
A Modeling Ontology for Integrating Vulnerabilities
into Security Requirements Conceptual Foundations?

Golnaz Elahi1, Eric Yu2, and Nicola Zannone3

1 Department of Computer Science, University of Toronto
gelahi@cs.toronto.edu

2 Faculty of Information, University of Toronto
yu@ischool.utoronto.ca

3 Eindhoven University of Technology
n.zannone@tue.nl

Abstract. Vulnerabilities are weaknesses in the requirements, design, and im-
plementation, which attackers exploit to compromise the system. This paper pro-
poses a vulnerability-centric modeling ontology, which aims to integrate empiri-
cal knowledge of vulnerabilities into the system development process. In partic-
ular, we identify the basic concepts for modeling and analyzing vulnerabilities
and their effects on the system. These concepts drive the definition of criteria that
make it possible to compare and evaluate security frameworks based on vulnera-
bilities. We show how the proposed modeling ontology can be adopted in various
conceptual modeling frameworks through examples.

1 Introduction

Security needs are responses to being or feeling vulnerable. Vulnerable actors take
measures to mitigate perceived risks, by using locks on the doors, surveillance cam-
eras, etc. Existing security requirements engineering frameworks focus on various as-
pects for eliciting security requirements, such as attacker behavior [29, 31] and attacker
goals [32], design of secure components [15], social aspects [18, 11], and events that
can cause system failure [1]. However, attacks and consequent security failures often
take place because of the exploitation of weaknesses or backdoors within the system.
These weaknesses of the system or its environment that in conjunction with an inter-
nal or external threat can lead to a security failure are known asvulnerabilities[28] in
security engineering. Vulnerabilities such as buffer overflow or weak passwords may
result from misspecifications in the requirements, neglecting required pre- and post-
conditions checks, faulty design and architecture, and programming errors.

In recent years, software companies and government agencies have become particu-
larly aware of the security risks that vulnerabilities impose on system security and have
started analyzing and reporting detected vulnerabilitiesof products and services [5, 6,
23, 27]. This empirical knowledge of vulnerabilities is used for scanning and main-
taining system security and updating patches. However, vulnerability analysis has not

? Financial support from Natural Science and Engineering Research Council of Canada and Bell
University Labs is gratefully acknowledged.



played a significant role in the elicitation of security requirements. There is evidence
that knowing how systems have failed can help analysts buildsystems resistant to fail-
ures [24]. For this purpose, analysts should answer three basic questions [17]: (1) how
a vulnerability enters into the system; (2) when it enters into the system; (3) where it is
manifested in the system.

Vulnerabilities are introduced into the system by performing some activities or em-
ploying some assets. By identifying vulnerabilities and explicitly linking them to the
activities and assets that introduce them into the system, analysts can recognize the
vulnerable components of the system, study how vulnerabilities spread within the sys-
tem, trace security failures back to the source vulnerability, and relate vulnerabilities
to the stakeholders that ultimately are hurt. This information helps analysts understand
how threats compromise the system, assess the risks of vulnerabilities, and decide on
countermeasures to protect the system [9]. Some contributions [2, 17] collect and orga-
nize vulnerabilities and security flaws for providing analysts with more precise security
knowledge. However, they do not provide a conceptual framework that allows analysts
to elicit security requirements according to the identifiedvulnerabilities. To define a
systematic way for linking empirical security knowledge, we need to identify the basic
concepts that come into play when facing security issues. Those concepts influences the
security analysis that analysts can perform.

This paper proposes a modeling ontology for integrating vulnerabilities into the
security requirements conceptual foundations. We refer tothe structure of conceptual
modeling elements and their relationships as the conceptual foundation of a modeling
framework. The proposed ontology, which is independent of the existing conceptual
modeling foundations, aims to detect the missing security constructs in security re-
quirements modeling frameworks and facilitates their enhancement. The ontology can
be used as a unified way for comparing different conceptual foundations and their rea-
soning power as well as extending their ability for modelingand analyzing vulnera-
bilities. We propose the modeling ontology by means of a general meta-model. The
meta-model helps integrate vulnerabilities into the conceptual foundation of a target
framework, and the extended framework can be used for modeling and analyzing secu-
rity requirements. To make the discussion more concrete, the proposed meta-model is
adopted in three target conceptual frameworks, and the benefits and limitations of such
adoptions are discussed.

The paper is organized as follows. Section 2 discusses the conceptual foundation
for security analysis with a particular focus on vulnerabilities. Section 3 discusses and
compares existing security frameworks centered on vulnerabilities. Section 4 introduces
a vulnerability modeling ontology. Section 5 discusses howthe modeling ontology can
be realized in different target frameworks. Section 6 givesexamples of integrating the
ontology into three security requirements engineering frameworks. Finally, Section 7
draws conclusions and discusses future work.



