tag ∈ (D(tag) − St)

is accepted by the firewall. Here D(tag) denotes the domain
of tag. So, no matter what the tag value of p is, p is accepted
by f . Therefore, p ∈ f.a.

Acknowledgements

We would like to thank David Taylor and the anonymous
reviewers for their constructive comments on the early ver-
sion of this paper.

10