2 The Conceptual Foundation for Vulnerability Analysis

This section reviews the security literature with the aim ofdefining a conceptual foun-
dation for security requirements engineering centered on vulnerabilities. We discuss the
basic security conceptual constructs together with the analysis facilities they offer.

A basic concept that comes into play when eliciting securityrequirements is the
concept ofasset. In security engineering, an asset is“anything that has value to the
organization” [13]. Assets can be people, information, software, and hardware [7].

Assets and services can be the target ofattackers(or malicious actor), and conse-
quently, need to be protected. Attackers can be internal or external entities of the system.
They performmalicious actionswhich attempt to break the security of a system or a
component of a system. Anattack is a set of intentional unwarranted (malicious) ac-
tions designed to compromise confidentiality, integrity, availability or any other desired
feature of an IT system [30]. By analyzing the possible ways in which a system can
be attacked, analysts can study attackers’ behavior, estimate the cost of attacks, and
determine their impact on system security.

Malicious actors often exploitvulnerabilitieswithin the system to attack it. A vul-
nerability is a weakness or a backdoor which allows an attacker to compromise its
correct behavior [28]. In the physical world, vulnerabilities are usually tangible and
measurable. A crack in the wall is a concrete example of physical weakness. In the
context of computer security, vulnerabilities are less tangible and visualizable. Vulnera-
bilities arebroughtto the system by adopting a software product or executing a service.
By identifying the source of the vulnerability (e.g., software product, service, or data),
analysts can identify what are the vulnerable components ofthe system, propagate the
vulnerabilities in the model of the system, evaluate the benefits and risks of (vulnerable)
entities, and decide on cost-effective countermeasures accordingly.

Risk has been proposed as a measure to evaluate the impact of an attack on the
system. Risk involves the probability (likelihood) of a successful attack and itsseverity
on the system [12]. Risk assessment is a type of analysis one can perform using security
conceptual models. Therefore, risk is not a primitive concept and we do not include it
into the meta-model for security requirements frameworks (Section 4).

Analyzing attacks and vulnerabilities allows analysts to understand how attackers
can compromise the system. However, to assess the risk of an attack, analysts also
need to consider the motivations (malicious goals) of attackers. Understanding why the
attackers may attack the system helps identify the target ofthe attack and estimate the
efforts (e.g., time, cost, resources, etc.) that attackersare willing to spend to compromise
the system. Schneier [29] argues that understanding who arethe attackers along with
their motivations, goals, and targets, aids designers in adopting proper countermeasures
to mitigate threats.

When the risk of an attack is higher than the risk tolerance ofsome stakeholder, an-
alysts need to take the adequate measure to mitigate such risks [1]. A countermeasure
is a protection mechanism employed to secure the system [30]. Countermeasures can
be actions, processes, devices, solutions, or systems, such as firewalls, authentication
protocols, digital signature, etc. Knowledge about attackers’ behavior and vulnerabil-
ities helps analysts in the identification of appropriate countermeasures to protect the
system. Countermeasures intend to prevent attacks or vulnerability exploitations from



compromising the system. For instance, they are used to patch vulnerabilities or pre-
vent their exploitation. Modeling and analyzing the countermeasures is important for
evaluating their efficacy and consequently the ultimate security of the system.

Several conceptual modeling frameworks for security analysis take advantage of
temporally-orderedmodels for analyzing attacks [21, 25]. Incorporating the concept of
time into the attack modeling helps understand the sequenceof actions and vulnera-
bility exploitations which lead to a successful attack. Theresulting model is useful for
analyzing attacks as well as designing and evaluating countermeasures that prevents the
attacks at the right step. On the other hand, temporally-ordered models of the system
and stakeholders’ interactions increase the complexity ofrequirements models which
may not be suitable for the early stages of the development.

3 Vulnerability Modeling and Analysis Approaches

This section surveys and compares different approaches proposed in the literature for
modeling, organizing, and analyzing vulnerabilities. We also discuss the types of rea-
soning that the existing conceptual frameworks support.

3.1 Vulnerability Catalogs

The most primitive way for modeling and organizing vulnerabilities is grouping de-
tected and reported flaws and weaknesses into catalogs. Although catalogs are not con-
ceptual models, they are not entirely structure-less. Various web-based software vulner-
ability knowledge bases provide searchable lists of vulnerabilities. Catalogs of vulner-
abilities contain different types of information with different information granularity
which are useful for specific stages of the development and types of analysis. These
web portals aim to increase the level of awareness about vulnerable products and sever-
ity of vulnerabilities. For example, the National Vulnerability Database [27], SANS
top-20 annual security risks [27], and Common Weakness Enumeration (CWE) [6] pro-
vide updated lists of vulnerabilities and weaknesses. CVE contains vendor-, platform-
and product-specific vulnerabilities. SANS list and CWE catalog include more abstract
weaknesses, errors, and vulnerabilities. Some entries in these lists are technology and
platform independent, while some of the vulnerabilities are described for specific prod-
uct, platform, and programming language.

3.2 Vulnerability Analysis for Computer Network Security

Modeling and analyzing vulnerabilities within computer networks is common, because
vulnerabilities in such systems can be easily associated tophysical nodes of the net-
work. Several attack modeling and analysis approaches [25,19, 10] take advantage of
Attack Graphs and Bayesian Networks for vulnerabilities assessment at the network
level. Phillips et al. [25] introduce Attack Graphs to analyze vulnerabilities in computer
networks. Attack graphs provide a method for modeling attacks and relating them to
the machines in a network and to attackers. Liu and Man [19] use Bayesian Networks
to model all potential atomic attack steps in a network. Causal relationships between



vulnerabilities encoded in an attack graph are used to modelthe overall security of a
network in [10].

3.3 Modeling Vulnerabilities for Security Requirements Engineering

In secure software engineering frameworks, vulnerabilities usually refer to the gen-
eral openness to attacks and risks. For example, Liu et al. [18] propose a vulnerability
analysis method for eliciting security requirements, where vulnerabilities are the weak
dependencies that may jeopardize the goals of depender actors in the network of social
and organizational dependencies.

Only a few software engineering approaches consider analyzing vulnerabilities, as
weaknesses of the system, during the elicitation of security requirements. Matulevicius
et al. [20] treat vulnerabilities as beliefs in the knowledge base of attackers which may
contribute to the success of an attack. In [22], the i* framework is extended to represent
vulnerabilities and their relation with threats and other elements of the i* models.

The CORAS project [7] proposes a modeling framework for model-based risk as-
sessment in the form of a UML profile. The profile defines UML stereotypes and rules
to express assets, risks that target the assets, vulnerabilities, accidental and deliber-
ate threats, and the security solutions. CORAS provides a way for expressing how a
vulnerability leads to another vulnerability and how a vulnerability or combination of
vulnerabilities lead to a threat. CORAS also provides the means to relate treatments to
threats and vulnerabilities.

Rostad [26] suggests extending the misuse case notation forincluding vulnerabil-
ities into requirements models. Vulnerabilities are defined as a weakness that may be
exploited by misuse cases. Vulnerabilities are expressed as a type of use case, with an
exploit relationship from the misuse case to the vulnerability and an include relation
with the use case that introduces the vulnerability.

3.4 Comparison of the Conceptual Modeling Frameworks

Table 1 compares capabilities of the reviewed conceptual structures based on the con-
ceptual foundation discussed in Section 2. The conceptual modeling frameworks that
focus on security requirements engineering, model vulnerabilities in various ways. Among
them, CORAS [7] does not investigate which design choices, requirements, or pro-
cesses have brought the vulnerabilities to the system, and the semantics of relationships
among vulnerabilities, and between vulnerabilities and threats are not defined. Similar
to CORAS, the resulting models in [20, 22] do not specify how,by what actions and ac-
tors the vulnerability is brought to the system. These models do not capture the impact
of countermeasures on the vulnerabilities and attacks. In [22], threats are not related
to the attacker that poses them, and the semantics of the relation between threats and
vulnerabilities is not well defined.

In summary, the missing point in the surveyed approaches is lack of modeling con-
structs that express how vulnerabilities enter into the system and how they spread out
within the system. The link between attacks and vulnerabilities are implicitly (and ex-
plicitly) modeled in all of the surveyed approaches. However, among the modeling nota-
tions that provide explicit constructs for modeling vulnerability, only a few frameworks



Table 1. Comparison of modeling notations. N indicates that the concept or relation is not con-
sidered, and Y indicates the relation is considered explicitly in the notation. P means the relation
is implicitly considered or its semantics is not well defined.

Method

Web-based vulner-
abilities knowledge
sources

Network security
analysis methods

CORAS Frame-
work [3]

Secure Tropos
by Matulevicius
et al. [20]

Risk-Based
Security Frame-
work by Mayer
et al. [22]

Extensions to mis-
use case diagram
[26]

Security extension
on i* framework
by Elahi et al. [8,
9]

Conceptual Foundation
Structured and
searchable catalogs

Network config-
uration models,
AG, BN

CORAS UML-
profile based
models Secure Tropos i* framework

Misuse case mod-
els i* framework

Vulnerabilitygraphical represen-
tation None None
Relation of vulnerabilities to
vulnerable elements N Y N N N P Y
Relation of vulnerabilities to
other vulnerabilities Y Y P N N N N
Propagation of vulnerabilities to
other system elements N Y N N N N Y
Effects of vulnerabilities Y Y Y Y P N Y
Severity of vulnerabilities Y Y N N N N Y
Relation of vulnerabilities and
attacks (exploitation) P Y P P Y Y Y
Countermeasures’ impacts on
vulnerabilities N P P N N Y Y
Steps of vulnerability exploita-
tion (sequence) N Y N N N N N

such as CORAS [7], i* security extensions [9, 8], and extensions of misuse case models
[26] relate the countermeasures to vulnerabilities. The semantics of the countermeasure
impact in [7, 26] is not well defined, and the model cannot be used to evaluate the impact
of countermeasures on the overall system security. Although modeling and analyzing
the order of actions to accomplish an attack may affect the countermeasure selection
and development, the existing frameworks for security requirements engineering do not
consider the concept of sequence (temporal order) in their meta-model.

4 A Modeling Ontology for Vulnerabilities

This section presents a vulnerabilities modeling ontologywhich aims to incorporate
vulnerabilities into requirements models for expressing how vulnerabilities are brought
to the system and propagated, how the vulnerabilities get exploited by attackers and
affect different actors, and how countermeasures mitigatethe vulnerabilities. The on-
tology is described by an abstract meta-model, which definesand relates the conceptual
constructs gathered in Section 2.

Fig. 1 depicts the proposed vulnerability-centric meta-model. The conceptual mod-
eling framework that one may integrate with ontology elements is called thetarget
framework. The target framework can be business process modeling frameworks, UML
static and dynamic diagrams, agent- and goal-oriented modeling frameworks, etc.

Vulnerability Definition in the Ontology.A concrete elementis a tangible entity. De-
pending on the target framework, the concrete element can bean activity, task, func-
tion, class, use case, etc. Concrete elements may introducevulnerabilities into the sys-
tem, which are then calledvulnerable elements. In the meta-model the link between a
vulnerability and a concrete element is captured by thebring relation. Exploitation of
vulnerabilities can haveeffectson other elements These elements are calledaffected



Fig. 1. The vulnerability-centric modeling ontology for securityconcepts

elements. Theeffectrelation is presented as a class and is characterized by the attribute
severitythat specifies the criticality of vulnerabilities effects.

Attack and Attacker Definition in the Ontology.An attackinvolves the execution of (a
sequenceof) malicious actionsthat one or more actors perform to satisfy somemali-
cious goal. Linking attackers to malicious actions allows modeling attacks that require
the collaboration of different attackers. Amalicious actioncanexploita number of vul-
nerabilities, which has (negative) effects on theaffected elements. This negative effect
is captured as a relation which links vulnerabilities to theaffected elements. This rela-
tion is modeled as a class in the meta-model, which enables defining the severity of the
effect as an attribute of the class.

Countermeasure Definition in the Ontology.A concrete element may have asecurity
impacton attacks. Such an element can be interpreted as a security countermeasure.
Thesecurity impactis a relationships which is expressed as a class in the meta-model.
Security countermeasures can be used topatchvulnerabilities,alleviate the effect of
vulnerabilities,preventthe malicious actions that exploit vulnerabilities or can prevent
(or remove) the concrete elements that bring the vulnerabilities. By patching a vul-
nerability, the countermeasure fixes the weakness in the system. Examples of such a
countermeasure is a software update that the vendors provide. A countermeasure that
alleviates vulnerability effects, does not address the source of the problem, but it intends
to reduce the effects of the vulnerability exploitation. For example, a backup system al-
leviates the impact of security failures that cause data loss. Countermeasures can also
prevent an attacker to perform some actions. For example, anauthentication solution



Table 2. The mapping of the elements in the vulnerability modeling ontology to elements of
different modeling elements. The x in the cells indicate that the target framework does not provide
any embedded element for the element of ontology and a new modeling construct is required.

Static models (UML
Class diagram)

Dynamic models (UML
Sequence diagram)

Requirements mod-
els (UML use case
diagram)

Goal modes (i* agent- and
goal-oriented model)

Vulnerability x (New Element) x (New Element) x (New Element) x (New Element)

Concrete Element
Classes, Packages, Op-
erations, Attributes

Messages, Guards,
Combined Fragments Use cases Tasks, Resources

Attacker x Roles Actors (misuser) Actors

Malicious Action x
Concrete elements for
modeling behavior Misuse Cases Tasks

Malicious Goals x x x Goals

Effect x x
Adding new Stereo-
types Contribution Links

Affected Element
Classes, Packages, Op-
erations, Attributes

Messages, Guards,
Combined Fragments Use Cases Goals, Tasks, Resources

Security Impact x x
Adding new Stereo-
types

Using and extending Con-
tribution Links

prevents unauthorized access to assets. Countermeasure may prevent performing vul-
nerable actions or using vulnerable assets, which results in removing the vulnerable ele-
ments that have brought vulnerabilities to the system. For example, disabling JavaScript
option in the browser prevents the browser to run a malware.

5 The Adoption of the Modeling Ontology

In the previous section, we defined the modeling ontology that can be used to inte-
grate vulnerabilities into existing conceptual modeling frameworks. This section dis-
cusses the adoption and realization of the proposed modeling ontology in various types
of conceptual modeling frameworks. Table 2 provides a mapping between the model-
ing constructs in four example conceptual modeling frameworks and the elements of
the vulnerability-centric modeling ontology. The mappingillustrates which modeling
constructs in the frameworks can be used (or inverted) for expressing the ontology’s
elements, and which elements of the ontology need to be incorporated in the target con-
ceptual framework by adding a new construct. In this table, UML class and sequences
diagrams are examples of static and dynamic modeling approaches, respectively. Use
case and i* models are examples of requirements models. The comparison can be gen-
eralized to other similar conceptual frameworks (e.g., theproperties for sequence dia-
grams can be generalized to other dynamic modeling approaches).

Realization of Vulnerabilities in the Target Framework.To incorporatevulnerabili-
tiesinto a target framework, a new modeling construct (with a graphical representation)
need to be added to the target framework. Vulnerabilities need to be (graphically) linked
to the vulnerable element, which expresses thebring relationship. The vulnerability ef-
fect and its severity need to be defined in each specific conceptual modeling framework
according to the semantics of relationships in that conceptual framework. For example,
in the UML use case diagram, one may define a new stereotype to specify the effect



of vulnerabilities exploitation (and its severity), and ina goal-oriented modeling frame-
work like i*, contribution links can be used to represent theeffect of vulnerabilities and
their severity. Existing relationship in static and dynamic modeling approaches do not
provide the required semantics to model the vulnerability effects.

Modeling vulnerabilities (and related concepts) in different conceptual modeling
frameworks facilitate different types of analysis and reasoning. Adding vulnerabilities
to static models such as deployment diagrams allows one to propagate vulnerabilities
from the elements that bring the vulnerabilities to other system components, by analyz-
ing the function that vulnerable components play in the system. By integrating vulner-
abilities into dynamic models, one can detect the sequence of vulnerability propagation
in a period of time. Integration of vulnerabilities into requirements and goal models help
detect the functionalities that introduce risks to the system (by bringing vulnerabilities).
In addition, vulnerabilities can be propagated into the network of functions, goals, and
actors. Examples of vulnerabilities propagation can be found in [9].

Realization of Attacks and Attackers in the Target Framework. The definition of attacks
is fundamentally a matter of perspective: the nature and semantics ofmalicious actions
are similar to the nature of conceptual elements that model the normal behavior of the
system. Therefore, distinguishing the malicious and non-malicious behavior does not
affect the analysis one can perform on the models. However, Sindre and Opdahl [16]
show that graphical models become much clearer if the distinction between malicious
and non-malicious elements is made explicit and the malicious actions are visually
distinguished from the legitimate ones. They show that the use of inverted elements
strongly draws the attention to dependability aspects early on for those who discuss the
models. Therefore, to modelmalicious actionsin the target frameworks, the (inverted)
concrete elements that model normal actions and interactions within the system is se-
mantically sufficient. For example, in a sequence diagram, the sequences of messages
to mount an attack can be modeled using the existing sequencemodeling constructs.

Several conceptual modeling frameworks provide the required foundations for mod-
eling sequence of actions in a temporally-ordered fashion (e.g., sequence diagrams,
state charts, activity diagrams). On the other hand, the modeling approaches that pro-
vide a static view to the system, such as UML class, deployment, package or component
diagrams, and data models, do not support modeling actions and dynamic behavior of
the system. Such frameworks are not expressive enough for modeling malicious ac-
tions. Some conceptual frameworks provide means to model the system and actors’
actions in a static way (e.g., use case diagrams and i* agent-and goal-oriented models).
Such modeling approaches provide a static view of the malicious actions and vulner-
ability exploitations, and cannot model the temporally-ordered sequence of actions or
messages, vulnerability exploitations, and pre-conditions that lead to an attack.

Attackerscan be modeled using the (inverted) actor element in the target framework.
For example, an attacker can be a role with a lifeline in UML sequence diagrams or an
actor that triggers misuse cases in use case diagrams. However, some conceptual model-
ing frameworks, such as UML class or deployment diagrams do not provide constructs
for expressing actors, which limits the security analysis that they can perform.

Several conceptual modeling frameworks focus on “what” and“how” in the sys-
tem. Such frameworks, such as UML static and dynamic diagrams, do not allow mod-



eling the intentions and motivations of the interacting parties in the system. Goal-
oriented conceptual modeling frameworks such as i*, Tropos, and KAOS provide re-
quired means to model goals; therefore, the attackers’ malicious goals can be modeled
by using (inverted) conceptual constructs that these frameworks provide for modeling
goals of interacting parties.

Realization of Countermeasures in the Target Framework.We do not distinguish secu-
rity elements from non-security elements in the meta-model, because the nature of ele-
ments which specify the system behavior is not different from the elements that model
the security mechanisms of the system, and the distinction does not affect the security
requirements analysis. Similar to the vulnerabilities’ effects, the semantics of counter-
measures’ impact need to be defined in each specific conceptual modeling framework
according to the semantics of relationships in the target framework.

6 Examples of Adopting the Proposed Ontology

In this section, the proposed ontology is adopted in three conceptual foundations to il-
lustrate the realization of the ontology and its benefits. These examples aim to illustrate
how the elements of the meta-model are realized in differentconceptual frameworks
for (security) requirements and risk analysis. We integrate the concept of vulnerability
into misuse case models, as an example of a static requirements modeling approach. We
revise CORAS, as an example of risk analysis frameworks which is able to express vul-
nerabilities. In this example, we analyze how the adoption of the ontology can enhance
its reasoning and analysis power. Finally, we show how vulnerabilities and related secu-
rity concepts can be added to the i* framework, as an example of goal-oriented require-
ments modeling frameworks. All the enhancements are illustrated with the meta-model
and concrete examples based on a browser and web applicationscenario.

6.1 Integrating Vulnerability Modeling in (Mis)Use Case Diagrams

Misuse case analysis is known as a useful technique for eliciting and modeling secu-
rity requirements and threats [31]. In misuse case models, attacks and attackers are
expressed using inverted use cases and actors, where misusecases threaten other use
cases and security use cases mitigate the attacks. However,misuse case models do not
capture the vulnerabilities that attackers may exploit to compromise the system. In ad-
dition, models are not expressive enough to fully capture the impact of security uses
case on other (mis)use cases. For instance, one can only model countermeasures that
prevent misuse cases, whereas countermeasures for patching vulnerabilities and allevi-
ating their exploitation impact cannot be represented.

Fig. 2 shows the revised meta-model of misuse case models by adopting the pro-
posed modeling ontology to fill the discussed gaps. In the meta-model, the element
and relationships added from the ontology are represented as highlighted classes and
dashed relationships, respectively. The concrete elements in the use case models is the
“use case” element which maybring vulnerabilities to the system. An attack (misuse
case) exploits a vulnerability, and the effect of the exploitation is athreatenrelation to



Fig. 2. Revising the misuse case modeling notation by adopting the modeling ontology

Fig. 3. Integrating vulnerabilities into the misuse case diagrams, example of a web application
and brower scenario

other use cases. New relationships such asexploitsandeffectsof security use cases are
modeled by new stereotypes. Fig. 3 depicts the adoption of some of the ontology ele-
ments into the misuse case diagrams. The left hand side of thefigure shows misuse case
models [31] for a web application scenario where a cross sitescripting attack occurs,
and the right hand side of the model shows our proposal for modeling vulnerabilities
and linking them to (mis)use cases.

6.2 Revising Vulnerability Modeling in the CORAS Approach

CORAS [7] provides modeling constructs to express threats,vulnerabilities, threat sce-
narios, unwanted incidents, risks, assets, and treatment scenarios. CORAS models show
the causal relationships from the vulnerabilities to threat scenarios; however, CORAS
models do not show what actions or scenario in the system introduce vulnerabilities.
The exploit relationship is not explicitly expressed, and the models do not express the
effects of vulnerabilities’ exploitation explicitly. Besides, treatment scenarios are only
connected to vulnerabilities and the semantics of this relationship is not well defined.

Fig. 4 shows the revised meta-model of CORAS by adoption of the proposed vul-
nerability modeling ontology. In this meta-model, the elements and relationships that
are adopted from the ontology are represented as highlighted classes and dashed rela-



Fig. 4. Revising the CORAS risk modeling language by adopting the modeling ontology

Fig. 5. Revising vulnerability modeling in the CORAS risk modelingapproach, example of a web
application and brower scenario.

tionships, respectively. The right hand side of Fig. 5 givesan example of adopting the
proposed ontology in the graphical CORAS modeling languagefor the browser and web
application case study, which is modeled using CORAS notation at the left hand side of
the Fig. 5. The logical or physical region boxes are used as concrete elements; for exam-
ple, thebrowserbrings the vulnerability ofmalicious script and user input. Threatening
actors and threat scenarios (Cross-site scripting) are directly connected, and the rela-
tionship between threat scenario and vulnerabilities is reversed. The exploitation effects
and countermeasures impacts are modeled using the existingCORAS relationships with
additional tags. Treatments (validate users’ inputanddisable JavaScript) patch the vul-
nerabilities, prevent threat scenarios or alleviate the effect of vulnerabilities.

6.3 Integrating Vulnerabilities into the i* Framework

The ability of the i* framework [33] to model agents, goals, and their dependencies
makes it suitable for understanding security issues that arise among multiple malicious
or non-malicious social agents with competing goals. Thus,i* provides the basic el-
ements for incorporating vulnerabilities into security requirements models and repre-
senting their propagation within the system.

Fig. 6 presents a fragment of the i* meta-model integrated with the vulnerability
ontology and extended with malicious elements. The concrete elements in the i* frame-



Fig. 6. The fragment of the i* meta-model extended by adopting the modeling ontology [9]

work that may bring vulnerabilities are tasks and resources. The effect of vulnerabilities
and its severity in the i* framework are defined as Hurt (−), Break (−−), and Unknown
(?) contribution links. Malicious tasks, goals, softgoals, and attackers are specializa-
tion of i* tasks, goals, softgoals, actors. Some tasks and resources can work as security
countermeasures.

Fig. 7 shows how vulnerabilities and related security constructs are graphically in-
tegrated into i* models in the browser and web application example. To graphically
represent vulnerabilities (Malicious script), the i* notation is enriched with a “black
circle”. The proposed notation graphically distinguishesmalicious and non-malicious
elements using a black shadow in the background of maliciouselements as proposed in
[18, 8]. The exploitation of a vulnerability by an attacker is represented by a link labeled
exploit from the malicious task to the vulnerability. The exploitation of (a combination
of) vulnerabilities has effects on goals, tasks, and availability of resources. Countermea-
sures are modeled using ordinary task elements, and their impacts as contribution links
with alleviate, prevent, or patchtags. Detailed models and the goal model evaluation
reasoning on the browser and web application case study can be found in [9].

6.4 Lessons Learned

The adoption of the proposed vulnerability modeling ontology in different conceptual
foundations helps understanding the limitations of the conceptual foundations and facil-
itates their enhancement. The enhanced misuse case models provide additional informa-
tion about vulnerabilities that enables a finer-grained security analysis for deciding on
proper security use cases. The revised CORAS models explicitly express which threat
scenario exploits the vulnerabilities and what are the effects of each exploitation, while



Fig. 7. Graphical representation of vulnerabilities in i* models.

the original CORAS models only express the impacts of the whole scenario. The ad-
ditional tags for expressing the exploitation effects and countermeasures impacts make
the semantics of CORAS relationships explicit. Analyzing the effects of vulnerabili-
ties in the i* models allows one to assess the risks of attacks, analyze the efficacy of
countermeasures, and decide on patching or disregarding the vulnerabilities by taking
advantage of goal model evaluation techniques [4]. In particular, analysts can verify
whether stakeholders’ goals are satisfied with the risks of vulnerabilities and attacks,
and assess the efficacy of security countermeasures againstsuch risks. In addition, the
resulting security goal models and goal model evaluation can provide a basis for trade-
off analysis among security and other quality requirements[8].

However, conceptual foundations may not be suitable or expressive enough to model
all the ontology elements. Each conceptual foundation has been proposed for a specific
purpose and is suitable for a certain type of modeling and analysis. For instance, mis-
use cases and CORAS do not provide constructs to represent delegations of assets and
dependencies between actors. Therefore, they cannot modeland analyze the propaga-
tion of vulnerabilities to system components. In addition,misuse cases and CORAS
models cannot express why a misuser attacks the system and link the misuser’s actions
to his/her goals. Another limitation of i*, misuse case, andCORAS models is lack of
constructs to model temporally-ordered actions and vulnerabilities exploitations that
lead to an attack. Enhancing these conceptual foundations to address above limitations
require a deep restructuring of their conceptual foundation, which imposes a trade-off
between complexity of models and their reasoning power. Therefore, analysts need to
identify the objectives of their analysis and select the target framework accordingly. For
instance, it may be more appropriate to extend a dynamic modeling approach such as
sequence diagrams rather than adding temporal constructs to misuse case diagrams.

7 Conclusions and Future Work

This paper has proposed a modeling ontology for integratingvulnerabilities into con-
ceptual modeling frameworks. In the process of the ontologydevelopment, we reviewed
the security engineering and security requirements engineering literature to identify the
set of core concepts needed for security requirements elicitation. The ontology is de-
fined as an abstract meta-model which relates the elements ofany conceptual frame-



work to vulnerabilities and related security concepts. We also discussed how the ontol-
ogy can be adopted and realized in different conceptual modeling frameworks through
some examples. These examples show that different frameworks have different concep-
tual structure and capabilities; therefore, by adopting the ontology elements into each
conceptual framework, different types of analysis can be done based on the resulting
models. We found that since some conceptual modeling frameworks do not provide
the required structures, they are not able to express concepts such as malicious goal,
vulnerable element of the system, temporal order, etc.

We adopted the ontology in the misuse case diagrams, i* models, and CORAS risk
models. In addition to those examples, in future work, the proposed ontology needs to
be adopted into a wider variety of modeling frameworks to provide stronger empirical
evidences for usefulness, expressiveness, and comprehensiveness of the ontology. In
order to evaluate the proposed ontology, we are performing empirical studies including
case studies with human subjects that use the extended conceptual modeling frame-
works. The aim of such case studies is to discover the security related concepts or types
of analysis that the elements of the ontology cannot expressor human subjects have dif-
ficulties to express. We aim to interview the subjects and critically analyze the models
to draw conclusions about the expressiveness of the proposed conceptual elements.

An issue not explored in this paper is the scalability concerns that come with graph-
ical visualization of complex models. The resulting modelsextended with security con-
cepts, may become complex and hard to understand. In order tomanage the complexity,
defining views of the system and filtering some views would be necessary.

References

1. Y. Asnar, R. Moretti, M. Sebastianis, and N. Zannone. Riskas Dependability Metrics for the
Evaluation of Business Solutions: A Model-driven Approach. In Proc. of DAWAM’08, pages
1240–1248. IEEE Press, 2008.

2. A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr. Basic Concepts and Taxonomy
of Dependable and Secure Computing.TDSC, 1(1):11–33, 2004.

3. F. Braber, I. Hogganvik, M. S. Lund, K. Stolen, and F. Vraalsen. Model-based security anal-
ysis in seven steps — a guided tour to the coras method.BT Technology Journal, 25(1):101–
117, 2007.

4. L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, editors.Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishing, 2000.

5. Common Vulnerability Scoring System. http://www.first.org/cvss/.
6. Common Weakness Enumeration. http://cwe.mitre.org/.
7. F. den Braber, T. Dimitrakos, B. A. Gran, M. S. Lund, K. Stolen, and J. O. Aagedal. The

CORAS methodology: model-based risk assessment using UML and UP. InUML and the
unified process, pages 332–357. IGI Publishing, 2003.

8. G. Elahi and E. Yu. A goal oriented approach for modeling and analyzing security trade-offs.
In Proc. of ER’07, LNCS 4801, pages 375–390. Springer, 2007.

9. G. Elahi, E. Yu, and N. Zannone. A vulnerability-centric requirements engineering frame-
work: Analyzing security attacks, countermeasures, and requirements based on vulnerabili-
ties. Manuscript submitted to Req. Eng. Journal, 2009.

10. M. Frigault, L. Wang, A. Singhal, and S. Jajodia. Measuring network security using dynamic
bayesian network. InProc of QoP’08, pages 23–30. ACM, 2008.



11. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone.Modeling security requirements
through ownership, permission and delegation. InProc. of RE’05, pages 167–176. IEEE
Press, 2005.

12. ISO/IEC. Risk management-vocabulary-guidelines for use in standards. ISO/IEC Guide 73,
2002.

13. ISO/IEC. Management of Information and Communication Technology Security – Part 1:
Concepts and Models for Information and Communication Technology Security Manage-
ment. ISO/IEC 13335, 2004.

14. S. Jajodia. Topological analysis of network attack vulnerability. In Proc. of ASIACCS’07,
pages 2–2. ACM, 2007.

15. J. Jürjens.Secure Systems Development with UML. Springer, 2004.
16. J. Krogstie, A. L. Opdahl, and S. Brinkkemper. Capturingdependability threats in concep-

tual modelling.Conceptual Modelling in Information Systems Engineering, pages 247–260,
2007.

17. C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S. Choi.A taxonomy of computer
program security flaws.CSUR, 26(3):211–254, 1994.

18. L. Liu, E. Yu, and J. Mylopoulos. Security and privacy requirements analysis within a social
setting. InProc. of RE’03, page 151. IEEE Press, 2003.

19. Y. Liu and H. Man. Network vulnerability assessment using bayesian networks. InData
mining, intrusion detection, information assurance, and data networks security, pages 61–
71. Society of Photo-Optical Instrumentation Engineers, 2005.

20. R. Matulevicius, N. Mayer, H. Mouratidis, E. Dubois, P. Heymans, and N. Genon. Adapting
Secure Tropos for Security Risk Management in the Early Phases of Information Systems
Development. InProc. of CAiSE’08, pages 541–555, 2008.

21. J. P. McDermott. Attack net penetration testing. InProc. of NSPW’00, pages 15–21. ACM,
2000.

22. N. Meyer, A. Rifaut, and E. Dubois. Towards a Risk-Based Security Requirements Engi-
neering Framework.In Proc. of REFSQ’05, 2005.

23. National Vulnerability Database. http://nvd.nist.gov/.
24. H. Petroski.To Engineer is Human: The Role of Failure in Successful Design. St. Martin’s

Press, New York, 1985.
25. C. Phillips and L. P. Swiler. A graph-based system for network-vulnerability analysis. In

Proc. of NSPW’98, pages 71–79. ACM, 1998.
26. L. Rostad. An extended misuse case notation: Including vulnerabilities and the insider threat.

In Proc. of REFSQ’06, 2006.
27. SANS. http://www.sans.org/.
28. F. B. Schneider, editor.Trust in Cyberspace. National Academy Press, 1998.
29. B. Schneier. Attack trees.Dr. Dobb’s Journal, 24(12):21–29, 1999.
30. B. Schneier.Beyond Fear. Springer, 2003.
31. G. Sindre and L. Opdahl. Eliciting security requirements with misuse cases.Requir. Eng.,

10(1):34–44, 2005.
32. A. van Lamsweerde. Elaborating security requirements by construction of intentional anti-

models. InProc. of ICSE’04, pages 148–157. IEEE Press, 2004.
33. E. Yu.Modeling Strategic Relationships for Process Reengineering. PhD thesis, University

of Toronto, 1995.


